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Embedded Nodes have Resource Limitations

Resource limitations

Embedded Data center

Computation [flop] 30− 1800 · 1012 86 · 1018

Memory [bit] 1010 1015

Power [W] 5-100 103 − 106

Energy [Wh] 48-1000 200 · 106

Computation Embedded refers to an Nvidia Jetson Nano running 1 min and 1 hour, respectively.
Computation server refers to the computation needed for the 40 day experiment with AlphaGo Zero
Energy embedded refers to a mobile phone and to a car battery, respectively.
Energy server refers to the 40 day experiment for AlphaGo Zero.
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PARTITIONING FOR INFERENCE



Image Processing Pipelines
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Partitioning of the Inference Task

• Energy depends on
• computation platform
• amount of computation done
• communication protocol
• amount of communication done

• Communication energy cost is very different for different protocols

• Communication energy (and latency tends) to dominate total energy and latency

Irida Shallari, Isaac Sánchez Leal, Silvia Krug, Axel Jantsch, and Mattias O’Nils. “Design space exploration on IoT node: Trade-offs in processing and

communication”. In: IEEE Access (2021)
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Energy and Latency Model

ENode(x) = ES + EP(T(0,x),P) + Ec(Vx ,C )

LNode(x) = Ls + LP(T(0,x),P) + Lc(Vx ,C )

LNode Node latency per sample
LS Sensing latency
LP Processing latency
LC Communication latency

ENode Node energy per sample
ES Sensing energy
EP Processing energy
EC Communication energy

x Partitioning point in [0, . . . ,N]
T(0,x) Computation tasks of stages 0 . . . x
P Hardware platform
Vx Data volume at output of stage x
C Communication protocol
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Communication Protocols

Communication groups

LAN Cellular IoT

BLE 5.0 GPRS 802.15.4 g
802.11 HSPA NB-IoT

LTE C. 4 LoRa
LTE C. 1
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Communication energy for different protocols. 10



Tasks Traditional systems CNN systems

People Counting Particle Detection AlexNet VGG16

0 307 200 307 200 307 200 307 200
1 8940 256 000 154 587 150 528
2 91 680 69 984 3 211 264
3 75 500 43 264 1 605 632
4 4 259 64 896 802 816
5 9216 401 408
6 4096 100 352
7 1000 25 088
8 4096
9 1000

(data volume after each processing stage in bytes)
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People Counting Pipeline

I
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Particle Detection Pipeline

I
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AlexNet Pipeline
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VCG16 Pipeline
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People counting application
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Particle detection application 17



AlexNet
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VGGNet 16 19



Conclusions

• For high energy communication protocols the it is optimal to minimize
transmitted data.

• For low energy communication protocols the sweet spot is not at the extremes.

• The optima depend on the application, the IoT platform and the communication
protocol used.
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IMPACT OF IMAGE SIZE AND
CONTENT



Impact of image size and image content

Case study: Conventional image processing pipeline - Biscuit inspection system

Isaac Sánchez Leal, Irida Shallari, Silvia Krug, Axel Jantsch, and Mattias O’Nils. “Impact of Input Data on Intelligence Partitioning Decisions for IoT

Smart Camera Nodes”. In: Electronics 10.16 (2021)
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Biscuit Production
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Changes in data out due to: Processing time
# Processing Task Output type ∆Img .Size ∆Img .Objects behavior

t1 Color transformation. Color space YCbCr. ∆Linear Constant ∆LinearSize
t2 Channels separation. Y channel. ∆Linear Constant ∆LinearSize
t3 Image Histogram. Array with 256 elements. Constant Constant ∆LinearSize
t4 Segmentation. BW image without background. ∆Linear Constant ∆LinearSize
t5 Edges detection. BW image with detected regions. ∆Linear Constant ∆LinearSize
t6 Regions filling. BW image with filled regions. ∆Linear Constant ∆LinearSize
t7 Morphology: open. BW image without particles. ∆Linear Constant ∆LinearSize
t8 Component Labelling. Non-binary labels image. ∆Linear Constant ∆LinearSize
t9 Features extraction. 2D features matrix. Constant ∆Linear ∆LinearSize,Objects

t10 Classification. 2D coordinates matrix. Constant ∆Linear ∆LinearObjects
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Main points

• Most tasks’ processing time depends on the size of image: t1,t2,t4-t8

• Some tasks depend on number of objects: t9, t10, which are later in the pipeline

• Data Volume depends heavily on image size, only late in the pipeline (t9,t10) also
on number of objects
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Biscuit Image Processing Pipeline

For 292× 436 sized images and 18 objects.
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Data Volume

18 objects Image size: 292× 436× 3.
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Processing Time

18 objects
Image size: 2848× 4288× 3
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Latency

Proccesing latency with RasberryPi. Communication latency with LTE Cat.1.

18 objects
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Energy

Proccesing energy on RasberryPi. Communication energy with LTE Cat.1.

18 objects
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Optimization Problems

1 Miminizing latency:
LNode → Min

2 Minimizing energy:
ENode → Min

3 Minimizing energy under a latency constraint:

LNode ≤ MaxDelayConstraint

ENode → Min
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Latency minimization for LTE Cat.1
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Energy minimization for LTE Cat.4
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Energy minimization under a delay constraint for BLE5
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WAIST TIGHTENING



Methodology

Assumptions

• Energy and delay model

• Optimization goal

• Constraints on energy, latency and accuracy

Selecting the partitioning point

• Candidate points have low data volume

• For each candidate point
• Quantization,Pruning and compression
• Retraining

• Best point according to constraints and optimization
criteria is selected.
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Energy and Latency Model

ENode(x) = ES + EP(T(0,x),P) + Ec(Vx ,C )

LNode(x) = Ls + LP(T(0,x),P) + Lc(Vx ,C )

LNode Node latency per sample
LS Sensing latency
LP Processing latency
LC Communication latency

ENode Node energy per sample
ES Sensing energy
EP Processing energy
EC Communication energy

x Partitioning point in [0, . . . ,N]
T(0,x) Computation tasks of stages 0 . . . x
P Hardware platform
Vx Data volume at output of stage x
C Communication protocol
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Partitioned DNNs
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DNN Partitioning:

Mp = M1..j ∪ I ∪Mj+1..N

Optimization problem
Minimizing energy under accuracy constraint:

ENode → Min

mAP(Mp) ≥ mAP(M)− Lth.

M Original DNN
Mp DNN partitioned at point j
I Interface
mAP mean average precision
Lth Threshold for acceptable loss of precision

Eiraj Saqib, Isaac Sánchez Leal, Irida Shallari, Axel Jantsch, Silvia Krug, and Mattias O’Nils. “Optimizing the IoT Performance: A Case Study on

Pruning a Distributed CNN”. In: Proceedings of the IEEE Sensors Applications Symposium (SAS). 2023 42



Quantization

Two quantization methods:

Q1 : db
j =

⌊
fj−S
M−S × 2b−1

⌋
, with b ∈ [1− 8].

f ′j = db
j ×

(
M−S
2b−1

)
+ S , where b ∈ [1− 8].

Q2 : db
j = ⌊(fj − µ) /M⌋ with b = 1.

f ′j =
(
db
j ×M

)
+ µ with b = 1.

fj Floating point number in feature
map at output of stage j

db
j Quantized number to b bit

f ′j De-quantized value

M Maximum value of the dynamic range
m Minimum value of the dynamic range
S (M −m)/2
µ Mean value
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Pruning

Two step pruning:

1 Pruning of filters in Layer j , subject to

mAP(M ′
p) ≥ mAP(M)− Lth

2 Pruning of layers i = 1, . . . , j − 1, subject to

mAP(M ′′
p ) ≥ mAP(M)− Lth

M ′ DNN with layer j pruned
M ′′ DNN with layers i = 1, . . . , j pruned
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Compression

Compression to minimize the data transmitted over the channel
We use the zip and JPEG compression algorithms.
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Wheel Chair Steering Case Study

Input image 32-bits 1-bit

Cristian Vilar Giménez, Silvia Krug, Faisal Z. Qureshi, and Mattias O’Nils. “Evaluation of 2D-/3D-Feet-Detection Methods for Semi-Autonomous

Powered Wheelchair Navigation”. In: Journal of Imaging 7.12 (2021)

Isaac Sanchez Leal, Eiraj Saqib, Irida Shallari, Axel Jantsch, Silvia Krug, and Mattias O’Nils. “Waist Tightening of CNNs: A Case study on Tiny

YOLOv3 for Distributed IoT Implementations”. In: Proceedings of the Real-time And intelliGent Edge computing workshop (RAGE). San Antonio,

Texas, May 2023
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TinyYolo V3
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TinyYolo V3
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Partitioning
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Quantization Q2 and Compression
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Quantization Q2, Pruning and Compression
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Partitioning and Pruning Benefits

Quantization and
Compression

Quantization,
Compression and
Pruning

All All All All
In-Edge In-Node In-Edge In-Node

Energy saving x1.26 x3.8 x5.74 x17
System speed-up x2.05 x1.05 x5.24 x2.65

Optimal partitioning versus all-in-edge and all-in-node reference solutions.
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DNN Partitioning - Summary

Summary

• Effective DNN partitioning is feasible

• DNN partitioning opens a considerable design space for
DNN based IoT applications

• Next steps is to explore more aggressive DNN adaptions
for partitioning
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Power Consumption in Inference
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Power Consumption in Inference
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Design Space

ARM NN

Nvidia Turing

Platform Choices
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Fully connected layer

Number of layers

Regularization

etc.

Number of filters
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Neuron pruning
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Regularization
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