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INDUSTRIAL MOTOR



CAM: Context Aware Monitoring

Condition Monitoring System
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M. Gotzinger, N. TaheriNejad, H. A. Kholerdi, and A. Jantsch. “On the design of context-aware health monitoring without a priori knowledge; an
AC-Motor case-study”. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). Apr. 2017, pages 1-5



Industrial Motor
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Industrial Motor
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HYDRAULIC PIPE SYSTEM
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Maximilian Gétzinger et al. “Applicability of
Context-Aware Health Monitoring to Hydraulic
Circuits”. In: The 44th Annual Conference of the IEEE
Industrial Electronics Society. 2018




SuO signals (respective units)
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EARLY WARNING SCORE



Early Warning Score

Score 3 2 1 0 1 2 3

Heartrate! = <40 40-51 51-60 60-100 100-110 110-129 = >129
SystolicBP? | <70 70-81 81-101 101-149 149-169 169-179 = >179
Breath rate® <9 9-14 14-20 20-29 >29
SPO; (%) <85 8590 90-95 >95

Body temp.* | <28 28-32 32-35 35-38 38-39.5 | >39.5

'beats per minute, 2mmHg, 3breaths per minute, doC




EWS Improvement

¢ Data reliability:

® Values in reasonable scope
® Changes in reasonable scope
® Consistency between sensors

e Sjtuation awareness

® Power efficiency

Arman Anzanpour et al. “Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics”. In: Proceedings of Design and Test Europe
Conference (DATE). Lausanne, Switzerland, Mar. 2017

Maximilian Gétzinger et al. “Confidence-Enhanced Early Warning Score Based on Fuzzy Logic”. In: Mobile Networks and Applications (2019)



Enhanced Early Warning Score
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Enhanced Early Warning Score - Data Reliability

® Check on the reliability of sensed values
® Check on the reliability of value changes
© Check on consistency between sensor data



Enhanced Early Warning Score - Data Reliability

® Check on the reliability of sensed values
® Check on the reliability of value changes
© Check on consistency between sensor data

Experiment 1 Experiment 3
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Enhanced Early Warning Score - Situation Awareness

@ Consider the
activity
mode of
person

® Consider
time of day

©® Consider
location



Enhanced Early Warning Score - Situation Awareness

Emergency Level (Orginal EWS)

Critical -
Equivocal -
Low -

Normal
o Consider the Emergency Level (Modified EWS)
1vi Critical —
aCthlty Equivocal —
mode of tow | I T T LA LA WL LN L A T
Normal
person
Activity
® Consider Running |
time of day Jogging
Walking 4
©® Consider Resting
location Sleeping

Environment

Night, Indoor —
Day, Outdoor —|

Day, Indoor -{ 1




Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations

Priority Score

Indoor-Day
Indoor-Night
Outdoor-Day
Outdoor-Night

100
80
60
40
20

High
Medium
Low
Normal



Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations

@® Distinguish different modes of urgency

Emergency  Score:0 Score:1-3 Score:4-6 Score>6

Level: Normal Low Medium High
Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor
2| ol2| 22| [s12]:lZ] 12| s]2
S|z|z |28z |2 =2 2| 2|z 2=
Sleeping |E|E|E|E| |C|/D|/D|D| |[B/C|C|C| |A|A BB
Resting D|D|D/ D| |C/C|C|C| B|B/ B B| A AlB' B
Walking |[C|C| C| C B C C|C B(B|B|lB A AlA B
Jogging IC|C | C| C B B B C B B/ B B A AlA B
Running |IC|C|C| C B B BB B BB B A AlA A




@ DPrioritize different situations
@® Distinguish different modes of urgency
© Define sensing activity for each mode

Enhanced Early Warning Score - Power Efficiency

Respiration Rate Blood Heart Rate, | Transmission
State Activit Pressure Sp0O2, and Power
y Body Temp. | Consumption
. Every hour in day
A Continuous Disabled in night Every sec. 29 mW
2 min continuous | Every hour in day
B 8 min OFF Disabled in night Every sec. 268 mW
2 min continuous | Every 3 hours in day .
c 3 min OFF Disabled in night Everymin. | 12.5mW
2 min continuous | Every 3 hours in day .
b 8 min OFF Disabled in night Everymin. | 7mW
2 min continuous . .
E 18 min OFF Disabled Every min. | 4.3 mW
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Enhanced Early Warning Score - Power Efficiency

Over a day half the energy can be saved.

Running -
Jogging
Walking -

Resting -
Sleeping - Aciivity

N.L 4 Environment

Day, Indoor T
D.O. - ight, Indoor
D.I. _,—;I Day, OQutdoor [ |

Baseline, 29mW

Self-aware, 14.5mW
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Enhanced Early Warning Score Summary

¢ Considering data reliability improves quality of observation;
¢ Considering sitation improves quality of observation;

¢ Collecting needed data only improves efficiency.



SMART GRIDS



Smart Grid Monitoring

® Decentralized energy
consumers/producers

® Renewable energy systems

® E-mobility

¢ New control and protection
concepts

¢ Intelligent event detection
and root cause analysis

® Huge amount of
heterogenous data

® Machine Learning concepts
are resource-intensive

Daniel Hauer, Maximilian Goétzinger, Axel Jantsch, and

Florian Kintzler. “Context Aware Monitoring for Smart

Grids”. In: Proceedings of the International Symposium on \29
Industrial Electronics (ISIE). Kyoto, Japan, June 2021




Case Study: Battery-Supported Substation

e Available Historical Grid Data: partly peakshaving no peakshaving
® Testbed Vienna, Austria
® 12 distribution substations % 100 7
® Battery-supported Substation = 50 : MMW
® Battery tries to limit load to — \ I T
60 kW continious peakshaving battery event
¢ Charging during night
® Day-profile Clustering

z
=<
® Analysis based on statistical, E 50 | m N
spectral and temporal features

T T T
® Dominant behavior is “partly S & & & 8 § é S § )
peakshaving” SN SN v
Day profile Partly peak-  No peak- Full peak-  Maintenance
shaving shaving shaving event
Occurrence 68% 17% 14% 1%
TU ‘\29
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Smart Grids Monitoring Methodology

/ Training phase \ Monitoring phase \

CCAM ]
Labeled training arameter CCAM . .
data set ] —_— pRAmEEE I_.[ instance J Live grid data
’ Be;t
CCAM matching
instance | evaluation CCAM output
CCAM parameter : T —_ 4
space CCAM Best state Vonitori ]
matching onitoring L
\ outputs / evaluation J Monitoring result
Configuration Training Monitoring
® Use case definition ® Multiple CCAM instances ¢ Single CCAM instance
® Labeled data set ® Best matching evaluation ¢ Live Monitoring results
® Parameter space ® High computational effort ® Low computational effort
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¢ Labeled training data for the identified categories
¢ CCAM parameter set with highest overall confidence
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80— 97% 2009 51g
¢ Live data stream: Only single CCAM £ 60/ ”
. b 50
instance 1 25
® Result: @ @ 5 o® @ @ P o°
® Analysis of 14 weeks starting September —
100 4 =
2018 g
® Confidence (with 70% threshold) indicates Z 504
whether system operates as expected . ! ! ! ! .
’ 2 > 2 > 2 > 70 > 2 > 2% &
100
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E 50
25
\*&’L N \“J\:L \“ﬂ x"ﬂ \"{L

WIEN



Smart Grid Monitoring - Summary and Outlook

® Can operate on top of existing
infrastructure

® Allows for monitoring of live
data stream

o Further field tests based on real
data

® Consider more heterogeneous
data (e.g., weather data)

® Inclusion of our monitoring
approach into simulation

® Implementation on different
cloud and edge devices

Ty )




ROSA FRAMEWORK



RoSA - Research on Self-Aware Monitoring

1 Actuat.

2 \

o Agent Agent

>

[ 21 Sensor 22 Actuat.| |Actuat.

f_U J J

(5}

g / \ |

2

] Agent Agent | | Agent

.§ Actuat. 31 Sensor Sensor 42 3.2

T / \
Agent Agent
a1 Sensor {Sensor 42 Sensor| |Sensor

Open-source implementation is available at
https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git

Maximilian Gotzinger et al. “RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems”. In: IEEE Access 8 (2020)
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https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git

RoSA - Research on Self-Aware Monitoring

Agent model

@

Functionalities

Custom code

Qutput(s)

Input(s)

Agent

Observe

Agent

Agent description
(tasks, algorithms, «

Functionality 1

QOutput(s)

Functionality 2
Functionality n




RoSA - Research on Self-Aware Monitoring

Metrics EWS SA-EWS 1 SA-EWS 2 CAH/CCAM
Cortex- | A7 Al5  AS3 AT AlS  AS3 A7 Al5S  AS3 A7 Al5  AS53
Executable Binary Size (kB) 798 798 817 911 911 933 1079 1079 1105 662 662 678
Maximum Allocated Memory* (kB) 3508 3508 3272 3584 3584 3440 3656 3656 3624 3348 3348 3404
Average Sample Processing Time** (ms) 046 022 039 074 035 064 164 077 150 741 437 7.21
Real-Time Sampling Period*** (ms) 1000 1000 1000 1000 1000 1000 1000 1000 1000 33 33 33

* Memory size includes code and all data during execution.

** The average is based on the total processing time including initialization of the application and reading sensor input files and writing output
file, in single-threaded execution.

*##* Maximum acceptable sample processing time for real-time execution based on application requirements.

Ty ©)



RoSA - Research on Self-Aware Monitoring

b
o
[e=]

150

100

50

Relative code size in percentage (%)

2204

6.24

RoSA-based Application
I | RoSA Framework
- - - Reference Custom Code

T
EWS
(5481 lines)

SA-EWSI1 SA-EWS2 CAH/CCAM
(11112 lines) (12866 lines) (20378 lines)




SUMMARY AND CONCLUSION



Context Aware Monitoring - Summary

Intelligent monitoring is based on several general concepts

The same concepts are applicable on a range of application domains with
small to medium adaptation

RoSA and CCAM are general purpose modeling and monitoring tools

Case studies: industrial motor, water pipe system, medical monitoring, smart
grids
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