

Axel Jantsch

TU Wien, Vienna, Austria

September 2020

Outline

- 1 Motivation and Challenges
- 2 HW Friendly Optimizations
- **3** CNN Accelerator Architectures
- 4 Quantization

Outline

- 1 Motivation and Challenges
- 2 HW Friendly Optimizations
- 3 CNN Accelerator Architectures
- 4 Quantization

Motivation and Challenges

Machine learning is a powerful method to analyze data;

- Machine learning is a powerful method to analyze data;
- Embedded application produce huge amounts of sensor data;

- Machine learning is a powerful method to analyze data;
- Embedded application produce huge amounts of sensor data;
- The data can or should not always be moved to central servers;

6

Compute Usage Trend

Total Energy Consumption

SIA - SRC. Rebooting the IT Revolution: A Call to Action. Tech. rep. Semiconductor Industry Association and Semiconductor Research Corporation, Sept. 2015

Deployed Sensors

SIA - SRC. Rebooting the IT Revolution: A Call to Action. Tech. rep. Semiconductor Industry Association and Semiconductor Research Corporation, Sept. 2015

What is Special About "Embedded"?

- Resource limitation
- Connectivity
- Security
- Privacy

What is Special About "Embedded"?

Resource limitations

	Embedded	Server farm
Computation [flop]	$30 - 1800 \cdot 10^{12}$	86 · 10 ¹⁸
Memory [bit]	10 ¹⁰	10 ¹⁵
Power [W]	5-100	$10^3 - 10^6$
Energy [Wh]	48-1000	$200 \cdot 10^{6}$

Computation Embedded refers to an Nvidia Jetson Nano running 1 min and 1 hour, respectively.

Computation server refers to the computation needed for the 40 day experiment with AlphaGo Zero

Energy embedded refers to a mobile phone and to a car battery, respectively. **Energy server** refers to the 40 day experiment for AlphaGo Zero.

Case for Embedded ML

- Embedded inference:
 - More energy efficient
 - Bandwidth constraints
 - Latency constraints
 - Not always on-line and connected to a cloud server
 - Security
 - Privacy
- Embedded continuous learning:
 - Customization and specialization
 - Security
 - Privacy

DNNs: Embedded and the Cloud

DNNs: Embedded and the Cloud

DNNs: Embedded and the Cloud

Design Space

Design Space

DNN Choices

Convolutional layers Filter kernels Number of filters Pooling layers Filter shape Stride Fully connected layer Number of layers Regularization etc.

Mapping Choices

Neuron pruning
Data type selection
Approximation
Retraining
Connection pruning
Weight sparsifying
Regularization

Platform Choices

Platform Selection
Reconfiguration
Batch processing
Deep pipelining
Resource reuse
Hierarchical control
Processing unit selection
Memory allocation
Memory reuse

1 In which year will computing consume all world-wide produced energy, if

- 1 In which year will computing consume all world-wide produced energy, if
 - a current trends continue without major innovation in technology;

Choices: 2027, 2032, 2037, 2042, 2047

- In which year will computing consume all world-wide produced energy, if
 - a current trends continue without major innovation in technology;
 - Choices: 2027, 2032, 2037, 2042, 2047
 - b current trends continue with aggressive and major innovations in technology?

- In which year will computing consume all world-wide produced energy, if
 - a current trends continue without major innovation in technology;

Choices: 2027, 2032, 2037, 2042, 2047

b current trends continue with aggressive and major innovations in technology?

Join at slido.com #32126

Outline

- Motivation and Challenges
- 2 HW Friendly Optimizations
- 3 CNN Accelerator Architectures
- 4 Quantization

HW Friendly Optimizations

Optimization Categories

Minimize number of operations to be performed;

Optimization Categories

- 1 Minimize number of operations to be performed;
- 2 Simplify each operation;

Optimization Categories

- 1 Minimize number of operations to be performed;
- 2 Simplify each operation;
- 3 Execute the operations as efficient as possible.

HW Friendly Optimizations

- Loop reordering, unrolling, pipelining
- Tiling
- Batching
- Binarized CNNs

Loop Optimizations

Convolution layer algorithm:

```
for (to=0; t < M; to++)  {
                           // output feature map
 for (ti=0; t<N; ti++) {
                         // input feature map
  for (row=0; row<R; row++) { // row
    for (col=0; col< C; col++) { // column}
       for (i=0; i<K; i++) { // filter
         for (j=0; j<K; j++) {
           Ofmap[to][row][col]
             += W[to][ti][i][i]
                * Ifmap[ti][S*row+i][S*col+j];
            }}}}}
```

M ... number of output feature maps

N ... number of input feature maps

R ... number of rows

C ... number of columns

K ... filter kernel size

S ... stride

W ... weight matrix

	PCI Express 3.0 Host Interface					
	GigaThread Engine					
Memory Controller Memory Controller						
troller Memory Controller	L2 Cache	Annual Colonia				
Memory Controller Memory Controller						
Memory Controller	Deputy of the second of the se					

Nvidia Turing TU102

Process (nm)	12
Transistors (billion)	18.6
Die size (mm²)	754
Streaming Multiprocessors (SM)	72
CUDA Cores	4608 (64/SM)
Tensor Cores	576 (8/SM)
RT Cores	72
Clock (MHz)	≤ 1500
CUDA TFlops (FP32)	13.8
L1 Cache (MB)	6.912
L2 Cache (MB)	6
Bus width	384
Power (W)	200-250
Bandwidth (GB/s)	672

Intel Skylake Server Architecture

28 cores; 30 tiles, 14nm, 694 mm2

- L0 μOP cache:
 - 1536 μOPs/core.
 - 8-way set associative
 - 32 sets, 6-μOP line size
- L1 I-Cache:
 - 32 KiB/core.
 - 8-way set associative
 - 64 sets, 64 B line size
- L1 D-Cache:
 - 32 KiB/core.
 - 8-way set associative
 - 64 sets, 64 B line size
 - 4 5 cycles latency
 - Write-back policy
- · L2 Cache:
 - 1 MiB/core
 - 16-way set associative
 - 64 B line size
 - Write-back policy
 - 14 cycles latency

- L3 Cache:
 - 1.375 MiB/core,
 - 11-way set associative,
 - shared across all cores
 - 2,048 sets, 64 B line size
 - Write-back policy
 - 50-70 cycles latency

Loop Optimizations

Loop reordering to improve cache efficiency; Loop unrolling to improve parallelism; Loop pipelining to improve parallelism.

Loop Tiling

```
for (row=0; row<R; row+=Tr) { // tiled row loop</pre>
    for (col=0; col<C; col++) { // column
     for (trr=row; trr<min(R,row+Tr); trr++) {</pre>
       for (i=0; i<K; i++) { // filter
        for (i=0; i<K; i++) {</pre>
          Ofmap[to][trr][col]
           += W[to][ti][i][j]
              * Ifmap[ti][S*trr+i][S*col+j];
```

For efficient use of caches.

Batching

- Reuse of weights;
- Improves throughput;
- Increases latency.

Binarized CNNs (BNN)

- Weights and internal computation are represented as 1b binary numbers;
- Instead of MAC operations, BNNs use XOR and bit-count;
- Attractive for HW and FPGAs

(a) An example of binarized MM

(b) Binarized MM using XNOR and BCNT. -1 is represented using 0.

BCNT= OneCount-ZeroCount		
IN	Computation	OUT
000	-1-1-1= -3	101
001	-1-1+1 = -1	111
010	-1+1-1= -1	111
011	-1+1+1=+1	001
100	+1-1-1= -1	111
101	+1-1+1= +1	001
110	+1+1-1= +1	001
111	+1+1+1=+3	011

(c) BCNT using a lookup table (OUT is in 2's complement form)

Which optimization method is most promising in improving ML compute efficiency:

- Which optimization method is most promising in improving ML compute efficiency:
 - a Optimize network to minimize number of computations,

- Which optimization method is most promising in improving ML compute efficiency:
 - a Optimize network to minimize number of computations,
 - b Improve processing element and processing datapath architecture,

- Which optimization method is most promising in improving ML compute efficiency:
 - a Optimize network to minimize number of computations,
 - b Improve processing element and processing datapath architecture,
 - c Improve memory architecture,

- Which optimization method is most promising in improving ML compute efficiency:
 - a Optimize network to minimize number of computations,
 - Improve processing element and processing datapath architecture,
 - c Improve memory architecture,
 - d Optimize mapping of network onto target architecture ?

Outline

- Motivation and Challenges
- 2 HW Friendly Optimizations
- **3** CNN Accelerator Architectures
- 4 Quantization

CNN Accelerator Architectures

CNN Accelerator Architectures

- Systolic array architecture
- In-memory computing

Systolic Arrays

34

Tensor Flow Unit (TPU)

Laterary Aller and Communications and Communication Analytic atoms (100A) 2047, and 4,40

Tensor Flow Unit (TPU)

Tensor Flow Unit (TPU)

In-memory Computing

- Storage capacity and memory access bandwidth and latency dominate DNNs.
- Avoid moving data.
- Distribute the MAC units in the memory architecture.

Wire Aware Accelerator (WAX)

Sumanth Gudaparthi et al. "Wire-Aware Architecture and Dataflow for CNN Accelerators". In: *Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture*. MICRO '52. Columbus, OH, USA: Association for Computing Machinery, 2019

3 For optimizing CNN execution, is it more effective

3 For optimizing CNN execution, is it more effective

a to re-use (and keep on-chip) input data,

- 3 For optimizing CNN execution, is it more effective
 - a to re-use (and keep on-chip) input data,
 - b to re-use weights,

- 3 For optimizing CNN execution, is it more effective
 - a to re-use (and keep on-chip) input data,
 - b to re-use weights,
 - c to re-use intermediate data?

Outline

- 1 Motivation and Challenges
- 2 HW Friendly Optimizations
- 3 CNN Accelerator Architectures
- 4 Quantization

Quantization

Quantization - Regularization

- Using small bit width for weights saves memory, bandwidth and computation;
- Bit width can be different for different layers of the DNN;
- Quantization scheme: Dynamic fixed point, power of 2;
- Retraining after quantization recovers accuracy losses: Regularization;
- Not all weights are equal: Weighted regularization.

Matthias Wess, Sai Manoj Pudukotai Dinakarrao, and Axel Jantsch. "Weighted Quantization-Regularization in DNNs for Weight Memory Minimization towards HW Implementation". In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.10 (Oct. 2018)

Quantization - Motivation

- DNN quantization
 - Reduces data movement
 - Reduces logic energy
- Layerwise bit-width optimization

Quantization - Motivation

Layer 1

Full Resolution 600 Weights

Layer 2

Full Resolution 900 Weights

CIFAR-100

Quantization - Conclusion

- Dynamic Fixed Point is an effective alternative to integer or floating point representation;
- Different layers require different precision;
- Retraining adjusts the network to the available weight values;
- Weight memory reduction of 4-8x is common;
- Reduced weight precision reduces weight memory and cost of operation.

Summary

Summary

- Embedded Machine Learning has many applications;
 - Bandwidth limitations;
 - Delay constraints;
 - Privacy;
 - Security;

Summary

- Embedded Machine Learning has many applications;
 - Bandwidth limitations;
 - Delay constraints;
 - Privacy;
 - Security;
- There are distinct challenges:
 - Limited resources;
 - Specialized HW platforms;
 - Huge design space for optimization and mapping.

References I

Sumanth Gudaparthi et al. "Wire-Aware Architecture and Dataflow for CNN Accelerators". In: *Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture*. MICRO '52. Columbus, OH, USA: Association for Computing Machinery, 2019.

N. P. Jouppi et al. "In-datacenter performance analysis of a tensor processing unit". In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). 2017, pp. 1–12.

SIA - SRC. Rebooting the IT Revolution: A Call to Action. Tech. rep. Semiconductor Industry Association and Semiconductor Research Corporation, Sept. 2015.

Matthias Wess, Sai Manoj Pudukotai Dinakarrao, and Axel Jantsch. "Weighted Quantization-Regularization in DNNs for Weight Memory Minimization towards HW Implementation". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 37.10 (Oct. 2018).

Yu Wang, Gu-Yeon Wei, and David Brooks. "Benchmarking TPU, GPU, and CPU Platforms for Deep Learning". In: *CoRR* abs/1907.10701 (2019). arXiv: 1907.10701.

