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Why Embedded Machine Learning ?

e Machine learning is a powerful method to analyze data;

¢ Embedded application produce huge amounts of sensor
data;

e The data can or should not always be moved to central
servers;
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Compute Usage Trend
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Deployed Sensors
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What is Special About “Embedded”?

Resource limitations

Embedded Server farm
Computation [flop] 30 —1800-10'>  86-10'8

Memory [bit] 1010 1010
Power [W] 5-100 103 — 106
Energy [Wh] 48-1000 200 - 106

Computation Embedded refers to an Nvidia Jetson Nano running 1 min and 1 hour,
respectively.

Computation server refers to the computation needed for the 40 day experiment with
AlphaGo Zero

Energy embedded refers to a mobile phone and to a car battery, respectively.

Energy server refers to the 40 day experiment for AlphaGo Zero.



Case for Embedded ML

e Embedded inference:

More energy efficient

Bandwidth constraints

Latency constraints

Not always on-line and connected to a cloud server
Security

Privacy

e Embedded continuous learning:

e Customization and specialization
® Security
® Privacy
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DNNs: Embedded and the Cloud

Embedded

Inference

Embedded

Preprocessing

Cloud based

Inference

Embedded

Training
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Embedded
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Cloud based

Design time
training
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retraining
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Design Space



Design Space

Intel” Vision Products with
Intel” Arria® 10 FPGA

DNN Processor unnn)

Nvidia Turing

ARM NN

DNN Choices

Convolutional layers
Filter kernels
Number of filters
Pooling layers

Filter shape

Stride

Fully connected layer
Number of layers
Regularization

etc.
N

Mapping Choices

Neuron pruning
Data type selection
Approximation
Retraining
Connection pruning
Weight sparsifying
Regularization

ete.

Platform Choices

Platform Selection
Reconfiguration

Batch processing

Deep pipelining
Resource reuse
Hierarchical control
Processing unit selection
Memory allocation

Memory reuse

ete.
-
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Optimization Categories

@ Minimize number of operations to be performed;
® Simplify each operation;

@® Execute the operations as efficient as possible.
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HW Friendly Optimizations

Loop reordering, unrolling, pipelining
Tiling

Batching

Binarized CNNs



Loop Optimizations

Convolution layer algorithm:

for (to=0; t<M; to++) { /1l
for (ti=0; t<N; ti++) { /1
for (row=0; row<R; row++) { /1l

for (col=0; col<C; col++) { //
for (i=0; i<K; i++) { /1l
for (j=0; j<K; j++) {
Ofmap[to J[row][col]
+= Wto J[ti ][ ][]]

output feature map
input feature map
row

column

filter

x Ifmap[ti ][Sxrow+i][Sxcol+j];

83880

.. number of output feature maps
.. number of input feature maps
.. number of rows

.. number of columns

.. filter kernel size

.. stride

.. weight matrix

snux0BZZ



PCI Express 3.0 Host Interface.
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Warp Scheduler + Dispatch (32 thread/cIk)

Register File (16,384 x 32-bit)

TENSOR

INT32 CORES

FP32

LosT  LoST Lot LosT | SFU

‘Warp Scheduler ¥ Dispateh (32 thread/clk) | |

Register File (16,384 x 32-bit)
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Warp Scheduler + Dispatch (32 thread/cik).

Register File (16,384 x 32-bit)

TENSOR

INT32 CORES

FP32

LDsT  LoST Lot LoisT | SFU

Warp Scheduler + Dispatoh (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 CORES

FP32

LDiST  LDST  LoisT  LOiST  SFU

96KB L1 Data Cache / Shared Memory




Process (nm)
Transistors (billion)
Die size (mm?)
Streaming Multiprocessors (SM)
CUDA Cores

Tensor Cores

RT Cores

Clock (MHz)

CUDA TFlops (FP32)
L1 Cache (MB)

L2 Cache (MB)

Bus width

Power (W)
Bandwidth (GB/s)

Nvidia Turing TU102

12
18.6
754
72
4608 (64/SM)
576 (8/SM)
72
< 1500
13.8
6.912
6
384
200-250
672




3x DDR4 2666

1x16/2x8/4x4
2x UPIx20 @ 1x16/2x8/ 4x4 PCle @ 8GT/s 1x UP1x20 @ 1%16/2x8/4x4
10.4GT/s PCle @ 8GT/s x4 DMI 10.4GT/s PCle @ 8GT/s
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Intel Skylake Server Architecture

28 cores; 30 tiles, 14nm, 694 mm2

® L0 pOP cache:
® 1536 pOPs/core,
® 8-way set associative
® 32 sets, 6-p.OP line size
® L1 I-Cache:
® 32KiB/core,
® 8-way set associative
® 64 sets, 64 B line size
® |1 D-Cache:
® 32 KiB/core,
® 8-way set associative
® 64 sets, 64 B line size
® 4 -5cycles latency
®  Write-back policy
® |2 Cache:
® 1 MiB/core,
16-way set associative
64 B line size
Write-back policy
14 cycles latency

2upix0@
0467/

PCie@ 8GT/s

® |3 Cache:

1.375 MiB/core,

11-way set associative,
shared across all cores
2,048 sets, 64 B line size
Write-back policy

50-70 cycles latency

6720/ a
GBema PO @8GT/E WURI20@ i
<D 1046775 PCie@s6T/s

4




Loop Optimizations

Loop reordering to improve cache efficiency;
Loop unrolling to improve parallelism;
Loop pipelining to improve parallelism.



Loop Tiling

for (to=0; t<M; to++) { // output feature map
for (ti=0; t<N; ti++) { // input feature map
for (row=0; row<R; row+=Tr) { // tiled row loop
for (col=0; col<C; col++) { // column
for (trr=row; trr<min (R, row+Tr); trr++) {
for (i=0; i<K; i++) | // filter
for (i=0; i<K; i++) {
Ofmap[to] [trr] [col]
+= Wlto] [ti] [1]1[]]
« Ifmap[ti] [S*xtrr+i] [Sxcol+]j];
FrirrYy

For efficient use of caches.
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Weight
Input vector
8192 =
8192
4096

Batching

5 I Weight Output

Output |
vector |

4096 |

(a) Matrix-vector multiplication L

® Reuse of weights;

e Improves throughput;

® Increases latency.

Input vector vector

N

Rls192 =N

4096
(b) Matrix-matrix multiplication

&



e Weights and internal computation are represented as 1b

Binarized CNNs (BNN)

binary numbers;
¢ Instead of MAC operations, BNNs use XOR and bit-count;
e Attractive for HW and FPGAs

(L) (1) (141

S HELAD L) ++141) B
HELAL) H(H1-1) +(+1.4+1)

(a) An example of binarized MM

SIEE!
|-1|+1‘+1‘® +1[-1|+1
+1( -1 |+1
0ofo|1
[o]1][1]®[1]0]1
101

== | BCNT(XNOR(011,000))
BCNT(XNOR(011,111))

=[E Al

T
E%CNT(XNOR(OI 1,01 1))]

(b) Binarized MM using XNOR and BCNT. -1 is represented using 0.

BCNT=
OneCount-ZeroCount

IN | Computation | OUT
000 -1-1-1=-3 101
001 | -1-1+1=-1 111
010 -1+1-1=-1 111
011 | -1+1+1=+1
100 +1-1-1=-1 111
101 +1-1+1=+1
110 | +1+1-1=+1
111 | +1+1+1=+3 011

(c) BCNT using a lookup table

(OUT is in 2’s complement form)

)
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Quiz Time

@® Which optimization method is most promising in improving
ML compute efficiency:

a Optimize network to minimize number of computations,

b Improve processing element and processing datapath
architecture,

¢ Improve memory architecture,
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Quiz Time

@® Which optimization method is most promising in improving
ML compute efficiency:

a Optimize network to minimize number of computations,

b Improve processing element and processing datapath
architecture,

¢ Improve memory architecture,

d Optimize mapping of network onto target architecture ?

Join at
slido.com

#32126
TU

WIEN




Outline

@® CNN Accelerator Architectures



CNN Accelerator
Architectures



CNN Accelerator Architectures

e Systolic array architecture

¢ In-memory computing



Systolic Arrays
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Tensor Flow Unit (TPU)

— — DDR3 DRAM Chi
neis
14 GiB/s Weight FIFO
&) - :> (Weight Fetcher)
o
N HHH
w
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M N. P. Joupp| et al. “In-datacenter performance analy3|s of a tensor processing unit”. In: 2017 ACM/IEEE 44th Annual \SD




Tensor Flow Unit (TPU)
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Tensor Flow Unit (TPU)

Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip

Host Accumulators
Interf. 2% (4Kx256x32b = 4 MiB) 6%

D D
R R
A A
M - -4 M
port Activation Pipeline 6% port
© | ddr3

3%

PCle o -
=

W
X
Sm

Interface 3% | . ;| Misc.l/O 1%
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In-memory Computing

e Storage capacity and memory access bandwidth and
latency dominate DNNs.

e Avoid moving data.
e Distribute the MAC units in the memory architecture.



Wire Aware Accelerator (WAX)

NEURAL ARRAY
SUBARRAY

=
=

SUBARRAY
8KB
256 x 256 cells

MUXING & De-MUXING

P Register (partial sums)

W Register (weights)

A SHIFT Register (activations)
32 8-bit MACs

[l

Rest of
H-TREE To H-TREE

Sumanth Gudaparthi et al. “Wire-Aware Architecture and Dataflow for CNN Accelerators”. In: Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO '52. Columbus, OH, USA:

Association for Computing Machinery, 2019
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Quiz Time

@® For optimizing CNN execution, is it more effective
a to re-use (and keep on-chip) input data,
b to re-use weights,

c to re-use intermediate data ?
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Quantization - Regularization

Using small bit width for weights saves memory, bandwidth
and computation;

Bit width can be different for different layers of the DNN;
Quantization scheme: Dynamic fixed point, power of 2;

¢ Retraining after quantization recovers accuracy losses:
Regularization;

Not all weights are equal: Weighted regularization.

Matthias Wess, Sai Manoj Pudukotai Dinakarrao, and Axel Jantsch. “Weighted Quantization-Regularization in DNNs
for Weight Memory Minimization towards HW Implementation”. In: /EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37.10 (Oct. 2018)



Quantization - Motivation

¢ DNN quantization

® Reduces data movement
® Reduces logic energy

e |ayerwise bit-width optimization

Weight Memory [bit]

INPUT

1,2E+7
1,0E+7
8,0E+6
6,0E+6

4,0E+6
2,0E+6
0,0E+0 -

convl conv2 conv3 conv4 convs convé conv7 conv8  convd

SRR

Channels: 96 9% 192 192 192
Max Poolmg Max-Pooling

AllConvNet - CIFAR-10

M Weights

® Quantized
Weights

convl conv2 conv3 conv4d conv5 convé conv7 conv8 conv9
7] 7] 7] (4] (4] 3] 3] 7] 7]
Layer[bit-width]
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Quantization - Motivation

Layer 1 Layer 2
Full Resolution Full Resolution
600 Weights 900 Weights
COO0000 OOOOOOOOO
Layer 1 Layer 2
3-bit DFP 2-bit DFP
(a) 000000 000000000
€
3 |
(@]
L : I\ .
(]
= [ 11 |
(b)
g
]
£ | |
s VITIVIV] AVARVI
Weight Value Weight Value



CIFAR-100

CIFAR100 compression

65
Baseline
=B
60 -
ES
£ 551
>
o
e
=}
J 501
<
45 A Equal DFP Eq. DFP Retrained
—&— Layer-wise DFP Lw. DFP Retrained
—&— Equal Po2 —%¥— Eq. Po2 Retrained
40 T T T T T T T T
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Compression Ratio

8.5



Quantization - Conclusion

Dynamic Fixed Point is an effective alternative to integer or
floating point representation;

Different layers require different precision;

Retraining adjusts the network to the available weight
values;

Weight memory reduction of 4-8x is common;

Reduced weight precision reduces weight memory and
cost of operation.
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e Embedded Machine Learning has many applications;
® Bandwidth limitations;
® Delay constraints;
® Privacy;

e Security;



Summary

e Embedded Machine Learning has many applications;
® Bandwidth limitations;
® Delay constraints;
® Privacy;
e Security;
e There are distinct challenges:
® Limited resources;
® Specialized HW platforms;

* Huge design space for optimization and mapping.
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