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e Large number of
resources

* Many tight constraints

¢ Varying application
demands, both within
and between
applications;
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Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

® Design errors or
omissions;
® Malicious attacks;
* Aging;
® Soft errors;
Non-functional
Aberrations:

® Performance;

® Power consumption;
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The SoC Radar
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Santanu Sarma et al. “On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC)". In: Proceedings

of the 12th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). New
Delhi, India, Oct. 2014
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The SoC Radar
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The SoC Radar
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The SoC Radar
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Autonomy and Adaptivity

Autonomy is the ability to operate independently, without
external control.

Adaptivity is the ability to effect run-time changes and handle
unexpected events.
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@ Architecture for Awareness



Self-Awareness Architecture
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Cyber-Physical SoC



Cyber-Physical SoC




Cyber-Physical SoC

Traditional Controller




Cyber-Physical SoC

Adaptive policies
Trend learning

Model of system
Model of environment

Self-Aware
Monitor

Actuator
Sensor’

Data Control



CPSoC - A Sensor Rich SoC Platform

I/F Introspective Sentient Unit (ISU)

P ErECT T

Santanu Sarma et al. “CyberPhysical-System-On-Chip (CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer
Virtual Sensing and Actuation”. In: Proceedngs of the Design, Automation and Test in Europe Conference and
Exhibition (DATE). Grenoble, France, Mar. 2015




CPSoC - A Sensor Rich SoC Platform
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Nikil Dutt, Axel Jantsch, and Santanu Sarma. “Self-Aware Cyber-Physical Systems-on-Chip”. In: Proceedings of the
International Conference for Computer Aided Design. invited. Austin, Texas, USA, Nov. 2015
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Thermal-Aware Performance

Thermal Profile with MPSoC
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improvement by
70%-300% for
same power and
temperature.

Benefit is due to
accurate and
fine-grain
measurement
and tight tracking.

Santanu Sarma et al. CyberPhysical-System-On-Chip (CPSoC): Sensor-Actuator Rich Self-Aware Computational
Platform. Tech. rep. CECS Technical Report No: CECS TR—-13-06. Irvine, CA 92697-2620, USA: Center for
Embedded Computer Systems University of California, Irvine, May 2013
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Outline

@® Comprehensive Observation



Observation Pipeline
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Data and Meta-Data
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Data and Meta-Data
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Data and Meta-Data

Accuracy Systematic errors, a measure of statistical bias.
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Data and Meta-Data

Accuracy Systematic errors, a measure of statistical bias.
Precision Random errors, a measure of statistical variability.
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Data and Meta-Data

Accuracy Systematic errors, a measure of statistical bias.
Precision Random errors, a measure of statistical variability.

Data Reliability The extent to which a measuring procedure
yields the same results on repeated trials.
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Data and Meta-Data

Accuracy Systematic errors, a measure of statistical bias.
Precision Random errors, a measure of statistical variability.

Data Reliability The extent to which a measuring procedure
yields the same results on repeated trials.

Relevance The quality of being important for the matter at
hand.

23)



Accuracy and Precision

Correct value
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Accuracy and Precision

Correct value

High accuracy, high precision
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Accuracy and Precision

Correct value
High accuracy, high precision

High accuracy, low precision

°
°
° °
[ ]
® 9
® o0 °
ce’, e o
°
o® 8o,
ee O
o o °
°
[ ]
L °




Accuracy and Precision

Correct value
High accuracy, high precision

High accuracy, low precision

°
°
° °
[ ]
® 9
® o0 °
ce’, e o
°
o® 8o,
ee O
o o °
°
[ ]
L °




Accuracy and Precision
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Comprehensive Observation
C N )

Monitoring
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Nima TaheriNejad, Axel Jantsch, and David Pollreisz. “Comprehensive Observation and its Role in Self-Awareness -
An Emotion Recognition System Example”. In: Proceedings of the Federated Conference on Computer Science and
Information Systems. Gdansk, Poland, Sept. 2016
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Observation Circle




Early Warning Score

Score 3 2 1 0 1 2 3

Heartrate' | <40 40-51 51-60 60-100 100-110 110-129 >129
Systolic BP? <70 70-81 81-101 101-149 149-169 169-179 >179
Breath rate® <9 9-14 14-20 20-29 >29
SPO; (%) <85 85-90 90-95 >95

Body temp.* = <28 28-32 32-35  35-38 38-39.5 395

'beats per minute, 2mmHg, breaths per minute, 4 °C




EWS Improvement

¢ Data reliability:

® Values in reasonable scope
® Changes in reasonable scope
® Consistency between sensors

e Sijtuation awareness
e Power efficiency



Enhanced Early Warning Score

Fog Layer

.O° Feedback

Feedback
Self-awareness core

‘—
i 1 )
g P
o 2 Bio-signal
., o > pre-processing
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2 a B g Y ‘M") /\ )
C) < g Activity _#. Environment
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2 = 5 Situation ¥-)
g S — awareness &
1 » Sensor network

Arman Anzanpour et al. “Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics”. In:
Proceedings of Design and Test Europe Conference (DATE). Lausanne, Switzerland, Mar. 2017
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Enhanced Early Warning Score - Data Reliability

© Check on the reliability of sensed values
® Check on the reliability of value changes
@® Check on consistency between sensor data

5



Enhanced Early Warning Score - Data Reliability

O R N WS U O

O R N WS UG

© Check on the reliability of sensed values

® Check on the reliability of value changes

® Check on consistency between sensor data

Experiment 1

i

1

3

5

7 9 11 13 15 17 19 21 23 25
Time (s)

Experiment 2

eeliiiiec

7 9 11 13 15 17 19 21 23 25
Time (s)

Vital Signal Score

Vital Signal Score

O R N WA U O

Experiment 3

3 5 7 9 11 13 15 17 19 21 23 25

Time (s)
------ Heart rate (beats/min)
~ Respiratory rate (breaths/min)

Body temperature (°C)

Oxygen saturation (%)
-=-=- Systolic blood pressure (mmHg)
—+—Self-aware EWS
—s—EWS



Enhanced Early Warning Score - Situation
Awareness
© Consider the activity mode of person

® Consider time of day
® Consider location

5



Enhanced Early Warning Score - Situation

Awareness

© Consider the activity mode of person
® Consider time of day
@ Consider location

Emergency Level (Orginal EWS)

Critical
Equivocal -
Low -
Normal

mﬁmwﬂmmrﬁmmm

Emergency Level (Modified EWS)

Critical -
Equivocal —
Low -
Normal |

wﬂn—ﬂmuwumn{rummmmm_lmw I

Activity

Running |
Jogging -{
Walking -

Resting |
Sleeping -{

it T o uan,

Night, Indoor -
Day, Outdoor |
Day, Indoor -

Environment

— 1 1




Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations

Priority Score

Indoor-Day

Indoor-Night
Outdoor-Day
Outdoor-Night

High
Medium
Low
Normal



Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations
@® Distinguish different modes of urgency

Emergency  Score:0 Score:1-3 Score:4-6 Score>6
Level: Normal Low Medium High

Indoor |Outdoor| | Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor

SHEEIREEEIEERENEERE

Sz gz |z |8 z|8 |7 [ 282
Sleeping |[E |E|E|E| |C|D|D|D| |B|C|C|C| |[A|/A/B|B
Resting | D|D|D| D| [C|C|C|C| [B/B|B/B| |A|[A|B|B
Walking (C|C|C| C B|(C/C|C BB/ B B AlA A B
Jogging ([C[C|C|C B/ BBl C B/ B|B| B A A A B
Running |C|C|C/| C B/ BB B B/ BB B AlAA A




Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations
@® Distinguish different modes of urgency
@ Define sensing activity for each mode

.. Heart Rate, | Transmission
Respiration Rate Blood
State Activit Pressure Sp02, and Power
y Body Temp. | Consumption
. Every hour in day
A Continuous Disabled in night Every sec. 29 mW
2 min continuous | Every hour in day
B 8 min OFF Disabled in night Every sec. | 26.8 mW
2 min continuous | Every 3 hours in day .
c 3 min OFF Disabled in night Every min. | 12.5mW
2 min continuous | Every 3 hours in day .
b 8 min OFF Disabled in night Every min. | 7mW
2 min continuous . .
E 18 min OFF Disabled Every min. 4.3 mW




Enhanced Early Warning Score - Power Efficiency

Over a day half the energy can be saved.

Running -
Jogging -
Walking -

Resting -
Sleeping

Activity ;I

N.I.
D.O. -
D.L. 1

Environment
| Night, Indoor

Day, Outdoor

O 0 w >

Day, Indoor
Baseline, 29mW

Ilﬂ II I "IIII ” I I"””‘rl‘” I III Illl " N ’“ Self-aware, 14.5mW
Transmission States

T T T T T T T T T
12 13 14 15 16 17 18 19 20
Time (day hour)



Enhanced Early Warning Score Summary

e Considering data reliability improves quality of observation;
¢ Considering sitation improves quality of observation;

¢ Collecting needed data only improves efficiency.

D



Attention Based Temperature Measurement



Attention Based Temperature Measurement

e How many temperature measurements are required in an
MPSoC?

e |t varies over several orders of magnitude depending on
activity and current temperature.



Attention Based Temperature Measurement

e How many temperature measurements are required in an
MPSoC?

e |t varies over several orders of magnitude depending on
activity and current temperature.

Temperature Sensor

Comm.

Comm.

Temperature Sensor . Interface
Conventional Architecture Proposed Architecture

Nima TaheriNejad, M. Ali Shami, and Sai Manoj P. D. “Self-aware sensing and attention-based data collection in
Multi-Processor System-on-Chips”. In: 15th IEEE International New Circuits and Systems Conference (NEWCAS).
June 2017, pp. 81-84



Attention Based Temperature Measurement

o
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Power [W]
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N

[ T S lww

Temperature [C]

0 5 10 15 20 25
Time [ms] Time [ms]

Intel Nehalem processor, running Barnes from SPLASH-2 Benchmarks, using
Snipersim and Hotspot.
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Attention Based Temperature Measurement

e When only differences > A = 1,2,5°C are reported, 7 out

of 10 sensors send only 1 value in this experiment.

¢ Reduction of temperature reports for Memory, ALU and

D-Cache:
Unit A=1 Imp. A=2 Imp. A=5 Imp.
Memory 13 35% 9 55% 4 80%
ALU 4 80% 2 90% 1 95%
D-Cache 2 90% 2 90% 1 95%
All others 1 95% 1 95% 1 95%




Attention Based Temperature Measurement

751
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Attention Based Temperature Measurement

e Rate of temperature reporting can be significantly reduced
and fine tuned;



Attention Based Temperature Measurement

e Rate of temperature reporting can be significantly reduced
and fine tuned;
e Can depend on
® relative difference,
® absolute difference,
® absolute value,
® system level mode;



Attention Based Temperature Measurement

e Rate of temperature reporting can be significantly reduced
and fine tuned;
e Can depend on

* relative difference,
® absolute difference,
® absolute value,

® system level mode;

e Potential benefits:

® reduced processing,
® reduced communication,
® reduced measurements.
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Goals for Dynamic Task Mapping

Per- Goal
» O application —
P Latency @‘b/ Oo
; e,
N %,
N © Time
System
| Throughput
Hierarchical
Dynamic Goal ~-
Manager ®
Life-time | Resource
Reliability Utilization
Varying System
Power and Workload and Aberrations
Energy User Demands and Constraints

i Performance Driven % Throughput Driven i Lifetime Reliability Driven



Dynamic Task Mapping

“{"Application 1

Application 2

II

Application 1
Task Graph

Application 4




Example 1: Performance Driven Task Mapping

a4 L]

| W

App1
! App3
1

2 34 &% & 7T 8 8 1IN 00 4 2 3 4 ® B T 8 & WA

MapPro prefers compact and contiguous regions.
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i
id
6
5
4
3
2
1

0

e T

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015



Example 2: Throughput- and Power-Constrained
Task Mapping

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.
Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:

Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610-617



Example 3: Lifetime-Reliability-Driven Task
Mapping

reliability
o o o o
2 & & 2

o
@

o
Y

MapPro: Reliability aware mapping:
lifetime=5.52 years lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.

The end of the system’s life is reached when the reliability of one core drops below 30%.

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854-857
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Goal Management Levels

© Single objective; Design time;



Goal Management Levels

© Single objective; Design time;

® Multiple objectives; Design time;



Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;

© Multiple objectives; Run time;



Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;
© Multiple objectives; Run time;

@ Multiple, hierarchical objectives; Run time;



Hiararchical Goal Management

Goal 1: Maximize Lifetime

Q\ Goal 2: Meet Application
Primary Goals L/O Requirements
Sub—Goals i i 3 i E

Aging Controller ~ Power Controller QoS Controller



Supervisory Control

User inputs Variable Goals and Policies f————
"_______S_".__Ccﬁhﬁm:l__'l
upervisory =#High-level Plant
I SPECTR Controller - Inf_hi Model I
I [ ] @
Selected Selected Selected I %
" i 8 -
I 5 Gains; Refs, Gainsz/ /Refs, Gainss Refs, |§ I 2
I§ = Classic Classic cee Classic SE
§ Controller 1 Controller 2 e Controller N = I b
| Con_lo; Con_lo, Con_los |
R — — | — — S— — S—— S— W— S— — S— — | w— w— R—
= Inf_loy Inf_lo, Inf_los
oc L
% E Sub-plant 1 Sub-plant 2 ses Sub-plant N
£ oo

Amir M. Rahmani et al. “SPECTR - Formal Supervisory Control and Coordination for Many-core Systems Resource
Management”. In: Proceedings of the 23rd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. Williamsburg, VA, USA, Mar. 2018; T. R. Mick et al. “Design Methodology for
Responsive and Robust MIMO Control of Heterogeneous Multicores”. In: [EEE Transactions on Multi-Scale
Computing Systems PP.99 (2018), pp. 1-1
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Goal Management Inputs

Hierarchical Dynamic Goal Manager

{
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Goal Management Inputs

Application

~
Hierarchical Dynamic Goal Manager

{
[oyel




Goal Management Inputs

System Application

~
Hierarchical Dynamic Goal Manager

{
[oyel




Goal Management Inputs

System Application
(1 . . 0
Hierarchical Dynamic Goal Manager
L J

Platform




Hierarchical Goal Mangement

Variable Goals Plant Properties) Primary Goal
i Controllers (PGCs
and Policies and States Goal Controllers (GCs)
GCs inform PGCs about PGCs give y

state, progress, and Hierarchical Dynamic Goal Manager |directions to ;
deviations. \ |acs. o
- o
Goals give direction —_
for managementof | = ---==3 i e S - Leaf controllers | @
the plant and - report their state E
subplants ‘ upwards 8
Leaf Controllers \ o
for managing \ )
temperature, A
power, ... — — i —
{ Controlleg 1 Controller 2 oo Controller S O
Leaf o
controllers = wn
communicate
with each Leaf Controllers v
other
o
S‘ﬁf‘ﬁ:ﬁg} Hslsubsystem 2|+ j subsystem | |
Physical relations|| " gtate) J¥ (Aging State)[*— *** (Power State) S
among different —_
aspects Plant (Many-core Fabric)

¢ The system’s requirements changes over its lifetime.
¢ Different objectives are invoked at different time.



Goal Driven Autonomy

Applications

State Detector )\

Prlorlty Goal
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State Detection

State vector:

e Power: Violation: TDP < p
Potential Violation: 0.8 TDP < p < TDP
No Violation: p <0.8TDP

¢ User Command: High Performance
Low Power

¢ Performance per application:
[Min run time, Max run time]



Priority Assignment

e Primary goals: thermal safety
e Secondary goals: User experience

e Tertiary goals: Application requirements



Priority Assighment - Urgency

Urgency is the extent of a violation of a parameter:

U _ PCUr
Pow — P
ref

Pcyr  is the instantaneous power consumption;
P, is the fixed upper bound on power (TDP)



Priority Assighment - Urgency

_ perfmax — perfeyrr
perfmax — perfres

perf

perfmax  the maximum required application performance;

perfeurr  the instantaneous measured performance;

w if User Command = High Performance

erf,
POMres { perfmin if User Command = Low Power



Goal Enforcement

Selects action that most likely will satisfy the highest
priority goal;

Action = Resource allocation policy;

Initial action is randomly selection;

Actions are assessed in a reinforcement learning loop;
Reinforcement learning is based on a reward function.



Reward Calculation

Reward = Wy x Ry + Wiy x Ry + Wo x Ro + ... + W, x Rj
E.g. with two goals for power and performance:

Reward = Weower X Rpower + Wpert X Rpert

R _ P ref — Peurr
Power — Pi
ref

n

1 Perf; — Perfmyin
Rpert = —
e = ; Perfpnax — Perfmin

Perf; the measured performance of the iy, application
Perfmin, Perfmax  minimum and maximum required performance
n the total number of applications running

w; assigned by the priority re-assigner.

)



Experiments
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Experiments with a set of microkernel benchmarks;

Hardkernel Odroid XU3 board,

with two clusters (4 big (A15) and 4 little (A7) CPU cores;

Performance in heartbeats/sec.

(a) Low Power Policy

(b) High Perf Policy

(c) GDA



Comparison

Tech. Obj Cmd | Pwr viol. | Perf. viol. | Avg. pwr
LP policy Power X 3% 65% 2.99
HP policy Perf. X 67% 0% 3.8

GDA Dynamic v 20% 34% 3.2
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Self-Aware Control Loop




Let’s Get Out
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COMPUTING

Human-in-the-loop computing has its limits.
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networking of thousands of embedded processors
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David Tennenhouse. “Proactive Computing”. In:
Communications of the ACM 43.5 (May 2000), pp. 43-50
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Let’s Get Out

¢ Let’s get physical PR O A CTlVE
e Lets get real COMPUTING

Human-in-the-loop computing has its limits.
What must we do differently to prepare for the
networking of thousands of embedded processors
per person? And how do we move from
human-centered to human-supervised computing?
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Design of Self-Aware Chips

Goals Goal 1
Goal 2
Goal 3

Generate Subgoals




Design of Self-Aware Chips




Questions ?
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