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General Questions for Work on Self-Awareness

What does SA accomplish?

What are the alternatives?

What are the benefits?

How does the paper quantify them?



Reading List - Papers 1 & 2

Until Thursday, 5 Sep

¢ Nikil Dutt, Axel Jantsch, and Santanu Sarma. “Self-Aware
Cyber-Physical Systems-on-Chip”. In: Proceedings of the
International Conference for Computer Aided Design.
invited. Austin, Texas, USA, Nov. 2015

¢ Nima TaheriNejad, Axel Jantsch, and David Pollreisz.
“Comprehensive Observation and its Role in
Self-Awareness - An Emotion Recognition System
Example”. In: Proceedings of the Federated Conference
on Computer Science and Information Systems. Gdansk,
Poland, Sept. 2016




Reading List - Paper 1

Self-Aware Cyber-Physical Systems-on-Chip, N. Dutt et al.,
ICCAD 2015.

¢ To which degree are individual SA features realized?

¢ What are their benefits?

¢ How does the paper quantify them?



Reading List - Paper 2

Comprehensive Observation and its Role in Self-Awareness, N.
TaheriNejad et al., FedCSIS 2016.
e What is the difference between data reliability and
confidence?
* Do you agree with the list of elements as part of
observation? Anything missing?
¢ Do you agree with the list of challenges and offered
solutions?
e What are the alternatives and what are the benefits?
¢ Are the benefits quantified?



Reading List - Papers 3 & 4

Until Thursday, 10 Sep

e Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Leonardi.
“Experiencing SAX: a Novel Symbolic Representation of
Time Series”. In: Data Mining and Knowledge Discovery
15.2 (Oct. 2007), pp. 107-144

e Maximilian Gétzinger et al. “Model-free Condition

Monitoring with Confidence”. In: International Journal of
Computer Integrated Manufacturing 32.4-5 (2019)




Reading List - Paper 3

Experiencing SAX, J. Lin et al., DMKD 2007.
e What are the advantages of SAX over alternative
representations of time series?

e What is normalization of a time series and why is it
required?

e Why should the distance between two symbolic
representations be a lower bound of the distance of the
original time series?

¢ How would you generalize SAX to multiple time series?



Reading List - Paper 4

Model-free Condition Monitoring with Confidence, M. Gétzinger
et al., IJCIM 2019.

e What are the pros and cons of using model-free vs. model
based monitoring?

e What is the effect of fuzzy logic in CCAM?

¢ How would you improve CCAM?



Reading List - Papers 5 & 6
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¢ Nima TaheriNejad and Axel Jantsch. “Improved Machine
Learning using Confidence”. In: [EEE Canadian
Conference of Electrical and Computer Engineering
(CCECE). Edmonton, Canada, May 2019

e Elham Shamsa, Anil Kanduri, Amir M. Rahmani,
Pasi Liljeberg, Axel Jantsch, and Nikil Dutt. “Goal-Driven
Autonomy for Efficient On-chip Resource Management:
Transforming Objectives to Goals”. In: Proceedings of the
Design and Test Europe Conference (DATE). Florence,
ltaly, Mar. 2019




Reading List - Paper 5

Improved Machine Learning using Confidence, N. TaheriNejad
et al., CCECE 2019.
e What are characteristic properties for a probability metric?
e What are characteristic properties for a distance metric?

¢ Which metric is preferable for confidence: distance or
probability?



Reading List - Paper 6

Goal-Driven Autonomy, E. Shamsa et al., DATE 2019.

e What is the difference between reward and urgency?

¢ Can you think of goals that cannot be expressed in the
GDA framework?

® Propose a mechanism to combine conflicting goals, e.g.
P — min and P — max.
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The Problem

Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

® Design errors or
omissions;
* Malicious attacks;
* Aging;
® Soft errors;
Non-functional
Aberrations:

® Performance;
® Power consumption;

Varying Application

and User Demands

workload phasic behavior

user inputs

varying compute, memory, and communication

1

Functional Aberrations

r— ———————7 Non-functional Aberrations
SW/HW design errors Aging I
| i I %\0'3'
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The SoC Radar

Power&Energy,

Performance
Thermal S,labl'ﬁlry

. Reliability
Adaptability ) { :

Cost

_ | __----="""Usability
Functionality

Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. “On-Chip Self-Awareness Using
Cyberphysical-Systems-On-Chip (CPSoC)". In: Proceedings of the 12th International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). New Delhi, India, Oct. 2014
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The SoC Radar
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The SoC Radar
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The SoC Radar
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The SoC Radar
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Autonomy and Adaptivity

Adaptivity is the ability to effect run-time changes and handle
unexpected events.

Autonomy is the ability to operate independently, without
external control.
Necessary
e When requirements, objectives, environments change
dynamically during operation; and
e When these changes are unknown at design time.



Concepts of Self-Awareness

@ Concepts of Self-Awareness
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Which Ingredients Lead to Awareness ?

Data abstraction
Disambiguation
Desirability scale
History

e Goals

e Attention

e |earning

¢ |ntrospection




Awareness for Resource Constrained,

Insect-like Gadgets

IS

Active-CaIe o "k

- sM =
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| Intelligent Electrode || Microchip |

Bio-sensing node
Silicon chip

electrode

Courtesy of KTH -
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Abstractions and Models

Abstraction: Mapping of Measurements = Properties

33



Abstractions and Models

Temperature
sensor: 36.6 C
/ Body
- - Temperature
Condition:

Sensors for
Voltage Normal (36.6 C)

Humidity

Sound AttachedToBody: -7y

True /
| Property

Ve
Abstraction



Disambiguation

Selection among several interpretations

Measured data
N

LI .
Disambiguation

Semantic Interpretation ~



Desirability Scale

Desirability is the common, in- .
ternal currency.

L-]

Semantic Attribution maps the values of a property to a point in
the desirability scale.



BioPatch with Semantic Attribution

Temperature
Sensor Semantic Attribution
N
! Body
Sensors for Temperature
Condition

Voltage
E-Body
Humidity O
H-Body
Sound
S—

Attached
ToBody

Stable
/Improving
/Worsening



Semantic Interpretation

AT
Disambiguation

(I
Abstraction . L -
Semantic Interpretation



History of a Property The evolution of the values of a property.
Abstracted History The history stores abstracted values.
Attributed History The history is annotated with attributions.

Fading History If the property values are more abstracted the
longer ago they have occurred.

Consolidating History Relevant memories are enforced,
irrelevant memories are cleaned.

Evolving History Memories are adjusted to fit later
observations.



BioPatch with History

Temperature

Sensor _History

Body
Temperature
Condition
>

Sensors for

Voltage
=
Humidity Attached
Sound

/Improving
/Worsening



Expectations and Goals

Expectations on Environment

Expectations on Subject

Sub-Goals

e Goals

Purpose



Acting BioPatch
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e
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Attention



XXX XX XX XXX

XXX X XXX XXX

X X
X X
O X
X X
X X
X X
X X
X X
X X
X X

XX XXX XX XXX

XXX X XXX XXX

XX XXX XX XXX

XXX X XXX x XX

XXX X XXX XXX




Attention






Attention

¢ Bottum up with selected hard coded features;
¢ Top down and goal directed;
¢ Top down - bottom up: steered by prediction quality



Introspection and Simulation

Self Inspection Engine

Model Transformation

Simulation

Ernst Mach “Innenperspektive”, 1886




Self-inspecting BioPatch

VisualLevel

VisualChange

TemperatureSensor

AudioAlarm

VoltageSensor E-Body

HumiditySensor

H-Body
=

SoundSensor S-Body HistoryEngine InspectionEngine}




BioPatch with Top-down Prediction

O

VisualLevel

VisualChange

AudioAlarm

VoltageSensor E-Body

Explanation

Expectationsy )
Predictions® < = =~ _
Hypotheses

HumiditySensor ~ H-Body

>

SoundSensor S-Body HistoryEngine InspectionEngine




Self-Awareness Architecture

Goal Management

Inspection Learning Learning
Learning I‘E}Iﬁearlarchy
S — —
Desirability
Scale
S ——
S ———

— ~
s



By Unknown - LSH 88977 (sm_dig3542), Public Domain,
https://commons.wikimedia.org/w/index.php?curid=28911161


https://commons.wikimedia.org/w/index.php?curid=28911161

Observation and Abstraction

@ Observation and Abstraction
Observation Basics
Symbolization of Signals
Context Aware Health Monitoring



Observation Pipeline

54\



Comprehensive Observation

[ N )
Monitoring

&
[ N

Environment Self

&
(
Inputs Context I;%E;gg?:r Resources
U AN

Nima TaheriNejad, Axel Jantsch, and David Pollreisz. “Comprehensive Observation and its Role in Self-Awareness -
An Emotion Recognition System Example”. In: Proceedings of the Federated Conference on Computer Science and
Information Systems. Gdansk, Poland, Sept. 2016
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Observation Circle

Abstraction
Disambi—
guation
Observation Disirability

Relevance

Confidence
Data

Reliability




Data and Meta-Data |
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Data and Meta-Data Il

Accuracy Systematic errors, a measure of statistical bias.

Precision Random errors, a measure of statistical variability.



Data and Meta-Data lll

Given: X = (xp,...,Xn) ground truth
X' =(x},...,x,) measured data

1
X)=~$"x f
1w(X) nzl:x, mean of ground truth

w(X') = Zx mean of measured data



Data and Meta-Data IV

Accuracy:
A(X') = m(X) = n(X)

Precision:

PIX') = o(X') = \/ S0

60



Data and Meta-Data V

Correct value




Data and Meta-Data VI

Correct value

High accuracy, high precision




Data and Meta-Data VI

Correct value
High accuracy, high precision

High accuracy, low precision
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Data and Meta-Data VI

Correct value

High accuracy, high precision

High accuracy, low precision
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Data and Meta-Data IX

Correct value
High accuracy, high precision

High accuracy, low precision

Low Accuracy, low precision




Data and Meta-Data X

e Precision can be calculated when all X’ are known;
e Accuracy requires knowledge of ground truth;
¢ Top down hints to estimate precision and accuracy:

® Consistency (precision)
® Plausibility (accuracy)
® Cross-validity (accuracy)



Symbolization of Signals

e Common representations: DFT, Piecewise Linear
Approximation, Haar Wavelet, Adaptive Piecewise
Constant Approximation

e SAX: Symbolic Aggregate Approximation

* Piecewise Aggregate Approximation
® Discretization

® Distance Measures

® Lower Bounding Euclidean Distance



Common Signal Representations

Discrete Fourier Piecewise Linear Haar Wavelet Adaptive Piecewise
Transform Approximation Constant Approximation

NRASF DAL DAr SAF
—~__~ ™ ——— I

D4 /\/_‘_ﬁi
NN T 41_\

Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Leonardi. “Experiencing SAX: a Novel Symbolic Representation of
Time Series”. In: Data Mining and Knowledge Discovery 15.2 (Oct. 2007), pp. 107—144



Desired Properties

Compact and memory efficient

Efficient to compute

Faithful to relevant properties

Tightly, lower bounding the true distance between signals



SAX: Symbolic Aggregate Approximation

¢ Normalization

* Piecewise Aggregate Approximation (PAA)
¢ Discretization

¢ Distance metric

e [ ower bounding Euclidean distance

Following presentation based on

Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Leonardi. “Experiencing SAX: a Novel Symbolic Representation of
Time Series”. In: Data Mining and Knowledge Discovery 15.2 (Oct. 2007), pp. 107-144



C ... AtimeseriesC=cy,...,Cp

C ... A piecewise aggregate approximation
of atime series C=¢y,...,Cy

C..A symbol representatlon of a time se-
ries C=&1,..., 0w

n ... Number of data points in time series C

w ... Number of PAA segments represent-
ing C

r ... Number of data points collapsed into
one symbol r =

A ... Alphabet size



Normalization

Normalization centers the time series on 0 and expresses the
amplitude as multiples of the standard deviation.

C:C17027"'7Cn

1 n
M:BZCi
i=1
1 n
= |- M2




PAA: Piecewise Aggregate Approximation |
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PAA: Piecewise Aggregate Approximation Il

1 ri
j=r(i—1)+1
Assume:

C=04,05,04,0,3,0.2,0,2,0.1,0.2,0.2,0.3,0.4,05
n=12
w=4
r=3
-~ 044+05+04 03+02+02 0.1+02+0.2 0.3+0.4+0.5
C - 3 ) I
3 3 3 3
=0.43,0.23,0.17,0.4




Assignment of PAA values to symbols.

¢ Larger alphabet means more accuracy and less
abstraction;

e Symbols should appear with similar probability;

¢ Normalized time series approximate Gaussian
distributions;

® Breakpoints can be pre-determined based on a Gaussian
distribution with 4 = 0,0 = 1;



Normal Distribution

1.0

08

06

4

02

= I5 —1‘0 :l'I ICl II5 -2 —‘I ]‘ ZI'
a
B 3 4 5 6 7 8 9 10
i

B, | 043 | -067 | -084 | -097 | -1.07 | -1.15 | -122 | -1.28
B, 0.43 0| -025| 043 | -057 | -067 | -0.76 | -0.84
Bs 067 | 025 0] -018 | 0.32 | -043 | -0.52
Bs 084 | 043 | 018 0] -014 | -025
Bs 097 | 057 | 032 | 014 0
Be 107 | 067 | 043 | 025
i 115 | 076 | 052
Bs 122 | 084
Bo 1.28




Sunspot Example |

¢ Monthly count of the number of observed sunspots for over
230 years (1749-1983).

¢ Units are a number of sunspots.
e 2820 observations.

From machinelearningmastery.com/

time-series-datasets-for-machine-learning


machinelearningmastery.com/time-series-datasets-for-machine-learning
machinelearningmastery.com/time-series-datasets-for-machine-learning

Sunspot Example I

Full data plot 1749-1983:

250
200
150 |

100

50

500

1000 1500 2000 2500

n=2820,u=51.3,0 =435




Sunspot Example I

Normalized time series:

3 ﬂﬁ,,ﬁmmmbf

n=2820,u=0,0 =1




Sunspot Example IV

Piecewise Aggregate Approximation:




Sunspot Example V

Piecewise Aggregate Approximation for 500 data points:

3k




Sunspot Example VI

Sorted values of PAA:




Sunspot Example VI

Symbolized time series:

W D
T T Y

ccbbbaaaaabbbbccbbbaaabcccccbbbaabcccccbbaaabceccece

112 a’s, 96 b’s, 74 c’s



Given two time series C and Q with length n, the Euclidean
distance is defined as

n

D(Q.C) = | > (g - )2

i=1

For the corresponding PAA representations Q and C the
distance is defined as

DR(Q,C) = ,|r> (G —G)
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Distance Il

DR(Q,C) < D(Q,C) YC,D

DR is a lower bound of D because it correctly reflects large
grain differences but ignores small grain differences, i.e.
differences within r samples.



Distance IV

DR is reasonably tight in many cases but its tightness is not
bounded.
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The distance in the symbol space is defined as

éé ‘I'Z(SA

0 if [1(q) —1(¢)| <1
5(3.8) = (@) - 1)
Bmax(i(§),1(8))—1 ~ Bmin(i(@)./(z)) ~ Otherwise
with /() an index function: /(a) = 1,1(b) =2
Bi the breakpoints.



Distance VI

For alphabet size A = 4:
Breakpoints: gy = —0.67, 8, =0, 3 = 0.67

54(8.2) = {0 if11(@) — 1(8)] < 1
Bmax(1(8),1(6))—1 — Bmin(i(g),iz)) ~ Otherwise

04 a b c d a b c d
a 0 0 B2 —B1 | B3 — B4 0 0 [067]1.34
b 0 0 0 Ba — [ 0 0 0 | 0.67
c | Bo— f1 0 0 0 067 | O 0 0
d | B3—051 | PB2— B 0 0 1.34 | 067 | O 0




Distance VII

Tightness of bound:

TightnessOfLowerBound = %

Tightness of lower bound

Results from large set of experiments with the UCR time series archive from

http://www.cs.ucr.edu/~eamonn/time_series_data/

%)


http://www.cs.ucr.edu/~eamonn/time_series_data/

Distance VIII

Summary

¢ Distance DS in the symbol space is defined based on the
derivation process of symbols from time series;

e DS is provably a lower bound of D:
DS(Q,C) < D(Q,C) vQ,C

¢ Tightness is reasonable in many practical cases, but
theoretically unbounded.



Context Aware Health Monitoring of an AC Motor

CAH Monitor

Injective-function

Black-Box

Inputs
Outputs

CAH Features
e No Model and minimal assumptions about the system

* Main assumption: injective function
e States are automatically inferred and learned
e Anomalies are detected when injectivity is violated

M. Gétzinger, N. TaheriNejad, H. A. Kholerdi, and A. Jantsch. “On the design of context-aware health monitoring
without a priori knowledge; an AC-Motor case-study”. In: 2017 IEEE 30th Canadian Conference on Electrical and ’\
92

Computer Engineering (CCECE). Apr. 2017, pp. 1-5



CAH - Input Signal

T T T T T T

20 Primary alternating current signal |

30 g

10 b

-10 g

230 |t 1

L 1 1 1 1 1

0 1 2 3 4 5
TU sec x10° %)




CAH System Architecture

Preprocessing

¢ |nput signals:

* \oltage
* Frequency
® Mechanical torque

. Stability Controller
e QOutput signals:

Current

Motor Speed
Electrical torque
Vibrations

‘ State Handler




CAH Preprocessing

20 Primary alternating current signal

Filtering the amplitude maxima

05 1 15 2 25 3 35 4 45 5 55
sec x10*

5
sec x10°

Low-pass filtered

2 25 3 35 4 45 5 55

sec x10%

%)



CAH Stability Abstraction

* The system is stable if all n signals sy, --- , s, are stable.

* Asignal s; is stable if a new sample of that signal sj is
“similar” to the samples in a sliding history window.

¢ Two samples s; and s of the signal s; are similar to a each

other if d(s}, s') < Dsimilarity

s — s

/ VAN ! i
d(S,-, Si ) - s
i

* Asignal s; is stable if s} is similar to at least Ngjmjiar stored
samples in the history window.

w ... window size
Dsimilarity --- Similarity distance threshold
Nsimilar --- Similarity count threshold



CAH State Abstraction

e Astate Q= (Qs,, Qs,, -+ , Qs,) is defined by the average
values Qs of samples of the signals s; that have been
identified to belong to the state.

¢ The distance of a new sample s/ to a state Q is defined as

/
SI - QS,‘

/
S

d(s), Q) =

o [f
d(S;7 Q) < DState

for all s; that defines the state Q the new sample set

(s1,---,Sn) is considered to belong to state Q.
S1
So CAH Monitor
s
-

U] o7)



CAH State Abstraction

e |f a new sample set s; belongs to the currently active state
Q, the state remains active and the average values Qs are
updated.

¢ |f the new sample set does not belong to the active state, a
state change is considered.

e The new state is normal if both input and output signals
have changed, otherwise it is an error.

e If the number of samples in a state is > Ngzmpres the state
is considered valid, otherwise it is transient.

Dstate .. State similarity threshold
Nsamples --- State size threshold for valid states



CAH Drift Detection

¢ For each state the average sample values of two sliding
windows called Digital Average Block (DAB), are
maintained, DAB; and DAB:.

¢ DAB; maintains average of samples S,H Lo ,s,t* Wors and
DAB, maintains average of samples
SI?*WDAB*1 e S;*Z'WDAB.

* The average for signal s; in DABy is denoted as DAB(s;).

e [f for any signal s; we have

DAB; (sj) — DAB»(s))
DAB (s))

the signal is considered to be drifting.

> Doyt

DDrift ... Drift threshold
Wpag ... DAB window size



CAH - Parameter Settings

3 < w Window size

3 < Nsimilar < W  Similarity count threshold
0.01 < Dsimilariy < 0.08 Similarity distance threshold
011 < Dgge < 0.19 State similarity threshold

3 < Wbas DABwindowsize
011 < Dpir < 0.19 Drift threshold

Empirical rules based on case studies on AC Motor and
Hydraulic pipe systems

M. Gotzinger, N. TaheriNejad, H. A. Kholerdi, and A. Jantsch. “On the design of context-aware health monitoring
without a priori knowledge; an AC-Motor case-study”. In: 20717 IEEE 30th Canadian Conference on Electrical and
Computer Engineering (CCECE). Apr. 2017, pp. 1-5

Maximilian Gétzinger et al. “Applicability of Context-Aware Health Monitoring to Hydraulic Circuits”. In: The 44th
Annual Conference of the IEEE Industrial Electronics Society. 2018

Ty 100



CAH State Handler

Geta dataset
(input]{Output)

Yes

Count the number of datasets
inserted in the active state

Are there
enough inserted
datasets?

Yes
Save the active state
to the state vector e e S

Compare the last dis-
crete average block
with the firstone

Isthe
Gifference within the
allowable range2

‘Are there enough
inserted datasets?

Does the
dataset match an
gisting state2

Do
only one subset

Save the active state to

—




CAH Normal Mode
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CAH Anomaly Detection
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CAH Summary

Context-Aware Health monitoring (CAH) motivated by:
® The need for low cost health monitoring
e Suitable for resource and data limited scenarios.
e Assumptions on the black-box:

® Injective Function,
® Steady state behavior.

¢ |In the AC motor case study CAH successfully recognized

® normal states,
e state changes,
e drift, and

® broken behavior.. )

104)



@ Confidence
Classification with Confidence
Monitoring with Confidence



Classification with Confidence

¢ Multi-Classifier System
e SVM based Quality Estimation

e [|terative CNNs with Quality Estimation



Multi-Classifier System

Deployment of several classification algorithm.
Self-assessment (confidence) of each algorithm.
Confidence based control of classification.

Improves robustness and works well for small training sets.

Hedyeh A. Kholerdi, Nima TaheriNejad, and Axel Jantsch. “Enhancement of Classification of Small Data Sets Using
Self-awareness - An Iris Flower Case-Study”. In: Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS). Florence, ltaly, May 2018



Iris Flower Classification

e UCI Iris Flower Dataset,
with 150 labeled
images

e Each to be classified in
one of three classes of
iris plants.

By Diliff - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=33037509


https://commons.wikimedia.org/w/index.php?curid=33037509

Iris Flower Classification Algorithms

Setosa

Neural Network Versicolor

Virginica

Setosa

Support Vector
Machine

Versicolor

Virginica

Setosa

Naive Bayesian Versicolor

Virginica



Confidence Metric

Confidence c of an algorithm A; for a particular classification of
sample x; to class k; is the probability that the classification is

correct:
A.
o(Axi k) = p(EF == T¥)
X; ... Data sample
k; ... Class

A; ... Algorithm j
T)’(j’ ... the True Class of a sample x; (Ground Truth)

E,’ ... the class estimated by algorithm A; for x;



Confidence of a Neural Network Classifier |
Petal width sofpma?(
activation
% function
Petal lengthi ; E \: \/\ E
Setal width A
7

7
Setal lengthi :éé %Z /

15 hidden layers

M 11}

AR\ 72N 7’4



Confidence of a Neural Network Classifier |l

The softmax function is a normalized exponential function that
computes a vector with values in [0, 1] and with the sum = 1.

(2) & forj=1..K
0(2)j=———forj=1...

j iy €%

1 T T T
09l k=3 o(z1,22,23))1 —— i
08| & 26( .
07} 2= ;
06| 27° ]
05 1
04 .
0.3 ]
0.2} ]
0.1 ]
0 L 1

-10 -5 0 5 10



Confidence of a Neural Network Classifier Ill

z4(x) 25(x) z3(x) o(2)g e
10 —
s N
AAAAA v
of S D !
5L i
10 E=7 ‘
-10 5 0 5 10 5 10

Neural Network classification output and corresponding probabilities.

M 1@



Confidence of a Naive Bayesian Classifier |

X ={fr,....fe) ...
.. category

P(k|x)
P(k)

P(filk)

F
P(k|x) oc P(k) [T P(filk)

i=1

given input feature set

.. posterior probability that x falls into class k
.. prior probaility of class k

.. number of features

.. feature

.. conditional probability that feature f; occurs

in an input falling into class k



Confidence of a Naive Bayesian Classifier Il

Naive Bayesian classifier for iris flowers:

Input feature set:
x = (petal width, petal length, setal width, setal length)

Categories: (Setosa, Versicolor, Virginica)

C(ANB(Xiakl)> = P(EQNB == T)Z’) = P(ki|x;)



Confidence of Support Vector Machine Classifier

SVM based classifier constructs hyper planes to separate categories.

Class 2
.

distance to hyperplane

.
Class 1

The normalized distances of inputs x are used as confidence.

M 11B



Confidence Metric

Confidence c of an algorithm A; for a class k; is:

C(A]’-") = :—72”: c(A;(xi, ki)

i=0
Confidence of an algorithm A; for all m classes is:
1 m

CA/. = E Z C(Ajk/)

k=0
The default algorithm is the one with highest overall confidence.



Confidence Based Classification

Default algorithm executed|
—>result_1

Confidence > threshold?.

output = result_1

Is default alg. the
best alg. corresponding

Second best alg. for
result_1 is found and

Default alg. for result_1 is
found and executed -->

executed --> result_2 class of result_12 result_2
Confidence > threshold?
H . No
v v

Last alg. for result_1is
found and executed -->
result_n

Remaining alg. for result_1
is executed --> result_n

Result with higher confidence Result with higher confidence
in {1st_conf*W1, ..., nth_conf*Wn} in {1st_conf*W1, ..., nth_conf*Wn} is|
is found found




Classification Success Rate
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Multi-Classifier System

Summary

e Self-assessment, expressed as a confidence metric
improves classification.

It is superior to each individual algorithm.
It is robust.

It works well for small training sets.
Overhead:

® n classification algorithms are implemented and trained.
® 27% run-time overhead in this case study.




Epileptic Seizure Detection |

¢ Single lead Electrocardiogramphy (ECG)
® Three SVMs used:

e Simple SVM Model
¢ Full SVM Model
® Confidence SVM Model

Farnaz Forooghifar, Amir Aminifar, and David Atienza Alonso. “Self-Aware Wearable Systems in Epileptic Seizure
Detection”. In: 21st Euromicro Conference on Digital System Design, DSD 2018, Prague, Czech Republic, August
29-31, 2018. 2018, pp. 426-432



Epileptic Seizure Detection |l

i N
Train
Data ) Feature Machine Model )
——Preprocessing . . — | o
extraction learning 5
/
_________________________________________________________ 3
Test —
Data__|p . Feature Detection Result e
— ——
reprocessing extraction model %)
/

Traditional wearable system for monitoring pathological health
conditions



Epileptic Seizure Detection |l

Self-aware
energy mar it
(train phase)
t l 5
=
i 3
Train =
Data | |, . Feature Machine Model
| TEPTORESITE extraction learning
Test
Rata o eprocessin Feature Detection | Result
P © extraction model ——
—
- @
0
! g
Self-aware
energy mar
(test phase)

Self-aware enhanced ECG monitoring



Epileptic Seizure Detection IV

Train Test
| |
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o
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Train SVM
Xir Modelg
Simple mode
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X . .

Train SVM Modelc

Confidence
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Train SVM
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Epileptic Seizure Detection V

Results
e Simple SVM model:

® uses subset of features
e 30ms execution time
® |nvocation in 37% of cases

¢ Full SVM Model:

® uses full feature set
® 840ms execution time
® |nvocation in 63% of cases

e Confidence SVM model:

® uses full feature set
* few ms execution time

e Qverall performance:

® 540ms execution time (37% reduction)
® 89.4% correct predictions (vs 88.7% with only the full SVM

U] model) 129)




ICNN: Iterative Convolutional Neural Network |

e The CNN AlexNet is broken into a set of xCNNs

¢ The 4CNNs are sequentially executed followed by an
estimate of prediction accuracy (confidence)

¢ if confidence < lower threshold — stop and fail;
¢ if confidence > upper threshold — stop and classify;
¢ otherwise continue with next xCNN

Katayoun Neshatpour, Farnaz Behnia, Houman Homayoun, and Avesta Sasan. “ICNN: An iterative implementation
of convolutional neural networks to enable energy and computational complexity aware dynamic approximation”. In:
2018 Design, Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, March 19-23,
2018. 2018, pp. 551-556



ICNN: lterative Convolutional Neural Network Il

Proposed State of the Art
o & AN » 2
[ il
3 " R

One large CNN is replaced by a sequence of uCNNs
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ICNN: lterative Convolutional Neural Network 1V

800
700
600
£ 500
(@]
= 400
= 300 182 245
ig 120 E
° B B

ICNN AlexNet

Computational cost os always less than the original CNN.




ICNN: lterative Convolutional Neural Network V

90
80
%70 ICNN-top1
- -to
© 60 “
S ~8—-ICNN-top5
S 50
< -=-= AlexNet_top1
40
——AlexNet_top5
30
1 2 3 4 5 6 7
iteration

The accuracy iteratively approximates the original CNN'’s.

Ty )



ICNN: Iterative Convolutional Neural Network VI

Summary

e The ICCN iteratively approximates the original CNN, both
in therms of computation cost and accuracy;

e The trade-off between effort and accuracy can be made
application and specification specific;
e The ICNN continuously assess its own performance.




Monitoring with Confidence

Motivation

Definition of Confidence, distance, and fuzzy logic based
functions

The CAM system, state handling
AC Motor case study

e Hydraulic pipe system case study
e Conclusions

Maximilian Gétzinger et al. “Model-free Condition Monitoring with Confidence”. In: International Journal of Computer
Integrated Manufacturing 32.4-5 (2019)



Confidence Based Monitoring

e 0
C2AM Monitor
. J
Injective Function
<] o
= =
=3 S
— 3
17
S




Monitoring with Confidence

Confidence is defined as distance between ground truth f and
an estimation g:

0<c(.),C()<1

f(x) ... Ideal function
g(x) ... Estimation or Approximation of f
A ... Appropriate distance metric



Sampling Data into States
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Sampling Data into States

Vhew — V,
d— new h
Vhew
Vhew -.. New data sample
vy ... Data sample in history
d ... Relative distance between new and previous data points



Sampling Data into States

When is a new datum “similar” to a previously seen one?

CSV
A
1
similar
0.5k d= Vnew—Vh
’ Vhew
0 da db
distance
’ 1 if d <dj
_ _ d—dp
A_’_CSV_ gd ifdy<d<dp
sV otherwise.



Sampling Data into States

When does a new datum belong to an existing state?

e The state is defined by a set of previous data samples;

* The new datum is assigned to this state if sufficiently many
data samples are in proximity.

C

” 1 { 1 ifk>s,

1+ A ST E ifk<s

in state s Sa 4
05k Css ... Gonfidence that a new
' data belongs to a data

set
: : - k ... No of samples similar
0 Sa to new datum
# of samples Sz ... Threshold

Ty 1)



Sampling Data into States

What is the confidence that a new datum belongs to a given
state?

n

Cp = (/\ Csv) A Css
j=1

¢, ... Confidence that a new data belongs to a state

Csv ... Proximity between data points

Css --- Confidence that a new data belongs to a data set
based on the number of similar data points in the
state

n ... No of samples in history



Identification of Stable States

A state is valid if the datapoints are sufficiently similar and there
are sufficiently many similar points in the state.
Confidence that a state is valid:

Cval = Cg/ /\ Csz

Cval --- Confidence that a state is valid
cs ... Proximity between data points
csz ... Confidence due to size of data in the state



Malfunctions |

Assuming the system is a bijective function, input and outputs
have to correlate.

c 1 ifst> s,
brk — .
% if0<s <8,

c 0 if 5t > s,
kK = _ .
© SES—:“ if0<s <8,

Cork --- Confidence that the system is broken

Cok --- Confidence that the system is okay

Sz ... time constant depending on the type of system
s: ... time elapsed after input-output inconsistency



Malfunctions Il

confidence
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1 —]
Cbrk
05T
Cok
1 I >
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start of
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Drift Detection |

¢ Drifting values are a challenge for self-adapting monitoring
without fixed, predefined thresholds.

¢ Drifting values are an important symptom for malfunctions
or maintenance requirements.

e C?AM stores Discrete Average Blocks (DAB) for each
state.

e The first DAB of a state is compared with the latest DAB to
detect a drift.



Drift Detection Il

Vavg,DABjirsy — Vavg,DABrew
ddft = confidence
Vavg, DABps; 1
Dbon if g, < dyy < 0
dp—dS a aft < Op
)0 it dp < dapr < de
Caft = dgp—de ifd. < dys < d - + ‘ 1 : : >
dy—do c dft d da dy 0 s A gy
1 otherwise
fo ... distance between first and latest DAB
Vavg,DAB ... average of DAB
da, dp, dc, dg ... constants
Caft ... confidence that drift has occurred



C2AM Case Study: AC Motor |
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C2AM Case Study: AC Motor I
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C2AM Case Study: AC Motor I
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C2AM Case Study: Water Pipe System |

SharkyB

Temp 2




C2AM Case Study: Water Pipe System Il
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C2AM Case Study: Water Pipe System llI
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C2AM Case Study: Water Pipe System IV

Voltage (V*5) —CCAM Output (State)

40 - -Temperature 1 (°C) H—CCAM Output (Health Status)—
fé - -Temperature 2 (°C) | | —CCAM Output (Confidence)

=) - -SharkyS (1/s)

£ H- -SharkyB (I/s) OK
£ 30ll- -Dyna (1/s) J
& - -Riels (1/s)

n
\g/ b SPTVPRIPE h

1

% - 'l T = "J}'||

S 20 / 3 '
) Y
on i §
*; g : Broken Broken Broken
£k Lo e T R T
5 10 :: = o - ] y :
el :' 1

=1 ! 1

< Il 1

! | 1
5 0 | | | i _ L

0 100 200 300 400 500 600

Broken system due to sudden appearance of a whole in a pipe.

Time (s)

[\ w

State, Health Status, Confidence

—_

5



C2AM Parameter Sensitivity Analysis |

e C?AM uses a number of empirically established
parameters.

e They have to be adjusted for different applications.

¢ How sensitive is C2AM to the settings of these
parameters?



C2AM Parameter Sensitivity Analysis |I

Effect of the Down Sampling Rate (DSR)



C2AM Parameter Sensitivity Analysis ||

Tu 159



C2AM Parameter Sensitivity Analysis IV
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¢ Confidence has been used for self-assessment in various
applications.

C?AM for EWS, AC motor, water pipe systems

SVM based epileptic seizure monitoring

Multi-Classifier systems

Iterative CNNs

e Defined as distance
¢ Defined as probability

Nima TaheriNejad and Axel Jantsch. “Improved Machine Learning using Confidence”. In: IEEE Canadian
Conference of Electrical and Computer Engineering (CCECE). Edmonton, Canada, May 2019



Situation Awareness and Attention

@ Situation Awareness and Attention
Attention Based Temperatzure Measurement
Situation Aware Health Monitoring
Early Warning Score



Attention Based Temperature Measurement

e How many temperature measurements are required in an
MPSoC?

e |t varies over several orders of magnitude depending on
activity and current temperature.

Temperature Sensor

Comm.
Interface

Comm.

Register 1
Temperature Sensor e
Register 2

Conventional Architecture Proposed Architecture

Nima TaheriNejad, M. Ali Shami, and Sai Manoj P. D. “Self-aware sensing and attention-based data collection in
Multi-Processor System-on-Chips”. In: 15th IEEE International New Circuits and Systems Conference (NEWCAS).
June 2017, pp. 81-84



Attention Based Temperature Measurement
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Intel Nehalem processor, running Barnes from SPLASH-2 Benchmarks, using
Snipersim and Hotspot.



Attention Based Temperature Measurement

¢ When only differences > A = 1°C are reported, 7 out of 10
sensors send only 1 value in this experiment.

e Reduction of temperature reports for Memory, ALU and

D-Cache:
Unit A=1 Imp. A=2 Imp. A=5 Imp.
Memory 13 35% 9 55% 4 80%
ALU 4 80% 2 90% 1 95%
D-Cache 2 90% 2 90% 1 95%
All others 1 95% 1 95% 1 95%




Attention Based Temperature Measurement
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Attention Based Temperature Measurement

e Rate of temperature reporting can be significantly reduced
and fine tuned;
e Can depend on

* relative difference,
® absolute difference,
® absolute value,

® system level mode;

e Potential benefits:

® reduced processing,
® reduced communication,
® reduced measurements.



Situation Aware Health Monitoring |

[ ] CPSS I|Ve |n Complex, [ Projection — estimating future situations
varying environments.
. . i I Comprehension — higher level situation
e Situation assessment is ‘ =
. .. -
critical for both efficient and ([ Farcatvad contaxt - lowlevel situations
effective decision making.
¢ Multiple sensors provide e o
parts of the necessary
information. Ehysdtworld

J.-S. Preden, K. Tammemae, A. Jantsch, M. Leier, A. Riid, and E. Calis. “The benefits of self-awareness and
attention in fog and mist computing”. In: IEEE Computer, Special Issue on Self-Aware/Expressive Computing
Systems (July 2015), pp. 37-45



Situation Aware Health Monitoring Il

Name
Location

a

1
Property LTime

Situation is modeled as a 3-tuple.

S; denotes the temporal information.

S, denotes the spatial information.

Sy is a set of properties.

Each property can be atomic with a value, or compound.




Situation Aware Health Monitoring IlI
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Situation Aware Health Monitoring IV

[ mild  |2019-08-24 | Vienna ]
A 14:34 Stephansdom

(S, Sn) Fusion

2019-08-24 |Vienna 2019-08-24 |Vienna
245 56%
14:34 Stephansdom 14:34 Stephansdom




Situation Aware Health Monitoring V

mild 2019-08-24
A 14:34

Vienna ] [ (Sr. Su} 2019-08-24 |Vienna
Stephansdom ‘T’, Hil14:34 Stephansdom
(S, S) Fusion Aggregation
2019-08-24 |Vienna J 2019-08-24 |Vienna J
14:34 Stephansdom 14:34 Stephansdom




Situation Aware Health Monitoring VI

Feedback, E,:::]z alerts

A
K
h

0.

Introspection
Attention

Select

Goals and
behaviors:
o Standby
© Classify

pe

Walking

eeping

 Emergency

Data abstraction

Categorization:
s RUNNING, Walking, stairs,
sleeping, and so on

Internal and external
control signals

e Mobile health monitoring with situation dependent
assessment.
e Sensors: accelerometer, GPS, heart rate monitor, a pulse
oximeter, altitude.
¢ Activities: resting on a couch, working at a table, walking
slowly indoors, climbing stairs indoors, walking slowly
outdoors and walking at a rapid pace outdoors. 1 @



Situation Aware Health Monitoring VII

Health assessment

|

Health assessment 0

typical physiclogical

arameter va\uss/
Current activity Current parameter values
‘Activity assessment ’f’hysioloical parameter
assessment ’
Accelerometer iBeacon Heart
interface Rate Oxymeter
sensor



Situation Aware Health Monitoring VIl

451 X

'L
4l
351

@ sitting or lying

w

car driving

K-t B e 770w 1] @ indoor slow walking

acceleration [m/s2]
n
o

n
o @
o &

o

outdoor rapid walking

climbing stairs up and down

.
05 AR

. . . . . . 1
70 80 90 100 110 120 130 140 150
pulse rate [bpm]

e Accelerometer and pulse rate are sufficient for most
activities.

e Altitude measurements were required to separate outdoor
walking from stair climbing.

Ty )



Situation Aware Health Monitoring IX

running
T
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Enhanced Early Warning Score |

Fog Layer

.Oﬁ Feedback

—

Feedback

Self-awareness core

1

Bio-signal
pre-processing

-~

fem ) /| /O
Activity 3 Environment

4= Sensors Sensors ’)

o8

» Sensor network

uolUBHY

Situation
awareness

widyshs pua-png
— uonpinByuodey
t

Arman Anzanpour et al. “Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics”. In:
Proceedings of Design and Test Europe Conference (DATE). Lausanne, Switzerland, Mar. 2017
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Enhanced Early Warning Score |l

@ Prioritize different situations

Priority Score

Indoor-Day
Indoor-Night
Outdoor-Day
Outdoor-Night

100

High
Medium
Low
Normal

Tu 73



Enhanced Early Warning Score Il

© Prioritize different situations
@® Distinguish different modes of urgency

Emergency  Score:0 Score:1-3 Score:4-6 Score>6
Level: Normal Low Medium High

Indoor |Outdoor| | Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor

2 <lz| [[2[<lZ] [clZ]=[Z] [:]Z] <]z

Lz (x| [S|=z|L |z [S|=z|S (=] |€|=|S|=
Sleeping |E |E|E|E| |C|D|D|D| |[B|C|C|C| |[A|A|B|B
Resting | D|D|D|D| |[C|C|C|C BB B B AlA B B
Walking |C|Cc|C|Cc| |IB|C|C|C B/ BB B AlA A B
Jogging |C|C|C|C| |1B/B/B|C| |[B|B|B|B| |[A[A|A|B
Running |C|C|C|C| /B/B|B/B| [ BB/ B Bl |AJA|/AA




Enhanced Early Warning Score 1V

@ Prioritize different situations
@® Distinguish different modes of urgency
® Define sensing activity for each mode

Respiration Rate Blood Heart Rate, | Transmission
State pActivit Pressure Sp02, and Power
Y Body Temp. | Consumption
. Every hour at day
A Continuous Disabled at night Every sec. 29 mW
2 min continuous Every hour at day
B | gminOFF Disabled at night | Cverysec. | 26.8mW
2 min continuous | Every 3 hours at day .
C | 3minOFF Disabled at night Every min. | 125mW
2 min continuous | Every 3 hours at day .
D | gminOFF Disabled at night Every min. 7 mwW
2 min continuous . .
E 18 min OFF Disabled Every min. 4.3 mW




Enhanced Early Warning Score V

Over a day half the energy can be saved.

Running -

Jogging -

Walking

Resting -
Sleeping Activity

N.L Environment

_ Day, Indoor | Night, Indoor
DD? i [ | Day, Outdoor [ |

Baseline, 29mW

Self-aware, 14.5mW

g+ Transmission States

T T T T T T T T T
12 13 14 15 17 18 19 20

16
Time (day hour)



Attention and Situation Awareness

Summary
e Situation awareness is inferred from sensory data.

Various sensors contribute.

Sensor data may be redundant, faulty, irrelevant.

Attention allows to focus on what is relevant and urgent.

Situation awareness and Attention facilitates
® good decision making.

¢ efficient usage of resources.




Goal Management

@ Goal Management

Tu )



Goals for Dynamic Task Mapping

Per- Goal
> \(9 application S, @ —

Latency

’ T
Hierarchical
Dynamic Goal q_%
Manager

Resource
Utilization

Time

Throughput

Life-time |

Reliability
Varying System
Power and Workload and Aberrations
Energy User Demands and Constraints

i Performance Driven % Throughput Driven i Lifetime Reliability Driven



Dynamic Task Mapping

Application 1 Application 2

II
Application 1

Task Graph Application3 | Application 4

............................................




Example 1: Performance Driven Task Mapping

MapPro Objectives:

e Maximize performance for all applications;
¢ Minimize communication latency in the new application;
¢ Minimize fragmentation.

Mohammad-Hashem Haghbayan, Anil Kanduri, Amir-Mohammad Rahmani, Pasi Liljeberg, Axel Jantsch, and
Hannu Tenhunen. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying Ripple Effect of
Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks on Chip.
Vancouver, Canada, Sept. 2015







Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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MapPro: Heuristic to minimize application internal
communication delay and to minimize fragmentation.

© First Node selection: Identifies a first node and a region for
a new application;

® Allocates specific cores around the first node;

©® Maps tasks to cores.



Example 1: Performance Driven Task Mapping

w

0

®MapPro © SHIiC ®INC ®NN ®MapPro © SHiC ®INC mNN ®MapPro © SHiC ®INC ®mNN

4

II I | I
! I I
0

AWMD NMRD Congestion AWMD NMRD Congestion AWMD NMRD Congestion

U Y

Experiments with 12x12 - 16x16 networks.

AWMD: Average Weighed Manhattan Distance: Measures the communication cost based on traffic
volume.

NMRD: Normalized Mapped Region Dispersion is the normalized average of pairwise Manhattan
distances of all communication nodes of a mapped application: measures the compactness of a region.

External Congestion: Number of contended packets belonging to different applications.




Example 2: Power- and Thermal Constrained Task
Mapping

Application 1

Application 1

Application 2
Application 2

<

Application 3
Application 3

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.

Anil Kanduri, Mohammad-Hashem Haghbayan, Amir-Mohammad Rahmani, Pasi Liljeberg, Axel Jantsch, and
Hannu Tenhunen. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:
Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610-617



Working Chip

High Power Density

Heat Accumulation

Forced Inactivity

——

Silicon Melting

Chip Malfunctioning
Unreliability and Ageing

Dark Silicon

Example 2: Dark Silicon



Battery Technology

Fixed Energy Budget

Thermal Design Power (TDP) S,

Temperature

Cooling Solution

Assumption:
Worst Case Voltage,
Frequency, Workload

=) TDP

Design Time Estimate

Example 2: Thermal Design Power

Reality
O000| mmgom
O000 | mEEom
O000d] | mEDomE
0000 EEEmE

T(core) = f(CorePower, AmbientTemp, NeighbourTemp)

TDP Thermal Design Power: Fixed power budget based on
conservative design time estimate of the temperature.




Applications

—

Steady State Chip

Assumption : WCV, F, App

EEEm

Ooonm
— TDP E—

OEOOa

Oo/E

Working Chip Conservative Budgeting

Dark Silicon

Example 2: Fixed Power Budget



Example 2: Variable Power Budget

Power Consumption

Power Consumption
Alignment

Alignment

Tempetrature Temp?ture O
oomd O0ooQa
Applications Tp - . . . . T5p -‘ . . . .
OomOE (|
ODoEE OE@EE
Steady State Chip Working Chip Adaptive Budgeting Minimizing Dark Silicon

T(core) = f(CorePower, AmbientTemp, NeighbourTemp)

TSP Thermal Saturation Power: Variable upper bound based
on T(core).



Example 2: Efficient Budgeting

Tightly packed Cores

| -

Neighbors accumulating temperature

Utilized Power Budget = 76.2 W

Spreadout Cores

) Rl d
ir’ (’T‘ 60° 60‘
F-sy 61° ’0
(r,ﬁ) : (14.6) :

Neighbors dissipating temperature

Utilized Power Budget = 87.6 W

v’ 15% Better Utilization
v' Activate more cores
v" Reduce temperatures

v Minimize Dark Silicon




Example 2: Implications of Mapping

» Application 2 Application 3
Application 1
Tightly Packed — Greedy First Node Spread Out — Adaptive First Node
Application
Repository

Power Budget = 66W Power Budget = 74.6W ¢



Example 2: Power Budget Improvement

Percentage Power Budget Improvement for PAT over SC

m 0% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 5.74 13.9 4.15 113 2.19 7.68
20x20 6.54 17.17 5.06 8.55 2.63 4.28

Percentage Power Budget Improvement for PAT over TSP-WC

90% Dark 75% Dark 50% Dark
Best Avg. Best Avg. Best

16x16 32.33 34.92 22.02 24.14 11.73 13.2
20x20 38.70 40.83 22.40 27.4 12.5 13.33

T 1)



Example 2: Throughput Gain

Percentage Throughput gain for PAT over SC

m 90% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 7.27 15.64 4.59 13.92 2.42 8.58
20x20 8.5 20.99 5.88 10.21 2.89 4.54

v Surplus Budget > Added latency v' Minimal congestion

» Per Application Latency v" Per Chip Throughput

T 19



Example 3: Lifetime-Reliability-Driven Task Mapping

¢ To main limitations of many-cores:

* Not enough power to turn on all cores (dark silicon)
® Increased susceptibility of IC to aging and wear-out

e Goal: Introduce lifetime reliability awareness in the runtime
resource management layer

® Guarantee specified level of reliability
e Satisfy the power budget
® Optimize performance

M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen. “A lifetime-aware runtime mapping
approach for many-core systems in the dark silicon era”. In: Design, Automation Test in Europe Conference
Exhibition (DATE). Mar. 2016, pp. 854—-857



Example 3: Lifetime-Reliability-Driven Task Mappin

PI‘OpOSGd approach based on two feedback controllers

e Short-term controller —— | — -
* Application mapping o

poly Thermal
Power Budggt, 1 Sensor
g —_—
e Select less aged cores m Y

¢ Power control EXceution 1 Reliabilty L= -1
q; ot ) 1T
¢ Long-term controller Relisbility [ cliabiliny Analysis
fotai 1l Requirement —| ky Analy
o Reliability managerfrertt

¢ Compute current aging status
¢ Disable highly stressed cores

NoC-based Many-core
System

Percorc I

200



Example 3: Lifetime-Reliability-Driven Task Mapping

reliability
o o o o o
& 2 & & 2

o
o

MapPro: Reliability aware mapping:
lifetime=5.52 years lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.
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Challenges in Complex Many-Core SoCs

e A number and variety of objectives

® Partially contradicting
e At different time scales

Objectives change over time
The system state has to be known
Application objectives have to be known



Goals and Objectives

Goal switching

G3

t1 t2  t3 Time

Elham Shamsa, Anil Kanduri, Amir M. Rahmani, Pasi Lilieberg, Axel Jantsch, and Nikil Dutt. “Goal Formulation:
Abstracting Dynamic Obijectives for Efficient On-chip Resource Allocation”. In: /EEE Nordic Circuits and Systems
Conference (NorCAS). Tallinn, Estonia, Oct. 2018
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Time Varying Goals

App0 — App1l — App2 — Perf — Perf_Req ---- Power — TDP ----

oA SA
=3 I N S Al i =4
£ - ; . E
$ —— $
& > &
tl t2 t3 t4 time
A
8 8
3 T 3
o [o}
Q Q
t1 t2 3 t4  time
SA P WP WP P
: o
. g AN e
LP: Low Power Policy I e e .
HP: High Performance Policy t1 2 B w  fmen
Policy Switching g
g
t1 t2 t3  t4  time 0



Goal Management Levels

© Single objective; Design time;
® Multiple objectives; Design time;
©® Multiple objectives; Run time;

@ Multiple, hierarchical objectives; Run time;



Hiararchical Goal Management

Goal 1: Maximize Lifetime

Goal 2: Meet Application

Primary Goals Requirements

$
Nefe)e

Aging Controller =~ Power Controller QoS Controller
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Supervisory Control

User inputs | Variable Goals and Policies o
e A |
upervisory h igh-level Plant
| SPECTR Controller |« Wiogel |
| [ ()
Selected Selected Selected | g.
» . . i
I B Gains; Refs, Gainsz/ /Refs, Gainss Refs, |§" I 2
|§ = Classic Classic ooo Classic 2|3
§ Controller 1 Controller 2 eee Controller N = | 7
I Con_lo; Con_lo, Con_los I
R w— — | — — — W— —— S— W— — — — p— | w— v— —
= Inf_loy Inf_lo, Inf_log
S E a
% f—.‘_‘ Sub-plant 1 Sub-plant 2 see Sub-plant N
n- LN

Amir M. Rahmani et al. “SPECTR - Formal Supervisory Control and Coordination for Many-core Systems Resource
Management”. In: Proceedings of the 23rd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. Williamsburg, VA, USA, Mar. 2018; T. R. Mick, B. Donyanavard, K. Moazzemi,
A. M. Rahmani, A. Jantsch, and N. D. Dutt. “Design Methodology for Responsive and Robust MIMO Control of
Heterogeneous Multicores”. In: IEEE Transactions on Multi-Scale Computing Systems PP.99 (2018), pp. 1-1



Goal Management Inputs

Hierarchical Dynamic Goal Manager

{
TR




Hierarchical Goal Mangement

T ; Primary Goal
Variable Gpals Plant Properties Controllers (PGCs
and Policies and States Goal Controllers (GCs)
GCs inform PGCs about PGCsgive 4

state, progress, and | Hierarchical Dynamic Goal Manager |directions to g
deviations. N\ |Gcs. o
Goals give direction —_
for management of Leaf controllers | (D
the plant and report their state E
subplants ™ /yEwards g
Leaf Controllers \ ) Yo
for managing . )
temperature, 3 A
power, ... —~ — 77 Y
{ Controller 1 Controller 2 oo Controller S @)
Leaf e
controllers = wn
communicate %
with each e Leaf Controllers v
other —
o
SLE'tI)'?{eSr:ﬁZI] 1 Subsystem 2 —»{Subsystem S 5
Physical relations State) J¥ (Aging State)[*— (Power State) 2
among different f———=— —
aspects Plant (Many-core Fabric)

* The system’s requirements changes over its lifetime.
¢ Different objectives are invoked at different time.
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Goal Driven Autonomy

Applications /( State Detector )\

Priority Goal
Re-assigner Enforcer

WO, W1,
Reward

Reward Calculation )/

Sensory data

( Operating System )

Controller

High perf.
Nominal

(r\

Aoljod pejosjes

Al15 | A15 | Al15 | AlS A7 A7 A7 A7

big cluster LITTLE cluster

Elham Shamsa, Anil Kanduri, Amir M. Rahmani, Pasi Lilieberg, Axel Jantsch, and Nikil Dutt. “Goal-Driven Autonomy
for Efficient On-chip Resource Management: Transforming Objectives to Goals”. In: Proceedings of the Design and

Test Europe Conference (DATE). Florence, Italy, Mar. 2019



Terminology

Agent is an actor in the system, that pursues specific

objectives. B = {Bjy, By, B3}

Application is an application running on the system.
A={A1,As, ..., An}.

Parameter: are entities measured and subject to control, like
power consumption and application performance.
E.g. Poow(coret),
Poow(PLATFORM),
7)perf(A2)-



Terminology

Objective function: either minimizes or maximizes a parameter
or puts a constraint on a parameter. E.g.
01 := Ppow(PLATFORM) — min,
02 := Ppow(PLATFORM) < Cy,
03 = 7)perf(A1) > Co.

Objective is a set of objective functions, e.g. O = {04, 02}.

O(B;) is the objective of agent By and O(A¢) is
the objective of application A;.
Op(B, A) is the set of objective functions of agents
B and applications A relevant for parameter P.
E.g. Opow({B2, B4}, {A1, As}) is the set of
objective functions of agents B, and B, and
applications Ay and Az relevant to power.



Terminology

Hierarchy Level: is a number assigned to actors; the higher the
level, the more important is the actor.
E.g. H(By) =3,
H(PLATFORM) = 2,
Hp(B) is the highest hierarchy level of any agent in
B which includes an objective function relevant for
parameter P:

Hp (B) = max(H(B)) for which Op({B}, {}) # {}



Terminology

Urgency of a parameter denotes the ratio of measured to
desired value.
It is a function of all relevant objective functions for
a parameter: Up(Op) — R;..

Priority of a parameter is the product of its urgency and
the highest hierarchy level of the involved agents:
Pr = UpHp.



SoC Example

Applications

High perf.
Nominal

Controller

)

/r\
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Prlorlty ) (
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Goal
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Reward

Reward Calculation )/
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M
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)
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SoC Example

Agents: B = {USER, PLATFORM, APPLICATION}
Applications: There ar n applications active:
A ={A1,As, ..., An}.
Parameters: Ppow, Pper
Platform objectives:

O(PLATFORM) = {Ppow(PLATFORM) < TDP}
User Objectives:
{Ppert(PLATFORM) — max}
if user command = "High Performance"
{Ppow(PLATFORM) — min}
if user command = "Low Power"

O(USER) =

Application Objectives: A minimum (CA'“‘") and a maximum
(CF*) performance constraint is given for each
application A:

w OA = {Pperf(A) < C,Z]axapperf(A) > C,Tin} @



State Detection

State vector:

e Power: Violation: TDP< p
Potential Violation: 0.8 TDP< p < TDP
No Violation: p <08 TDP

e User Command: High Performance
Low Power

e Performance per application: [ Min run time,
Max run time ]



Goal Hierarchy

5 if Poowcur > 0.9TDP

H(PLATFORM) = (25 if 0.9TDP > Pyowcur > 0.8 TDP
1 |f Ppow’cur < 08TDP
H(USER) = 2
H(APPLICATION) = (1+ M)



Priority Assignment

¢ Primary goals: thermal safety
e Secondary goals: User experience

e Tertiary goals: Application requirements



Priority Assignment - Urgency

Urgency is the extent of a violation of a parameter:

Upyou ({Ppow(PLATFORM) < TDP, Ppow(PLATFORM) — min})
o Ppow,cur

~ TDP

Poow,cur I8 the instantaneous power consumption;
TDP is Thermal Design Power.



Priority Assignment - Urgency

Case 1: if User Command = “High Performance”:

Uper (A, {Ppert(A) < CA™, Poori(A) > CR'™", Pperi(PLATFORM) — max})
_ C,Tax - Pperf,cur(A)
C/Tax . C/Zeﬁ
C,Tax + Czﬁn
2

Cref1

Case 2: if User Command = “Low Power”:

Upoer (A { Ppert(A) < CF¥, Ppert(A) > cam
C,Tax - 73perf,cur(A)
- C,Tax - C/rqef2

2 .
Cref min
A




P, = Uppoprpowz%-max(H(USER),H(PLATFORM)

Pppeﬁ (A) = Upperf (A) prerf
( CrAPax_prerf,cur(A)
C;\nax_ C;\eﬂ

(if User Command = “"High Performance”)

- max(H(USER), H(APPLICATION))

Cz]ax_Pperf,cur(A) . H

Cron_ e (APPLICATION))
A T A

(if User Command = “Low Power”)



Goal Enforcement

Selects action that most likely will satisfy the highest
priority goal;

Action = Resource allocation policy;

Initial action is randomly selected;

Actions are assessed in a reinforcement learning loop;
Reinforcement learning is based on a reward function.



A function is assigned to every objective function.
A [min, max] interval is assumed for each reward function.
The reward function is normalized to [0, 1] — [0.1].

For minimizing and maximizing a linear reward function is
used.

For bounds a variant of the generalized logistic function is
used:

* R(x)= Mez;w
® For lower bound constraints: A=0.1,B=-10,C = 1.
® For upper bound constraints: A=0.9,B=10,C=1.



Reward Functions

Objective function Reward function

y = f(x) — min Rin(y') ==y’

y = f(x) — max Rrnax(Y) =y

y=1(x) < Crax  Run(Y') = rgmor—oanr

A

y = f(x) > Cpin Riu(y') = m

gy V' isy normalized to [0, 1]. S e



Reward Calculation

Reward = WoRo =+ W1 R1 + WQRQ + ...+ Wan

With the objective functions for power and performance:

R= WPpow : RPpow + Z prerf(A) ’ Rpperf (A)
AcA



Reward Calculation for Power

]

Objective Functions for power with user command “Low Power”:

Oppou(B,A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP,
Poow(PLATFORM) — min}

Reward function:
-

—_

Rppow = E(Hmin(y/) + Rub(y/))

1
2V T enos))

where y’ is the normalized Ppow,cur-



Reward Calculation for Power

Objective Functions for power with user command “High
Performance”:

Oppou(B,A) = O(PLATFORM) U O(USER)
= {Ppow(PLATFORM) < TDP}

Reward function:
Rppow = RUb (yl))

y
1+ el0((0/-0.9)

where y’ is the normalized Ppow,cur-



Reward Calculation for Performance

Objective Functions for performance with user command “Low
Power”:

OPperf(B7 {A}) = OPperf(USER) U Opperf({A})
= {Pperf(A) < C,Taxapperf(A) > Cgﬂn}

Reward function for A:
1
Rpperf(A) = E(Fﬁb(yl) + Rub(y/))

1 1
23 ei009)

e —

1+ e—10((y’—0.1))

where y’ is the normalized Pyt cur(A)-
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Reward Calculation for Performance

Objective Functions for performance with user command “High
Performance”:

Opperf(B’ {A}) = Opperf(USER) U OPperf({A})
= {Ppert(A) — max,
Prert(A) < CA¥, Poer(A) > CF"}

Reward function for A:

1

RPperf(A) = §(HmaX(y/) + Rib(y') + Run(y')) i
, 1

- §(y + 1 + e10((y'—0.9)

1 /‘

e e—10((y’—0.1))

U where y’ is the normalized Pyt cur(A)- 230



Reward Calculation

R = W0><R0—|—W1XR1—|—W2XR2—|—...+WnXRn

= W'Ppow : R'Ppow + Z prerf (A) : R'Pperf (A)
AcA

For the weights we use priorities:

Py = Uppoprpowz%~max(H(USER),H(PLATFORM))

P'Pperf (A) = UPperf (A)H'Pperf

Thus:

R = PPPOW ’ RPPOW + Z Pppeﬁ (A) ’ Rpperf(A)
AcA



e Actions are task

Applications {( T e Y migration, cluster
B, & U ovES:
) s(priority o ) e Rewards are
Usercmd = ( Re-assigner Enforcer
Low pow. 5 W T updated;
High perf. [IE)(© L
Nominal \( Reward Calculation ) & e Actions with h|ghest
o da 5 rewards are
C Operating System executed:
b
Loewewefwsffw | w [ w [ w ] e Initially, actions are
big cluster LITTLE cluster

selected randomly.
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Experiments

_ Appl App2 App3 Appd AppS App6 App?
@ 1200 1200 2 2 2 1200 %
H = ~ [ — ) M
£ ™) {1000 1] 18 18 1 18 1000 18 (a) Low Power Policy
g I |
£ a0l 00 12 12 H 2 500 2 H
0100 200 300 400 100 200 300 400 00 200 100 200 300 400 500 600 700 800 400 500 600 700 800 400500600 700800900
Time (s) Time (s) Time (5) Time (5) Time (5) Time (5) Time (s)
3 poofT 1200 = 2 — = T uFT 2
5 t i 1 ]
£ 1000 1000 1 f 11 18 Y1000 18 (b) High Perf Policy
E
100 200 300 100 200 300 00 200 100 200 300 400 500 600 700 800 400 500 600 700 800 400500600 700800 900
Time (s) Time (s) Time (5) Time (5) Time (5) Time (s) Time (s
2 1200 200 u T u u 1200 2 T
£ 1000} TR =1 18 18 18 1000 18 (c) GDA
£
5 oeoopo 800t N 2 2 soob ] o 2
100 200 300 100 200 300 400 00 200 100 200 300 400 500 600 700 800 400 500 600 700 800 4050060070080 900
Time (s) Time (s) Time (5) Time (5) Time (5) Time (5)

Experiments with a set of microkernel benchmarks;
Hardkernel Odroid XU3 board,

with two clusters (4 big (A15) and 4 little (A7) CPU cores);
Performance in heartbeats/sec.
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Comparison

Tech. Obj Cmd | Pwr viol. | Perf. viol. | Avg. pwr (W)
LP Power X 0% 27% 2.86
HP Perf. X 3% 0% 3.7
GDA | Dynamic | v 0% 14% 3.1
CGDA | Dynamic | Vv 1% 2% 3.4
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Experiments - Power Evaluation

(a)
Power (W)

(b)
Power (W)

0 6 12 18 24 30 36 42 48 54
E 4 2
Tk W
: 2
[ —— CGDA —— high perf. —--- TDP
0 T T T T T T T T T
0 6 12 18 24 30 36 42 48 54

Time (s)
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Experiments - Load Evaluation |

(a) (b) == cGDA
ST~ === T L —— GDA
S —-=- _minre
= 4 g 10 j—————F—————~— 4. -
= e === max req.
e —
o 3 [}
= z
[=] .
a 24 — CGDA E
1] — GDA &
--- TDP
0 T T T T T T T
0 20 40 60 0 20 40 60
Time (s) Time (s)

High Load Scenario
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Experiments - Load Evaluation |l

(@) (B) = cGDA
T 11 —— GDA
‘G‘- .
z4 E10tp——rm——— --- minreq. |
= A —--- max req.
o 3 —
I [aa]
H I
= =
=2 — CGDA | ¥
1 —— GDA &
-—- TDP
0 T T T I | |
0 20 40 60 0 20 40 60
Time (s) Time (s)

Low Load Scenario
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Goal Driven Autonomy

Applications

( State Detector )

g Prlorlty Goal
Re-assigner Enforcer

)

C
Low pow. o} WO, W1, .., Wn
High perf. o Reward @
- - @
Nominal ¢ Reward Calculation ) g
o
o
%wm\l =
g
¢ Operating System
IAlSIAlSlAlSIAlSII A7 I A7 | A7 | A7 |
big cluster LITTLE cluster

Elham Shamsa, Anil Kanduri, Amir M. Rahmani, Pasi Lilieberg, Axel Jantsch, and Nikil Dutt. “Goal-Driven Autonomy
for Efficient On-chip Resource Management: Transforming Objectives to Goals”. In: Proceedings of the Design and
Test Europe Conference (DATE). Florence, Italy, Mar. 2019

Axel Jantsch et al. “Hierarchical Dynamic Goal Management for loT Systems”. In: Proceedings of the IEEE
International Symposium on Quality Electronic Design (ISQED 2018). USA, Mar. 2018

Amir M. Rahmani, Axel Jantsch, and Nikil Dutt. “HDGM: Hierarchical Dynamic Goal Management for Many-Core

w Resource Allocation”. In: IEEE Embedded Systems letters 10.3 (Sept. 2018) 238



Goal Driven Autonomy

Summary
¢ Framework for managing various different goals and
objectives;
e Goals can dynamically change;

¢ Actions are improved during operation based on
reinforcement learning.
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@ Examples
HAMSoC - A Hierarchical Agent Monitored System on Chip
Cyber-Physical SoC
EWS: Early Warning Score
SEEC



HAMSoC - A Hierarchical Agent Monitored System on

Chip

Self-monitoring design platform for multi-core SoCs
Three levels of agents: cell, cluster, platform
Dedicated design layer for self-awareness and adaptivity

Application: Power management in NoC based multi-core
SoC

Liang Guang, Ethiopia Nigussie, Pekka Rantala, Jouni Isoaho, and

Hannu Tenhunen. “Hierarchical agent monitoring design approach towards
self-aware parallel systems-on-chip”. In: ACM Trans. Embed. Comput. Syst.
9.3 (2010), pp. 1-24

Liang Guang. “Hierarchical Agent-based Adaptation for Self-Aware
Embedded Computing Systems”. PhD thesis. Turku, Finland: University of
Turku, 2012



HAMSoC - A Hierarchical Agent Monitored SoC |
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HAMSoC - A Hierarchical Agent Monitored SoC I

Key Objectives
Dependability
Scalability
Power/energy efficiency

Economical benefits:
sustainability, manufacturability

Self-Aware System
Monitoring Major Actions

Modelling & Processing

Environment

Own resources ::>

Application

Logic reconfiguration
: Physical reconfiguration

Communication with the
environment

Cost functions
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HAMSoC - A Hierarchical Agent Monitored SoC IlI

Application Agent

System performamce Modifying l{liﬁ“l
(throughput, power) requirements requirements
Platform Agent
prror C > i i Initial
detection and luster Cluster setting Reconfiguration . _
recovery performance (Vdd, Vth, Felk...) Commands Configuration
Cluster Agents
Circuit
Error detection conditions Circuit setting | peconfiguration Initial
and recovery (current, buffer (Vdd, Vith, Felk ..) Commands Configuration
load ..)
Cell Agents |




HAMSoC - A Hierarchical Agent Monitored SoC IV

l |
C]uster-
l |
% e~ R N i
: Sw. E Sw. Sw. Sw.
—_———— 7S,

Cell agent Cluster Cell agen
agent

NI Y NI ’§’ < N& Nl'§_’

Sw. Sw.
Application agent
Platform agent

v v

- Agent communication channel

Q:b Data links



HAMSoC - A Hierarchical Agent Monitored SoC V

Cluster Boundary

|_ - - - |
vad Cell J‘. > el ]: > ¢
Power Line —

Cell ¢ > cen § P! cand
v Ce v

Vdd

Power Line L— ]' I ]
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HAMSoC - A Hierarchical Agent Monitored SoC VI

Normalized Communication Energy of Three
Energy-Efficient Architectures

Traffic | Cluster-based | Single-domain Static
Pattern DVFS DVFS Voltage Island
1 80.90% 106.29% 1
2 79.36% 101.98% 1
3 96.21% 100.41% 1
4 90.18% 106.52% 1

Single-domain DVFS: only one DVFS domain, no clusters.
Static voltage island: Lowest statically voltage set for each
cluster based on given load.



HAMSoC - A Hierarchical Agent Monitored SoC VII

Normalized Communication Latencies of Three
Energy-Efficient Architectures

Traffic Cluster-based | Single-domain Static
Pattern DVFS DVFS Voltage Island
1 165.34% 131.63% 1
2 144.37% 142.44% 1
3 123.59% 108.44% 1
4 124.00% 121.38% 1
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HAMSOoC - A Hierarchical Agent Monitored SoC VIlI

Area Overhead of Three Energy-Efficient Architectures (in mm?2)

DC
Regulators
Architecture Links | Switches & PLLs Total | % of a Chip Size
Cluster-based | 23.35 12.88 10.63 46.86 17.04%
DVFS
Single-domain | 23.35 12.88 0.38 36.61 13.31%
DVFS
Static voltage 22.63 12.88 0 35.51 12.91%
island
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HAMSoC - A Hierarchical Agent Monitored SoC IX

Summary
¢ A hierarchical monitoring and control architecture;
e Applied to

® adaptive power management, and
e fault tolerance through reconfiguration.




CPSoC - A Sensor Rich SoC Platform

e Sensors and actuators at five layers:

Device/ circuit architecture

Hardware architecture

Network/Bus communication architecture
Operating system

Application

¢ Observe-decide-act paradigm
¢ Codesign of control, communication and computing

Santanu Sarma, Nikil Dutt, N. Venkatasubramaniana, A. Nicolau, and

P. Gupta. CyberPhysical-System-On-Chip (CPSoC): Sensor-Actuator Rich
Self-Aware Computational Platform. Tech. rep. CECS Technical Report No:
CECS TR-13-06. Irvine, CA 92697-2620, USA: Center for Embedded
Computer Systems University of California, Irvine, May 2013
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Cyber-Physical SoC

Sensor
Data

Adaptive policies
Trend learning

Model of system
Model of environment

Self-Aware
Monitor

Y

Traditional Controller

Actuator

Control

Self-monitoring chip
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CPSoC - A Sensor Rich SoC Platform

Introspective Sentient Unit (ISU)

Core Core
Throughput Throughput
Mode

Memories

N B B B
X E&l s EXY
g3 | 2s | 28|53
£ 3 = -

Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. “CyberPhysical-System-On-Chip
(CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer Virtual Sensing and Actuation”. In: Proceedngs of the
Design, Automation and Test in Europe Conference and Exhibition (DATE). Grenoble, France, Mar. 2015
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CPSoC - A Sensor Rich SoC Platform

/
)

Vol 1
H Applications F— SA

3

Network/Bus Communication
Architecture

1
—— ' SN
| 1
! ]
it Hardware Architecture M
: 1
1
1
]
]

Actuators Sensors
(Act) (Observer)

NOISNd  YOSN3S

¥
:
P4

NOISNd  HOL1VN1dVY

i
o

| A2

€--

| Middleware/Firmware
Supervisory Policies

Nikil Dutt, Axel Jantsch, and Santanu Sarma. “Self-Aware Cyber-Physical Systems-on-Chip”. In: Proceedings of the
International Conference for Computer Aided Design. invited. Austin, Texas, USA, Nov. 2015
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Cross-Layer Sensors =] Decisions & Leammg """""
(Virtual & Physical) (Controller)
7 .
Actuation (software
and hardware)

Traditional Operating System
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Chip Hardware '
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CPSoC - A Sensor Rich SoC Platform

On-Chip Sensing & Actuation (OCSA)

ACTUATORS

%)
o
(]
%)
=
i}
7]

Scratch pad/ ]
On-Chip
SRAM

MEMORIES

GPIO
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Sensing and Actuating at All Layers

Layers | Virtual/Physical Sensors | Virtual/Physical Actuators
Application Workload, Power, Energy, Approximation, Algorithmic
Execution Time choice, Transformations
Operating System utilization, Task allocation,
System Peripheral states Partitioning, Scheduling,
Migration, Duty cycle
Network/Bus | Bandwidth, Packet/flit status, | Adaptive routing, Dynamic
Channel status, Congestion | BW allocation, Channel
allocation, Flow control
Hardware Cache miss rate, Access Cache sizing, Issue width
Architecture | rate, IPC, Throughput, sizing, Reconfiguration,

Resource utilization

Resource provisioning

Circuit/Device

Circuit delay, Aging effects,
Leakage, Temperature,
Device faults

DVFS, Clock gating, Power
gating

Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. “CyberPhysical-System-On-Chip
(CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer Virtual Sensing and Actuation”. In: Proceedngs of the
Design, Automation and Test in Europe Conference and Exhibition (DATE). Grenoble, France, Mar. 2015
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Improvement of Energy Efficien

Performance

Power & Energy
ield

l Objective(s) J Thermnal Stability

Variability-Aware | e f Matrix
Performance &

' i Securitys

Configurations | power tenmation | ... Allocation
./' & prediction P—— Cost
pportunistic

Allocation
performance Counters Decision
& Power & Variability Sensing

Ao lan [ au |

ar{ar | s |[aa ]
| [

A7 | A7 | A7 A1l ‘A

A7: Small |

A15: Big
A11: Medium

Adaptabll

Predictabilty

Usabiity

Z(2(2 R

Resilience
Functionalty

Goal:
Energy Efficiency

Santanu Sarma and Nikil Dutt. “Cross-Layer Exploration of Heterogeneous Multicore Processor Configurations”. In:

VLSI Design Conference. 2015
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Improvement of Energy Efficiency

o o

\l\\*

M Baseline — Vanilla ®GTS SmartBalance

B e
> o o N

Nnormalized IPS/Watt
© o oo =
N B OO0 N

o

®

SIS
\«»‘\A»(\*\ \:\\*\.’\

FNRAES NSt RRA KR X S B
P~

thread mixes 8-thread mixes
IMB | Parsec mixes

The benefit comes from actually measur-
ing energy efficiency.

\* S ‘Q.Q\
W©
W

Santanu Sarma, T. Muck, L. A.D. Bathen, N. Dutt, and A. Nicolau.
“SmartBalance: A Sensing-Driven Linux Load Balancer for Energy
Efficiency of Heterogeneous MPSoCs". In: Proceedings of the Design
Automation Conference. July 2015
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Thermal-Aware Performance

Thermal Profile with MPSoC . Maximurn Temperature overtime
o1 Throughput
B ? improvement by
i 70%-300% for
5
£ £ —w=mn || same power and
Minirmurm
(@)  unit# ’ time (b) 060 io0no T is0do temperature.

time

Maimum Temperature overtime

i Benefit is due to
¢ o accurate and
§ § fine-grain
: § measurement

— = Average

wmen || @Nd tight tracking.

50‘00 10000 15000
time

o
=
=)

IUUUUISUUU

100 5000
Unit # time (d) %

&

Santanu Sarma, Nikil Dutt, N. Venkatasubramaniana, A. Nicolau, and P. Gupta. CyberPhysical-System-On-Chip
(CPS0C): Sensor-Actuator Rich Self-Aware Computational Platform. Tech. rep. CECS Technical Report No: CECS
TR-13-086. Irvine, CA 92697-2620, USA: Center for Embedded Computer Systems University of California, Irvine,
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CPSoC - A Sensor Rich SoC Platform

I T emperature Sensor
[ P ovver Sensor
:NBTI Sensor

[ voltage Sensor

I CFhv

% Arga Overhead

10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
No of Sensors

Virtual sensing reduces the area overhead for 1000 sensors
from 7.3% to 0.6%.
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CPSoC - A Sensor Rich SoC Platform

0.3

I T ernperature Sensor
[ Powver Sensor e
[INeTi sensor
[ voltage Sensor -
I P

0.25

0.2

015

0.1

% Powsr Overhead

0,05

10 20 30 40 S50 60 70 &0 90 100 110 120 130 140 150 160 170 180 190 200
No of Sensors

Virtual sensing reduces the power overhead for 1000 sensors
from 1.7% to 0.3%.
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Summary - Self-Awareness Features

Semantic interpretation
Desirability scale

Semantic interpretation
History

Goals

Expectations on environment

Expectations on itself

Self Inspection

Implicit

Explicit

Implicit

Rudimentary and implicit
Explicit, hard coded

Rudimentary, implicit and hard
coded

Rudimentary, implicit and hard
coded

Rudimentary

CPSoC - A Seonsor Rich SoC Platform
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CPSoC - A Seonsor Rich SoC Platform

Summary
¢ Layered sensor, actuator and control architecture;
¢ Fine grained sensing can have significant benefits;
Virtual sensing can significantly reduce overhead,;

Rudimentary self-awareness with many SA features being
implicit.




Early Warning Score

Score 3 2 1 0 1 2 3

Heartrate' | <40 40-51 51-60 60-100 100-110 110-129 >129
Systolic BP? <70 70-81 81-101 101-149 149-169 169-179 >179
Breath rate® <9 9-14 14-20 20-29 >29
SPO; (%) <85 85-90 90-95 >95

Body temp.* | <28 28-32 32-35  35-38 38-39.5 >895

"beats per minute, 2mmHg, 3breaths per minute, 4 °C




EWS Improvement

¢ Data reliability:

® Values in reasonable scope
® Changes in reasonable scope
® Consistency between sensors

e Sijtuation awareness
e Power efficiency



Enhanced Early Warning Score

Fog Layer

.O° Feedback

—

Feedback
Self-awareness core

1

Bio-signal
pre-processing

«—

=) /)

Activity Environment

Situation e sensors iy
awareness 04 &

uolualy

widyshs pua->yppg
— uoypinBlyuodey
t

» Sensor network

Arman Anzanpour et al. “Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics”. In:
Proceedings of Design and Test Europe Conference (DATE). Lausanne, Switzerland, Mar. 2017
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Enhanced Early Warning Score - Data Reliability

© Check on the reliability of sensed values
@® Check on the reliability of value changes
@® Check on consistency between sensor data

ORr N WA GO

oOR NWAE GO

Experiment 1

T

Vital Signal Score

/

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)
Experiment 2
-
\
-
i \
13 5 7 9 11 13 15 17 19 21 23 25
Time (s)

Vital Signal Score

oORr NWHMUO

Experiment 3

A, /

5 7 9 11 13 15 17 19 21 23 25
Time (s)

------ Heart rate (beats/min)
— — Respiratory rate (breaths/min)
—eo— Body temperature (°C)

Oxygen saturation (%)
-=-= Systolic blood pressure (mmHg)
—+—Self-aware EWS
—a—EWS
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Enhanced Early Warning Score - Situation Awareness

© Consider the activity mode of person
® Consider time of day
@ Consider location

Emergency Level (Orginal EWS)

Critical
Equivocal -
Low

Normal

Emergency Level (Modified EWS)

Critical

Equivocal —
tow | LU T T LU UL LU LU U L T

Normal

Activity

Running -{
Jogging |
Walking -
Resting -{
Sleeping |
Environment
Night, Indoor -
Day, Outdoor |
Day, Indoor - —’—|
i




Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations

Priority Score

Indoor-Day

Indoor-Night
Outdoor-Day
Outdoor-Night

High
Medium
Low
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Enhanced Early Warning Score - Power Efficiency

@ Perioritize different situations
@® Distinguish different modes of urgency

Emergency  Score:0 Score:1-3 Score:4-6 Score>6
Level: Normal Low Medium High

Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor

EEEIRERBREEREREEEE

Liz|L(z| [S|=|L (x| [S|=z|<L (x| |€|=|8 |
Sleeping |E |E|E|E| |C|D|D|D| |[B|C|C|C| |A|A|B B
Resting | D|D|D|D| |[C|C|C|C BB B B AlA B B
Walking |C | C| C| C B|C/C|C BB/ B B AlA|(A B
Jogging |C|C|C|C| |1B/B/B|C| |[B|B|B|B| |[A[A|A|[B
Running |C|C|C|C| /B/B|B/B| [ B/B/B Bl |AJA|AA




Enhanced Early Warning Score - Power Efficiency

@ Prioritize different situations
@® Distinguish different modes of urgency
@ Define sensing activity for each mode

Respiration Rate Blood Heart Rate, | Transmission
State pActivii Pressure Sp02, and Power
y Body Temp. | Consumption
. Every hour in day
A Continuous Disabled in night Every sec. 29 mW
2 min continuous | Every hour in day
B | gminoFF Disabled in night | /&'y se¢- | 268 mW
2 min continuous | Every 3 hours in day .
C | 3minoFF Disabled in night | V&Y min. | 125mW
2 min continuous | Every 3 hours in day .
D 8 min OFF Disabled in night Every min. | 7mW
2 min continuous . .
E 18 min OFF Disabled Every min. 4.3 mW




Enhanced Early Warning Score - Power Efficiency

Over a day half the energy can be saved.

Running -
Jogging -
Walking -
Resting -
Sleeping - Activity

Environment
N.I. 4 onme

Day, Indoor | Night, Ind
D.O. ight, Indoor
D.I. - | | Day, Outdoor | l

Baseline, 29mW

Self-aware, 14.5mW

g+ Transmission States

T T T T T T T T T
12 13 14 15 16 17 18 19 20
Time (day hour)




Enhanced Early Warning Score

Summary
¢ Considering data reliability improves quality of observation;

e Considering sitation improves quality of observation;

¢ Collecting needed data only improves efficiency.




SEEC - A Framework for Self-Aware Computing

e The applications specify goals
e The platform provides possible actions
e SEEC monitors the application and decides upon actions
e Observe - Decide - Act based control loop
Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and

Anant Agarwal. Seec: A framework for self-aware computing. Tech. rep.
MIT-CSAIL-TR-2010-049. Cambrige, Massachusetts: MIT, Oct. 2010
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SEEC - A Framework for Self-Aware Computing

(Traditional System\ Self-Aware System

Process Observe

Decide

i
&
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SEEC - A Framework for Self-Aware Computing

Time (s)
0 2 4 6 8 10 12 14 16
80 f t f f f f f
S + 180
» l ¢ Performance +Power‘
@ 60 =
g N\ 170
T 50 =~
w oo .00 S
8 40 ;“?,”:.?‘1. A .é : | 160 5
hé .
g e ‘”3”0.. ,““%.’:."' L A & 0. ~ g
£ 30 \ o™, - 150 O
% 20 Performance goal
o 10 \ T 140
0 T T T T 130
50 150 250 350 450

Time (Heartbeat)
x264 encoder with 30 frames/sec performance goal.



SEEC - A Framework for Self-Aware Computing

Phase

Applications Developer

SEEC Framework

Observation

Specify application goals and perfor-
mance

Sy stems Developer

Read goals and performance

Decision - Determine how much to speed up the
application
Action - Specify actions and a function that | Initiate actions based on result of deci-

performs actions

sion phase

Roles in the SEEC development framework.
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SEEC - A Framework for Self-Aware Computing

Desired . {Q Ay .

Heart Rate + DN Error % vl Speedup >
- e(k) e s(k)
SEEC Controller
Observed Heart Rate
r(k)
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SEEC - A Framework for Self-Aware Computing

Controller

Action Set

Actuation Function

Tradeoffs

Frequency Scaler

Core Allocator

DRAM Allocator
Power Manager
Adaptive Video Encoder

CPU Speeds
Number of available cores
Number of available DRAM controllers
CPU speed and in-use cores
Encoding Parameters and Algorithm

Change CPU speed
Change affinity masks
Change NUMA page allocation
Change CPU speed and affinity masks
Change parameters, use different algorithms

Power vs Speed
Power vs Speed
Power vs Speed
Power vs Speed

Video Quality vs Speed

Application examples
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SEEC - A Framework for Self-Aware Computing

Normalized Performance (Heart Rate vs Maximum Heart Rate)

1.00]
oss—f
0.90]
0.85
0.80]
0.75

0.70

----- Static maximum
=% = SEEC, pure delay
-=- SEEC, slow convergence
-<- SEEC, oscillating
----- Static minimum

0.65 1+

Frequency scaling for the swaptions application (PARSEC

T
200 250
Time (Heart Beat)

benchmark)

T
300

T
350 400

T
450

500
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SEEC - A Framework for Self-Aware Computing

R
i
0.7
7
? &

%
\ 2z b
06/ x K&\ * P34
) wg:j"ifww
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AN

Normalized Performance (Heart Rate vs Maximum Heart Rate)
L

%05 v; P
04 » "’\f R N e Static maximum
i -~ -9 - SEEC, pure delay

0.3 ,"f -=- SEEC, slow convergence
ool s

[ 2.,
0.1
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Time (Heart Beat)

Core allocator for swaptions
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SEEC - A Framework for Self-Aware Computing

0.8

07| ™

] i

0.6 iR L

] : b 4 'q' ‘ ‘5%?

0.5 : J‘f wa 4 mw.“w § Y m

0v4_7 i . .w-..,.- ----- Static maximum

1 1 -s- SEEC, pure delay

0.3+ ? === SEEC, slow convergence

¢ SEEC, oscillating

o

Normalized Performance (Heart Rate vs Maximum Heart Rate)

i
*
14 . :
02— # _.d"’ ----- Static minimum
e
L
—
50 100 150 200 250 300 350 400 450 500

0.1+ ﬁ
——
Time (Heart Beat)

Power manager (DRAM controllers, number of cores,
frequency) for swaptions
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SEEC - A Framework for Self-Aware Computing

Normalized Performance (Heart Rate vs Maximum Heart Rate)

mil)

065; “ 'I {P—" ----- Static maximum

=l AN VA =% - SEEC, pure delay

0.60 ’kl r"'{ === SEEC, slow convergence

055 T el =<= SEEC, oscillating

3 \L/’ ----- Static minimum

0.50 - T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900

Time (Heart Beat)

1000

Memory allocator for STREAM (PARSEC benchmark)
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SEEC - A Framework for Self-Aware Computing

Normalized Performance (Heart Rate vs Maximum Heart Rate)

0.9;
0. 8;
0.7;
0.6
0.5;
0.4+
0.3;
0.2+

0.1+

<
X,

ade=

[

Static maximum
SEEC, pure delay
-==- SEEC, slow convergence

SEEC, oscillating
Static minimum

L B e e e L s s e e L A
100 150 200 250 300 350

Time (Heart Beat)

Adaptive video encoder

e e e A
400 450 500
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SEEC - A Framework for Self-Aware Computing

Summary

e Separation of goals, decision making and actuation;

¢ Clean framework for adding observation and actuation
capabilities;

¢ No controller hierarchy;
¢ Rudimentary self-awareness.




Conclusions and Outlook

@® Conclusions and Outlook
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We have ...
e Set of concepts for self-awareness;
¢ Implementations and studies for some of them;

¢ An idea what self-awareness means and what it can do for
us.

We still need
¢ Implementation and study complete self-aware systems;
e Comprehensive goal management;

e Comprehensive assessment in relation the goals.




Self-Aware Control Loop

Observation Actions &
Model building
Learninng

Policies

CPS

Environment
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e |et’s get physical PR O A CTlVE
e Let’s get real COM PUTlNG

Human-in-the-loop computing has its limits.
What must we do differently to prepare for the
networking of thousands of embedded processors
per person? And how do we move from
human-centered to human-supervised computing?

e |et’s get out

David Tennenhouse. “Proactive Computing”. In:
Communications of the ACM 43.5 (May 2000), pp. 43-50
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Traditional Design Flow
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Design of Self-Aware Chips

Goal 1
Goal 2
Goal 3

&

[Generate Subgoals j




Design of Self-Aware Chips
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Design of Self-Aware Chips

For that to work we need
Goals Goal 1 Methods:

e to guarantee behavior and
performance,

e to formulate and manage
goals,

e for customized and efficient
learning,

® to “step back and assess”.




Self-Awareness

Self-awareness, in this context, is defined by the combination of
three properties that IT systems and services should possess:

@ Seif-reflective: i) aware of their software architecture,

e Recursive use of the term 'Eiaog in
“awareness’; vare of

e Static, not dynamic; hanges

e The system cannot be aware of its |1 e,
own self-reflection. J/v’rf]f;ns),

evolves in order to ensure that their QoS requirements and
respective SLAs are continuously satisfied while at the same
time operating costs and energy-efficiency are optimized.

Samuel Kounev, Xiaoyun Zhu, Jeffrey O. Kephart, and Marta Kwiatkowska. “Model-driven Algorithms and
Architectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041)”. In: Dagstuhl Reports 5.1 (2015).
Ed. by Samuel Kounev, Xiaoyun Zhu, Jeffrey O. Kephart, and Marta Kwiatkowska, pp. 164—196
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Actors in a Dynamic Dataflow Model

C A:<Tylyo7207f7g7y7rﬁ>

Si | Q s TCGO ... set of states
! I CP(S) ... input signals
e | S OCP(S) ... output signals
S3 ZpeT ... initial state

S, v:N— P(N) ... input partitioning
f:P(S) x & — P(S) ... output encoding
@ g:P(S)x6& =6  ..nextstate
\ J m: S — Action ... a meta operator
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Example Actor

o)

By = {{}. {s}: {s'}, a1,

v(.) = {3}

[ if(y+t+1)/3<355

n if355< (f + b+ 15)/3 < 375
if 37.5 < (t1 + b+ t3)/3 < 38.5
if385 < (t + L +1t)/3

Oé(<t1, fo, t3>) =

o e



Signal Abstraction

s = (36.7,36.8,36.7,36.8,36.9,36.9,37.0,37.0,37.1,37.2,37.3,37.2,37.3,37.3,37.4,37.5,37.6, 36.6)

s' = Ba(s) = (n,n,n,n,n,¢)

()

[ if(ty+6+1)/3 <355

n if355<(t+bL+1t)/3<375
if37.5 <(t + o+ 13)/3 <385

h if385<(t1+b+13)/3

o(ty, b, 13)) =



Value Abstraction

A fx=a0orx=0>
x otherwise

ay((x)) = {
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Time Abstraction

A ifxy=aandxx, =a
(X1, X2) otherwise

at((X1,X2)) = {

TU 300



Actor Abstraction

Si So



Actor Abstraction

S SO S/

0
& >

A

Ay, is an actor abstraction of Aiff S, = Sp.




Self Mdoel

s e
O

303
WiEN



Self Model
s A, is a simulatable actor of A:
e A, is an actor abstraction of A.

® |t has an additional input signal
denoted as control signal.

® |t can be stopped and resumed
through the control signal.

® Input signals are duplicated and
controlled by the control input.

® |t has an additional output signal:
status signal.
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Self Assessment

S .
! Ju assesses the behavior and perfor-

mance of actor A”:

e J,» monitors abstractions of
inputs and outputs of A”.

® |t compares the observed
behavior with expected behavior.

® |t reports observed differences in
Ay.

® |t maintains an assessment
history.
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Adaptive Self-Model

A learning actor A* modifies its behav-

S S . e .
y © ior to minimize an error signal.

® D, analyses the differences
between S abd S/'.

® D, analyses the differences
between S; and Sg.

® D, is used to improve the
environment model.

® [, is used to improve the actor
model and the signal
abstractions.
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Not Quite Self-Aware

S So

® A,su uses abstraction,
simulation, learning, and a
self-model.

® Self-awareness is a process that
should be, dynamically and
flexibly, applicable to a range of
actors, including itself.
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An Actor Facilitating Self-Awareness

E
S/ SO
Asn] ® Asar tracks behavior and
expectations.

L

A ® |t can trigger an in-depth

e A, investigation of an actor.

AéAF

o Sup Jae
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An Actor Facilitating Self-Awareness

E
S So
Asa
L L
i Ag,r targets A
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Ay |2 &
L e
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An Actor Facilitating Self-Awareness
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An Actor Facilitating Self-Awareness
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Self-Awareness Target: Ja
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An Actor Facilitating Self-Awareness
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Self-Awareness Target: AL,




Conclusion

Promise:

* Any actor can be abstracted any number of times — no
situation is too complex to analyze.

* Any actor can be subject to the scrutiny of self-awarenss.
Issues:

e Automatic, efficient abstraction techniques

¢ Assessment techniques
Goal management
Learning

Simulation
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