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Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

e Design errors or
omissions;
e Malicious attacks;
* Aging;
e Soft errors;
Non-functional
Aberrations:

e Performance;

e Power consumption;
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The SoC Radar

Power&Energyllq __ Performance

> Reliability

<.l __----7""" Usability
Functionality
Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. “On-Chip Self-Awareness Using
Cyberphysical-Systems-On-Chip (CPSoC)". . In: Proceedings of the 12th International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). New Delhi, India, Oct. 2014
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The SoC Radar
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The SoC Radar
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Self-Awareness
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@ Concepts of Self-Awareness



hich Ingredients Lead to Awareness ?

Johan Moreelses “Der Alchemist”, 1630



ich Ingredients Lead to Awarenss ?

)

Data abstraction
Disambiguation
Desirability scale
History

o Goals
 Attention
 Learning
M« Introspection

Johan Moreelses “Der Alchemist”, 1630



Awareness for Resource Constrained,
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Abstractions and Models

Abstraction: Mapping of Measurements = Properties




Abstractions and Models

Temperature
sensor: 36.6 C
/ Body
~ - Temperature
Condition:

Sensors for

Voltage Normal (36.6 C)

Humidity

Sound AttachedToBody: -7
- True /
| Property

s
Abstraction



Disambiguation
Selection among several interpretations

Measured data

Ll .
Disambiguation

Semantic Interpretation ~



Desirability Scale

Desirability is the common, in- .
ternal currency.

L-]

Semantic Attribution maps the values of a property to a point in
the desirability scale.



BioPatch with Semantic Attribution

Temperature
Sensor Semantic Attribution
Y
! Body
Sensors for Temperature
Condition

Voltage
E-Body
Humidity O
H-Body
Sound
S—

Attached
ToBody

Stable
/Improving
/Worsening



History

History of a Property The evolution of the values of a property.
Abstracted History The history stores abstracted values.
Attributed History The history is annotated with attributions.

Fading History If the property values are more abstracted the
longer ago they have occurred.

Consolidating History Relevant memories are enforced,
irrelevant memories are cleaned.

Evolving History Memories are adjusted to fit later
observations.



BioPatch with History
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Condition
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Expectations and Goals

Expectations on Environment

@ |

Purpose |

Expectations on Subject
Sub-Goals

Goals

23)



Acting BioPatch

Goal Management
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=
SoundSensor S-Body
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Introspection and Simulation

Self Inspection Engine

Model Transformation

Simulation

Ernst Mach “Innenperspektive”, 1886 2a



Self-inspecting BioPatch
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BioPatch with Top-down Prediction

T-Body
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Self-Awareness Architecture

Goal Management
Learning

Inspection

Goal

oz Hierarchy

Desirability
Scale

very.
desirable

very
undesirable

)

Learning A
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Cyber-Physical SoC



Cyber-Physical SoC

Self-monitoring chip



Cyber-Physical SoC

Traditional Controller

Actuator
Sensor

Data Control

Self-monitoring chip



Cyber-Physical SoC

Adaptive policies
Trend learning

Model of system
Model of environment

Self—Aware
Monitor

Traditional Controller

Actuator
Sensor

Data Control

Self-monitoring chip



CPSoC - A Sensor Rich SoC Platform

V08 Introspective Sentient Unit (ISU)

T T

Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. “CyberPhysical-System-On-Chip
(CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer Virtual Sensing and Actuation”. In: Proceedngs of the
Design, Automation and Test in Europe Conference and Exhibition (DATE). Grenoble, France, Mar. 2015
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CPSoC - A Sensor Rich SoC Platform
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Improvement of Energy Efficiency
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Improvement of Energy Efficiency

2
w18 M Baseline — Vanilla ®GTS SmartBalance
gl.e
g 1.4
o112
N1
T
§0.8
0 0.6
<
Z04
0.2
PRI N\ ° X
\,\’\,\/\YGC\C\’\ «www\*rw;e@% Y\’\ \wwww;«&

4-thread mixes 8 thread mlxes
IMB | Parsec mixes

The benefit comes from actually measur-
ing energy efficiency.

Santanu Sarma, T. Muck, L. A.D. Bathen, N. Dutt, and A. Nicolau.
“SmartBalance: A Sensing-Driven Linux Load Balancer for Energy
Efficiency of Heterogeneous MPSoCs”. In: Proceedings of the Design
Automation Conference. July 2015




Thermal-Aware Performance

Thermal Profile with MPSoC . Maximurn Temperature overtime
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(CPS0C): Sensor-Actuator Rich Self-Aware Computational Platform. Tech. rep. CECS Technical Report No: CECS
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Hardware Faults
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@ Hardware Faults
Fault Types
On-line Diagnosis
Reliable NoC Design
Health Management

Outline

5



HW Faults

Steve Furber in a keynote at ETS in 2006
predicted that

within a decade we will see 100 billion
transistor chips. That is the good news.
The bad news is that 20 billion of those
transistors will fail in manufacture and

a further 10 billion will fail in the first
year of operation.

Steve Furber. “Living with failure: Lessons from nature?” In:
Proceedings of the European Test Symposium (ETS). 2006
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@ Hardware Faults
Fault Types

Outline
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What can fail?

Sensors

Computing components
Communication links
Actuators

SoC components

>



Fault causes

a

-

d effects

c
29
2«
o=
28 2
S0 Q
24 £
Physical cause < Fault class m
Neutrons No Transient logic Yes
Radiation g
a-particles No Transient logic Yes
Electromagnetic cross coupling of parallel wires No Intermittent delay No
interference self coupling, Skin effect leading to higher No Intermittent delay No
resistance
Electromigration Yes intermittent — permanent No
delay and logic fault
Aging Bias Temperature Instability (BTI) Yes intermittent — permanent No
delay fault
Hot carrier injection Yes intermittent — permanent No
delay faults
Oxide breakdown/Time Dependent Dielec- Yes intermittent — permanent No
tric Breakdown (TDDB) logic fault
Power density leakage power variation due to temperature Yes Intermittent — permanent Yes
variation and heat _ differences delay and logic faults
flux performance variation due to temperature Yes intermittent delay failures Yes
differences;
variations in wear-out effects due to tem- Yes intermittent and permanent, Maybe
perature differences delays, opens and shorts

m Martin Radetzki, Chaochao Feng, Xuegian Zhao, and Axel Jantsch. “Methods for Fault Tolerance in
Networks-on-Chip”. In: ACM Computing Surveys 46.1 (July 2013), 8:1-8:38

9



Aging is temperature dependent

100 F T T T T T T =

10 ]

Lifetime (years)

1 1 1 1 1 1 1
80 90 100 110 120 130

Temperature (C)
Lifetime of an inverter chain decreases by a factor of 2.2 for
every 10°C increase in operating temperature due to NBTI.

1Y) D,




@ Hardware Faults

On-line Diagnosis

Outline
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Flow of Diagnosis

Error detection codes
Detection of an Error Periodic self-test
Modular redundancy
\
BIST
Test of Component Initiated by system
Y
i Analysis of response
Test Evaluation Localization of fault
Y
) Reconfiguration
Fault Handling Update of health map




Monitoring during Operation

Inputs

I OK/NOK

Code Checker

Assertion
Checker

OK/NOK

Outputs v OK/NOK



@ Hardware Faults

Reliable NoC Design

Outline



Minimal Intrusion Testing
) fhe core connected W// Ladder Router — ve2 — vcl

to a faulty router

A
I

Junshi Wang, Masoumeh Ebrahimi, Letian Huang, Qiang Li, Guangjun Li, and Axel Jantsch. “Minimizing the System
Impact of Router Faults by Means of Reconfiguration and Adaptive Routing”. In: Microprocessors and
Microsystems 51 (June 2017), pp. 252—-263



NoC Fault Reliability Flow

m inform SSRGS
trigger > Retransmission

Junshi Wang, Masoumeh Ebrahimi, Letian Huang, Axel Jantsch, and Guangjun Li. “Design of Fault-Tolerant and
Reliable Networks-on-Chip”. In: IEEE Annual Symposium on VLSI (ISVLSI). Montpelllier, France, July 2015



Fau

It Detection

Error Correction Code

Interleaving, Multisampling

Triple Modular Redundancy

Trigger

|

To steps

U

Assertion

TrippleModular Redundancy

@and 4

Data path T
Multisampling
Control path
Detection Fault Diagnosis

Reconfiguration Retransmission




Fault Diagnosis

From step Rep ort

@ To step

Build-in—Self-Test

From timer

Trigger

Detection Fault Diagnosis Reconfiguration Retransmission




Reconfiguration

From step Report R Inform
—_— Fault Control Unit
@ To step @
Reonfiguration
. Component
Spare~ Split Router Reconfiguration
wire transmission | architecture
Abandon link Abandon router Path . .
Reconfiguration

Fault—tolerant

routing algorithm

Detection

Fault Diagnosis Reconfiguration Retransmission




Retransmission

From step Tr 1gger

@

Timeout
End-to—End Retransmission

Packet ACK Protocol
Drop
Hop—-to—Hop Retransmission
Handshake
Detection Fault Diagnosis Reconfiguration Retransmission




Example: Reliability Design for Faulty Links

Built—in Self-test

| Ecc

7

\V/
Data path

Report

Trigger

Yes

faulty links be replaced by

Fault Contr¢l Unit

Can all permanent

spare wires?

No

Spare—
wire

Abandon Link|____.|

Fault—tolerant
Routing Algorithm

L——» Packet Drop

Timeout

End-to—End Retransmission



@ Hardware Faults

Health Management

Outline



CASP

Concurrent Autonomous Chip Self-Testing using Stored Test Patterns

oof N\
Elemo] ¢
2lcomp 1)+
195 . D
. [0}

(& J

Y. Li, S. Makar, and S. Mitra. “CASP: Concurrent Autonomous Chip Self-Test Using Stored Test Patterns”. In: 2008
m Design, Automation and Test in Europe. Mar. 2008, pp. 885-890 \E’D



CASP

Concurrent Autonomous Chip Self-Testing using Stored Test Patterns
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Y. Li, S. Makar, and S. Mitra. “CASP: Concurrent Autonomous Chip Self-Test Using Stored Test Patterns”. In: 2008
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CASP

Concurrent Autonomous Chip Self-Testing using Stored Test Patterns
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Concurrent Autonomous Chip Self-Testing using Stored Test Patterns

CASP

Resume Operatiop—«_ Test Scheduling
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Y. Li, S. Makar, and S. Mitra. “CASP: Concurrent Autonomous Chip Self-Test Using Stored Test Patterns”. In: 2008
Design, Automation and Test in Europe. Mar. 2008, pp. 885-890
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Fault Dictionary

Diagnosis

Test
Fault |1 2 3
1 X - -
2 X - -
3 - X X

S~

Test Response

Diagnsosis

Faulty Modules

Faulty Components




Health Management
Software | Hardware
I

Replicated
Health Map

(RAM)
Fault

Manager
(FM)

Resource
Map

|

OS Scheduler

Operating System
Kernel
Process: A,B

MEM Master
CTRL | Health Map
(EEPROM)

SoC

TAP
IEEE 1687

Instrumentation
& monitoring

' network
R Reso- Reso-
urce 1||urce 2 urce N

A. Jutman, K. Shibin, and S. Devadze. “Reliable health monitoring and fault management infrastructure based on
embedded instrumentation and IEEE 1687”. In: 2016 IEEE AUTOTESTCON. Sept. 2016, pp. 1-10



Health Management

Software | Hardware

Replicated MEM Master

Health Map CTRL | Health Map
(RAM) (EEPROM)

SoC

TAP
Resource () |EEE 1687

- M Instrumentation
I y & monitoring
network
0OS Scheduler
= Reso- | |Reso- Reso-
Operating System areeYt| [uree
AB A,

Kernel
Process: A,B

Health Map: detailed information
about faults

Resource Map: List of healthy
resources

Fault Manager: Updates HM and
RM

Instrument Manager: interface to
the instrumentation and
monitoring network

Fault detection and diagnosis:
Embedded monitors and
instrumentation



Self-Awareness for Health Management

Software | Hardware

Replicated MEM | Master
Health Map' CTRL | Health Map
(RAM) (EEPROM)

Inspection

Goal Management
Learning
Leamning

Goal
Hierarchy

Resource

Desiabily
Seale

very
desiable

TAP
an L4 IEEE 1687
I I Instrumentation

s
& monitoring

network
0S Scheduler F
Operating System
Kernel
E

Learning

A
A
Leaming (A

very
ndesirable
s —

Process: A,B



Self-Awareness for Health Management

Software | Hardware

Replicated MEM | Master
Health Map'

CTRL | Health Map
(RAM) (EEPROM)

SoC

Resource

TAP
an L4 IEEE 1687
I I Instrumentation

& monitoring

network
0S Scheduler F
Operating System
Kernel
E

Process: A,B

Inspection

Goal Management
Learning

Goal
Hierarchy

Desiabily
Seale

very
desiable

very
ndesirable



Self-Awareness for Health Management

Software | Hardware

Replicated MEM | Master
Health Map g™ CTRL | Health gllap
(RAM) (EEPROM)

Inspection

- TAP
Ssouree IEEE 1687

M Instrumentation
& monitoring

I network
0S Scheduler
7 Reso- | Reso- Reso-
OpstatinglSystamy urce 1] |urce 2 urce N
Kernel

Process: A,B AB I A AB

What is missing for Self-Awareness?

History

Learning

Attention

Goal management
Comprehensive assessment



Self-Aware Monitoring



Outline

@ Seclf-Aware Monitoring
Context Aware Health Monitoring
Early Warning Score



Outline

@ Seclf-Aware Monitoring
Context Aware Health Monitoring



Context Aware Health Monitoring of an AC Motor

CAH Monitor

Injective-function

Black-Box

Inputs
Outputs

CAH Features
¢ No Model and minimal assumptions about the system
e Main assumption: injective function
e States are automatically inferred and learned
e Anomalies are detected when injectivity is violated )

M. Gotzinger, N. TaheriNejad, H. A. Kholerdi, and A. Jantsch. “On the design of context-aware health monitoring
without a priori knowledge; an AC-Motor case-study”. In: 2017 IEEE 30th Canadian Conference on Electrical and
Computer Engineering (CCECE). Apr. 2017, pp. 1-5 @



Inputs (respective units)
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How to validate a smartly adapting system?

How to perform tradeoff analysis for smartness features?

How to quantify uncertainty, dynamicity, and variability in
the platform, the environment, and the applications?
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e How to verify it w.r.t. convergence, efficiency, robustness,
QoS guarantees, etc.?

e How to handle a dynamic hierarchy of goals?
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human-centered to human-supervised computing?
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David Tennenhouse. “Proactive Computing”. In:
Communications of the ACM 43.5 (May 2000), pp. 43-50
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