TECHNISCHE

UNIVERSITAT

msy9
oCPS

Vienna{Austria

Resource Management for Mixed-Criticality Systems
on Multi-Core Platforms
with Focus on Communication
Embedded Tutorial

Robin Arbaud, David Juhasz, Axel Jantsch

DSD 2018, Prague, Czech Republic

August 31, 2018

@ Introduction

@® Temporal Partitioning

© Mixed Criticality Bus Arbiters
O Mixed Criticality NoCs

@ Mixed Criticality Architectures

@ Conclusions

Resource Management for Mixed-Criticality Systems

@ Introduction

Mixed Criticality Systems

Types of tasks:

Best Effort May take as long as needed;
Soft Real-Time Have deadlines, but may miss some deadlines;

Hard Real-time No deadline must be missed, ever.

(D)
(7]
(]
O
)
n
—
=
O
c
T
Q
0
T
)
()
10}
Q]
—
(D]
>
<

Execution time

Anpiqeqoid

[

(D)
(7]
(]
O
)
n
—
=
O
c
T
Q
0
T
)
()
10}
Q]
—
(D]
>
<

SADINOSIAY

— N 0o > O vV T N A —
v

Execution time

Anpiqeqoid

[

Sharing and Isolation

e Full Isolation to accommodate the worst case:

Dedicated resources for a given task;
Addresses real-time and safety requirements;
Costly due to over-provisioning;

Complete isolation = no interference.

W

Sharing and Isolation

e Full Isolation to accommodate the worst case:

e Dedicated resources for a given task;

o Addresses real-time and safety requirements;
e Costly due to over-provisioning;

e Complete isolation = no interference.

e Full sharing to accommodate the average case:

Best average performance for given cost;
Lowest cost for target average performance;
Highest efficiency;

[]
[]
[]
e Unbounded worst case performance.

E=)
W

Sharing and Isolation

e Full Isolation to accommodate the worst case:

e Dedicated resources for a given task;

o Addresses real-time and safety requirements;
e Costly due to over-provisioning;

e Complete isolation = no interference.

e Full sharing to accommodate the average case:

o Best average performance for given cost;

o Lowest cost for target average performance;
e Highest efficiency;

e Unbounded worst case performance.

e Sharing with bounded interference:

e Allowing and controlling interference can provide real-time and
safety requirement;

e Reduced costs;

e Applicable for mix of critical and best effort tasks.

E=)
W

Interference Effects

e Direct interference and competition for the same resource;
e Indirect interference through shared resources:

e Performance inversion,
o Over-synchronization.

Performance Inversion

PE1 PE2

M1 M2

Performance Inversion

PE1 PE2

—_

= Ml M2 =

e PE1 communicates with M1 and PE2 communicates with M2;

e All tasks meet deadlines: ~

Performance Inversion

PEl
/

[

PE2

= Ml M2 =

e Replacing PE1 with a faster PE;

Performance Inversion

PE1 PED
= M1l M2 =
e Replacing PE1 with a faster PE;
e May increase execution time of PE2 tasks. =

1Y) °

Over-Synchronization

e Assumption: Bounded buffers between tasks;

e No control or data dependency between C and D branches;

Over-Synchronization

Delayed

(er(e)+)
°°

e Assumption: Bounded buffers between tasks;

e No control or data dependency between C and D branches;

Over-Synchronization

Delayed

Waiting for Buffer Space

e Assumption: Bounded buffers between tasks;

e No control or data dependency between C and D branches;

Over-Synchronization

Delayed
Waiting for Buffer Space

Waiting for Data

e Assumption: Bounded buffers between tasks;
e No control or data dependency between C and D branches;

o If C is delayed or stuck, D suffers.

Spatial and Temporal Isolation

e Spatial isolation: No sharing at any time;
e Temporal isolation: Sharing at pre-defined time periods.

Spatial Isolation

Spatial Isolation

PE1
PE2
PE3
PE4

Spatial Isolation

PE1
PE2
PE3 T2 T2
PE4

Temporal Isolation

PE1
PE2
PE3
PE4

Time

Temporal Isolation

PE1
PE2
PE3
PE4

" Time

Temporal Isolation

PE1
PE2
PE3
PE4

Resource Management in Many-Core SoCs

Resource Management in Many-Core SoCs

e Many resources lead to a huge design space;

Resource Management in Many-Core SoCs

e Many resources lead to a huge design space;

e Types of Resources:

Resource Management in Many-Core SoCs

e Many resources lead to a huge design space;
e Types of Resources:

e Computation: Processing elements,

Resource Management in Many-Core SoCs

e Many resources lead to a huge design space;
e Types of Resources:

e Computation: Processing elements,
e Storage: Buffers, caches, off-chip memory,

Resource Management in Many-Core SoCs

e Many resources lead to a huge design space;
e Types of Resources:

e Computation: Processing elements,
e Storage: Buffers, caches, off-chip memory,
e Communication: Buses, links, NoCs.

Overview

Software Middleware

Tasks

Scheduler

Hardware

Overview

Software Middleware Hardware

Tasks | |Scheduler

Resource 3 -
Access

Control

|
|
|
L
|
A
|
|
|

Overview

Software Middleware Hardware

Instru—
mentation

Tasks “TScheduler
S I

|

|

|

L

~ LB |
A

|

|

|

Resource 3 -
Access

Control

Overview

Software Middleware Hardware

Instru—
mentation

Tasks “TScheduler

Resource

I

I

I

L1

I

I
Access I
I

Overview

Software Middleware Hardware

Instru—
mentation

Tasks “TScheduler

|
|
|
L
|
|
|
|

(Network Interfaces

Overview

Software Middleware Hardware
Instru— N
mentation
Tasks “TScheduler

2]
—
o
Q
Q
+—
o
=
A~

|
|
|
L
|
|
|
|

(Network Interfaces

Overview

Software Middleware Hardware
Instru— I ™
mentation .

Tasks TScheduler | §

t €l 2
! 2 Hs
| ol E
i o
Y S
| ol &=
g
| 5}
Z
)) _/
(Mixed Criticality Platforms)

Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning
Full-Scale Mode Switches
Memory Access Budgeting
Execution Time Monitoring
Workload Arrival Monitoring

m 15)

Real-Time Systems

Real-Time Systems

Real-Time Constraints from Event to System Response

Real-Time Systems

Real-Time Constraints from Event to System Response

o Deadlines based on real-time requirements

m 1&

Real-Time Systems

Real-Time Constraints from Event to System Response
o Deadlines based on real-time requirements

e No deadline misses allowed ever

m 1&

Real-Time Systems

Real-Time Constraints from Event to System Response
o Deadlines based on real-time requirements
e No deadline misses allowed ever

e Prepare for the worst-case

m 1&

Real-Time Systems — Scheduling Example

Task Set
Task Period Deadline WCET
T1 10 5 4
T2 10 10 6

Real-Time Systems — Scheduling Example

Task Set
Task Period Deadline WCET
T1 10 5 4
T2 10 10 6

TI T2 T1 T2 T1 T2 T1 T2

time

Real-Time Systems — Scheduling Example

Task Set
Task Period Deadline WCET ACET
T1 10 5 4 2
T2 10 10 6 4

TI T2 T1 T2 T1 T2 T1 T2

time

Real-Time Systems — Scheduling Example

Task Set
Task Period Deadline WCET ACET
T1 10 5 4 2
T2 10 10 6 4

T T28TIR TZRTIE T2 THF T2

time

Real-Time Systems — Pros and Cons

TR T23 T T28THE T28 TR T2

time

Real-Time Systems — Pros and Cons

e Static guarantees even for the worst-case J

TR T23 T T28THE T28 Tl T2

time

Real-Time Systems — Pros and Cons

e Static guarantees even for the worst-case J

e Overprovisioning for the average-case

TR T23 T T28THE T28 Tl T2

time

Real-Time Systems — Pros and Cons

e Static guarantees even for the worst-case J

e Overprovisioning for the average-case

TR T23 T T28THE T28 Tl T2

time
Economic need for trading off guarantees for utilization

Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning
Full-Scale Mode Switches

Mixed Criticality Levels

Mixed Criticality Levels

Worst-Case Execution Time Estimates

Mixed Criticality Levels

Worst-Case Execution Time Estimates
e Various components are validated against various assumptions

Mixed Criticality Levels

Worst-Case Execution Time Estimates
e Various components are validated against various assumptions

e The stricter assumptions, the longer estimated WCET

Mixed Criticality Levels

Worst-Case Execution Time Estimates
e Various components are validated against various assumptions

e The stricter assumptions, the longer estimated WCET

Criticality Levels of Tasks

Mixed Criticality Levels

Worst-Case Execution Time Estimates
e Various components are validated against various assumptions

e The stricter assumptions, the longer estimated WCET

Criticality Levels of Tasks
e Strictness of assumptions

Mixed Criticality Levels

Worst-Case Execution Time Estimates
e Various components are validated against various assumptions

e The stricter assumptions, the longer estimated WCET

Criticality Levels of Tasks
e Strictness of assumptions

e Ordered set of levels

Mixed-Criticality Scheduling with Criticality Mode Switches

Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

Scheduler

worst-case execution time at the current criticality level

Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

Scheduler

worst-case execution time at the current criticality level

e Start system in the lowest criticality mode

Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

Scheduler

worst-case execution time at the current criticality level

e Start system in the lowest criticality mode

e Schedule tasks with criticality not below the current criticality
mode

Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

: current execution time
Monitor === Scheduler

worst-case execution time at the current criticality level

e Start system in the lowest criticality mode

e Schedule tasks with criticality not below the current criticality
mode

e Monitor whether execution violates current assumptions

Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

Monitor |_current execution time o,

— 3> Scheduler

worst-case execution time at the current criticality level

Start system in the lowest criticality mode

Schedule tasks with criticality not below the current criticality
mode

Monitor whether execution violates current assumptions

Switch to higher criticality mode for stricter assumptions

Mixed-Criticality Scheduling with Mode Switches

Task Set HI
Task Period Deadline WCET
T1 10 5 4
T2 10 10 6

Mixed-Criticality Scheduling with Mode Switches

Task Set HI
Task Period Deadline WCET
T1 10 5 4
T2 10 10 6
Task Set LO
Task Period Deadline WCET
T1 10 5 2
T2 10 10 4
T3 10 9 3

Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set

Task CL Period Deadline WCET
T1 HI 10 5 [2,4]
T2 HI 10 10 [4, 6]
T3 LO 10 9

[3]

Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set
Task CL Period Deadline WCET

T1 HI 10 5 2,4]

T2 HI 10 10 [4,6]

T3 LO 10 9 [3]
LO

TIEESY T2 ETISESY T2 ETIEESE T2

time

Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set
Task CL Period Deadline WCET

T1 HI 10 5 2,4]
T2 HI 10 10 [4,6]
T3 LO 10 9 [3]

LO
TIEESY T2 ETISESY T2 ETIEESE T2

time

Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set
Task CL Period Deadline WCET

T1 HI 10 5 [2,4]

T2 HI 10 10 [4, 6]

T3 LO 10 9 3]

LO HI
TIEES T2 RTINSy T2 BTIRESY T2

time

Ignoring LO criticality tasks in H/ mode

Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set
Task CL Period Deadline WCET

T1 HI 10 5 2,4]

T2 HI 10 10 [4,6]

T3 LO 10 9 [3]

LO HI
TINES T2 ETINESY T2 ETINES: T2 @T1 T2

time

Ignoring LO criticality tasks in H/ mode

Limitations of Mode Switching Scheduling

Limitations of Mode Switching Scheduling

Static Verification

Runtime Robustness

Limitations of Mode Switching Scheduling

Static Verification
e Timing guarantees for each mode

Runtime Robustness

Limitations of Mode Switching Scheduling

Static Verification
e Timing guarantees for each mode

¢ No link to requirements of safety standards

Runtime Robustness

Limitations of Mode Switching Scheduling

Static Verification
e Timing guarantees for each mode

¢ No link to requirements of safety standards

Runtime Robustness
e Switching mode to restrict assumptions as necessary

Limitations of Mode Switching Scheduling

Static Verification
e Timing guarantees for each mode

¢ No link to requirements of safety standards

Runtime Robustness
e Switching mode to restrict assumptions as necessary

¢ Ignoring low-criticality tasks

Limitations of Mode Switching Scheduling

Static Verification
e Timing guarantees for each mode

¢ No link to requirements of safety standards

Runtime Robustness
e Switching mode to restrict assumptions as necessary
¢ Ignoring low-criticality tasks

¢ Returning to low-criticality mode

Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning

Memory Access Budgeting

Memory Accesses and Execution Time

Memory Accesses and Execution Time

Cache Misses J

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

o Critical tasks may be penalized by interference

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

o Critical tasks may be penalized by interference

Limited Interference for Critical Tasks

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

o Critical tasks may be penalized by interference

Limited Interference for Critical Tasks
e Reduce WCET of critical tasks by limiting interference

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

e Critical tasks may be penalized by interference

Limited Interference for Critical Tasks
e Reduce WCET of critical tasks by limiting interference

e Budget of cache misses for non-critical tasks (cores)

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

e Critical tasks may be penalized by interference

Limited Interference for Critical Tasks
e Reduce WCET of critical tasks by limiting interference

e Budget of cache misses for non-critical tasks (cores)

e Suspend execution of tasks with depleted budget

Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

e Critical tasks may be penalized by interference

Limited Interference for Critical Tasks
e Reduce WCET of critical tasks by limiting interference

e Budget of cache misses for non-critical tasks (cores)

e Suspend execution of tasks with depleted budget

Can be generalized to any shared resource

Memory Access Budgeting

Stall Core

Memory Access Budgeting — Pros and Cons

Pros

Cons

Memory Access Budgeting — Pros and Cons

Pros
e Low overhead on COTS

Cons

Memory Access Budgeting — Pros and Cons

Pros
e Low overhead on COTS

e Performance counters
e |nterprocessor interrupts

Cons

Memory Access Budgeting — Pros and Cons

Pros
e Low overhead on COTS

e Performance counters
e |nterprocessor interrupts

Cons
e Limited to 2 levels, critical and non-critical

Memory Access Budgeting — Pros and Cons

Pros
e Low overhead on COTS

e Performance counters
e |nterprocessor interrupts

Cons
e Limited to 2 levels, critical and non-critical

e No general algorithm for deriving budgets

Memory Access Budgeting — Pros and Cons

Pros
e Low overhead on COTS

e Performance counters
e |nterprocessor interrupts

Cons
e Limited to 2 levels, critical and non-critical
e No general algorithm for deriving budgets

e Not scaling with the number of non-critical cores

Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning

Execution Time Monitoring

Monitoring Execution Time and Remaining WCET

Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks

Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks
e Remaining WCET for each observation point

Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks
e Remaining WCET for each observation point

o Worst-case interference between observation points

Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks
e Remaining WCET for each observation point

o Worst-case interference between observation points

Safety Condition at each Observation Point

The critical task will not miss its deadline even if worst-case
happens until the next observation point

Execution Time Monitoring

Evaluate safety condition at each observation point:

Execution Time Monitoring

Evaluate safety condition at each observation point:

code segment k—
code segment k

code segment k+

Execution Time Monitoring

Evaluate safety condition at each observation point:

code segment k—
observation point k
code segment k
observation point k + 1
code segment k+

Execution Time Monitoring

Evaluate safety condition at each observation point:

code segment k— execution time
observation point k

code segment k + WCET pterference(k, k + 1)
observation point k + 1

code segment k+ + WCET sopation(k + 1, end)

+ observation overhead

< deadline

Execution Time Monitoring

Evaluate safety condition at each observation point:

code segment k— execution time
observation point k

code segment k + WCET pterference(k, k + 1)
observation point k + 1

code segment k+ + WCET sopation(k + 1, end)

+ observation overhead

< deadline

Suspend non-critical tasks if safety condition does not hold.

U])

Execution Time Monitoring — Pros and Cons

Pros

Cons

Execution Time Monitoring — Pros and Cons

Pros
e Code instrumentation is easy to implement on COTS

Cons

Execution Time Monitoring — Pros and Cons

Pros
e Code instrumentation is easy to implement on COTS

e Monitoring execution time limits pessimism

Cons

Execution Time Monitoring — Pros and Cons

Pros
e Code instrumentation is easy to implement on COTS
e Monitoring execution time limits pessimism

e Evaluating condition at observation points limits pessimism

Cons

Execution Time Monitoring — Pros and Cons

Pros
e Code instrumentation is easy to implement on COTS
e Monitoring execution time limits pessimism

e Evaluating condition at observation points limits pessimism

Cons
e Limited to 2 levels, critical and non-critical

Execution Time Monitoring — Pros and Cons

Pros
e Code instrumentation is easy to implement on COTS
e Monitoring execution time limits pessimism

e Evaluating condition at observation points limits pessimism

Cons
e Limited to 2 levels, critical and non-critical

e Large execution time overhead of monitoring

Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning

Workload Arrival Monitoring

Workload Arrival Monitoring

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task

e Task is activated by events

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events

e The events are mapped to WCET values

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events
e The events are mapped to WCET values

e WAF accumulates required execution time

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events
e The events are mapped to WCET values

e WAF accumulates required execution time

Arrival Monitoring and Admission

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events
e The events are mapped to WCET values

e WAF accumulates required execution time

Arrival Monitoring and Admission

e Actual workload is calculated based on WAFs

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events
e The events are mapped to WCET values

e WAF accumulates required execution time

Arrival Monitoring and Admission

e Actual workload is calculated based on WAFs

e Check whether workload would exceed serviceable level

Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events
e The events are mapped to WCET values

e WAF accumulates required execution time

Arrival Monitoring and Admission

e Actual workload is calculated based on WAFs

e Check whether workload would exceed serviceable level

Individual WAFs enforce interference bounds between
real-time tasks

Group Monitoring Scheme

Group Monitoring Scheme

Criticality Groups

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together

e A group of tasks is one virtual task for workload arrival

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Combining Monitors

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Combining Monitors
e Monitors for groups separately

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Combining Monitors
e Monitors for groups separately

e Each monitor respects WAF upper bounds

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Combining Monitors
e Monitors for groups separately
e Each monitor respects WAF upper bounds

e Monitors are synchronized by guarantee interface tuples

Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Combining Monitors
e Monitors for groups separately
e Each monitor respects WAF upper bounds

e Monitors are synchronized by guarantee interface tuples

Pareto interface tuples with maximized individual WAFs

Workload Arrival Monitoring — Pros and Cons

Workload Arrival Monitoring — Pros and Cons

Properties

Workload Arrival Monitoring — Pros and Cons

Properties
e Event-triggered

Workload Arrival Monitoring — Pros and Cons

Properties
e Event-triggered

o Considering worst-case is highly pessimistic

Workload Arrival Monitoring — Pros and Cons

Properties
e Event-triggered
o Considering worst-case is highly pessimistic

e Group monitoring provides more accurate assumptions

Resource Management for Mixed-Criticality Systems

© Mixed Criticality Bus Arbiters

Goals of Mixed-Criticality Communication Protocols

Resource Utilization

e Enable the derivation of tight latency bounds for guaranteed
latency traffic

e Analyzable in terms of schedulability

Goals of Mixed-Criticality Communication Protocols

Resource Utilization

e Enable the derivation of tight latency bounds for guaranteed
latency traffic

e Analyzable in terms of schedulability

Quality of Service
e Reduce the average latency of best-effort traffic

e Not applicable to guaranteed latency traffic

Goals of Mixed-Criticality Communication Protocols

Resource Utilization
e Enable the derivation of tight latency bounds for guaranteed
latency traffic
e Analyzable in terms of schedulability

Quality of Service
e Reduce the average latency of best-effort traffic
e Not applicable to guaranteed latency traffic

Scalability
e Scale well with the number of bus masters or NoC nodes

TDMA-RR Dual Layer Arbiter

o First layer : TDMA for critical bus masters

e Second layer : RR for non-critical bus masters

m [ulCM| RR arbiter 7777

time

TDMA-RR Dual Layer Arbiter

o First layer : TDMA for critical bus masters

e Second layer : RR for non-critical bus masters

R T

time

request priority

Criticality- and Requirement-Aware Bus Arbiter

e First layer : arbitration between criticality classes

e Second layer : arbitration between tasks of the elected
criticality class

Criticality- and Requirement-Aware Bus Arbiter

e First layer : arbitration between criticality classes

e Second layer : arbitration between tasks of the elected
criticality class
e Both layers are Weighted Harmonic RR

Weighted Harmonic Round Robin
e Bus control granted for 1 request only
e Each master can get several slots per period

e Slots are evenly distributed

CArb - Example

inter-class
Gl G |G Cil Co |G arbiter
| T4 | T | T4 | T3 | class 1 arbiter
| T4 | Ty | class 2 arbiter

| | | class 3 arbiter

T11 T12 T21 T22 T21 T11 T13 T11 T12 T22 T21 T22 T11 T13
final schedule

CArb - Arbiter-level Mode Switch

WCETtota/(le') < exec_time(Tlg)
— Drop low-critical tasks, system-wide mode switch

CArb - Arbiter-level Mode Switch

WCETtota/(le') < exec_time(Tlg)
— Drop low-critical tasks, system-wide mode switch

WCET,’SO(T13) < exec_time(Tlg) < WCETtota/(lev)
— Cut interference, arbiter-level mode switch

Tl Tl Tl T4

CArb - Arbiter-level Mode Switch

WCETtota/(le') < exec_time(Tlg)
— Drop low-critical tasks, system-wide mode switch

VVCET,'SO(T13) < exec_time(Tlg) < WCETtota/(lev)
— Cut interference, arbiter-level mode switch

Tl Tl Tl T4

If exec_time(T13) — WCETs0(T13) < threshold
— Cut only part of the interference

T11 T12 T11 T13 T21 T22 T27 T11 T12 T11 T13 T22 T21 T22

Resource Management for Mixed-Criticality Systems

O Mixed Criticality NoCs

Wormhole Protocol for Mixed-Criticality

VC index

input buffer 1
input buffer 2

Ny

Priority
Arbiter

S‘,

< back pressure flow control | flow control

Wormhole Protocol for Mixed-Criticality

Local Network e
Interface :

incoming high-critical message
outside its low-critical specifications

input link state (criticality mode)

incoming high-
VCindex__ critical message

input buffer 1
input buffer 2

VY

Priority |
Arbiter

< back pressure flow control | flow control

WPMC-Flood

Local Network e
Interface :

incoming high-critical message
outside its low-critical specifications

input link state (criticality mode)

VC index

input buffer 1 5|
input buffer 2 |5 Priority
: © | Arbiter

< back pressure flow control | flow control

Wormhole with Blocking Counter

The header flit of critical messages contains a Blocking Counter

field.
Network Interface Router
initialize BC value if message is stalled
decrement BC
(with maximum ifBC=0
number of times prioritize message
the message can end if
be delayed) end if

Adaptive Routing

o ®
o Message BE1
Path list : {(1,2), (2,2)}, {(1,2),
(1.1), (21), (22)}
o ®

—3 critical messages

Adaptive Routing

®
o Message BE1
Path list : {(1,2), (2,2)}, {(1,2),
(1.1), (21), (22)}
o e Message C1

— critical messages Path list: {(1,2), (2.2)}

Adaptive Routing - Control Scheme

Messages
Database
£\
4 notify
chec involved
> inferfering -—Senders
. paths
notify
control | Controller

— critical message

Resource Management for Mixed-Criticality Systems

@ Mixed Criticality Architectures

Integrated Dependable Architecture for Many-Cores

—— SC control signals
—— Nl control signals

—>» Requests

counter
pause
reset |—
disable ——
notify SC

{Controller

Network Interface

NoC

>
>

Tile

00

Integrating Scheduling and Data mapping

Hardware model:

e 16 Clusters

Integrating Scheduling and Data mapping

Hardware model:

e 16 Clusters

e Each containing 16 cores, 3 NoC interfaces, and 16 SRAM
banks

Integrating Scheduling and Data mapping

Hardware model:

e 16 Clusters
e Each containing 16 cores, 3 NoC interfaces, and 16 SRAM
banks

e Each SRAM bank has its own dedicated controller, which
arbitrates between all cores and interfaces

Integrating Scheduling and Data mapping

Hardware model:

e 16 Clusters
e Each containing 16 cores, 3 NoC interfaces, and 16 SRAM
banks

e Each SRAM bank has its own dedicated controller, which
arbitrates between all cores and interfaces

e NoC receiver interface always has priority
e RR arbitration is performed between other components

Integrate Scheduling and Data mapping

Software model:

e Independent task set and scheduler for each cluster

Integrate Scheduling and Data mapping

Software model:

e Independent task set and scheduler for each cluster

e Criticality mode switch

Integrate Scheduling and Data mapping

Software model:

e Independent task set and scheduler for each cluster

e Criticality mode switch
e Scheduling data:

e Execution times without memory accesses
e Number of memory accesses
e Dependency graph

Integrate Scheduling and Data mapping

Software model:

Independent task set and scheduler for each cluster

Criticality mode switch
Scheduling data:

e Execution times without memory accesses
e Number of memory accesses
e Dependency graph

Tasks of different criticality cannot be scheduled on the same
time frame

Integrate Scheduling and Data mapping

Software model:

Independent task set and scheduler for each cluster

Criticality mode switch
Scheduling data:

e Execution times without memory accesses
e Number of memory accesses
e Dependency graph

Tasks of different criticality cannot be scheduled on the same
time frame

Joint computation of task schedule and data mapping to
SRAM banks

Controlling interference from other tiles

When a task requires data to be fetched through the NoC

Task A—send request for data

dependency constraint:
delay t

Task B— use data

t = 2% NoC worst-case latency + resource worst-case response time

Higher level modeling - Resource Servers

e A resource server "encapsulates” the access to a resource

Higher level modeling - Resource Servers

e A resource server "encapsulates” the access to a resource

e This can allow to consider only the server and the requesting
component in modeling

Higher level modeling - Resource Servers

e A resource server "encapsulates” the access to a resource

e This can allow to consider only the server and the requesting
component in modeling

e The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

Higher level modeling - Resource Servers

e A resource server "encapsulates” the access to a resource

e This can allow to consider only the server and the requesting
component in modeling

e The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

e For MCS, the IPC protocol should also take criticality into
account

Resource Server for MCS

abort wait

Cluster k-1 |

Cluster kK [Top-Level Scheduler ||

core invoke |
| task l< v
|«

core
core

—>»{ Resource

A\

—p System Calls

Cluster k+1

reply

Resource Server for MCS

abort wait

Cluster k-1

Cluster k

Top-Level Scheduler |I

core

invc

oke

core

core

Cluster k+1

background queue

global queue

Resource

kin head queue

reply

Non-Critical Requests
¥ Critical Requests
- Serviced Request

Calls

Resource Server for MCS

abort wait

invoke

Cluster k-1
Cluster k Top-Level Scheduler |I
core I 1
task ::
core
Cluster k+1

background queue

global queue

Resource

kin head queue

reply

Non-Critical Requests
¥ Critical Requests
- Serviced Request
— System Calls

Resource Management for Mixed-Criticality Systems

@ Conclusions

Mixed Criticality Systems

e Response to a pressing industrial need:

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

e Providing sound mechanisms for sharing:

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

e Providing sound mechanisms for sharing:

e Processing elements;

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

e Providing sound mechanisms for sharing:

e Processing elements;
o Buffers, caches, memory;

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

e Providing sound mechanisms for sharing:

e Processing elements;
o Buffers, caches, memory;
e |/O: Pins, drivers;

Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

e Providing sound mechanisms for sharing:

Processing elements;
Buffers, caches, memory;
[/O: Pins, drivers;

[)
[)
[)
e Communication.

i Questions ?

	Introduction
	Temporal Partitioning
	Full-Scale Mode Switches
	Memory Access Budgeting
	Execution Time Monitoring
	Workload Arrival Monitoring

	Mixed Criticality Bus Arbiters
	Mixed Criticality NoCs
	Mixed Criticality Architectures
	Conclusions

