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Mixed Criticality Systems

Types of tasks:

Best Effort May take as long as needed;

Soft Real-Time Have deadlines, but may miss some deadlines;

Hard Real-time No deadline must be missed, ever.
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Sharing and Isolation

• Full Isolation to accommodate the worst case:
• Dedicated resources for a given task;
• Addresses real-time and safety requirements;
• Costly due to over-provisioning;
• Complete isolation = no interference.

• Full sharing to accommodate the average case:
• Best average performance for given cost;
• Lowest cost for target average performance;
• Highest efficiency;
• Unbounded worst case performance.

• Sharing with bounded interference:
• Allowing and controlling interference can provide real-time and

safety requirement;
• Reduced costs;
• Applicable for mix of critical and best effort tasks.

6
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Interference Effects

• Direct interference and competition for the same resource;

• Indirect interference through shared resources:

• Performance inversion,
• Over-synchronization.

7
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Performance Inversion

PE1 PE2

M1 M2

•
•
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Performance Inversion

PE1 PE2

M1 M2

• PE1 communicates with M1 and PE2 communicates with M2;

• All tasks meet deadlines;
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Performance Inversion

PE2

M1 M2

PE1

• Replacing PE1 with a faster PE;

•
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Performance Inversion

PE2

M1 M2

PE1

• Replacing PE1 with a faster PE;

• May increase execution time of PE2 tasks.
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Over-Synchronization

A B

C1 C2

D3D2D1

C3

• Assumption: Bounded buffers between tasks;

• No control or data dependency between C and D branches;

• If C is delayed or stuck, D suffers.
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Waiting for Buffer Space

Waiting for Data

Delayed

• Assumption: Bounded buffers between tasks;

• No control or data dependency between C and D branches;

• If C is delayed or stuck, D suffers.
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Spatial and Temporal Isolation

• Spatial isolation: No sharing at any time;

• Temporal isolation: Sharing at pre-defined time periods.

10
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Spatial Isolation

PE3 PE4

M2

PE2

M1

PE1

Task 1 Task 2
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Temporal Isolation
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Resource Management in Many-Core SoCs

• Many resources lead to a huge design space;

• Types of Resources:

• Computation: Processing elements,
• Storage: Buffers, caches, off-chip memory,
• Communication: Buses, links, NoCs.
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Real-Time Systems

Real-Time Constraints from Event to System Response

• Deadlines based on real-time requirements

• No deadline misses allowed ever

• Prepare for the worst-case
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Real-Time Systems – Scheduling Example

Task Set

Task Period Deadline WCET

ACET

T1 10 5 4

2

T2 10 10 6

4
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Real-Time Systems – Pros and Cons

• Static guarantees even for the worst-case

• Overprovisioning for the average-case

time

T1 T2 T1 T2 T1 T2 T1 T2

Economic need for trading off guarantees for utilization
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Mixed Criticality Levels

Worst-Case Execution Time Estimates

• Various components are validated against various assumptions

• The stricter assumptions, the longer estimated WCET

Criticality Levels of Tasks

• Strictness of assumptions

• Ordered set of levels

20
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Mixed-Criticality Scheduling with Criticality Mode Switches

• Start system in the lowest criticality mode

• Schedule tasks with criticality not below the current criticality
mode

• Monitor whether execution violates current assumptions

• Switch to higher criticality mode for stricter assumptions

21
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Mixed-Criticality Scheduling with Mode Switches

Task Set HI

Task Period Deadline WCET
T1 10 5 4
T2 10 10 6

Task Set LO

Task Period Deadline WCET
T1 10 5 2
T2 10 10 4
T3 10 9 3
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Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set

Task CL Period Deadline WCET
T1 HI 10 5 [2, 4]
T2 HI 10 10 [4, 6]
T3 LO 10 9 [3]

Ignoring LO criticality tasks in HI mode
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Limitations of Mode Switching Scheduling

Static Verification

• Timing guarantees for each mode

• No link to requirements of safety standards

Runtime Robustness

• Switching mode to restrict assumptions as necessary

• Ignoring low-criticality tasks

• Returning to low-criticality mode
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Memory Accesses and Execution Time

Cache Misses

• Memory needs to be accessed

• Critical tasks may be penalized by interference

Limited Interference for Critical Tasks

• Reduce WCET of critical tasks by limiting interference

• Budget of cache misses for non-critical tasks (cores)

• Suspend execution of tasks with depleted budget

Can be generalized to any shared resource

25
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Memory Access Budgeting
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Memory Access Budgeting – Pros and Cons

Pros

• Low overhead on COTS

• Performance counters
• Interprocessor interrupts

Cons

• Limited to 2 levels, critical and non-critical

• No general algorithm for deriving budgets

• Not scaling with the number of non-critical cores
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Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks

• Remaining WCET for each observation point

• Worst-case interference between observation points

Safety Condition at each Observation Point

The critical task will not miss its deadline even if worst-case
happens until the next observation point

29
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Execution Time Monitoring

Evaluate safety condition at each observation point:

code segment k− execution time
observation point k
code segment k + WCETinterference(k, k + 1)
observation point k + 1
code segment k+ + WCETisolation(k + 1, end)

+ observation overhead

< deadline

Suspend non-critical tasks if safety condition does not hold.
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Execution Time Monitoring – Pros and Cons

Pros

• Code instrumentation is easy to implement on COTS

• Monitoring execution time limits pessimism

• Evaluating condition at observation points limits pessimism

Cons

• Limited to 2 levels, critical and non-critical

• Large execution time overhead of monitoring
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Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task

• Task is activated by events

• The events are mapped to WCET values

• WAF accumulates required execution time

Arrival Monitoring and Admission

• Actual workload is calculated based on WAFs

• Check whether workload would exceed serviceable level

Individual WAFs enforce interference bounds between
real-time tasks
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Group Monitoring Scheme

Criticality Groups

• Tasks of one criticality level are grouped together

• A group of tasks is one virtual task for workload arrival

• Correlation of task activations improves utilization

Combining Monitors

• Monitors for groups separately

• Each monitor respects WAF upper bounds

• Monitors are synchronized by guarantee interface tuples

• Pareto interface tuples with maximized individual WAFs
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Workload Arrival Monitoring – Pros and Cons

Properties

• Event-triggered

• Considering worst-case is highly pessimistic

• Group monitoring provides more accurate assumptions
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Goals of Mixed-Criticality Communication Protocols

Resource Utilization
• Enable the derivation of tight latency bounds for guaranteed

latency traffic

• Analyzable in terms of schedulability

Quality of Service

• Reduce the average latency of best-effort traffic

• Not applicable to guaranteed latency traffic

Scalability

• Scale well with the number of bus masters or NoC nodes

37



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

Goals of Mixed-Criticality Communication Protocols

Resource Utilization
• Enable the derivation of tight latency bounds for guaranteed

latency traffic

• Analyzable in terms of schedulability

Quality of Service

• Reduce the average latency of best-effort traffic

• Not applicable to guaranteed latency traffic

Scalability

• Scale well with the number of bus masters or NoC nodes

37



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

Goals of Mixed-Criticality Communication Protocols

Resource Utilization
• Enable the derivation of tight latency bounds for guaranteed

latency traffic

• Analyzable in terms of schedulability

Quality of Service

• Reduce the average latency of best-effort traffic

• Not applicable to guaranteed latency traffic

Scalability

• Scale well with the number of bus masters or NoC nodes

37



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

TDMA-RR Dual Layer Arbiter

• First layer : TDMA for critical bus masters

• Second layer : RR for non-critical bus masters
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Criticality- and Requirement-Aware Bus Arbiter

• First layer : arbitration between criticality classes

• Second layer : arbitration between tasks of the elected
criticality class

• Both layers are Weighted Harmonic RR

Weighted Harmonic Round Robin

• Bus control granted for 1 request only

• Each master can get several slots per period

• Slots are evenly distributed
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CArb - Example
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CArb - Arbiter-level Mode Switch

WCETtotal(T13) < exec time(T13)
→ Drop low-critical tasks, system-wide mode switch

WCETiso(T13) < exec time(T13) < WCETtotal(T13)
→ Cut interference, arbiter-level mode switch

If exec time(T13)−WCETiso(T13) < threshold
→ Cut only part of the interference
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Wormhole Protocol for Mixed-Criticality
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Wormhole Protocol for Mixed-Criticality
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WPMC-Flood
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Wormhole with Blocking Counter

The header flit of critical messages contains a Blocking Counter
field.
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Adaptive Routing

• Message BE1
Path list : {(1,2), (2,2)}, {(1,2),
(1,1), (2,1), (2,2)}

• Message C1
Path list: {(1,2), (2,2)}
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Adaptive Routing - Control Scheme
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Integrated Dependable Architecture for Many-Cores
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Integrating Scheduling and Data mapping

Hardware model:

• 16 Clusters

• Each containing 16 cores, 3 NoC interfaces, and 16 SRAM
banks

• Each SRAM bank has its own dedicated controller, which
arbitrates between all cores and interfaces

• NoC receiver interface always has priority
• RR arbitration is performed between other components
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Integrate Scheduling and Data mapping

Software model:

• Independent task set and scheduler for each cluster

• Criticality mode switch

• Scheduling data:
• Execution times without memory accesses
• Number of memory accesses
• Dependency graph

• Tasks of different criticality cannot be scheduled on the same
time frame

• Joint computation of task schedule and data mapping to
SRAM banks
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Controlling interference from other tiles

When a task requires data to be fetched through the NoC

t = 2 ∗NoC worst-case latency + resource worst-case response time
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Higher level modeling - Resource Servers

• A resource server ”encapsulates” the access to a resource

• This can allow to consider only the server and the requesting
component in modeling

• The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

• For MCS, the IPC protocol should also take criticality into
account

53



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

Higher level modeling - Resource Servers

• A resource server ”encapsulates” the access to a resource

• This can allow to consider only the server and the requesting
component in modeling

• The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

• For MCS, the IPC protocol should also take criticality into
account

53



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

Higher level modeling - Resource Servers

• A resource server ”encapsulates” the access to a resource

• This can allow to consider only the server and the requesting
component in modeling

• The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

• For MCS, the IPC protocol should also take criticality into
account

53



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

Higher level modeling - Resource Servers

• A resource server ”encapsulates” the access to a resource

• This can allow to consider only the server and the requesting
component in modeling

• The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

• For MCS, the IPC protocol should also take criticality into
account

53



w
w

w
.i

c
t.

tu
w

ie
n
.a

c
.a

t

Resource Server for MCS
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Mixed Criticality Systems

• Response to a pressing industrial need:

• How to provide safety and real-time guarantees in efficient
implementations?

• Mixed Criticality scheduling Theory;

• Design time verification;
• Run-time robustness, when the system violates assumptions;

• Providing sound mechanisms for sharing:

• Processing elements;
• Buffers, caches, memory;
• I/O: Pins, drivers;
• Communication.
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