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Resource Management for Mixed-Criticality Systems

@ Introduction



Mixed Criticality Systems

Types of tasks:

Best Effort May take as long as needed;
Soft Real-Time Have deadlines, but may miss some deadlines;

Hard Real-time No deadline must be missed, ever.
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Sharing and Isolation

e Full Isolation to accommodate the worst case:

Dedicated resources for a given task;
Addresses real-time and safety requirements;
Costly due to over-provisioning;

Complete isolation = no interference.
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e Full Isolation to accommodate the worst case:

e Dedicated resources for a given task;

o Addresses real-time and safety requirements;
e Costly due to over-provisioning;

e Complete isolation = no interference.

e Full sharing to accommodate the average case:

Best average performance for given cost;
Lowest cost for target average performance;
Highest efficiency;
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Sharing and Isolation

e Full Isolation to accommodate the worst case:

e Dedicated resources for a given task;

o Addresses real-time and safety requirements;
e Costly due to over-provisioning;

e Complete isolation = no interference.

e Full sharing to accommodate the average case:

o Best average performance for given cost;

o Lowest cost for target average performance;
e Highest efficiency;

e Unbounded worst case performance.

e Sharing with bounded interference:

e Allowing and controlling interference can provide real-time and
safety requirement;

e Reduced costs;

e Applicable for mix of critical and best effort tasks.
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Interference Effects

e Direct interference and competition for the same resource;
e Indirect interference through shared resources:

e Performance inversion,
o Over-synchronization.



Performance Inversion

PE1 PE2
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Performance Inversion

PE1 PE2

—_
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e PE1 communicates with M1 and PE2 communicates with M2;

e All tasks meet deadlines: ~
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Performance Inversion

PE1 PED
= M1l M2 =
e Replacing PE1 with a faster PE;
e May increase execution time of PE2 tasks. =
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Over-Synchronization

e Assumption: Bounded buffers between tasks;

e No control or data dependency between C and D branches;
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Over-Synchronization
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e Assumption: Bounded buffers between tasks;

e No control or data dependency between C and D branches;



Over-Synchronization

Delayed
Waiting for Buffer Space

Waiting for Data

e Assumption: Bounded buffers between tasks;
e No control or data dependency between C and D branches;

o If C is delayed or stuck, D suffers.



Spatial and Temporal Isolation

e Spatial isolation: No sharing at any time;
e Temporal isolation: Sharing at pre-defined time periods.



Spatial Isolation
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Temporal Isolation
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Resource Management in Many-Core SoCs

e Many resources lead to a huge design space;
e Types of Resources:

e Computation: Processing elements,
e Storage: Buffers, caches, off-chip memory,
e Communication: Buses, links, NoCs.
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Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning
Full-Scale Mode Switches
Memory Access Budgeting
Execution Time Monitoring
Workload Arrival Monitoring
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Real-Time Systems

Real-Time Constraints from Event to System Response
o Deadlines based on real-time requirements
e No deadline misses allowed ever

e Prepare for the worst-case

m 1&



Real-Time Systems — Scheduling Example

Task Set
Task Period Deadline WCET
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Real-Time Systems — Scheduling Example

Task Set
Task Period Deadline WCET ACET
T1 10 5 4 2
T2 10 10 6 4

T T28TIR TZRTIE T2 THF T2

time
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Real-Time Systems — Pros and Cons

e Static guarantees even for the worst-case J

e Overprovisioning for the average-case

TR T23 T T28THE T28 Tl T2

time
Economic need for trading off guarantees for utilization
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Mixed Criticality Levels

Worst-Case Execution Time Estimates
e Various components are validated against various assumptions

e The stricter assumptions, the longer estimated WCET

Criticality Levels of Tasks
e Strictness of assumptions

e Ordered set of levels
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Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

: current execution time
Monitor === Scheduler

worst-case execution time at the current criticality level

e Start system in the lowest criticality mode

e Schedule tasks with criticality not below the current criticality
mode

e Monitor whether execution violates current assumptions



Mixed-Criticality Scheduling with Criticality Mode Switches

increase criticality mode

Monitor |_current execution time o,

— 3> Scheduler

worst-case execution time at the current criticality level

Start system in the lowest criticality mode

Schedule tasks with criticality not below the current criticality
mode

Monitor whether execution violates current assumptions

Switch to higher criticality mode for stricter assumptions
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Mixed-Criticality Scheduling with Mode Switches

Task Set HI
Task Period Deadline WCET
T1 10 5 4
T2 10 10 6
Task Set LO
Task Period Deadline WCET
T1 10 5 2
T2 10 10 4
T3 10 9 3
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Mixed-Criticality Scheduling with Mode Switches

Mixed-Criticality Task Set
Task CL Period Deadline WCET

T1 HI 10 5 2,4]

T2 HI 10 10 [4,6]

T3 LO 10 9 [3]

LO HI
TINES T2 ETINESY T2 ETINES: T2 @T1 T2

time

Ignoring LO criticality tasks in H/ mode
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Limitations of Mode Switching Scheduling

Static Verification
e Timing guarantees for each mode

¢ No link to requirements of safety standards

Runtime Robustness
e Switching mode to restrict assumptions as necessary
¢ Ignoring low-criticality tasks

¢ Returning to low-criticality mode
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Memory Accesses and Execution Time

Cache Misses
e Memory needs to be accessed

e Critical tasks may be penalized by interference

Limited Interference for Critical Tasks
e Reduce WCET of critical tasks by limiting interference

e Budget of cache misses for non-critical tasks (cores)

e Suspend execution of tasks with depleted budget

Can be generalized to any shared resource



Memory Access Budgeting
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Memory Access Budgeting — Pros and Cons

Pros
e Low overhead on COTS

e Performance counters
e |nterprocessor interrupts

Cons
e Limited to 2 levels, critical and non-critical
e No general algorithm for deriving budgets

e Not scaling with the number of non-critical cores




Resource Management for Mixed-Criticality Systems

@® Temporal Partitioning

Execution Time Monitoring



Monitoring Execution Time and Remaining WCET



Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks




Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks
e Remaining WCET for each observation point




Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks
e Remaining WCET for each observation point

o Worst-case interference between observation points




Monitoring Execution Time and Remaining WCET

WCET and Observation Points for Critical Tasks
e Remaining WCET for each observation point

o Worst-case interference between observation points

Safety Condition at each Observation Point

The critical task will not miss its deadline even if worst-case
happens until the next observation point
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Evaluate safety condition at each observation point:

code segment k— execution time
observation point k
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code segment k+ +  WCET sopation(k + 1, end)

+ observation overhead

< deadline



Execution Time Monitoring

Evaluate safety condition at each observation point:

code segment k— execution time
observation point k

code segment k +  WCET pterference(k, k + 1)
observation point k + 1

code segment k+ +  WCET sopation(k + 1, end)

+ observation overhead

< deadline

Suspend non-critical tasks if safety condition does not hold.

U] )
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Execution Time Monitoring — Pros and Cons

Pros
e Code instrumentation is easy to implement on COTS
e Monitoring execution time limits pessimism

e Evaluating condition at observation points limits pessimism

Cons
e Limited to 2 levels, critical and non-critical

e Large execution time overhead of monitoring
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Workload Arrival Monitoring

Workload Arrival Function (WAF) for each Task
e Task is activated by events
e The events are mapped to WCET values

e WAF accumulates required execution time

Arrival Monitoring and Admission

e Actual workload is calculated based on WAFs

e Check whether workload would exceed serviceable level

Individual WAFs enforce interference bounds between
real-time tasks
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Group Monitoring Scheme

Criticality Groups
e Tasks of one criticality level are grouped together
e A group of tasks is one virtual task for workload arrival

e Correlation of task activations improves utilization

Combining Monitors
e Monitors for groups separately
e Each monitor respects WAF upper bounds

e Monitors are synchronized by guarantee interface tuples

Pareto interface tuples with maximized individual WAFs
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Workload Arrival Monitoring — Pros and Cons

Properties
e Event-triggered
o Considering worst-case is highly pessimistic

e Group monitoring provides more accurate assumptions
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Goals of Mixed-Criticality Communication Protocols

Resource Utilization
e Enable the derivation of tight latency bounds for guaranteed
latency traffic
e Analyzable in terms of schedulability

Quality of Service
e Reduce the average latency of best-effort traffic
e Not applicable to guaranteed latency traffic

Scalability
e Scale well with the number of bus masters or NoC nodes
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o First layer : TDMA for critical bus masters
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TDMA-RR Dual Layer Arbiter

o First layer : TDMA for critical bus masters

e Second layer : RR for non-critical bus masters

R T

time

request priority




Criticality- and Requirement-Aware Bus Arbiter

e First layer : arbitration between criticality classes

e Second layer : arbitration between tasks of the elected
criticality class



Criticality- and Requirement-Aware Bus Arbiter

e First layer : arbitration between criticality classes

e Second layer : arbitration between tasks of the elected
criticality class
e Both layers are Weighted Harmonic RR

Weighted Harmonic Round Robin
e Bus control granted for 1 request only
e Each master can get several slots per period

e Slots are evenly distributed




CArb - Example

inter-class
Gl G |G Cil Co |G arbiter
| T4 | T | T4 | T3 | class 1 arbiter
| T4 | Ty | class 2 arbiter

| | | class 3 arbiter

T11 T12 T21 T22 T21 T11 T13 T11 T12 T22 T21 T22 T11 T13
final schedule
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CArb - Arbiter-level Mode Switch

WCETtota/(le') < exec_time(Tlg)
— Drop low-critical tasks, system-wide mode switch

VVCET,'SO(T13) < exec_time(Tlg) < WCETtota/(lev)
— Cut interference, arbiter-level mode switch

Tl Tl Tl T4

If exec_time(T13) — WCETs0(T13) < threshold
— Cut only part of the interference

T11 T12 T11 T13 T21 T22 T27 T11 T12 T11 T13 T22 T21 T22
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VC index

input buffer 1
input buffer 2

Ny

Priority
Arbiter
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Wormhole Protocol for Mixed-Criticality

Local Network e
Interface :

incoming high-critical message
outside its low-critical specifications

input link state (criticality mode)

incoming high-
VCindex__ critical message

input buffer 1
input buffer 2

VY

Priority |
Arbiter

< back pressure flow control | flow control



WPMC-Flood

Local Network e
Interface :

incoming high-critical message
outside its low-critical specifications

input link state (criticality mode)

VC index

input buffer 1 5|
input buffer 2 |5 Priority
: © | Arbiter

< back pressure flow control | flow control




Wormhole with Blocking Counter

The header flit of critical messages contains a Blocking Counter

field.
Network Interface Router
initialize BC value if message is stalled
decrement BC
(with maximum ifBC=0
number of times prioritize message
the message can end if
be delayed) end if




Adaptive Routing

o ®
o Message BE1
Path list : {(1,2), (2,2)}, {(1,2),
(1.1), (21), (22)}
o ®

—3 critical messages



Adaptive Routing

®
o Message BE1
Path list : {(1,2), (2,2)}, {(1,2),
(1.1), (21), (22)}
o e Message C1

— critical messages Path list: {(1,2), (2.2)}



Adaptive Routing - Control Scheme

Messages
Database
£\
4 notify
chec involved
> inferfering -—Senders
. paths
notify
control | Controller

— critical message



Resource Management for Mixed-Criticality Systems

@ Mixed Criticality Architectures



Integrated Dependable Architecture for Many-Cores

—— SC control signals
—— Nl control signals

—>» Requests

counter
pause
reset |—
disable ——
notify SC

{Controller

Network Interface

NoC

>
>

Tile

00
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Integrating Scheduling and Data mapping

Hardware model:

e 16 Clusters
e Each containing 16 cores, 3 NoC interfaces, and 16 SRAM
banks

e Each SRAM bank has its own dedicated controller, which
arbitrates between all cores and interfaces

e NoC receiver interface always has priority
e RR arbitration is performed between other components
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Integrate Scheduling and Data mapping

Software model:

Independent task set and scheduler for each cluster

Criticality mode switch
Scheduling data:

e Execution times without memory accesses
e Number of memory accesses
e Dependency graph

Tasks of different criticality cannot be scheduled on the same
time frame

Joint computation of task schedule and data mapping to
SRAM banks



Controlling interference from other tiles

When a task requires data to be fetched through the NoC

Task A—send request for data

dependency constraint:
delay t

Task B— use data

t = 2% NoC worst-case latency + resource worst-case response time
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Higher level modeling - Resource Servers

e A resource server "encapsulates” the access to a resource

e This can allow to consider only the server and the requesting
component in modeling

e The resource itself and the interfering components can be laid
aside provided the inter-process communication protocol
is adequate

e For MCS, the IPC protocol should also take criticality into
account
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Resource Server for MCS

abort wait

invoke

Cluster k-1
Cluster k Top-Level Scheduler |I
core I 1
task ::
core
Cluster k+1

background queue

global queue

Resource

kin head queue

reply

Non-Critical Requests
¥ Critical Requests
- Serviced Request
— System Calls




Resource Management for Mixed-Criticality Systems

@ Conclusions
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Mixed Criticality Systems

e Response to a pressing industrial need:

e How to provide safety and real-time guarantees in efficient
implementations?

e Mixed Criticality scheduling Theory;

e Design time verification;
e Run-time robustness, when the system violates assumptions;

e Providing sound mechanisms for sharing:

Processing elements;
Buffers, caches, memory;
[/O: Pins, drivers;

[ )
[ )
[ )
e Communication.



i Questions ?
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