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The Problem
I Large number of

resources
I Many tight constraints
I Varying application

demands, both within
and between
applications;

I Functional Aberrations:
I Design errors or

omissions;
I Malicious attacks;
I Aging;
I Soft errors;

I Non-functional
Aberrations:
I Performance;
I Power consumption;
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The SoC Radar
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Autonomy and Adaptivity

Autonomy is the ability to operate independently, without
external control.

Adaptivity is the ability to effect run-time changes and handle
unexpected events.



Self-Awareness Architecture
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Cyber-Physical SoC

Model of environment
Model of system
Trend learning
Adaptive policies

Data

Sensor 
Actuator

Control

Monitor
Self−Aware

Traditional Controller



CPSoC - A Sensor Rich SoC Platform

Santanu Sarma et al. “CyberPhysical-System-On-Chip (CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer
Virtual Sensing and Actuation”. In: Proceedngs of the Design, Automation and Test in Europe Conference and
Exhibition (DATE). Grenoble, France, Mar. 2015



CPSoC - A Sensor Rich SoC Platform

Nikil Dutt, Axel Jantsch, and Santanu Sarma. “Self-Aware Cyber-Physical Systems-on-Chip”. In: Proceedings of the
International Conference for Computer Aided Design. invited. Austin, Texas, USA, Nov. 2015



Thermal-Aware Performance

Throughput
improvement by

70%-300% for
same power and

temperature.

Benefit is due to
accurate and

fine-grain
measurement

and tight tracking.

Santanu Sarma et al. CyberPhysical-System-On-Chip (CPSoC): Sensor-Actuator Rich Self-Aware Computational
Platform. Tech. rep. CECS Technical Report No: CECS TR–13–06. Irvine, CA 92697-2620, USA: Center for
Embedded Computer Systems University of California, Irvine, May 2013



Observation Pipeline



Data and Meta-Data



Data and Meta-Data

Accuracy Systematic errors, a measure of statistical bias.
Precision Random errors, a measure of statistical variability.

Data Reliability The extent to which a measuring procedure
yields the same results on repeated trials.

Relevance The quality of being important for the matter at
hand.



Accuracy and Precision
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Accuracy and Precision
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Comprehensive Observation
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Nima TaheriNejad, Axel Jantsch, and David Pollreisz. “Comprehensive Observation and its Role in Self-Awareness -
An Emotion Recognition System Example”. In: Proceedings of the Federated Conference on Computer Science and
Information Systems. Gdansk, Poland, Sept. 2016
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Early Warning Score

Score 3 2 1 0 1 2 3

Heart rate1 <40 40–51 51–60 60–100 100–110 110–129 >129

Systolic BP2 <70 70–81 81–101 101–149 149–169 169–179 >179

Breath rate3 <9 9–14 14–20 20–29 >29

SPO2 (%) <85 85–90 90–95 >95

Body temp.4 <28 28–32 32–35 35–38 38–39.5 >39.5

1beats per minute, 2mmHg, 3breaths per minute, 4 ◦C



EWS Improvement

I Data reliability:
I Values in reasonable scope
I Changes in reasonable scope
I Consistency between sensors

I Situation awareness
I Power efficiency



Enhanced Early Warning Score

Arman Anzanpour et al. “Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics”. In:
Proceedings of Design and Test Europe Conference (DATE). Lausanne, Switzerland, Mar. 2017



Enhanced Early Warning Score - Data Reliability

1. Check on the reliability of sensed values
2. Check on the reliability of value changes
3. Check on consistency between sensor data

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25

V
it

al
 S

ig
n

al
 S

co
re

Time (s)

Experiment 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0

1 1 1

2 2 2 2 2 2 2

1 1 1

0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0

1 1 1

2 2 2 2 2 2 2

1 1 1

0 0 0 0

1 3 5 7 9 11 13 15 17 19 21 23 25

Heart rate (beats/min)
Respiratory rate (breaths/min)
Body temperature (°C)
Oxygen saturation (%)
Systolic blood pressure (mmHg)
Self-aware EWS
EWS

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 V
it

al
 S

ig
n

al
 S

co
re

Time (s)

Experiment 1

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Experiment 3



Enhanced Early Warning Score - Situation Awareness

1. Consider the activity mode of person
2. Consider time of day
3. Consider location



Enhanced Early Warning Score - Power Efficiency

1. Prioritize different situations



Enhanced Early Warning Score - Power Efficiency

1. Prioritize different situations
2. Distinguish different modes of urgency



Enhanced Early Warning Score - Power Efficiency

1. Prioritize different situations
2. Distinguish different modes of urgency
3. Define sensing activity for each mode

State Respiration Rate
Activity

Blood
Pressure

Heart Rate,
SpO2, and

Body Temp.

Transmission
Power

Consumption

A Continuous
Every hour in day
Disabled in night

Every sec. 29 mW

B 2 min continuous
8 min OFF

Every hour in day
Disabled in night

Every sec. 26.8 mW

C 2 min continuous
3 min OFF

Every 3 hours in day
Disabled in night

Every min. 12.5 mW

D 2 min continuous
8 min OFF

Every 3 hours in day
Disabled in night

Every min. 7 mW

E 2 min continuous
18 min OFF

Disabled Every min. 4.3 mW



Enhanced Early Warning Score - Power Efficiency

Over a day half the energy can be saved.



Enhanced Early Warning Score Summary

I Considering data reliability improves quality of observation;

I Considering sitation improves quality of observation;

I Collecting needed data only improves efficiency.



Attention Based Temperature Measurement

I How many temperature measurements are required in an
MPSoC?

I It varies over several orders of magnitude depending on
activity and current temperature.

Conventional Architecture Proposed Architecture

Nima TaheriNejad, M. Ali Shami, and Sai Manoj P. D. “Self-aware sensing and attention-based data collection in
Multi-Processor System-on-Chips”. In: 15th IEEE International New Circuits and Systems Conference (NEWCAS).
June 2017, pp. 81–84



Attention Based Temperature Measurement

Intel Nehalem processor, running Barnes from SPLASH-2 Benchmarks, using
Snipersim and Hotspot.



Attention Based Temperature Measurement

I When only differences > ∆ = 1,2,5◦C are reported, 7 out
of 10 sensors send only 1 value in this experiment.

I Reduction of temperature reports for Memory, ALU and
D-Cache:

Unit ∆ = 1 Imp. ∆ = 2 Imp. ∆ = 5 Imp.
Memory 13 35% 9 55% 4 80%
ALU 4 80% 2 90% 1 95%
D-Cache 2 90% 2 90% 1 95%
All others 1 95% 1 95% 1 95%



Attention Based Temperature Measurement



Attention Based Temperature Measurement

I Rate of temperature reporting can be significantly reduced
and fine tuned;

I Can depend on
I relative difference,
I absolute difference,
I absolute value,
I system level mode;

I Potential benefits:
I reduced processing,
I reduced communication,
I reduced measurements.



Goals for Dynamic Task Mapping
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Dynamic Task Mapping
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Example 1: Performance Driven Task Mapping

App2

App3

App1

App2

App3

App1

App4

MapPro prefers compact and contiguous regions.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015



Example 2: Throughput- and Power-Constrained Task
Mapping

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.

Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:
Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610–617



Example 3: Lifetime-Reliability-Driven Task Mapping
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Reliability aware mapping:
lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854–857



Goal Management Levels

1. Single objective; Design time;

2. Multiple objectives; Design time;

3. Multiple objectives; Run time;

4. Multiple, hierarchical objectives; Run time;



Hiararchical Goal Management
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Goal Management Inputs

Hierarchical Dynamic Goal Manager
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Hierarchical Goal Mangement
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I The system’s requirements changes over its lifetime.
I Different objectives are invoked at different time.



Challenges with Self-aware, Autonomous, Adaptive
SoCs

I How to express “correctness”?

I How to validate a smartly adapting system?

I How to reconcile autonomy with safety critical and
real-time systems?

I How to formally model and implement goal management?



Let’s Get Out

I Let’s get physical

I Let’s get real

I Let’s get out

David Tennenhouse. “Proactive Computing”. In:
Communications of the ACM 43.5 (May 2000), pp. 43–50



Traditional Design Flow

Requirements specification Design Verification
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Design of Self-Aware Chips
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Design of Self-Aware Chips
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Questions ?
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