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The Problem

>

>
>

Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

» Design errors or
omissions;
» Malicious attacks;
> Aging;
» Soft errors;
Non-functional
Aberrations:

» Performance;

» Power consumption;
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The SoC Radar

Power&Energy, Performance

. Reliability

Adaptab‘ility \

_ | __----=7"" Usability
Functionality

Santanu Sarma et al. “On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC)". In: Proceedings
of the 12th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). New
Delhi, India, Oct. 2014



The SoC Radar
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The SoC Radar
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The SoC Radar
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The SoC Radar
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The SoC Radar
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The SoC Radar
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Autonomy and Adaptivity

Autonomy is the ability to operate independently, without
external control.

Adaptivity is the ability to effect run-time changes and handle
unexpected events.



Self-Awareness Architecture

Introspection
Learning

Desirabili
Scale Y

very
desirable
very
undesirable




Cyber-Physical SoC

Adaptive policies
Trend learning

Model of system
Model of environment

Self—Aware
Monitor

Traditional Controller

Actuator
Sensor’

Data Control



CPSoC - A Sensor Rich SoC Platform

V08 Introspective Sentient Unit (ISU)

A==k I

Santanu Sarma et al. “CyberPhysical-System-On-Chip (CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer
Virtual Sensing and Actuation”. In: Proceedngs of the Design, Automation and Test in Europe Conference and
Exhibition (DATE). Grenoble, France, Mar. 2015



CPSoC - A Sensor Rich SoC Platform
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Nikil Dutt, Axel Jantsch, and Santanu Sarma. “Self-Aware Cyber-Physical Systems-on-Chip”. In: Proceedings of the
International Conference for Computer Aided Design. invited. Austin, Texas, USA, Nov. 2015



Thermal-Aware Performance

Thermal Profile with MPSoC
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Throughput
improvement by
70%-300% for
same power and
temperature.

Benefit is due to
accurate and
fine-grain
measurement
and tight tracking.

Santanu Sarma et al. CyberPhysical-System-On-Chip (CPSoC): Sensor-Actuator Rich Self-Aware Computational
Platform. Tech. rep. CECS Technical Report No: CECS TR—13-06. Irvine, CA 92697-2620, USA: Center for
Embedded Computer Systems University of California, Irvine, May 2013



Observation Pipeline




Data and Meta-Data
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Data and Meta-Data

Accuracy Systematic errors, a measure of statistical bias.
Precision Random errors, a measure of statistical variability.

Data Reliability The extent to which a measuring procedure
yields the same results on repeated trials.

Relevance The quality of being important for the matter at
hand.



Accuracy and Precision

Correct value




Accuracy and Precision

Correct value

High accuracy, high precision




Accuracy and Precision

Correct value

High accuracy, high precision
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Accuracy and Precision
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Accuracy and Precision

Correct value

High accuracy, high precision
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Comprehensive Observation
C )
Monitoring

~
)

&
[ N\

Environment Self

-
4 )
Inputs Context l;%g;fg?gr Resources
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Nima TaheriNejad, Axel Jantsch, and David Pollreisz. “Comprehensive Observation and its Role in Self-Awareness -
An Emotion Recognition System Example”. In: Proceedings of the Federated Conference on Computer Science and
Information Systems. Gdansk, Poland, Sept. 2016
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Observation Circle




Early Warning Score

Score 3 2 1 0 1 2 3

Heartrate’ | <40 40-51 51-60 60-100 100-110 110-129 = >129
Systolic BP? = <70 70-81 81-101 101-149 149-169 169-179 >179
Breath rate® <9 9-14 14-20 2029 >29
SPO; (%) <85 85-90 90-95 >95

Body temp.* = <28 28-32 32-35  35-38 38-39.5 >395

"beats per minute, 2mmHg, breaths per minute, 4 °C




EWS Improvement

» Data reliability:

» Values in reasonable scope
» Changes in reasonable scope
» Consistency between sensors

» Situation awareness
» Power efficiency



Enhanced Early Warning Score
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Arman Anzanpour et al. “Self-Awareness in Remote Health Monitoring Systems using Wearable Electronics”. In:
Proceedings of Design and Test Europe Conference (DATE). Lausanne, Switzerland, Mar. 2017



Enhanced Early Warning Score - Data Reliability

O R N WA UG

O R N WS UG

1. Check on the reliability of sensed values
2. Check on the reliability of value changes
3. Check on consistency between sensor data

Experiment 1

9 11 13 15 17 19 21 23 25
Time (s)

Experiment 2
-
/ \
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) \
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Time (s)

Vital Signal Score

Vital Signal Score
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Experiment 3
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------ Heart rate (beats/min)
- = Respiratory rate (breaths/min)

—eo— Body temperature (°C)

Oxygen saturation (%)
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Enhanced Early Warning Score - Situation Awareness

1. Consider the activity mode of person
2. Consider time of day
3. Consider location

Emergency Level (Orginal EWS)

Critical

Equivocal |
Low mmﬁ”—'lumwmrﬁm_mwm

Normal

Emergency Level (Modified EWS)

Critical

Equivocal —
tow | I T T LA UL LA U A T

Normal

Activity

Running -
Jogging -{
Walking -
Resting |
Sleeping -{

Environment

Night, Indoor -

Day, Outdoor |
Day, Indoor - _'—|




Enhanced Early Warning Score - Power Efficiency

1. Prioritize different situations

Priority Score

Indoor-Day
Indoor-Night
Outdoor-Day
Outdoor-Night

100

High
Medium



Enhanced Early Warning Score - Power Efficiency

1. Prioritize different situations
2. Distinguish different modes of urgency

Emergency  Score:0 Score:1-3 Score:4-6 Score>6
Level: Normal Low Medium High

Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor Indoor |Outdoor

2 <lz| [[Z]lZ] [clZ]=[Z] [:]Z] <]

L8|z g8 x| S|z |L x| & =S|
Sleeping |E |E|E|E| |C|/D|D|D| |[B|C|/C|C| |A|A/B B
Resting | D|D|D|D| |[C|C|C|C BB B B AlA B B
Walking ([Cc|C|C|C| |[B|C|C|C BB/ B B AlA A B
Jogging ([C[C|C|C B/ B|B|lC BB B B AlAA B
Running |[C|C|C|/C| |[B/B|B|B BB B B AlAA A




Enhanced Early Warning Score - Power Efficiency

1. Prioritize different situations
2. Distinguish different modes of urgency
3. Define sensing activity for each mode

L. Heart Rate, | Transmission
Respiration Rate Blood
State Activit Pressure Sp02, and Power
v Body Temp. | Consumption
. Every hour in day
A Continuous Disabled in night Every sec. 29 mW
2 min continuous | Every hour in day
B 8 min OFF Disabled in night Every sec. | 26.8 mW
2 min continuous | Every 3 hours in day .
c 3 min OFF Disabled in night Every min. | 12.5mW
2 min continuous | Every 3 hours in day .
D 8 min OFF Disabled in night Every min. | 7mW
2 min continuous . .
E 18 min OFF Disabled Every min. 4.3 mW




Enhanced Early Warning Score - Power Efficiency

Over a day half the energy can be saved.

Running
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Walking
Resting -
Sleeping Activity
N.I. - Environment

Day, Indoor | Night, Ind
D.O. ight, Indoor
D.I. - [ | Day, Outdoor | l

Baseline, 29mW

IM II I Ill"l ” I I\’””‘rl“l I Ill Illl " N ’“ Self-aware, 14.5mW
g+ Transmission States

O 060 w >

T T T T T T T T T
12 13 14 15 16 17 18 19 20
Time (day hour)



Enhanced Early Warning Score Summary

» Considering data reliability improves quality of observation;
» Considering sitation improves quality of observation;

» Collecting needed data only improves efficiency.



Attention Based Temperature Measurement

» How many temperature measurements are required in an
MPSoC?

» It varies over several orders of magnitude depending on
activity and current temperature.

Temperature Sensor

Comm.
Interface

Comm.

Register 1
Temperature Sensor hiares
Register 2

Conventional Architecture Proposed Architecture

Nima TaheriNejad, M. Ali Shami, and Sai Manoj P. D. “Self-aware sensing and attention-based data collection in
Multi-Processor System-on-Chips”. In: 15th IEEE International New Circuits and Systems Conference (NEWCAS).
June 2017, pp. 81-84



Attention Based Temperature Measurement
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Intel Nehalem processor, running Barnes from SPLASH-2 Benchmarks, using
Snipersim and Hotspot.



Attention Based Temperature Measurement

» When only differences > A = 1,2,5°C are reported, 7 out
of 10 sensors send only 1 value in this experiment.

» Reduction of temperature reports for Memory, ALU and

D-Cache:
Unit A=1 Imp. A=2 Imp. A=5 Imp.
Memory 13 35% 9 55% 4 80%
ALU 4 80% 2 90% 1 95%
D-Cache 2 90% 2 90% 1 95%
All others 1 95% 1 95% 1 95%




Attention Based Temperature Measurement
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Attention Based Temperature Measurement

» Rate of temperature reporting can be significantly reduced
and fine tuned;
» Can depend on
> relative difference,
» absolute difference,
» absolute value,
» system level mode;

» Potential benefits:

» reduced processing,
» reduced communication,
» reduced measurements.



Goals for Dynamic Task Mapping

» application S @ —
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9
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Hierarchical
Dynamic Goal ')_
Manager
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Time

Varying System
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# Performance Driven # Throughput Driven i Lifetime Reliability Driven



Dynamic Task Mapping

“ i Application 1 Application 2

I

Application 1

Task Graph Application3 Application 4




Example 1: Performance Driven Task Mapping
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MapPro prefers compact and contiguous regions.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015



Example 2: Throughput- and Power-Constrained Task
Mapping

Application 1

Application 2

S

Application 3

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.
Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In

Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610-617



Example 3: Lifetime-Reliability-Driven Task Mapping

reliability
o o o o o
& 2 & & 2

o
o

MapPro: Reliability aware mapping:
lifetime=5.52 years lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854-857



Goal Management Levels

1. Single objective; Design time;
2. Multiple objectives; Design time;
3. Multiple objectives; Run time;

4. Multiple, hierarchical objectives; Run time;



Hiararchical Goal Management

Goal 1: Maximize Lifetime

Goal 2: Meet Application

Primary Goals Requirements

e\
NOTOPe

Aging Controller Power Controller QoS Controller



Goal Management Inputs

~
Hierarchical Dynamic Goal Manager

IO




Hierarchical Goal Mangement

T : Primary Goal
Variable Q_oals Plant Properties Controllers (PGCs
and Policies and States Goal Controllers (GCs)
GCs inform PGCs about PGCs give /

state, progress, and Hlerarchlcal Dynamic Goal Manager directions to g
deviations. GCs. o
. o
Goals give direction _—
for management of Leaf controllers | (D
the plant and report their state E
subplants upwards g
Leaf Controllers Yo
for managing )
temperature, A
power, ... —
Leaf L Control Contro[ler 2 ::: Controller S O
controllers = wn
Communicate Leaf Controllers ¥
other

Slé.?.ifr:ﬁg 1 Subsystem 2 oo Subsystsem S g
[— *°* Power State
Physical relations State) y (Aging State) ( ) 5

among different
aspects Plant (Many-core Fabric)

» The system’s requirements changes over its lifetime.
» Different objectives are invoked at different time.



Challenges with Self-aware, Autonomous, Adaptive
SoCs

» How to express “correctness”?
» How to validate a smartly adapting system?

» How to reconcile autonomy with safety critical and
real-time systems?

» How to formally model and implement goal management?



Let's Get Out

> Let’s get physical

PROACTIVE
> Let's get real COM PUTING

Human-in-the-loop computing has its limits.
What must we do differently to prepare for the
networking of thousands of embedded processors
per person? And how do we move from

> L et; S g et o UT human-centered to human-supervised computing?

David Tennenhouse. “Proactive Computing”. In:
Communications of the ACM 43.5 (May 2000), pp. 43-50



Requirements specification Design Verification
Validation Implementation
Manufacturing e e —— e Y




Design of Self-Aware Chips




Design of Self-Aware Chips

NEES




Questions ?
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