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The Problem
I Large number of

resources
I Many tight constraints
I Varying application

demands, both within
and between
applications;

I Functional Aberrations:
I Design errors or

omissions;
I Malicious attacks;
I Aging;
I Soft errors;

I Non-functional
Aberrations:

I Performance;
I Power consumption;
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The SoC Radar

Santanu Sarma et al. “On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC)”. . In:
Proceedings of the 12th International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). New Delhi, India, Oct. 2014
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Autonomy and Adaptivity

Autonomy is the ability to operate independently, without
external control.

Adaptivity is the ability to effect run-time changes and handle
unexpected events.



Goals for Dynamic Task Mapping

Per-
application

Latency

System
Throughput

Resource
Utilization

Power and
Energy

Life-time
Reliability

Thermal
Stability

Performance Driven Throughput Driven Lifetime Reliability Driven

Varying 

Workload and 

User Demands

Time

Goal

Time

Goal

System 

Aberrations 

and Constraints 

Hierarchical

Dynamic Goal 

Manager



Dynamic Task Mapping
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Example 1: Performance Driven Task Mapping

MapPro Objectives:

I Maximize performance for all applications;
I Minimize communication latency in the new application;
I Minimize fragmentation.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015
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Example 1: Performance Driven Task Mapping
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MapPro: Heuristic to minimize application internal
communication delay and to minimize fragmentation.

1. First Node selection: Identifies a first node and a region for
a new application;

2. Allocates specific cores around the first node;
3. Maps tasks to cores.



Example 1: Performance Driven Task Mapping

Experiments with 12x12 - 16x16 networks.

AWMD: Average Weighed Manhattan Distance: Measures the communication cost based on traffic
volume.

NMRD: Normalized Mapped Region Dispersion is the normalized average of pairwise Manhattan
distances of all communication nodes of a mapped application: measures the compactness of a region.



Example 2: Power- and Thermal Constrained Task
Mapping

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.

Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:
Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610–617



Example 2: Dark Silicon



Example 2: Thermal Design Power



Example 2: Fixed Power Budget



Example 2: Variable Power Budget



Example 2: Efficient Budgeting



Example 2: Implications of Mapping



Example 2: Power Budget Improvement



Example 2: Throughput Gain



Example 3: Lifetime-Reliability-Driven Task Mapping

I To main limitations of future many-cores:
I Not enough power to turn on all cores (dark silicon)
I Increased susceptibility of IC to aging and wear-out

I Goal: Introduce lifetime reliability awareness in the runtime
resource management layer

I Guarantee specified level of reliability
I Satisfy the power budget
I Optimize performance

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854–857



Example 3: Lifetime-Reliability-Driven Task Mapping
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The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.



Challenges in Complex Many-Core SoCs

I A number and variety of objectives
I Partially contradicting
I At different time scales

I Objectives change over time
I The system state has to be known
I Application objectives have to be known



System, Know Thyself

Unknown artist. - Lessing Photo Archive: http://www.lessing-photo.com/p3/110103/11010329.jpg

http://www.lessing-photo.com/p3/110103/11010329.jpg


Cross Layer Sensing and Actuation

Nikil Dutt, Amir M. Rahmani, and Axel Jantsch. “Empowering Autonomy through Self-awareness in MPSoCs”. In:
Proceedings of the IEEE NEWCAS Conference. Strasbourg, France, June 2017

Axel Jantsch, Nikil Dutt, and Amir M. Rahmani. “Self-Awareness in Systems on Chip – A Survey”. In: IEEE Design
Test 34.6 (Dec. 2017), pp. 1–19



Hierarchical Goal Mangement
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Amir M. Rahmani, Axel Jantsch, and Nikil Dutt. “HDGM: Hierarchical Dynamic Goal Management for Many-Core
Resource Allocation”. In: IEEE Embedded Systems letters (2017)



Questions ?
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