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The Problem

» Large number of
resources

Many tight constraints
Varying application
demands, both within
and between
applications;

Functional Aberrations:

» Design errors or
omissions;
» Malicious attacks;
> Aging;
» Soft errors;
Non-functional
Aberrations:

» Performance;

» Power consumption;
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Santanu Sarma et al. “On-Chip Self-Awareness Using Cyberphysical-Systems-On-Chip (CPSoC)". . In:
Proceedings of the 12th International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). New Delhi, India, Oct. 2014
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The SoC Radar
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The SoC Radar
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The SoC Radar
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The SoC Radar
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Autonomy and Adaptivity

Autonomy is the ability to operate independently, without
external control.

Adaptivity is the ability to effect run-time changes and handle
unexpected events.



Goals for Dynamic Task Mapping

» application S @ —
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Dynamic Task Mapping
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Example 1: Performance Driven Task Mapping

MapPro Objectives:

» Maximize performance for all applications;
» Minimize communication latency in the new application;
» Minimize fragmentation.

Mohammad-Hashem Haghbayan et al. “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying
Ripple Effect of Applications on Networks-on-Chip”. In: Proceedings of the International Symposium on Networks
on Chip. Vancouver, Canada, Sept. 2015



Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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Example 1: Performance Driven Task Mapping
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1. First Node selection: Identifies a first node and a region for
a new application;

2. Allocates specific cores around the first node;
3. Maps tasks to cores.



Example 1: Performance Driven Task Mapping
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AWMD: Average Weighed Manhattan Distance: Measures the communication cost based on traffic

volume.

NMRD: Normalized Mapped Region Dispersion is the normalized average of pairwise Manhattan
distances of all communication nodes of a mapped application: measures the compactness of a region.



Example 2: Power- and Thermal Constrained Task
Mapping

Application 1

Application 2

S

Application 3

The patterning algorithm disperses mapped cores to maximize
the Thermal Safe Power budget.
Anil Kanduri et al. “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach”. In:

Proceedings of the International Conference on Computer Design (ICCD). New York City, USA, Oct. 2015,
pp. 610-617



Working Chip

High Power Density

Example 2: Dark Silicon

Heat Accumulation

Forced Inactivity

——

Silicon Melting

Chip Malfunctioning
Unreliability and Ageing

Dark Silicon




Example 2: Thermal Design Power

Battery Technology

Fixed Energy Budget

Thermal Design Power (TD P)—

Temperature

Assumption:
Worst Case Voltage,
Frequency, Workload

=) TDP

Cooling Solution

Design Time Estimate

Reality




Applications

—
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Example 2: Fixed Power Budget
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Example 2: Variable Power Budget
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Example 2: Efficient Budgeting

Tightly packed Cores Spreadout Cores

(” I (ll-!) v’ 15% Better Utilization
2 60° 6
(14.6) v' Activate more cores
’— 60° 61° ’ v' Reduce temperatures
)

I 5‘ , 60° , 6 v' Minimize Dark Silicon
| 2.7 az7) | ( (14.6) (14.6)

Neighbors accumulating temperature Neighbors dissipating temperature

Utilized Power Budget = 76.2 W Utilized Power Budget = 87.6 W



Example 2: Implications of Mapping

Application 1

Application 2 Application 3

Tightly Packed — Greedy First Node Spread Out — Adaptive First Node

Application -

Repository

Power Budget = 66W




Example 2: Power Budget Improvement

Percentage Power Budget Improvement for PAT over SC

m 90% Dark 75% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 5.74 13.9 4.15 113 2.19 7.68
20x20 6.54 17.17 5.06 8.55 2.63 4.28

Percentage Power Budget Improvement for PAT over TSP-WC
m Best Avg. Best Avg. Best
16x16 32.33 34.92 22.02 24.14 11.73 13.2
20x20 38.70 40.83 22.40 27.4 12.5 13.33



Example 2: Throughput Gain

Percentage Throughput gain for PAT over SC

m 90% Dark 75% Dark 50% Dark

Best Avg. Best Avg. Best
16x16 7.27 15.64 4.59 13.92 2.42 8.58
20x20 8.5 20.99 5.88 10.21 2.89 4.54

v Surplus Budget > Added latency v' Minimal congestion

» Per Application Latency v' Per Chip Throughput



Example 3: Lifetime-Reliability-Driven Task Mapping

» To main limitations of future many-cores:

» Not enough power to turn on all cores (dark silicon)
» Increased susceptibility of IC to aging and wear-out

» Goal: Introduce lifetime reliability awareness in the runtime
resource management layer
» Guarantee specified level of reliability

» Satisfy the power budget
» Optimize performance

M. H. Haghbayan et al. “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era”.
In: Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2016, pp. 854-857



Example 3: Lifetime-Reliability-Driven Task Mapping

PrOpOSGd approach based on two feedback controllers

e Short-term controller — e— | — —
e Application mapping [ st |

pply, Thermal
Power Budget, V-Gate Sensor
o Select less aged cores W‘:}%: T oo P

¢ Power control R o S el
° Long-terrn contr()ller Reliability Reliability Analysis
. oge Requirement —*| T -
. Rellablllty managerferTt Rigoine

¢ Compute current aging status
¢ Disable highly stressed cores

NoC-based Many-core
g System




Example 3: Lifetime-Reliability-Driven Task Mapping

reliability
o o o o o
& 28 & & 2

o
o

MapPro: Reliability aware mapping:
lifetime=5.52 years lifetime=12 years

The plots show the reliability of cores at the end of the system’s lifetime.
The end of the system’s life is reached when the reliability of one core drops below 30%.



Challenges in Complex Many-Core SoCs

v

A number and variety of objectives

» Partially contradicting
» At different time scales

v

Objectives change over time
The system state has to be known
Application objectives have to be known

v

v
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Nikil Dutt, Amir M. Rahmani, and Axel Jantsch. “Empowering Autonomy through Self-awareness in MPSoCs”. In:
Proceedings of the IEEE NEWCAS Conference. Strasbourg, France, June 2017

Axel Jantsch, Nikil Dutt, and Amir M. Rahmani. “Self-Awareness in Systems on Chip — A Survey”. In: /EEE Design
Test 34.6 (Dec. 2017), pp. 1-19



Hierarchical Goal Mangement

Primary Goal

Variable Goals Controllers SPGCS

Plant Properties

and Policies and States Goal Controllers (GCs)

GCs inform PGCs about PGCsgive 4 z
state, progress, and — Hlerarchlcal Dynamic Goal Manager directions to =
deviations. GCs. Qo
Q.

Goals give direction _—
for management of Leaf controllers |
the plant and report their state E
subplants N upwards Q
Yy

Leaf Controllers

for managing )
temperature, y

power, ...
Control Controller 2 oo Controller S @)
Leaf e
controllers wm
communicate - —
with each — Leaf Controllers v
other
SUb?;sr::g? ! Subsystem 2 +e+ —>[Subsystem S ;D—U
Physical relations|| " ggate) (Aging State)[*+— *** (Power State) 5
among different —
aspects - Plant (Many-core Fabric)

Amir M. Rahmani, Axel Jantsch, and Nikil Dutt. “HDGM: Hierarchical Dynamic Goal Management for Many-Core
Resource Allocation”. In: /EEE Embedded Systems letters (2017)



Questions ?
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