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Intel’s Teraflop Research Project

I 80 cores

I 100 Million
transistors

I 65nm process

I 3.16 GHz

I 0.95 V

I 62 W

I 1.62 Terabit/s
aggregate
bandwidth

I 1.01 Teraflops



Tilera’s TILEPro64





EZChip / Tilera’s TILE-Mx100



Number of Cores on Chip

International Roadmap for Semiconductors 2012 edition

(http://www.itrs.net/)



Moore’s Law Rephrased

Number of transistors double every 18 months.

Number of cores will double every 26 months.

The Core is the logic gate of the 21st century.



Why Multi-Core?

I Parallelism is power efficient

I Single core frequency is leveling off
around 1 GHz



Clock Frequency is leveling off

Source: ISSCC 2015 Technology Trends



Why Multi-Core?

I Parallelism is power efficient

I Single core frequency is leveling off
around 1 GHz

I Global wires do not scale

I On-chip global synchronicity is impossible



On-Chip Synchronicity is Hard

Source: Ron Ho. On-chip wires: Scaling and efficiency. PhD thesis. Stanford University, 2003



Why Multi-Core?

I Parallelism is power efficient

I Single core frequency is leveling off
around 1 GHz

I Global wires do not scale

I On-chip global synchronicity is impossible

I The investment to make single cores more
powerful is not paying back



Why Networks on Chip? Buses Do Not Scale



Buses + Pipelining



Buses + Pipelining + Parallelism



Why Network on Chip?

I Buses do not scale

I Neither in terms of performance

I Nor in terms of power

I Due to many cores, communication must be parallel

I Due to non-scaling of global wires, communication
must be pipelined

I If you have parallel and pipelined communication
resources, you have to provide

I Routing

I Switching

I Flow control

⇒ On-chip communication networks!



Network Layer Communication Performance in
Network-on-Chips

Introduction

Communication Performance

Organizational Structure

Interconnection Topologies

Trade-offs in Network Topology

Routing

Quality of Service



Introduction

Interconnection
Network

Network
interface

Communication
assistm

Mem P

Network
interface

Communication

Mem P

assistm

I Topology: how
switches and nodes
are connected

I Routing algorithm:
which route to take

I Switching strategy:
how a message
traverses the route

I Flow control: what
do do when a
message blocks



Basic Definitions

Message is the basic communication entity.
Flit is the basic flow control unit. A message

consists of 1 or many flits.
Phit is the basic unit of the physical layer.

Direct network is a network where each switch connects to
a node.

Indirect network is a network with switches not connected
to any node.

Hop is the basic communication action from node
to switch or from switch to switch.

Diameter is the length of the maximum shortest path
between any two nodes measured in hops.

Routing distance between two nodes is the number of hops
on a route.

Average distance is the average of the routing distance over
all pairs of nodes.



Basic Switching Techniques
Circuit Switching A real or virtual circuit establishes a direct

connection between source and destination.

Packet Switching Each packet of a message is routed
independently. The destination address has to
be provided with each packet.

Store and Forward Packet Switching The entire packet is
stored and then forwarded at each switch.

Cut Through Packet Switching The flits of a packet are
pipelined through the network. The packet is
not completely buffered in each switch.

Virtual Cut Through Packet Switching The entire packet is
stored in a switch only when the header flit is
blocked due to congestion.

Wormhole Switching is cut through switching and all flits
are blocked on the spot when the header flit is
blocked.



Latency
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Time(n) = Admission + RoutingDelay + ContentionDelay

Admission is the time it takes to emit the message
into the network.

RoutingDelay is the delay for the route.

ContentionDelay is the delay of a message due to
contention.



Routing Delay

Store and Forward:
Tsf (m, h) = h(mb + ∆)

Circuit Switching:
Tcs(m, h) = m

b + h∆

Cut Through:
Tct(m, h) = m

b + h∆

m ... message size in bits
h ... number of hops
b ... raw bandwidth of the channel
∆ ... switching delay per hop



Routing Delay: Store and Forward vs Cut Through
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Local and Global Bandwidth

Local bandwidth = b [bits/second]
Total bandwidth = C b [bits/second]

Bisection bandwidth ... minimum bandwidth to cut the net
into two equal parts.

b ... raw bandwidth of a link; C ... total number of channels;

For a k×k mesh with bidirectional channels:

Total bandwidth = (4k2 − 4k)b
Bisection bandwidth = 2kb
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Link and Network Utilization

total load on the network: L =
Nhl

M
[phits/cycle]

load per channel: ρ =
Nhl

MC
[phits/cycle] ≤ 1

M ... each host issues a packet every M cycles
C ... number of channels
N ... number of nodes
h ... average routing distance
l = n/w ... number of cycles a message occupies a channel
n ... average message size
w ... bitwidth per channel



Network Saturation
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Typical saturation points are between 40% and 70%.
The saturation point depends on

I Network topology

I Network size

I Link and switch bandwidth

I Traffic pattern

I Stochastic variations in traffic

I Routing algorithm



Organizational Structure

I Link

I Switch

I Network Interface



Link

Short link At any time there is only one data word on the
link.

Long link Several data words can travel on the link
simultaneously.

Narrow link Data and control information is multiplexed on
the same wires.

Wide link Data and control information is transmitted in
parallel and simultaneously.

Synchronous clocking Both source and destination operate
on the same clock.

Asynchronous clocking The clock is encoded in the
transmitted data to allow the receiver to
sample at the right time instance.



Switch

Crossbar

Control
(Routing, Scheduling)

Input
bufferReceiver

Output
buffer Transmitter

Input
ports

Output
ports



Switch Design Issues

Degree number of inputs and outputs;

Buffering I Input buffers

I Output buffers

I Shared buffers

Routing I Source routing

I Deterministic routing

I Adaptive routing

Output scheduling

Deadlock handling

Control flow



Network Interface

I Admission protocol

I Reception obligations

I Buffering

I Assembling and disassembling of messages

I Routing

I Higher level services and protocols



Interconnection Topologies

I Fully connected networks

I Linear arrays and rings

I Multidimensional meshes and tori

I Trees

I Butterflies



Which Topology to Choose?



Fully Connected Networks

Node Node

Node

Node

Node

Node

Bus:

switch degree = N
diameter = 1
distance = 1
network cost = O(N)
total bandwidth = b
bisection bandwidth = b

Crossbar:

switch degree = N
diameter = 1
distance = 1
network cost = O(N2)
total bandwidth = N(N − 1)b
bisection bandwidth = N(N − 1)b



Linear Arrays and Rings

Folded torus

Torus

Linear array

Linear array:

switch degree = 2
diameter = N − 1
distance ∼ 2

3N
network cost = O(N)
total bandwidth = 2(N − 1)b
bisection bandwidth = 2b

Torus:

switch degree = 2
diameter = N/2
distance ∼ 1

3N
network cost = O(N)
total bandwidth = 2Nb
bisection bandwidth = 4b



Multidimensional Meshes and Tori

3−d cube

2−d torus

2−d mesh

k-ary d-cubes are d-dimensional tori
with unidirectional links and k nodes in
each dimension:

number of nodes N = kd

switch degree = d

diameter = d(k − 1)

distance ∼ d 1
2 (k − 1)

network cost = O(N)

total bandwidth = 2Nb

bisection bandwidth = 2k(d−1)b



Routing Distance in k-ary d-Cubes
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Projecting High Dimensional Cubes

2−ary 2−cube

2−ary 4−cube 2−ary 5−cube

2−ary 3−cube



Binary Trees
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number of nodes N = 2d

number of switches = 2d − 1

switch degree = 3

diameter = 2d

distance ∼ d + 2

network cost = O(N)

total bandwidth = 2 · 2(N − 1)b

bisection bandwidth = 2b



k-ary Trees
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number of nodes N = kd

number of switches ∼ kd

switch degree = k + 1

diameter = 2d

distance ∼ d + 2

network cost = O(N)

total bandwidth = 2 · 2(N − 1)b

bisection bandwidth = kb



Binary Tree Projection

I Efficient and regular 2-layout;

I Longest wires in resource width:

lW = 2b
d−1

2
c−1

d 2 3 4 5 6 7 8 9 10
N 4 8 16 32 64 128 256 512 1024
lW 0 1 1 2 2 4 4 8 8



Fat Trees
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k-ary n-dimensional Fat Tree Characteristics
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16−node 2−ary fat−tree

number of nodes N = kd

number of switches = kd−1d

switch degree = 2k

diameter = 2d

distance ∼ d

network cost = O(Nd)

total bandwidth = 2Ndb

bisection bandwidth = 2kd−1b



Shall we Choose a Fat Tree?



k-ary d-Cubes versus k-ary d-dimensional Fat Trees

k-ary d-cubes k-ary n-fat trees

number of nodes N kd kd

number of switches kd kd−1dn
switch degree d 2k

diameter d(k − 1)n 2d

distance d 1
2 (k − 1)n d

network cost O(N) O(Nd)n
total bandwidth 2Nb 2Ndbn
bisection bandwidth 2kd−1b 2kd−1b

k = 2



Relation between Fat Tree and Hypercube

binary 1−cube

binary 2−dim fat tree



Relation between Fat Tree and Hypercube - cont’d

binary 3−dim fat tree

binary 2−cube
binary 2−cube



Relation between Fat Tree and Hypercube - cont’d

binary 3−cubebinary 3−cube

binary 4−dim fat tree



Let’s Go for k-ary d -Cube!



Which d?



Trade-offs in Topology Design for the k-ary d-Cube

I Unloaded Latency

I Latency under Load



Network Scaling for Unloaded Latency

Latency = Admission + RoutingDelay + ContentionDelay

RoutingDelay Tct(m, h) =
m

b
+ h∆

RoutingDistance h =
1

2
(k − 1)d

d=2
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Scalability of Topology

d=2
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Are Hypercubes with k = 2
Best?



Unloaded Latency for Small Networks

d=2
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Unloaded Latency for Small Networks and Local Traffic

d=2
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Unloaded Latency for Larger Networks and Local Traffic

d=2

130

135

140

145

150

155

160

165

170

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 la
te

nc
y

Number of nodes

Network scalabilit wrt latency (m=128; h=dk/5)

k=2
d=5
d=4
d=3

125



Unloaded Latency under a Free-Wire Cost Model

Free-wire cost model: Wires are free and can be added without penalty.

N=64
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Unloaded Latency under a Fixed-Wire Cost Models

Fixed-wire cost model: The number of wires is constant per node:
128 wires per node: w(d) = b64

d c.

d 2 3 4 5 6 7 8 9 10
w(d) 32 21 16 12 10 9 8 7 6

N=64
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Unloaded Latency under a Fixed-Bisection Cost Models

Fixed-bisection cost model: The number of wires
across the bisection is constant:
bisection = 1024 wires: w(d) = k

2 =
d√N
2 .

Example: N=1024:

d 2 3 4 5 6 7 8 9 10
w(d) 512 16 5 3 2 2 1 1 1
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Unloaded Latency under a Logarithmic Wire Delay Cost
Models

Fixed-bisection Logarithmic Wire Delay cost model:
The number of wires across the bisection is constant
and the delay on wires increases logarithmically with the
length [Dally, 1990]:
Length of long wires: l = k

n
2
−1

Tc ∝ 1 + log l = 1 + (
d

2
− 1) log k

N=64

200

400

600

800

1000

1200

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 la
te

nc
y

Dimension

Latency wrt dimension under fixed−bisection log wire delay cost model (m=32B;b=k/2)

N=16K
N=1K

N=256
N=128

0

N=64

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 la
te

nc
y

Dimension

Latency wrt dimension under fixed−bisection log wire delay cost model (m=128B;b=k/2)

N=16K
N=1K

N=256
N=128

0



Unloaded Latency under a Linear Wire Delay Cost Models

Fixed-bisection Linear Wire Delay cost model: The
number of wires across the bisection is constant and
the delay on wires increases linearly with the length
[Dally, 1990]:
Length of long wires: l = k

n
2
−1

Tc ∝ l = k
d
2
−1

N=64
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We Take a 2-d Mesh!



Latency under Load

Assumptions [Agarwal, 1991]:

I k-ary d-cubes

I random traffic

I dimension-order cut-through routing

I unbounded internal buffers (to ignore flow
control and deadlock issues)



Latency under Load - cont’d

Latency(n) = Admission + RoutingDelay + ContentionDelay

T (m, k, d ,w , ρ) = RoutingDelay + ContentionDelay

T (m, k, d ,w , ρ) =
m

w
+ dhk(∆ + W (m, k , d ,w , ρ))

W (m, k, d ,w , ρ) =
m

w
· ρ

(1− ρ)
· hk − 1

h2
k

·
(

1 +
1

d

)
h =

1

2
d(k − 1)

m · · · message size
w · · · bitwidth of link
ρ · · · aggregate channel utilization
hk · · · average distance in each dimension
∆ · · · switching time in cycles



Latency vs Channel Load
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So Topology does not Matter?



Routing

Deterministic routing The route is determined solely by source and
destination locations.

Adaptive routing The route can be adapted by the switches to
balance the load.

Minimal routing allows only shortest paths while non-minimal
routing allows even longer paths.

Arithmetic routing The destination address of the incoming packet
is compared with the address of the switch and the
packet is routed accordingly. (relative or absolute
addresses)

Source based routing The source determines the route and builds
a header with one directive for each switch. The
switches strip off the top directive.

Table-driven routing Switches have routing tables, which can be
configured.



Deadlock

Deadlock Two or several packets
mutually block each other
and wait for resources, which
can never be free.

Livelock A packet keeps moving
through the network but
never reaches its destination.

Starvation A packet never gets a
resource because it always
looses the competition for
that resource (fairness).



Deadlock Situations

I Head-on deadlock;

I Nodes stop receiving packets;

I Contention for switch buffers can occur with
store-and-forward, virtual-cut-through and
wormhole routing. Wormhole routing is
particularly sensible.

I Cannot occur in butterflies;

I Cannot occur in trees or fat trees if upward and
downward channels are independent;

I Dimension order routing is deadlock free on
k-ary n-arrays but not on tori with any n ≥ 1.



Deadlock in a 1-dimensional Torus

Message 1 from C−> B, 10 flits
Message 2 from A−> D, 10 flits

A B C D



Channel Dependence Graph for Dimension Order Routing
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graph has no cycles.



Deadlock-free Routing

I Two main approaches:

I Restrict the legal routes;

I Restrict how resources are allocated;

I Number the channel cleverly

I Construct the channel dependence graph

I Prove that all legal routes follow a strictly
increasing path in the channel dependence
graph.



Virtual Channels

virtual channels
input
ports

outpout
ports

crossbar

I Virtual channels can be used to break cycles in the
dependence graph.

I E.g. all d-dimensional tori can be made deadlock free
under dimension-order routing by assigning all
wrap-around paths to a different virtual channel than
other links.



Virtual Channels and Deadlocks



Turn-Model Routing

What are the minimal routing restrictions to make routing
deadlock free?

North−last West−first Negative−first

I For 2− d meshes we have three minimal routing
restriction schemes:

I North-last

I West-first

I Negative-first

I Allow complex, non-minimal adaptive routes.

I Unidirectional k-ary d-cubes still need virtual
channels.



Adaptive Routing

I The switch makes routing decisions based on the
load.

I Fully adaptive routing allows all shortest paths.

I Partial adaptive routing allows only a subset of
the shortest path.

I Non-minimal adaptive routing allows also
non-minimal paths.

I Hot-potato routing is non-minimal adaptive
routing without packet buffering.



Quality of Service

I Best Effort (BE)

I Optimization of the average case

I Loose or non-existent worst case bounds

I Cost effective use of resources

I Guaranteed Service (GS)

I Maximum delay

I Minimum bandwidth

I Maximum Jitter

I Requires additional resources



Tree Saturation

Hot spots build up a congestion tree due to back
pressure



Non-interfering Networks

To isolate two traffic classes A and B there cannot
be any resource shared between A and B that can be
held and indefinite amount of time by A such that B
cannot interrupt the usage of that resource.



Summary

I Communication Performance: bandwidth,
unloaded latency, loaded latency

I Organizational Structure: NI, switch, link

I Topologies: wire space and delay domination
favors low dimension topologies;

I Routing: deterministic vs source based vs
adaptive routing; deadlock;

I Quality of Service



Issues beyond the Scope of this Lecture

I Switch: Buffering; output scheduling; flow
control;

I Flow control: Link level and end-to-end
control;

I Power

I Clocking

I Faults and reliability

I Memory architecture and I/O

I Application specific communication
patterns



To Probe Further: Surveys

Bjerregaard, T. and Mahadevan, S. (2006).

A survey of research and practice of network-on-chip.

ACM Computing Surveys.

Ogras, U. Y. and Marculescu, R. (2008).

Analysis and optimization of prediction-based flow control in
networks-on-chip.

ACM Transactions on Design Automation of Electronic Systems, 13(1).

Agarwal, A. and Iskander, C. (2009).

Survey of network on chip (noc) architectures & contributions.

Journal of engineering, Computing and Architecture, 3(1).

Fernandez-Alonso, E., Castells-Rufas, D., Joven, J., and Carrabina, J.
(2012).

Survey of noc and programming models proposals for mpsoc.

International Journal of Computer Science Issues, 9(2).



To Probe Further: Surveys

Kiasari, A. E., Jantsch, A., and Lu, Z. (2013).

Mathematical formalisms for performance evaluation of networks-on-chip.

ACM Computing Surveys, 45(3).

Radetzki, M., Feng, C., Zhao, X., and Jantsch, A. (2013).

Methods for fault tolerance in networks-on-chip.

ACM Computing Surveys, 46(1):8:1–8:38.

Sahu, P. K. and Chattopadhyay, S. (2013).

A survey on application mapping strategies for network-on-chip design.

Journal of Systems Architecture, 59(1):60 – 76.



To Probe Further: Classic Papers

Agarwal, A. (1991).

Limit on interconnection performance.

IEEE Transactions on Parallel and Distributed Systems, 4(6):613–624.

Dally, W. J. (1990).

Performance analysis of k-ary d-cube interconnection networks.

IEEE Transactions on Computers, 39(6):775–785.



To Probe Further: Text books

Duato, J., Yalamanchili, S., and Ni, L. (1998).

Interconnection Networks - An Engineering Approach.

Computer Society Press, Los Alamitos, California.

Culler, D. E., Singh, J. P., and Gupta, A. (1999).

Parallel Computer Architecture - A Hardware/Software Approach.

Morgan Kaufman Publishers.

Dally, W. J. and Towels, B. (2004).

Principles and Practices of Interconnection Networks.

Morgan Kaufman Publishers.

DeMicheli, G. and Benini, L. (2006).

Networks on Chip.

Morgan Kaufmann.

Leighton, F. T. (1992).

Introduction to Parallel Algorithms and Architectures.

Morgan Kaufmann, San Francisco.


