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Future Direction of 3-D ICs 

 3-D ICs promise performance / cost advantages 
for high performance digital applications as well 
as enhanced functionality 

 A staggering amount of degrees of freedom exist 
– Packages (2-D, Multi-chip Modules, 3-D die stacks) 
– Digital architecture (single to multi to many-core) 
– Routing architectures (buses, Networks-on-Chip, hybrids) 
– System organization (Memory hierarchy) 
– Technology (CMOS, MEMS/NEMS, feature size reduction) 

 Framework for comparison 
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 The Intrinsic Computational 
Efficiency (ICE), proposed by 
T. Claasen, creates the 
maximum upper bound for 
computational capability of a 
silicon-based processor. 
– The entire silicon area of a 

processor is filled with the most 
fundamental computational 
unit, in this case we have used 
32-bit adders. 

– A real system could never 
achieve the same performance 
per Watt because this metric 
ignores the overhead of control 
circuitry, interconnect, and 
memory. 
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Two recent multi-core processors 

Intrinsic Computational Efficiency 
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Expanding the ICE to the ECE 

 The ICE gives the maximum upper bound on efficiency, but 
cannot account for realistic systems because it only 
considers the computational unit. 

 We build upon the ICE by modelling the three fundamental 
operations of any processing unit: 
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        − The computational operation 

− The interconnect 

− The memory 

Processing Core 

  + 
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Temporal and Spatial Organization of Memory 
 
 μs 

– Gives us the amount of memory per operator. Think of it 
as the amount of on-chip cache available 
 
 
 
 

 
 μT  

– Gives us the number of memory reads/writes per 
operation. 

 

5 

OPERATOR MEM MEM 

MEM MEM MEM MEM 

+ 2 reads, 1 write 
μT  = 3 

OPERATOR MEM MEM 

MEM MEM MEM MEM 

PROCESSOR 



μ DP, D43D Jun 2013 microelectronics research group 

On- or Off-chip Memory? 
ω (0-1) 

– Gives the ratio of on- to off-chip memory in the system. 
Off-chip memory requires exiting the die with I/O drivers 
to external chips. 
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0: all-on-chip Processor 
I/O  

Controller 

DRAM DRAM DRAM DRAM 

1: all off-chip 
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Memory Distribution Factor 
 Δ (0-1) 

– Gives the distribution factor of the memory, or how 
close (local) it is the operator. 
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0: all-
local 
0.5: semi-
local 
1: non-
local 
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Effective Computational Efficiency 

 For each computation we must consider the 
expense of energy for the operation, interconnect 
(on and off-chip) and memory reads/writes. 
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Modelling Hierarchy 
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Model Development 
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Model Verification 
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Stand-alone Parasitic Estimation Tool 
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Modelling Hierarchy 
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Thermal Behaviour 

 Compact thermal models have been developed as part of 
the toolset to quickly predict the thermal behaviour.  

– Verification based on comparison with results from a Computational Fluid 
Dynamic (CFD) solver (FloTHERM). 

– The thermal behaviour and limitations of 2-D and 3-D packages has been 
extracted from simulations. 
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Stand-alone 3-D Thermal Tool 
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Modelling Hierarchy 
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Scaling 2-D versus 3-D DRAM 
19 

2-D with off-chip DRAM 2-layer 3-D with in-stack DRAM 
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Fixed System: Intel 80 Core 
20 

Param. Type Intel 80 Core Equivalent 
N # of Layers 1 (2-D) 1-16 (3-D) 
A Die Area 12.64×21.72 mm 275 mm2/N 
tn Tech. node 65 nm 180-17 nm 
b Data width 32-bit 32 
µs Memory/Operator 2K SRAM/2 FPU 1KB/Op 
µt Memory/Operation App. Specific 01-Mar 
σ Bus Sharing Ratio 8x10 mesh/160 FPU 18/160=0.11 
Δ Memory Distribution NoC Mesh 0.01-0.1 
ω On/off-chip mem All on-chip 1 
P Power (W) 20-230 App. Specific 

Implemented processors 
can be modelled by varying 
the parameters 

The 4-layer 80-core 3-D 
system at 90 nm is still 
better than a 2-D system at 
65 nm 
 

For every doubling of the 
stack height the 
computational efficiency 
increases by 20-30% 
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Modelling Hierarchy 
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NEM Relay Based Computation 
 Limitation of CMOS Energy Efficiency 

 
 
 
 
 
 

 
 

 NEM relay advantages 
– practically zero leakage 
– Very steep slope for turn-on/-off transient 
– high on-current 
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(source: F. Chen et al, ICCAD 2008) 
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NEM Relay Technology 
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In-plane switch, 
fabricated using 
standard lithography in 
NEMIAC project; nm 
gap using sacrificial 
layer  
courtesy D. Grogg et al. 
IBM Research Zurich1 

Long term 
integration 
plan 
courtesy F. 
Niklaus et al. 
KTH, Sweden 

1. D. Grogg et al., “Curved cantilever design for a robust and scalable microelectromechanical switch,” Int. Conf. 
on Electron, Ion, and Photon Beam Technology and Nanofabrication, Waikoloa, Hawaii, 2012. 
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NEM Relay Modelling 

 FEA to Reduced Order Model to Circuit Model 
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 NEM “tech node” is 
much larger than 
CMOS 

– Devices fabricated at 17 
μm and 5 μm cantilever 
length 

 Miniaturisation 
increases speed and 
reduces energy 

– No straightforward 
analogue to scaling for 
CMOS 

 Trajectory is promising 
– Ultra-low power technology 

for low latency, low 
throughput applications 
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 Ripple-carry architecture and worst-case energy 
 Device models at 17μm and 5μm silicon qualified 
 4 and 8- bit adder  energy at 17 μm based on 

accurate circuit model 
 32-bit adders based on scaling 

ICE with NEM Logic 
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