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Future Direction of 3-D ICs

1 3-D ICs promise performance / cost advantages
for high performance digital applications as well
as enhanced functionality

A staggering amount of degrees of freedom exist
— Packages (2-D, Multi-chip Modules, 3-D die stacks)
— Digital architecture (single to multi to many-core)
— Routing architectures (buses, Networks-on-Chip, hybrids)
— System organization (Memaory-hierarchy)
— Technology (CMOS, MEMS/NEMS, feature size reduction)

d Framework far comparison
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Intrinsic Computational Efficiency

O The Intrinsic Computational
Efficiency (ICE), proposed by

T C| aasen. creates th e , Intrinsic Computational Efficiency (ICE)
. b 10 T T
maximum upper bound for o o

computational capability ofa i
silicon-based processor.

— The entire silicon area of a
processor is filled with the most
fundamental computational
unit, in this case we have used
32-bit adders. 10°}

— A real system could never ,
achieve the same performance 0 = = "
per Watt because this metric Technology Node (nm)
ignores the overhead of control

circuitry, interconnect, and
memory.

MOPS/Watt

+ Tilera 100 |
+ Tilera 36 E

Two recent multi-core processors
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Expanding the ICE to the ECE

0 The ICE gives the maximum upper bound on efficiency, but
cannot account for realistic systems because it only
considers the computational unit.

0 We build upon the ICE by modelling the three fundamental

operations of any processing unit:
Processing Core

— The computational operation

- The memory -
— The interconnect | |
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Temporal and Spatial Organization of Memory

3 g

— Gives us the amount of memory per operator. Think of it
as the amount of on-chip cache available

OPERATOR MEM MEM

PROCESSOR

MEM MEM MEM MEM

d

— Gives us the number of memory reads/writes per
operation.

o1 BLENEVIAVENI

2 reads, 1 write

Mt =3 " MEM MEM MEM
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On- or Off-chip Memory?

d w (0-1)
— Gives the ratio of on- to off-chip memory in the system.

Off-chip memory requires exiting the die with I/O drivers
to external chips.

/O
Processor

0: all-off-chip Controller

DRAM DRAM DRAM DRAM
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Memory Distribution Factor

v

QA (0-1)
— Gives the distribution factor of the memory, or how
close (local) it is the operator.

0: Salbemi-
local
"ﬁl" - 4
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Effective Computational Efficiency

d For each computation we must consider the
expense of energy for the operation, interconnect
(on and off-chip) and memory reads/writes.

Number of Memory Accesses/op

Off-chip memory

EEar;Ch = E3g (ol e + Ax E_mtcﬁizh )+|(1—a)}|( e+ E_mtg_;ch +Eofichip )

Ratio of on-chip : off-chip memory

Energy for a 32- On-chip memory
bit addition energy energy

ECEM = 1 . Amount of computation possible

arch EED i within the envelope of 1 Joule
arc
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Modelling Hierarchy

System

Y
_______________ y Computation
Application

1 O . . . S . . . - - - - - N I I S S S I S S S e e e .

Devices
Thermal

Interconnect Logic | Memory

Physical
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Model Development

Resistance (R), Inductance (L)
Conductance (G), Capacitance (C)

Parasitic
Extraction (Q3D)

Geometrical Physical
Sweeps Sweeps
(length, radius, (Topology,
pitch, etc.) Substrate, etc.)

Data Manipulation (MATLAB)

Modelling

[ Physical
Principles l Verification
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Model Verification
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Stand-alone Parasitic Estimation Tool

Parasitic Extractor

Physical Parameters

TSV radius (pm)
TSV length {pm)
TSV spacing (pm)

5i0; barrier

thickness (pm)

LB LY [Vedium resistivity M
LRSS [ ¢ M bundle of T¢ M

Silicon Substrate

Parasitic Data m _
(Medium Resistive Substrate) _

Dlagnnal 17.084 1729.846 B.962 6.932 =
(NE,SE,NW,5W)

Parasitic Extraction Thermal Estimation Performance Estimation

_ _ % University of
DP, D43D Jun 2013 microelectronics research group BRISTOL




Modelling Hierarchy
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System
_______________ y Computation
Application

Bus unit OrQ

Circuit
Physical —_____Themal ____

Interconnect logic | Memory

_ _ % University of
DP, D43D Jun 2013 microelectronics research group BRISTOL




Thermal Behaviour
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0 Compact thermal models have been developed as part of
the toolset to quickly predict the thermal behaviour.

— Verification based on comparison with results from a Computational Fluid
Dynamic (CFD) solver (FlIoTHERM).

— The thermal behaviour and limitations of 2-D and 3-D packages has been
extracted from simulations.

Voltage at junction Material Th |
: Material Thermal >, sREEd THETE Power Injected into
@ ~equivalentto % RESRERES Absorption Capability J

temperature (specific heat) 1 junction
L
Rth :ﬂ TJ :thh +Ta 9 _Tj —Ta

j—a

q —
o : F
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Stand-alone 3-D Thermal Tool
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B thermal3D_GUI
Matt Grange 2011

Die Parameters
X Die Length {mm}

¥ Die Length (mm]
Bottom Die Thickness
3-D Die Thickness (um)

Die Attach Thickness

Ambient Air Temp (C)

3-D Thermal Solver v1.0

Logic Power Map

Power Setup
Area of single TSV
ower of Logic Die (W)

Power of Memory Die

3. Power Map (cs... |V

3. Power Map (c=... |V

Memory Power Map

1 High pin count .. |¥

KRR it Flow (m/s)

M Heatsink
Ml Model TSVs?

Grid Size [l

:Simulate:

=<

Centre for Microsystems, Lancaster University
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Modelling Hierarchy
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Scaling 2-D versus 3-D DRAM
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2-D with off-chip DRAM 2-layer 3-D with in-stack DRAM
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~1xed System: Intel 80 Core
Type Intel 80 Core Equivalent
7 of Layers 1(2D) 116 3.D) Implemented processors
Die Area 12.64X21.72 mm 275 mm2/N .
Tech. node 65 nm 180-17 nm can be mOdEIIEd by vVa rylng
Data width 32-bit 32
Memory/Operator 2K SRAM/2 FPU 1KB/Op the pa ra mete IS
Memory/Operation App. Specific 01-Mar
Bus Shari_ng _Rati_o 8x10 mesh/160 FPU 18/160=0.11 Effectlve Computatlonal EfflClency
Memory Distribution NoC Mesh 0.01-0.1 70
On/off-chip mem All on-chip 1 + 2D model of the Intel 80 core
Power (W) 20-230 App. Specific | 0| o g_gi 2232:
The 4-layer 80-core 3-D ol
system at 90 nm is still =
401 - it
better than a 2-D systemat | | = i 80 Se @ S0
o achieves similar GOPS/Watt
65 nm 8 30 as 2-D implementation in 65 nm
. 201 -
For every doublingofthe || | __________X~Z27 _______
stack hEight the 10r - Intel 80 Core @ 65 nm |

computational efficiency o
180 160 140 120 100 80 60 40 20 0

increases by 20-30% Technology Node (nm)
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Modelling Hierarchy
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Circuit
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NEM Relay Based Computation
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4 Limitation of CMOS Energy Efficiency
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e NEM Relay

A
MOSFET
g Ig(las)
3 —
? 15
g
ﬁ 10+ ADlg
© Sub-threshold slope =
E ds
2 st
0.1 0:2 0:3 0.4 0.5 . >
vdd (V) Ves
(source: F. Chen et al, ICCAD 2008) &
1 NEM relay advantages
— practically zero leakage
— Very steep slope for turn-on/-off transient
— high on-current
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NEM Relay Technology

In-plane switch,
fabricated using
standard lithography in
NEMIAC project; nm
gap using sacrificial

layer
courtesy D. Grogg et al.
IBM Research Zurich?
‘ Sacrificial Substrate
L | E I" |
ong term Bond Layer Device Material Sacrificial Substrate
integration MetalViaLanding Pade_ ————
plan e.g. CMOS e.g. CMOS e.g. CMOS
courtesy F. (1) (2) (3)
Niklaus et al. MOEMS / MEMS /
KTH, Sweden L IE'ic‘tr-ica:Viai\l-L | NEMSDQWCES }
(4) (5)
1. D. Grogg et al., “Curved cantilever design for a robust and scalable microelectromechanical switch,” Int. Conf
on Electron, lon, and Photon Beam Technology and Nanofabrication, Waikoloa, Hawaii, 2012. % Univerﬁit‘y of
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NEM Relay Modelling
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J FEA to Reduced Order Model to Circuit Model

- Cantilever beam
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ICE with NEM Logic
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, Intrinsic Computational Efficiency (ICE)
L e —— ——————— ———
O NEM “tech node” is | T ICET Claasen ‘
much larger than ol 1
CMOS | e '
— Devices fabricated at 17 £ ol
um and 5 ym cantilever § b . NEM 4 i€ NEM 32 bit (approx) E
length ¢y |+ NENMT bit
.. . . o 4- et + Tilera |
D Mlnlaturlsathn % 1a E_»/HEI'I.I'I 32 bit (approx) + Tilera 3ET| 1|:":|_§
Increases speed and A
reduces energy 10} ]
— No straightforward :
analogue to scaling for ) T R
CMOS 10? 10° 10° 10"
. . . Technology Node (nm
Q Trajectory is promising gy Node (nm)

_ Ultra-low power technology > Ripple-carry architecture and worst-case energy
for low latency, low » Device models at 17um and 5um silicon qualified

throughput applications > 4 and 8- bit adder energy at 17 pm based on
accurate circuit model

» 32-bit adders based on scaling
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