Dinesh Pamunuwa*, Matt Grange**, Axel Jantsch+, Sunil Rana*, Tyson Tian Qin* *University of Bristol, Bristol UK **Mentor Graphics, USA *KTH Royal Institute of Technology, Stockholm, Sweden

System Performance Analysis for Heterogeneous 3-D ICs and Emerging Technologies

Future Direction of 3-D ICs

3-D ICs promise performance / cost advantages for high performance digital applications as well as enhanced functionality

□ A staggering amount of degrees of freedom exist

- Packages (2-D, Multi-chip Modules, 3-D die stacks)
- Digital architecture (single to multi to many-core)
- Routing architectures (buses, Networks-on-Chip, hybrids)
- System organization (Memory hierarchy)
- Technology (CMOS, MEMS/NEMS, feature size reduction)

□ Framework for comparison

Intrinsic Computational Efficiency

- The Intrinsic Computational Efficiency (ICE), proposed by T. Claasen, creates the maximum upper bound for computational capability of a silicon-based processor.
 - The entire silicon area of a processor is filled with the most fundamental computational unit, in this case we have used 32-bit adders.
 - A real system could never achieve the same performance per Watt because this metric ignores the overhead of control circuitry, interconnect, and memory.

Expanding the ICE to the ECE

- □ The *ICE* gives the *maximum upper bound* on efficiency, but cannot account for realistic systems because it only considers the computational unit.
- □ We build upon the *ICE* by modelling the three fundamental operations of any processing unit:

DP, D43D Jun 2013

Temporal and Spatial Organization of Memory

⊒µ_s

 Gives us the amount of memory per operator. Think of it as the amount of on-chip cache available

□ μ_T

Gives us the number of memory reads/writes per operation.

2 reads, 1 write
$$\mu_T = 3$$

DP, D43D Jun 2013

On- or Off-chip Memory?

- 🛛 ω (0-1)
 - Gives the ratio of on- to off-chip memory in the system.
 Off-chip memory requires exiting the die with I/O drivers to external chips.

DP, D43D Jun 2013

Memory Distribution Factor

- Δ (0-1)
 - Gives the distribution factor of the memory, or how close (local) it is the operator.

0:5abemilocal

Effective Computational Efficiency

For each computation we must consider the expense of energy for the operation, interconnect (on and off-chip) and memory reads/writes.

Modelling Hierarchy

Model Development

Model Verification

11

Stand-alone Parasitic Estimation Tool

DP, D43D Jun 2013

Modelling Hierarchy

DP, D43D Jun 2013

Thermal Behaviour

Compact thermal models have been developed as part of the toolset to quickly predict the thermal behaviour.

- Verification based on comparison with results from a Computational Fluid Dynamic (CFD) solver (FIoTHERM).
- The thermal behaviour and limitations of 2-D and 3-D packages has been extracted from simulations.

Stand-alone 3-D Thermal Tool

DP. D43D Jun 2013

Modelling Hierarchy

DP, D43D Jun 2013

Scaling 2-D versus 3-D DRAM

2-D with off-chip DRAM

2-layer 3-D with in-stack DRAM

DP, D43D Jun 2013

Fixed System: Intel 80 Core

20

Param.	Туре	Intel 80 Core	Equivalent			
Ν	# of Layers	1 (2-D)	1-16 (3-D)		implemented pro	cessors
Α	Die Area	12.64×21.72 mm	275 mm2/N		can be modelled	hyvorving
tn	Tech. node	65 nm	180-17 nm		can be modelled	by varying
b	Data width	32-bit	32		the narameters	
μs	Memory/Operator	2K SRAM/2 FPU	1KB/Op		the parameters	
μt	Memory/Operation	App. Specific	01-Mar			
σ	Bus Sharing Ratio	8x10 mesh/160 FPU	18/160=0.11		Effective Computational	Efficiency
Δ	Memory Distribution	NoC Mesh	0.01-0.1	70 [
ω	On/off-chip mem	All on-chip	1			•
Р	Power (W)	20-230	App. Specific	60	3-D4 model	φ
	· · · · · · · · · · · · · · · · · · ·			- 00		

The 4-layer 80-core 3-D system at 90 nm is still better than a 2-D system at 65 nm

For every doubling of the stack height the computational efficiency increases by 20-30%

180 100 160 140 120 80 60 Technology Node (nm) C University of

A 4-layer partitioned

Intel 80 Core @ 90 nm achieves similar GOPS/Watt

as 2-D implementation in 65 nm

Intel 80 Core @ 65 nm

20

40

DP, D43D Jun 2013

microelectronics research group

50

40

30

20

10

GOPS/Watt

Modelling Hierarchy

DP, D43D Jun 2013

NEM Relay Based Computation

Limitation of CMOS Energy Efficiency

□ NEM relay advantages

- practically zero leakage
- Very steep slope for turn-on/-off transient
- high on-current

DP, D43D Jun 2013

NEM Relay Technology

In-plane switch, fabricated using standard lithography in NEMIAC project; nm gap using sacrificial layer courtesy D. Grogg et al. IBM Research Zurich¹

NEM Relay Modelling

□ FEA to Reduced Order Model to Circuit Model

University of BRISTOL

DP, D43D Jun 2013

ICE with NEM Logic

NEM "tech node" is much larger than CMOS

- Devices fabricated at 17 µm and 5 µm cantilever length
- Miniaturisation increases speed and reduces energy
 - No straightforward analogue to scaling for CMOS

Trajectory is promising

 Ultra-low power technology for low latency, low throughput applications

Intrinsic Computational Efficiency (ICE) 10 CE-T. Claasen ICE-This work 10⁶ MOPS / Watt 105 EM 32 bit (approx) + Tilera 100 + Tilera 36 10 EM 32 bit (approx) 10³ 10^{2} 10⁴ 10^{3} 10 Technology Node (nm)

Ripple-carry architecture and worst-case energy

- Device models at 17µm and 5µm silicon qualified
- 4 and 8- bit adder energy at 17 µm based on accurate circuit model
- 32-bit adders based on scaling

DP, D43D Jun 2013

NEMIAC project
 EU FP7 Strep: Grant No. 288670

ELITE Project

- EU FP7 Strep: Grant No. 215030

26

DP, D43D Jun 2013