
1

ForSyDe: A Formal Framework for

Heterogeneous Models of Computation

Axel Jantsch

Royal Institute of Technology

Sweden

ForSyDe Team:

 Ingo Sander, Hossein Niaki,

Axel Jantsch, Zhonghai Lu,

Tarvo Raudvere, Jun Zhu, Alfonso Acosta

2

• Concurrent process networks

• Formal definition of Communication

• Formal definition of Synchronization

• Formal definition of Time
• Untimed

• Synchronous Time

• Discrete Time

• Continuous Time

• Heterogeneous MoCs

• Execution mechanics

• Purpose of a model: simulation, synthesis,
verification, performance analysis

Models of Computation

A3

A1 A2
s1 s2 s3

s4 s5

3

ForSyDe Objectives

• Model time explicitly

• Allow for time at all abstraction levels

• Allow to mix different time models

• Model process invocation explicitly

• Abstract execution mechanics

4

ForSyDe Features

A3

A1 A2
s1 s2 s3

s4 s5

Processes

• Communicate through signals only;

• Functional

• State-full

• Blocking read

• Partition input and output signals

• Evaluate when required input is

available

Signals

• Sequences of events

• Preserve event order

• Have one writer and multiple readers

• Untimed MoC: Events are partially

ordered

• Discrete Time MoCs: Signals carry

timing information

• Continuous Time MoC: Signals are

functions

5

The ForSyDe Design Flow
Ideal System Model
No resoucre limitation on

•Processors

•Communication bandwidth

•memory

Implementation model
With finite resources

•Processors, HW blocks

•Reconfigurable resources

•Buffers

•Communication architecture

•Schedulers, arbiters

C program
VHDL design

SystemC model

6

Process constructor

ForSyDe Process Constructors
Process = constructor + function + initialState + invocationCondition

state

input

signal

output

signal

γ

invocation

condition

f

Process function

7

The combU Process Constructor

combU (c,f) = p

 where p(s) = s’

Process constructor

<<1>,<2>,<3>,…> 1

invocation

condition

f(x)=2x

Process function

<<2>,<4>,<6>,…> combU (c,f) = A

 where c=1

 f(x) = 2x

8

Models of Computation

Process constructor

state

input

signal

output

signal

γ

invocation

condition

f

Process function

Models of Computation
• Untimed MoC

 (Dataflow, SDF)

• Synchronous MoC

 (Perfectly, Clocked)

• Discrete Time MoC

• Continuous Time MoC

Process Constructors
• State-less

• Finite state machines

• Signal merge/split

• Source/sink

Process Combinators
• Sequential composition

• Parallel composition

• Feed-back composition

9

Definition of a Model of
Computation

The Untimed Model of Computation is defined as

U-MoC = (C,O), with

C = { combU, scanU, scandU, mealyU, mooreU,

 zipU, unzipU, zipWithU, unzipU,

 sourceU, sinkU, initU }

O= { ||, o, FPP }

• Synchronous MoC

• Clocked Synchronous MoC

• Discrete Time MoC

• Continuous MoC

10

Time and Process Invocation In
MoCs

• Untimed MoC:

• No explicit time, ordering of events

• Invocation based on data availability

• Synchronous MoC:

• Slot based time abstraction

• Invocation in every slot

• Discrete Time MoC:

• Physical, discrete time in seconds

• Invocation based on data availability and progress of time

• Continuous Time MoC:

• Physical, continuous time in seconds

• Continuous invocation based on transfer functions

11

The Integrated Model of
Computation

The Integrated Model of Computation is defined
as

HMoC = (M,C,O), with

M = { U-MoC, S-MoC, CS-MoC, T-MoC, CT-MoC}

C = { intSup, intSdown, intTup, intTdown,

 stripT2S, stripT2U, stripS2U,

 insertS2T, insertU2T, insertU2S,

 a2dConverter, d2aConverter }

O= { ||, o, FPP }

12

MoC Interface Processes

Time Refinement

• U-MoC  S-MoC

• U-MoC  T-MoC

• U-MoC  C-MoC

• S-MoC  T-MoC

• S-MoC  C-MoC

• T-MoC  C-MoC

p1 p2 pU2S p3

U-MoC S-MoC

3 2 2 1 1
pS2U p3

T-MoC

pT2C p3

C-MoC

13

MoC Interface Processes

Time Abstraction

• C-MoC  T-MoC

• C-MoC  S-MoC

• C-MoC  U-MoC

• T-MoC  S-MoC

• T-MoC  U-MoC

• S-MoC  U-MoC

p1 pC2T p3

C-MoC T-MoC

2

pT2S p3

S-MoC

pS2U p3

U-MoC

14

Heterogeneous MoCs

p4 pU2S p3

S-MoC

pS2U p2

T-MoC

pT2C p1

C-MoC

p8 pC2T p7 pT2S p6 pS2U p5
1 1

2

2

3 3

1 slot – 1 tocken 10 ns – 1 slot 10 ns – 10 ns

10 ns – 10 ns 10 ns – 1 slot 1 slot – 3 tokens
U-MoC

15

Process Migration

p1 p2 pU2S p3

Untimed MoC Synchronous MoC

p1 p’2 pU2S
p3

Untimed MoC Synchronous MoC

16

Cross Domain Process Refinement

stream in

mealy mealy

 zip

map

map

mealy mealy

 zip

map

map

Bandpass 1 Bandpass 10
…

zipx

map

FM

Demodulator

LowPass

Filter

.

.

.

.

.

.

Adder

stream out

mealy

mealy

stream in

map map

 zip

map

map

map map

 zip

map

map

Bandpass 1 Bandpass 10

map

map

…

zipx

map

FM

Demodulator

LowPass

Filter

.

.

.

.

.

.

Adder

stream out

64/1

2/1

64/1 64/1

1/1

1/1 1/1

1/1

1/1

1/1

64/1 64/1

1/1 1/1

1/1

1/1

1/1

1/1 1/1

SDF MoC Synchronous MoC

17

SDF domain Synchronous domain

mapSDF f_sum sIn = sOut mealySY g f_sum sIn = sOut

Communication layer:

p’map

2/1 2 1

<1, 2, 3, 4, 5, 6> <3, 7, 11> <1, 2, 3, 4, 5, 6>
pserialize

p’mealySynC

ppack
< , (1,2), , (3,4), , (5,6)>   

pmapSynC

< , 3, , 7, , 11>   

sIn sOut sIn sOut

 // f_sum.c

int* sum(int *f1, int *f2) {

 *f2 += *f1;

 return f2; }

-- module pack

-- module serialize

……

ForSyDe Library of
pack & serialize:

Library of Algorithms:

 // ***

// ……

………

……….

mapSDF

f_sum.c

FFI

f

Computation layer:

FFI

g

mealySY

f

pack serialize f_sum.c

Cross Domain Process Refinement

18

Design Decision Transformations
• change the meaning of a model

• are needed to refine an abstract
specification model into an efficient
implementation

• imply a verification task for the
designer FIFO

() 

Specification Model

(abstract)

FIFO

(n)

Implementation Model

(efficient)

Both models can have the same

behavior, as long as the FIFO buffer

will not overflow

19

Scheduling of Operations

• A combinational process with m input signals is
modeled with zipWithSYm (f)

• In each event cycle the function f is applied to the
current values of the input signals

• A large amount of computational resources may be
required for these processes

zipWithSYm

(f)

i1

im
o

Scheduling of operations in time leads to a smaller amount

of computational resources (High-Level Synthesis)

20

Scheduling of Operations

zipWithSYm

(f)

i1

im
o

Combinational process



x2

s2



x3

s3



xm

sm

f(x1, ..., xm)

x1 s1

Schedule

 f(x1, ..., xm) = x1  x2    xm

If

the following schedule using

only one computational unit can

be derived:

21

PN

The design decision transformation
SerialClockDomain

zipWithSYm

(f)

i1

im
o

SerialClockDomain

m

n
o’

Downsample

m

n

Parallel/Serial

i1

im
PFSM

The process PFSM implements the scheduled version of the function f

and is based on a finite state machine process constructor.

22

The design decision transformation
SerialClockDomain

PFSM
m

n

Parallel/Serial

i1

im

m

n
o’

Downsample

PN

zipWithSYm

(f)

i1

im

o’



23

The design decision transformation
SerialClockDomain

PFSM
m

n

Parallel/Serial

i1

im

m

n
o’

Downsample

PN

zipWithSYm

(f)

i1

im

delaySY1

(m0)

o’

=

24

Integration of Existing Models

• Users want to reuse existing models in other design
languages

• SystemC-wrappers integrate “legacy code”

• Matlab, C, VHDL

25

Model Wrapper

26

Cosimulation in ForSyDe

Modeled in VHDL

Simulated with Simulink

27

Simulation Setup Execution time (s)

Pure ForSyDe Model 0.97

Co-simulation with ISS 5.0

Co-execution with Nios II 9.5

Cosimulation in ForSyDe

Implemented in SW;

Simulated with a GDB wrapper:

• As compiled code on the Linux host

• on an Nios ISS

• on an Nios II on a Cyclone II FPGA

28

Refinement-by-Replacement

• SYSMODEL supports refinement-by-replacement
approach

• High-level models can be replaced by low-level code
that may run on executable platforms

29

Refinement by Replacement

30

Merging of processes

31

Platform Instantiation

32

Communication
Synthesis and Extraction

33

Equalizer Case Study

Replacement

Merge

Platform Instatiation

Communication Synthesis

Extraction

34

ForSyDe Status
Ideal System Model
No resoucre limitation on

•Processors

•Communication bandwidth

•memory

Implementation model
With finite resources

•Processors, HW blocks

•Reconfigurable resources

•Buffers

•Communication architecture

•Schedulers, arbiters

C program
VHDL design

SystemC model

Stable Modeling technique

U-MoC, S-MoC,

D-MoC, C-MoC

ForSyDe Libararies

Set of transformations defined

Verification of local

transformations

CoSimulation by Wrapping

Refinement by Replacement

Methodology

35

Selected References
• http://www.ict.kth.se/forsyde/

• Seyed Hosein Attarzadeh Niaki, Ingo Sander, "Semi-Formal Refinement of Heterogeneous Embedded Systems

by Foreign Model Integration", Proceedings of the Forum on Design Languages (FDL), Oldenbour, Germany,

September 2011.

• Seyed Hosein Attarzadeh Niaki and Ingo Sander, "Co-simulation of embedded systems in a heterogeneous

MoC-based modeling framework”, 6th IEEE International Symposium on Industrial Embedded Systems

(SIES), IEEE,, pp. 238--247, June 2011.

• Jun Zhu, Ingo Sander, and Axel Jantsch, "Performance analysis of reconfigurations in adaptive real-time

streaming applications", ACM Transactions in Embedded Computing Systems, 2010.

• Tarvo Raudvere, Ingo Sander, and Axel Jantsch. Application and verification of local non-semantic-preserving

transformations in system design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 27(6):1091-1103, June 2008.

• Deepak Mathaikutty, Hiren Patel, Sandeep Shukla, and Axel Jantsch. SML-Sys: A functional framework for

multiple models of computation for heterogeneous system design. Design Automation for Embedded Systems,

2008.

• Ingo Sander and Axel Jantsch. Modelling adaptive systems in ForSyDe. Electronic Notes in Theoretical

Computer Science (ENTCS), 200(2):39-54, 2008.

• Axel Jantsch and Ingo Sander, "Models of Computation in the Design Process", SoC: Next Generation

Electronics, IEE, edited by Bashir M Al-Hashimi, Invited contribution, 2005.

• Axel Jantsch and Ingo Sander, "Models of Computation and languages for embedded system design", IEE

Proceedings on Computers and Digital Techniques, vol. 152, pp. 114-129, no. 2, Special issue on Embedded

Microelectronic Systems; Invited paper, March 2005.

• Ingo Sander, Axel Jantsch, and Zhonghai Lu, "Development and Application of Design Transformations in

ForSyDe", IEE Proceedings on Computers and Digital Technique, vol. 150, pp. 313-320, no. 5, September

2003.

• Ingo Sander and Axel Jantsch, "System Modeling and Transformational Design Refinement in ForSyDe",

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, pp. 17-32, no. 1,

January 2004.

http://www.ict.kth.se/forsyde/

36

• Questions

Questions ?

37

ForSyDe compliant SystemC

• Project develops SystemC libraries that

• are based on the formal foundations of ForSyDe

– Concept of process constructor

– Well-defined execution semantics

• Project develops modeling guidelines

38

ForSyDe MoCs and SystemC

A3

A1 A2
s1 s2 s3

s4 s5

SCA_SDF_MODULE(A1)

{

 sca_sdf_in<int> s1, s5;

 sca_sdf_out<int> s2;

 void sca_sig_proc();

 SCA_SDF_CTOR();

}

SCA_SDF_MODULE(A2)

{

 sca_sdf_in<int> s2;

 sca_sdf_out<int> s3, s4;

 void sca_sig_proc();

 SCA_SDF_CTOR();

}

SCA_SDF_MODULE(A3)

{

 sca_sdf_in<int> s4;

 sca_sdf_out<int> s5;

 void sca_sig_proc();

 SCA_SDF_CTOR();

}

39

The GDB Wrapper

Wraps compiled software

• C projects compiled with GCC

Uses GNU’s Debugger to

• Communicate data

• Execute and synchronize
(explicitly)

Can wrap

• Software compiled on host

• Software simulated in an ISS

• Software executing on
processor

loop

 inps  {set by GDB for m inputs}

 out ← f(inps)

 out  {read by GDB}

end loop

sw =⟨sw,sw,...⟩
sw =⟨set,continue,read,continue⟩

24 November

2011

3

9

40

The HDL Wrapper

Wraps synchronous
hardware

• Synthesizable subset of an HDL

Uses FIFO-like Unix pipes
to

• Communicate data

• Implicitly synchronize with
blocking semantics

Explicit clock in model
wrapper

• Complies to implicit clock of MoC

• Consistent with other wrapper
clocks

24 November

2011

4

0

41

The HDL Wrapper
reset ← active

wait until rising_edge(clk)

reset ← deactive

loop

 inps ← read(ipipe) {for m inputs}

 if inps = ∅ then {end of simulation}

 exit loop

 end if

 model inputs ← inps

 wait until rising_edge(clk)

 :out ← model outputs {packed to a single output}

 write(opipe, outs)

end loop

24 November

2011

4

1

42

The Simulink Wrapper

Wraps discrete-time Simulink models

• Input and output must be sampled with the
same rate

Uses FIFO-like Unix pipes to

• Communicate data

• Implicitly synchronize with blocking semantics

The model wrapper is

• An input block connected to all system inputs

• An output block connected to all system outputs

24 November

2011

4

2

