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• Concurrent process networks 

• Formal definition of Communication 

• Formal definition of Synchronization 

• Formal definition of Time 
• Untimed 

• Synchronous Time 

• Discrete Time 

• Continuous Time 

• Heterogeneous MoCs  

• Execution mechanics 

• Purpose of a model: simulation, synthesis, 
verification, performance analysis 

Models of Computation 

A3 

A1 A2 
s1 s2 s3 

s4 s5 
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ForSyDe Objectives 

 

• Model time explicitly 

 

• Allow for time at all abstraction levels 

 

• Allow to mix different time models 

 

• Model process invocation explicitly 

 

• Abstract execution mechanics 
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ForSyDe Features 

A3 

A1 A2 
s1 s2 s3 

s4 s5 

Processes 

• Communicate through signals only; 

• Functional 

• State-full 

• Blocking read 

• Partition input and output signals 

• Evaluate when required input is 

available 

Signals 

•  Sequences of events 

• Preserve event order 

• Have one writer and multiple readers 

• Untimed MoC: Events are partially 

ordered 

• Discrete Time MoCs: Signals carry 

timing information 

• Continuous Time MoC: Signals are 

functions 



5 

The ForSyDe Design Flow 
Ideal System Model 
No resoucre limitation on 

•Processors 

•Communication bandwidth 

•memory 

Implementation model 
With finite resources 

•Processors, HW blocks 

•Reconfigurable resources 

•Buffers 

•Communication architecture 

•Schedulers, arbiters 

C program 
VHDL design 

SystemC model 
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Process constructor 

ForSyDe Process Constructors 
Process = constructor + function + initialState + invocationCondition 

state 

input 

signal 

output 

signal 

γ 

invocation 

condition 

f 

Process function 



7 

The combU Process Constructor 

combU (c,f) = p 

       where p(s) = s’ 

Process constructor 

<<1>,<2>,<3>,…> 1 

invocation 

condition 

f(x)=2x 

Process function 

<<2>,<4>,<6>,…> combU (c,f) = A 

       where c=1 

                  f(x) = 2x 
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Models of Computation 

Process constructor 

state 

input 

signal 

output 

signal 

γ 

invocation 

condition 

f 

Process function 

Models of Computation 
• Untimed MoC 

   (Dataflow, SDF) 

• Synchronous MoC  

   (Perfectly, Clocked) 

• Discrete Time MoC 

• Continuous Time MoC 

Process Constructors 
• State-less 

• Finite state machines 

• Signal merge/split 

• Source/sink 

 

 

Process Combinators 
• Sequential composition 

• Parallel composition 

• Feed-back composition 
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Definition of a Model of 
Computation 

The Untimed Model of Computation is defined as 

U-MoC = (C,O), with 

C = { combU, scanU, scandU, mealyU, mooreU, 

         zipU, unzipU, zipWithU, unzipU, 

         sourceU, sinkU, initU } 

O= { ||, o, FPP } 

• Synchronous MoC 

• Clocked Synchronous MoC 

• Discrete Time MoC 

• Continuous MoC 
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Time and Process Invocation In 
MoCs 

• Untimed MoC:  

• No explicit time, ordering of events 

• Invocation based on data availability 

• Synchronous MoC: 

• Slot based time abstraction 

• Invocation in every slot 

• Discrete Time MoC: 

• Physical, discrete time in seconds 

• Invocation based on data availability and progress of time 

• Continuous Time MoC: 

• Physical, continuous time in seconds 

• Continuous invocation based on transfer functions 
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The Integrated Model of 
Computation 

The Integrated Model of Computation is defined 
as 

HMoC = (M,C,O), with 

M = { U-MoC, S-MoC, CS-MoC, T-MoC, CT-MoC} 

C = { intSup, intSdown, intTup, intTdown,  

          stripT2S, stripT2U, stripS2U, 

          insertS2T, insertU2T, insertU2S, 

          a2dConverter, d2aConverter  } 

O= { ||, o, FPP } 
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MoC Interface Processes 

Time Refinement 

• U-MoC  S-MoC 

• U-MoC  T-MoC 

• U-MoC  C-MoC 

• S-MoC  T-MoC 

• S-MoC  C-MoC 

• T-MoC  C-MoC 

p1 p2 pU2S p3 

U-MoC S-MoC 

3 2 2 1 1 
pS2U p3 

T-MoC 

pT2C p3 

C-MoC 
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MoC Interface Processes 

Time Abstraction 

• C-MoC  T-MoC 

• C-MoC  S-MoC 

• C-MoC  U-MoC 

• T-MoC  S-MoC 

• T-MoC  U-MoC 

• S-MoC  U-MoC 

p1 pC2T p3 

C-MoC T-MoC 

2 

pT2S p3 

S-MoC 

pS2U p3 

U-MoC 
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Heterogeneous MoCs 

p4 pU2S p3 

S-MoC 

pS2U p2 

T-MoC 

pT2C p1 

C-MoC 

p8 pC2T p7 pT2S p6 pS2U p5 
1 1 

2 

2 

3 3 

1 slot – 1 tocken 10 ns – 1 slot 10 ns – 10 ns 

10 ns – 10 ns 10 ns – 1 slot 1 slot – 3 tokens 
U-MoC 
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Process Migration 

p1 p2 pU2S p3 

Untimed MoC Synchronous MoC 

p1 p’2 pU2S 
p3 

Untimed MoC Synchronous MoC 
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Cross Domain Process Refinement 

stream in 

mealy mealy 

 zip 

map 

map 

mealy mealy 

 zip 

map 

map 

Bandpass 1 Bandpass 10 
… 

zipx 

map 

FM 

Demodulator 

LowPass 

Filter 

. 

. 

. 

. 

. 

. 

Adder 

stream out 

mealy 

mealy 

stream in 

map map 

 zip 

map 

map 

map map 

 zip 

map 

map 

Bandpass 1 Bandpass 10 

map 

map 

… 

zipx 

map 

FM  

Demodulator 

LowPass 

Filter 

. 

. 

. 

. 

. 

. 

Adder 

stream out 

64/1 

2/1 

64/1 64/1 

1/1 

1/1 1/1 

1/1 

1/1 

1/1 

64/1 64/1 

1/1 1/1 

1/1 

1/1 

1/1 

1/1 1/1 

SDF MoC Synchronous MoC 
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SDF domain Synchronous domain 

mapSDF  f_sum  sIn =  sOut mealySY g f_sum sIn =  sOut 

Communication layer: 

p’map 

 

2/1 2 1 

<1, 2, 3, 4, 5, 6> <3, 7, 11> <1, 2, 3, 4, 5, 6> 
pserialize 

p’mealySynC 

ppack 
<    , (1,2),    , (3,4),    , (5,6)>   

pmapSynC 

<    , 3,    , 7,    , 11>   

sIn sOut sIn sOut 

 // f_sum.c 

int*  sum(int *f1, int *f2)   { 

  *f2 += *f1; 

  return f2;    } 

-- module pack 

-- module serialize 

…… 

ForSyDe Library of 
pack & serialize: 

Library of Algorithms: 

 // *** 

// …… 

……… 

………. 

mapSDF 

f_sum.c 

FFI 

f 

Computation layer: 

FFI 

g 

mealySY 

f 

pack serialize f_sum.c 

Cross Domain Process Refinement 
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Design Decision Transformations 
• change the meaning of a model 

• are needed to refine an abstract 
specification model into an efficient 
implementation 

• imply a verification task for the 
designer FIFO 

(    ) 

Specification Model 

(abstract) 

FIFO 

(n) 

Implementation Model 

(efficient) 

Both models can have the same 

behavior, as long as the FIFO buffer 

will not overflow 
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Scheduling of Operations 

• A combinational process with m input signals is 
modeled with zipWithSYm (f) 

• In each event cycle the function f is applied to the 
current values of the input signals 

• A large amount of computational resources may be 
required for these processes 

zipWithSYm 

(f) 

i1 

im 
o 

Scheduling of operations in time leads to a smaller amount 

of computational resources (High-Level Synthesis) 
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Scheduling of Operations 

zipWithSYm 

(f) 

i1 

im 
o 

Combinational process 

 

x2 

s2 

 

x3 

s3 

 

xm 

sm 

f(x1, ..., xm) 

x1 s1 

Schedule 

 f(x1, ..., xm) = x1  x2     xm 

If 

the following schedule using 

only one computational unit can 

be derived: 
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PN 

The design decision transformation 
SerialClockDomain 

zipWithSYm 

(f) 

i1 

im 
o 

SerialClockDomain 

m 

n 
o’ 

Downsample 

m 

n 

Parallel/Serial 

i1 

im 
PFSM 

The process PFSM implements the scheduled version of the function f 

and is based on a finite state machine process constructor. 
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The design decision transformation 
SerialClockDomain 

PFSM 
m 

n 

Parallel/Serial 

i1 

im 

m 

n 
o’ 

Downsample 

PN 

zipWithSYm 

(f) 

i1 

im 

o’ 


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The design decision transformation 
SerialClockDomain 

PFSM 
m 

n 

Parallel/Serial 

i1 

im 

m 

n 
o’ 

Downsample 

PN 

zipWithSYm 

(f) 

i1 

im 

delaySY1 

(m0) 

o’ 

= 
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Integration of Existing Models 

• Users want to reuse existing models in other design 
languages 

• SystemC-wrappers integrate “legacy code” 

• Matlab, C, VHDL 
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Model Wrapper 
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Cosimulation in ForSyDe 

Modeled in VHDL 

Simulated with Simulink 
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Simulation Setup Execution time (s) 

Pure ForSyDe Model 0.97 

Co-simulation with ISS 5.0 

Co-execution with Nios II 9.5 

Cosimulation in ForSyDe 

Implemented in SW; 

Simulated with a GDB wrapper: 

• As compiled code on the Linux host  

• on an Nios ISS 

• on an Nios II on a Cyclone II FPGA  
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Refinement-by-Replacement 

• SYSMODEL supports refinement-by-replacement 
approach 

• High-level models can be replaced by low-level code 
that may run on executable platforms 
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Refinement by Replacement 
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Merging of processes 



31 

 

Platform Instantiation 
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Communication  
Synthesis    and    Extraction 
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Equalizer Case Study 

Replacement 

Merge 

Platform Instatiation 

Communication Synthesis 

Extraction 
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ForSyDe Status 
Ideal System Model 
No resoucre limitation on 

•Processors 

•Communication bandwidth 

•memory 

Implementation model 
With finite resources 

•Processors, HW blocks 

•Reconfigurable resources 

•Buffers 

•Communication architecture 

•Schedulers, arbiters 

C program 
VHDL design 

SystemC model 

Stable Modeling technique 

U-MoC, S-MoC, 

D-MoC, C-MoC 

ForSyDe Libararies 

Set of transformations defined 

Verification of local  

transformations 

CoSimulation by Wrapping 

 

Refinement by Replacement  

Methodology 
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• Questions 
 
 
 
 

Questions ? 
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ForSyDe compliant SystemC 

• Project develops SystemC libraries that  

• are based on the formal foundations of ForSyDe  

– Concept of process constructor 

– Well-defined execution semantics 

•  Project develops modeling guidelines 
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ForSyDe MoCs and SystemC 

A3 

A1 A2 
s1 s2 s3 

s4 s5 

SCA_SDF_MODULE(A1) 

{ 

   sca_sdf_in<int> s1, s5; 

   sca_sdf_out<int> s2; 

   void sca_sig_proc(); 

   SCA_SDF_CTOR(); 

} 

SCA_SDF_MODULE(A2) 

{ 

   sca_sdf_in<int> s2; 

   sca_sdf_out<int> s3, s4; 

   void sca_sig_proc(); 

   SCA_SDF_CTOR(); 

} 

SCA_SDF_MODULE(A3) 

{ 

   sca_sdf_in<int> s4; 

   sca_sdf_out<int> s5; 

   void sca_sig_proc(); 

   SCA_SDF_CTOR(); 

} 
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The GDB Wrapper 

Wraps compiled software 

• C projects compiled with GCC 

Uses GNU’s Debugger to 

• Communicate data 

• Execute and synchronize 
(explicitly) 

Can wrap 

• Software compiled on host 

• Software simulated in an ISS 

• Software executing on 
processor 

loop 

 inps  {set by GDB for m inputs} 

 out ← f(inps) 

 out  {read by GDB} 

end loop 

 

sw =⟨sw,sw,...⟩ 
sw =⟨set,continue,read,continue⟩ 

 

 

 

24 November 

2011 

3

9 
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The HDL Wrapper 

Wraps synchronous 
hardware 

• Synthesizable subset of an HDL 

Uses FIFO-like Unix pipes 
to 

• Communicate data 

• Implicitly synchronize with 
blocking semantics 

Explicit clock in model 
wrapper 

• Complies to implicit clock of MoC 

• Consistent with other wrapper 
clocks 

24 November 

2011 

4

0 
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The HDL Wrapper 
reset ← active 

wait until rising_edge(clk) 

reset ← deactive 

loop 

 inps ← read(ipipe) {for m inputs} 

 if inps = ∅ then {end of simulation} 

  exit loop 

 end if 

 model inputs ← inps 

 wait until rising_edge(clk) 

 :out ← model outputs {packed to a single output} 

 write(opipe, outs) 

end loop 

 
24 November 

2011 

4

1 
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The Simulink Wrapper 

Wraps discrete-time Simulink models 

• Input and output must be sampled with the 
same rate 

Uses FIFO-like Unix pipes to 

• Communicate data 

• Implicitly synchronize with blocking semantics 

The model wrapper is 

• An input block connected to all system inputs 

• An output block connected to all system outputs 

24 November 

2011 

4

2 


