Network-on-Chips

Fudan University, Shanghai, June 2009

Axel Jantsch and Zhonghai Lu
Royal Institute of Technology, Stockholm, Sweden

Intel's Teraflop Research Project

- 80 cores
- 100 Million transistors
- $65 n m$ process
- 3.16 GHz
- 0.95 V
- 62 W

Terhnology	65rm CmOS Prooss
Interonned	1 poly, 8 metal (Cu)
Transistors	100 million
Die Area	$275 \mathrm{~mm}{ }^{2}$
Tile area	$3 \mathrm{~m} \mathrm{~m}^{2}$
Fackage	1246 pin LGA, 14 343 signa pins

- 1.62 Terabit/s aggregate bandwidth
- 1.01 Teraflops

Tilera's TILEPro64(TM)

Tilera's TILEPro64 ${ }^{\text {TM }}$ Processor

Number of Cores on Chip

International Roadmap for Semiconductors 2007 edition (http://www.itrs.net/)

Moore's Law Rephrased

Number of cores will double every 18 months.

	2002	2005	2008	2011	2014
Research	16	64	256	1024	4096
Industry	4	16	64	256	1024

1K cores by 2014! Are we ready?

Source: Anand Agarwal, NOCS 2009

Vision for the Future

- The 'core' is the logic gate of the $21^{\text {st }}$ century

Source: Anand Agarwal, NOCS 2009

Why Multi-Core?

Why Multi-Core?

- Parallelism is power efficient

Why Multi-Core?

- Parallelism is power efficient
- Single core frequency is leveling off around 1 GHz

Why Multi-Core?

- Parallelism is power efficient
- Single core frequency is leveling off around 1 GHz
- Global wires do not scale

Why Multi-Core?

- Parallelism is power efficient
- Single core frequency is leveling off around 1 GHz
- Global wires do not scale
- On-chip global synchronicity is impossible

Why Multi-Core?

- Parallelism is power efficient
- Single core frequency is leveling off around 1 GHz
- Global wires do not scale
- On-chip global synchronicity is impossible
- Memory access must become more parallel to increase bandwidth and keep latency in check

Why Multi-Core?

- Parallelism is power efficient
- Single core frequency is leveling off around 1 GHz
- Global wires do not scale
- On-chip global synchronicity is impossible
- Memory access must become more parallel to increase bandwidth and keep latency in check
- The investment to make single cores more powerful is not paying back

Why Network on Chip?

Why Network on Chip?

- Buses do not scale
* Neither in terms of performance
\star Nor in terms of power

Why Network on Chip?

- Buses do not scale
\star Neither in terms of performance
\star Nor in terms of power
- Due to many cores, communication must be parallel
- Due to non-scaling of global wires, communication must be pipelined

Why Network on Chip?

- Buses do not scale
\star Neither in terms of performance
* Nor in terms of power
- Due to many cores, communication must be parallel
- Due to non-scaling of global wires, communication must be pipelined
- If you have parallel and pipelined communication resources, you have to provide
* Routing
* Switching
* Flow control

Why Network on Chip?

- Buses do not scale
* Neither in terms of performance
\star Nor in terms of power
- Due to many cores, communication must be parallel
- Due to non-scaling of global wires, communication must be pipelined
- If you have parallel and pipelined communication resources, you have to provide
\star Routing
* Switching
* Flow control
\Rightarrow On-chip communication networks are inevitable!

Network Layer Communication Performance in Network-on-Chips

Introduction
Communication Performance Organizational Structure Interconnection Topologies
Trade-offs in Network Topology
Routing
Quality of Service

Introduction

- Topology: How switches and nodes are connected
- Routing algorithm: determines the route from source to destination
- Switching strategy: how a message traverses the route
- Flow control: Schedules the traversal of the message over time

Basic Definitions

Basic Definitions

Message is the basic communication entity.
Flit is the basic flow control unit. A message consists of 1 or many flits.
Phit is the basic unit of the physical layer.

Basic Definitions

Message is the basic communication entity.
Flit is the basic flow control unit. A message consists of 1 or many flits.
Phit is the basic unit of the physical layer.
Direct network is a network where each switch connects to a node.
Indirect network is a network with switches not connected to any node.

Basic Definitions

Message is the basic communication entity.
Flit is the basic flow control unit. A message consists of 1 or many flits.
Phit is the basic unit of the physical layer.
Direct network is a network where each switch connects to a node.
Indirect network is a network with switches not connected to any node.
Hop is the basic communication action from node to switch or from switch to switch.

Basic Definitions

Message is the basic communication entity.
Flit is the basic flow control unit. A message consists of 1 or many flits.
Phit is the basic unit of the physical layer.
Direct network is a network where each switch connects to a node.
Indirect network is a network with switches not connected to any node.
Hop is the basic communication action from node to switch or from switch to switch.
Diameter is the length of the maximum shortest path between any two nodes measured in hops.
Routing distance between two nodes is the number of hops on a route.
Average distance is the average of the routing distance over all pairs of nodes.

Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a direct connection between source and destination.

Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a direct connection between source and destination.

Packet Switching Each packet of a message is routed independently. The destination address has to be provided with each packet.

Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a direct connection between source and destination.

Packet Switching Each packet of a message is routed independently. The destination address has to be provided with each packet.

Store and Forward Packet Switching The entire packet is stored and then forwarded at each switch.

Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a direct connection between source and destination.

Packet Switching Each packet of a message is routed independently. The destination address has to be provided with each packet.

Store and Forward Packet Switching The entire packet is stored and then forwarded at each switch.

Cut Through Packet Switching The flits of a packet are pipelined through the network. The packet is not completely buffered in each switch.

Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a direct connection between source and destination.

Packet Switching Each packet of a message is routed independently. The destination address has to be provided with each packet.

Store and Forward Packet Switching The entire packet is stored and then forwarded at each switch.

Cut Through Packet Switching The flits of a packet are pipelined through the network. The packet is not completely buffered in each switch.
Virtual Cut Through Packet Switching The entire packet is stored in a switch only when the header flit is blocked due to congestion.

Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a direct connection between source and destination.

Packet Switching Each packet of a message is routed independently. The destination address has to be provided with each packet.

Store and Forward Packet Switching The entire packet is stored and then forwarded at each switch.

Cut Through Packet Switching The flits of a packet are pipelined through the network. The packet is not completely buffered in each switch.
Virtual Cut Through Packet Switching The entire packet is stored in a switch only when the header flit is blocked due to congestion.
Wormhole Switching is cut through switching and all flits are blocked on the spot when the header flit is blocked.

Latency

Time $(n)=$ Admission + RoutingDelay + ContentionDelay
Admission is the time it takes to emit the message into the network.
RoutingDelay is the delay for the route.
ContentionDelay is the delay of a message due to contention.

Routing Delay

Store and Forward:

$$
T_{s f}(n, h)=h\left(\frac{n}{b}+\Delta\right)
$$

n... message size in bits
$n_{p} \ldots$ size of message fragments in bits
$h \ldots$ number of hops
b... raw bandwidth of the channel
Δ... switching delay per hop

Routing Delay

Store and Forward:

$$
T_{s f}(n, h)=h\left(\frac{n}{b}+\Delta\right)
$$

Circuit Switching:

$$
T_{c s}(n, h)=\frac{n}{b}+h \Delta
$$

n... message size in bits
$n_{p} \ldots$ size of message fragments in bits
$h \ldots$ number of hops
b... raw bandwidth of the channel
Δ... switching delay per hop

Routing Delay

Store and Forward:

$$
T_{s f}(n, h)=h\left(\frac{n}{b}+\Delta\right)
$$

Circuit Switching:

$$
T_{c s}(n, h)=\frac{n}{b}+h \Delta
$$

Cut Through:

$$
T_{c t}(n, h)=\frac{n}{b}+h \Delta
$$

n... message size in bits
$n_{p} \ldots$ size of message fragments in bits
$h \ldots$ number of hops
b... raw bandwidth of the channel
Δ... switching delay per hop

Routing Delay

Store and Forward:

$$
T_{s f}(n, h)=h\left(\frac{n}{b}+\Delta\right)
$$

Circuit Switching:

$$
T_{c s}(n, h)=\frac{n}{b}+h \Delta
$$

$$
T_{c t}(n, h)=\frac{n}{b}+h \Delta
$$

Cut Through:

$$
T_{s f}\left(n, h, n_{p}\right)=\frac{n-n_{p}}{b}+h\left(\frac{n_{p}}{b}+\Delta\right)
$$

Store and Forward with fragmented packets:
n... message size in bits
$n_{p} \ldots$ size of message fragments in bits
$h \ldots$ number of hops
b... raw bandwidth of the channel
Δ... switching delay per hop

Routing Delay: Store and Forward vs Cut Through

Routing Delay: Store and Forward vs Cut Through

A. Jantsch, Z. Lu, KTH

Local and Global Bandwidth

Local bandwidth $=b$ [bits/second]
Total bandwidth $=C b[$ bits $/$ second $]=C w[$ bits/cycle $]=C[$ phits $/$ cycle $]$
Bisection bandwidth ... minimum bandwidth to cut the net into two equal parts.
b... raw bandwidth of a link;
n... message size;
$n_{E} \ldots$ size of message envelope;
w... link bandwidth per cycle;
Δ... switching time for each switch in cycles;
$w \Delta$... bandwidth lost during switching;
C... total number of channels;

For a $k \times k$ mesh with bidirectional channels:

Total bandwidth $=\left(4 k^{2}-4 k\right) b$ Bisection bandwidth $=2 k b$

Link and Network Utilization

total load on the network: $L=\frac{N h l}{M}$ [phits/cycle]

$$
\text { load per channel: } \rho=\frac{N h l}{M C}[\text { phits/cycle }] \leq 1
$$

M... each host issues a packet every M cycles
C... number of channels
N... number of nodes
h... average routing distance
$l=n / w \ldots$ number of cycles a message occupies a channel
n... average message size
w ... bitwidth per channel

Network Saturation

Typical saturation points are between 40% and 70%.
The saturation point depends on

- Traffic pattern
- Stochastic variations in traffic
- Routing algorithm

Organizational Structure

- Link
- Switch
- Network Interface

Link

Short link At any time there is only one data word on the link.

Long link Several data words can travel on the link simultaneously.
Narrow link Data and control information is multiplexed on the same wires.

Wide link Data and control information is transmitted in parallel and simultaneously.

Synchronous clocking Both source and destination operate on the same clock.

Asynchronous clocking The clock is encoded in the transmitted data to allow the receiver to sample at the right time instance.

Switch

Switch Design Issues

Degree: number of inputs and outputs;
Buffering

- Input buffers
- Output buffers
- Shared buffers

Routing

- Source routing
- Deterministic routing
- Adaptive routing

Output scheduling
Deadlock handling

Control flow

Network Interface

- Admission protocol
- Reception obligations
- Buffering
- Assembling and disassembling of messages
- Routing
- Higher level services and protocols

Interconnection Topologies

- Fully connected networks
- Linear arrays and rings
- Multidimensional meshes and tori
- Trees
- Butterflies

Fully Connected Networks

Linear Arrays and Rings

Multidimensional Meshes and Tori

k-ary d-cubes are d-dimensional tori with unidirectional links and k nodes in each dimension:

number of nodes N	$=k^{d}$
switch degree	$=d$
diameter	$=d(k-1)$
distance	$\sim d \frac{1}{2}(k-1)$
network cost	$=O(N)$
total bandwidth	$=2 N b$
bisection bandwidth	$=2 k^{(d-1)} b$

Routing Distance in k-ary n-Cubes

Projecting High Dimensional Cubes

2-ary 2-cube

2-ary 3-cube

2-ary 4-cube

2-ary 5-cube
A. Jantsch, Z. Lu, KTH

Binary Trees

k-ary Trees

Binary Tree Projection

k-ary n-Cubes versus k-ary Trees

k-ary n-cubes:

number of nodes N	$=k^{d}$
switch degree	$=d+2$
diameter	$=d(k-1)$
distance	$\sim d \frac{1}{2}(k-1)$
network cost	$=O(N)$
total bandwidth	$=2 N b$
bisection bandwidth	$=2 k^{(d-1)} b$

k-ary trees:

number of nodes N	$=k^{d}$
number of switches	$\sim k^{d}$
switch degree	$=k+1$
diameter	$=2 d$
distance	$\sim d+2$
network cost	$=O(N)$
total bandwidth	$=2 \cdot 2(N-1) b$
bisection bandwidth	$=k b$

Fat Trees

16-node 2-ary fat-tree
A. Jantsch, Z. Lu, KTH

k-ary n-dimensional Fat Tree Characteristics

16-node 2-ary fat-tree

number of nodes N	$=k^{d}$
number of switches	$=k^{d-1} d$
switch degree	$=2 k$
diameter	$=2 d$
distance	$\sim d$
network cost	$=O(N d)$
total bandwidth	$=2 N d b$
bisection bandwidth	$=2 k^{d-1} b$

k-ary n-Cubes versus k-ary d-dimensional Fat Trees

k-ary n-cubes:

number of nodes N	$=k^{d}$
switch degree	$=d$
diameter	$=d(k-1)$
distance	$\sim d \frac{1}{2}(k-1)$
network cost	$=O(N)$
total bandwidth	$=2 N b$
bisection bandwidth	$=2 k^{(d-1)} b$

k-ary n-dimensional fat trees:

number of nodes N	$=k^{d}$
number of switches	$=k^{d-1} d$
switch degree	$=2 k$
diameter	$=2 d$
distance	$\sim d$
network cost	$=O(N d)$
total bandwidth	$=2 N d b$
bisection bandwidth	$=2 k^{d-1} b$

Relation between Fat Tree and Hypercube

binary 2-dim fat tree

binary 1-cube

Relation between Fat Tree and Hypercube - cont'd

binary 3-dim fat tree

binary 2 -cube

binary 2 -cube

Relation between Fat Tree and Hypercube - cont'd

binary 4-dim fat tree

binary 3-cube

binary 3-cube

Trade-offs in Topology Design for the k-ary n-Cube

- Unloaded Latency
- Latency under Load

Network Scaling for Unloaded Latency

Latency $(n)=$ Admission + RoutingDelay + ContentionDelay
RoutingDelay $T_{c t}(n, h)=\frac{n}{b}+h \Delta$

$$
\text { RoutingDistance } h=\frac{1}{2} d(k-1)
$$

Unloaded Latency for Small Networks and Local Traffic

Unloaded Latency under a Free-Wire Cost Model

Free-wire cost model: Wires are free and can be added without penalty.

Unloaded Latency under a Fixed-Wire Cost Models

Fixed-wire cost model: The number of wires is constant per node:
128 wires per node: $w(d)=\left\lfloor\frac{64}{d}\right\rfloor$.

d	2	3	4	5	6	7	8	9	10
$w(d)$	32	21	16	12	10	9	8	7	6

Unloaded Latency under a Fixed-Bisection Cost Models

Fixed-bisection cost model: The number of wires across the bisection is constant:
bisection $=1024$ wires: $w(d)=\frac{k}{2}=\frac{\sqrt[d]{N}}{2}$.
Example: $\mathrm{N}=1024$:

d	2	3	4	5	6	7	8	9	10
$w(d)$	512	16	5	3	2	2	1	1	1

Unloaded Latency under a Logarithmic Wire Delay Cost Models

Fixed-bisection Logarithmic Wire Delay cost model: The number of wires across the bisection is constant and the delay on wires increases logarithmically with the length [Dally, 1990]: Length of long wires: $l=k^{\frac{n}{2}-1}$

$$
T_{c} \propto 1+\log l=1+\left(\frac{d}{2}-1\right) \log k
$$

Unloaded Latency under a Linear Wire Delay Cost Models

Fixed-bisection Linear Wire Delay cost model: The number of wires across the bisection is constant and the delay on wires increases linearly with the length [Dally, 1990]:
Length of long wires: $l=k^{\frac{n}{2}-1}$

$$
T_{c} \propto l=k^{\frac{d}{2}-1}
$$

Latency under Load

Assumptions [Agarwal, 1991]:

- k-ary n-cubes
- random traffic
- dimension-order cut-through routing
- unbounded internal buffers (to ignore flow control and deadlock issues)

Latency under Load - cont'd

Latency $(n)=$ Admission + RoutingDelay + ContentionDelay

$$
\begin{aligned}
T(m, k, d, w, \rho) & =\text { RoutingDelay }+ \text { ContentionDelay } \\
T(m, k, d, w, \rho) & =\frac{m}{w}+d h_{k}(\Delta+W(m, k, d, w, \rho)) \\
W(m, k, d, w, \rho) & =\frac{m}{w} \cdot \frac{\rho}{(1-\rho)} \cdot \frac{h_{k}-1}{h_{k}^{2}} \cdot\left(1+\frac{1}{d}\right) \\
h & =\frac{1}{2} d(k-1)
\end{aligned}
$$

m... message size
w ... bitwidth of link
$\rho \cdots$ aggregate channel utilization
$h_{k} \cdots$ average distance in each dimension
$\Delta \cdots$ switching time in cycles

Latency vs Channel Load

Latency under Load for Hot Potato Routing

Assumptions [Jantsch 2006]:

- 2 dimensional mesh
- empirical model to be validated for each traffic pattern
- non-minimal deflection / hot potato routing
- no internal buffers
- single flit packets

$$
\text { latency }=\frac{2}{3} k \Delta \delta \leq \frac{2}{3} k \Delta D_{1}(E)
$$

$\frac{2}{3} k \quad \cdots$ average distance
$\Delta \quad$... switching time in cycles
$\delta \quad$... deflection factor
$E \quad$... packet emission probability per node
$D_{1}(E) \cdots$ delay bound for 90% of packets under uniform traffic

Routing

Deterministic routing The route is determined solely by source and destination locations.

Arithmetic routing The destination address of the incoming packet is compared with the address of the switch and the packet is routed accordingly. (relative or absolute addresses)

Source based routing The source determines the route and builds a header with one directive for each switch. The switches strip off the top directive.

Table-driven routing Switches have routing tables, which can be configured.
Adaptive routing The route can be adapted by the switches to balance the load.

Minimal routing allows only shortest paths while non-minimal routing allows even longer paths.

Deadlock

Deadlock Two or several packets mutually block each other and wait for resources, which can never be free.

Livelock A packet keeps moving through the network but never reaches its destination.

Starvation A packet never gets a resource because it always looses the competition for that resource (fairness).

Deadlock Situations

- Head-on deadlock;
- Nodes stop receiving packets;
- Contention for switch buffers can occur with store-and-forward, virtual-cut-through and wormhole routing. Wormhole routing is particularly sensible.
- Cannot occur in butterflies;
- Cannot occur in trees or fat trees if upward and downward channels are independent;
- Dimension order routing is deadlock free on k-ary n-arrays but not on tori with any $n \geq 1$.

Deadlock in a 1-dimensional Torus

Message 1 from C-> B, 10 flits
Message 2 from A-> D, 10 flits

Channel Dependence Graph for Dimension Order Routing

4-ary 2-array

Routing is deadlock free if the channel dependence graph has no cycles.

Deadlock-free Routing

- Two main approaches:
* Restrict the legal routes;
* Restrict how resources are allocated;
- Number the channel cleverly
- Construct the channel dependence graph
- Prove that all legal routes follow a strictly increasing path in the channel dependence graph.

Virtual Channels

- Virtual channels can be used to break cycles in the dependence graph.
- E.g. all n-dimensional tori can be made deadlock free under dimension-order routing by assigning all wrap-around paths to a different virtual channel than other links.

Virtual Channels and Deadlocks

Turn-Model Routing

What are the minimal routing restrictions to make routing deadlock free?

- Three minimal routing restriction schemes:
\star North-last
* West-first
\star Negative-first
- Allow complex, non-minimal adaptive routes.
- Unidirectional k-ary n-cubes still need virtual channels.

Adaptive Routing

- The switch makes routing decisions based on the load.
- Fully adaptive routing allows all shortest paths.
- Partial adaptive routing allows only a subset of the shortest path.
- Non-minimal adaptive routing allows also non-minimal paths.
- Hot-potato routing is non-minimal adaptive routing without packet buffering.

Quality of Service

- Best Effort (BE)
\star Optimization of the average case
* Loose or non-existent worst case bounds
* Cost effective use of resources
- Guaranteed Service (GS)
* Maximum delay
* Minimum bandwidth
* Maximum Jitter
\star Requires additional resources

Regulated Flows

A Flow F is (σ, ρ) regulated if

$$
R(b)-R(a) \leq \sigma+\rho(b-a)
$$

for all time intervals $[a, b], 0 \leq a \leq b$ and where
$R(t) \cdots$ the cumulative amount of traffic between 0 and $t \geq 0$.
$\sigma \geq 0$ is the burstiness constraint;
$\rho \geq 0$ is the maximum average rate;

Regulated Flows

A Flow F is (σ, ρ) regulated if

$$
R(b)-R(a) \leq \sigma+\rho(b-a)
$$

for all time intervals $[a, b], 0 \leq a \leq b$ and where $R(t) \cdots$ the cumulative amount of traffic between 0 and $t \geq 0$. $\sigma \geq 0$ is the burstiness constraint; $\rho \geq 0$ is the maximum average rate;

Regulated Flows - Delay Element

Regulated Flows - Delay Element

$$
\begin{gathered}
F_{1} \sim(\sigma, \rho) \\
F_{2} \sim(\sigma+\rho D, \rho)
\end{gathered}
$$

Regulated Flows - Work Conserving Multiplexer

Regulated Flows - Work Conserving Multiplexer

$$
\begin{aligned}
F_{1} & \sim\left(\sigma_{1}, \rho_{1}\right) \\
F_{2} & \sim\left(\sigma_{2}, \rho_{2}\right) \\
\text { link bandwidth } b & <\rho_{1}+\rho_{2} \\
F_{3} & \sim ? \\
\text { maximum delay } D & =? \\
\text { maximum backlog } B & =?
\end{aligned}
$$

Work Conserving Multiplexer - 1

Work Conserving Multiplexer - 1

Phase $1\left(t_{1}\right): F_{1}$ and F_{2} transmit at full speed;

Work Conserving Multiplexer-1

Phase $1\left(t_{1}\right): F_{1}$ and F_{2} transmit at full speed;
Assume: At $t=0$ the queue is empty; $\sigma_{1} \leq \sigma_{2}$

Work Conserving Multiplexer - 1

Phase $1\left(t_{1}\right): F_{1}$ and F_{2} transmit at full speed;
Assume: At $t=0$ the queue is empty; $\sigma_{1} \leq \sigma_{2}$
Injection rate: $2 b$; Drain rate: b

Work Conserving Multiplexer - 1

Phase $1\left(t_{1}\right): F_{1}$ and F_{2} transmit at full speed;
Assume: At $t=0$ the queue is empty; $\sigma_{1} \leq \sigma_{2}$ Injection rate: $2 b$; Drain rate: b

$$
\begin{aligned}
b t_{1} & =\sigma_{1}+\rho_{1} t_{1} \\
t_{1} & =\frac{\sigma_{1}}{b-\rho_{1}}
\end{aligned}
$$

Work Conserving Multiplexer-2

Work Conserving Multiplexer-2

Phase $2\left(t_{2}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at full speed;

Work Conserving Multiplexer-2

Phase $2\left(t_{2}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at full speed; Injection rate: $b+\rho_{1}$; Drain rate: b

Work Conserving Multiplexer-2

Phase $2\left(t_{2}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at full speed; Injection rate: $b+\rho_{1}$; Drain rate: b

$$
\begin{aligned}
b t_{\mathrm{accu}} & =\sigma_{2}+\rho_{2} t_{\mathrm{accu}} \\
t_{\mathrm{accu}} & =\frac{\sigma_{2}}{b-\rho_{2}}
\end{aligned}
$$

Work Conserving Multiplexer-3

Work Conserving Multiplexer-3

Phase $3\left(t_{\text {drain }}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at rate ρ_{2};

Work Conserving Multiplexer-3

Phase $3\left(t_{\text {drain }}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at rate ρ_{2}; Injection rate: $\rho_{1}+\rho_{2}$; Drain rate: b

Work Conserving Multiplexer-3

Phase $3\left(t_{\text {drain }}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at rate ρ_{2}; Injection rate: $\rho_{1}+\rho_{2}$; Drain rate: b

$$
t_{\text {drain }}=\frac{B_{\max }}{b-\rho_{1}-\rho_{2}}
$$

Work Conserving Multiplexer-3

Phase $3\left(t_{\text {drain }}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at rate ρ_{2}; Injection rate: $\rho_{1}+\rho_{2}$; Drain rate: b

$$
\begin{aligned}
t_{\text {drain }} & =\frac{B_{\max }}{b-\rho_{1}-\rho_{2}} \\
B_{\max } & =b t_{1}+\rho_{1} t_{2}
\end{aligned}
$$

Work Conserving Multiplexer-3

Phase $3\left(t_{\text {drain }}\right): F_{1}$ transmits at rate ρ_{1}, F_{2} transmits at rate ρ_{2}; Injection rate: $\rho_{1}+\rho_{2}$; Drain rate: b

$$
\begin{aligned}
t_{\text {drain }} & =\frac{B_{\max }}{b-\rho_{1}-\rho_{2}} \\
B_{\max } & =b t_{1}+\rho_{1} t_{2}=\sigma_{1}+\frac{\rho_{1} \sigma_{2}}{b-\rho_{2}}
\end{aligned}
$$

Work Conserving Multiplexer - Summary

Work Conserving Multiplexer - Summary

$$
B_{\max }=\sigma_{1}+\frac{\rho_{1} \sigma_{2}}{b-\rho_{2}}
$$

Work Conserving Multiplexer - Summary

$$
\begin{aligned}
B_{\max } & =\sigma_{1}+\frac{\rho_{1} \sigma_{2}}{b-\rho_{2}} \\
D_{\max } & =t_{\mathrm{accu}}+t_{\mathrm{drain}}=\frac{\sigma_{1}+\sigma_{2}}{b-\rho_{1}-\rho_{2}}
\end{aligned}
$$

Work Conserving Multiplexer - Summary

$$
\begin{aligned}
B_{\max } & =\sigma_{1}+\frac{\rho_{1} \sigma_{2}}{b-\rho_{2}} \\
D_{\max } & =t_{\text {accu }}+t_{\text {drain }}=\frac{\sigma_{1}+\sigma_{2}}{b-\rho_{1}-\rho_{2}} \\
F_{3} & \sim\left(\sigma_{1}+\sigma_{2}, \rho_{1}+\rho_{2}\right)
\end{aligned}
$$

Guaranteed Service - Aggregate Resource Allocation

Guaranteed Service - Aggregate Resource Allocation

- Temporal and spatial bursts
- Temporal bursts can be handled by regulated flows
- Spatial bursts can be controlled by accurate models of the routing policy

Guaranteed Service - Resource Reservation

- Spatial reservation controls spatial bursts
- Spatial and temporal reservation by Time-division multiplexing (TDM)
- TDM allows for fine control of latency, bandwidth and jitter
- TDM can be implemented with resource allocation tables and a time wheel

Best Effort Service - Latency Fairness

Best Effort Service - Latency Fairness

- Latency fairness attempts to achieve equal latency
- Locally fair: (brown,green, brown,red,brown,green,brown,blue,brown,...)
- Age-based arbitration: Oldest requester gets served first: (brown,green,red,blue,brown,green,red,blue,...)

Best Effort Service - Throughput Fairness

- Throughput fairness attempts to achieve equal throughput
- Max-min fairness: An allocation is max-min fair if the allocation to any flow cannot be increased without decreasing the allocation to a flow that has an equal or lesser allocation.

Best Effort Service - Throughput Fairness

Best Effort Service - Throughput Fairness

Best Effort Service - Throughput Fairness

$$
\begin{aligned}
R_{0} & =b \\
a_{i} & =\min \left[b_{i}, \frac{R_{i}}{N-i}\right] \\
R_{i+1} 1 & =R_{i}-a_{i}
\end{aligned}
$$

$N \quad \mathrm{nr}$ of flows
b total bandwidth of the channel
b_{i} bandwidth requested by the $i^{\text {th }}$ flow
R_{i} bandwidth available after scheduling i requests
$a_{i} \quad$ bandwidth assigned to request i
The bandwidth requests are sorted:

$$
b_{i-1} \leq b_{i} \text { for } 0<i<N
$$

Best Effort Service - Throughput Fairness

$$
\begin{aligned}
R_{0} & =b \\
a_{i} & =\min \left[b_{i}, \frac{R_{i}}{N-i}\right] \\
R_{i+1} 1 & =R_{i}-a_{i}
\end{aligned}
$$

$$
\begin{aligned}
R_{0} & =b=0.75 \\
a_{0} & =\min \left[0.15, \frac{0.75}{3}\right]=0.15 \text { (Flow A) } \\
R_{1} & =0.75-0.15=0.6 \\
a_{1} & \left.=\min \left[0.5, \frac{0.6}{2}\right]=0.3 \text { (Flow } \mathrm{B}\right) \\
R_{2} & =0.6-0.3=0.3 \\
a_{2} & =\min \left[0.5, \frac{0.3}{1}\right]=0.3(\text { Flow } \mathrm{C})
\end{aligned}
$$

Tree Saturation

Hot spots build up a congestion tree due to back pressure

Tree Saturation

Hot spots build up a congestion tree due to back pressure

Tree Saturation

Hot spots build up a congestion tree due to back pressure

Tree Saturation

Hot spots build up a congestion tree due to back pressure

Non-interfering Networks

To isolate two traffic classes \mathbf{A} and \mathbf{B} there cannot be any resource shared between A and B that can be held and indefinite amount of time by $A(B)$ such that $B(A)$ cannot interrupt the usage of that resource.

Non-interfering Networks

To isolate two traffic classes \mathbf{A} and \mathbf{B} there cannot be any resource shared between A and B that can be held and indefinite amount of time by $A(B)$ such that $B(A)$ cannot interrupt the usage of that resource.

Quality of Service Summary

- Guaranteed Services - Best Effort
- regulated Flows to control traffic and jitter and for performance analysis
- Aggregate resource allocation - Resource reservation
- Latency and throughput fairness
- Noninterfering networks

Summary

- Communication Performance: bandwidth, unloaded latency, loaded latency
- Organizational Structure: NI, switch, link
- Topologies: wire space and delay domination favors low dimension topologies;
- Routing: deterministic vs source based vs adaptive routing; deadlock;
- Quality of Service

Issues beyond the Scope of this Lecture

- Switch: Buffering; output scheduling; flow control;
- Flow control: Link level and end-to-end control;
- Power
- Clocking
- Faults and reliability
- Memory architecture and I/O
- Application specific communication patterns

To Probe Further

Surveys:

[Bjerregaard and Mahadevan, 2006] Bjerregaard, T. and Mahadevan, S. (2006). A survey of research and practice of network-on-chip. ACM Computing Surveys.
[Ogras and Marculescu, 2008] Ogras, U. Y. and Marculescu, R. (2008). Analysis and optimization of prediction-based flow control in networks-on-chip. ACM Transactions on Design Automation of Electronic Systems, 13(1).

Classic papers:
[Agarwal, 1991] Agarwal, A. (1991). Limit on interconnection performance. IEEE Transactions on Parallel and Distributed Systems, 4(6):613-624.
[Dally, 1990] Dally, W. J. (1990). Performance analysis of k-ary n-cube interconnection networks. IEEE Transactions on Computers, 39(6):775-785.

To Probe Further

Text books:
[Duato et al., 1998] Duato, J., Yalamanchili, S., and Ni, L. (1998). Interconnection Networks - An Engineering Approach. Computer Society Press, Los Alamitos, California.
[Culler et al., 1999] Culler, D. E., Singh, J. P., and Gupta, A. (1999). Parallel Computer Architecture - A Hardware/Software Approach. Morgan Kaufman Publishers.
[Dally and Towels, 2004] Dally, W. J. and Towels, B. (2004). Principles and Practices of Interconnection Networks. Morgan Kaufman Publishers.
[DeMicheli and Benini, 2006] DeMicheli, G. and Benini, L. (2006). Networks on Chip. Morgan Kaufmann.
[Leighton, 1992] Leighton, F. T. (1992). Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann, San Francisco.

