The Nostrum Network on Chip

Axel Jantsch, Zhonghai Lu, Mikael Millberg, Rikard Thid, Johnny Öberg, Erland Nilsson, Shashi Kumar, Ahmed Hemani, et al.

Royal Institute of Technology, Stockholm

November 2007

Overview

Topology and Structure

The Network Layer and the Switch TDM Allocation for Quality of Service Regulated Flows Data Protection Clocking Dynamic Voltage Scaling Network Simulator

Nostrum Topology: Mesh

Characteristics:

- Resource-to-switch ratio: 1
- A switch is connected to 4 switches and 1 resource
- A resource is connected to 1 switch
- Average distance: 2/3n
- Bisection bandwidth: 2n

Motivation:

- Regularity of layout; predictable electrical properties
- Expected locality of traffic

NI: Network Interface:

- Compulsory
- Hardware
- Implements the network layer protocol

NI: Network Interface:

- Compulsory
- Hardware
- Implements the network layer protocol

RNI: Resource Network Interface:

- Optional
- Hardware and/or Software
- Implements transport layer
- Provides resource specific interfaces

NI: Network Interface:

- Compulsory
- Hardware
- Implements the network layer protocol

RNI: Resource Network Interface:

- Optional
- Hardware and/or Software
- Implements transport layer
- Provides resource specific interfaces

SLI: Session Layer Interface:

- Optional
- Hardware and/or software
- Implements the session layer protocol

Overview

Topology and Structure

The Network Layer and the Switch

TDM Allocation for Quality of Service Regulated Flows Data Protection Clocking Dynamic Voltage Scaling Network Simulator

The Network Layer

- Packet switched best effort service
 - ★ Packets are guaranteed to arrive
 - ★ Packet payload may be protected (4 levels of protection)
 - ★ Load dependable delay in the network
 - \star Load dependable delay at the network access point
 - ★ Admission policy for best effort traffic:
 - * Network load should be below 60%
 - Load is measured locally in switch and based on neighboring stress values

The Network Layer

- Packet switched best effort service
 - ★ Packets are guaranteed to arrive
 - ★ Packet payload may be protected (4 levels of protection)
 - \star Load dependable delay in the network
 - \star Load dependable delay at the network access point
 - ★ Admission policy for best effort traffic:
 - * Network load should be below 60%
 - Load is measured locally in switch and based on neighboring stress values
- Virtual circuit service
 - ★ Guaranteed bandwidth
 - ★ Guaranteed maximum delay
 - ★ Multicast circuits
 - ★ Static and semi-static virtual circuits
 - ★ Based on packet switching service

The Bufferless Switch

- + No buffers
- + No routing table
- + Small area
- + Short delay
- + Low power consumption
- Non-shortest path
- Header overhead due to destination address

Stress Value Effect on Buffer Sizes and Delays

No stress value control Largest average buffer size: 3.2 (black)

Averaged stress value control Largest average buffer size: 0.2 (black)

Stress Value Effect on Maximum Load

Looped Container based Virtual Circuit

- A container packet loops between two or more end points
- The looping container establishes a closed virtual circuit
- The virtual circuit allows multicast and bus protocol emulation
- Possible bandwidth allocation:

 $2^{j-d}B$

where $B = {\rm link}$ bandwidth, $d = {\rm length}$ of the container loop, $1 \leq j \leq d$

• Examples:

d=2: possible allocations: 100% and 50%

d=4: possible allocations: 100%, 50%, 25%, 12.5%

Implementation of Static Virtual Circuits

- Bandwidth allocation and circuit setup at design time
- Implementation alternatives:
 - * Channel containers have higher priority
 - ★ Look-up tables in switches
- Semi-static circuits:
 - ★ Active circuits: Circulating containers
 - ★ Inactive circuits: Containers removed
 - Activation of circuits subject to traffic load dependent delay
 - \star NI can increase stress value to activate virtual circuits

Overview

Topology and Structure

The Network Layer and the Switch

TDM Allocation for Quality of Service

Regulated Flows

Data Protection

Clocking

Dynamic Voltage Scaling

Network Simulator

TDM Virtual Circuit

What is that?

• A VC is a connection in a packet-switched network.
• A TDM VC means multiple connections use shared

buffers and links in a time-division fashion.

Example

Why do we need it?

Contention-less, offering guaranteed latency and BW.

TDM Virtual Circuit

What is that?

• A VC is a connection in a packet-switched network.
• A TDM VC means multiple connections use shared

buffers and links in a time-division fashion.

Example

Why do we need it?

Contention-less, offering guaranteed latency and BW.

Two variants of TDM VC

Open-ended

• A VC path is not a loop

o for buffered flow control networks, e.g. wormhole, VCT

Closed-loop

A VC is a loop
 for buffer-less flow control networks, e.g. deflection

Containers are looped on VCs to carry data packets.

How to configure TDM VCs?

Properties of a TDM VC

- A deterministic path
- Use dedicated time slots to pass buffers, freeing from contention
- Problems of TDM VC configuration
 - Path selection: explore network path diversity

 Slot allocation: determine when (time slots) VC packets use buffers to be contention free and satisfy BW

Path Selection

- Multi node VC Configuration
- Node visiting order: Hamiltonian Path / Traveling Salesman problem
- Path selection + Slot Allocation by a Depth first search with backtracking
 Ordering of VCs into a list
 Finding shortest tour for multi-node comunication
 Path selection
 Slot allocation

On the slot allocation problem

How to avoid contention?
Use exclusive slots
Globally synchronize slot tables such that no simultaneous use of a buffer or link is possible
How to guarantee bandwidth
In the first place, contention free
In the second place, allocate enough slots

Our approach and contributions

Propose the concept of Logical Network (LN)

Formulate a contention-less theory with necessary and sufficient conditions to assign VCs to LNs

Develop a LN-based slot allocation algorithm

A running example

To explain the concepts and method intuitively

• Given:

V1=<b1, b2>, BW1=1/2 V2=<b1, b3>, BW2=1/4

• Determine:

t

Admission pattern: N packets are admitted over W slots

VC traffic flow: repeating this admission pattern

Packet admission pattern for v1 and v2 such that

(1) there is no contention and

(2) both BW requirements are met

Avoid contention

Two steps

- 1. Slot partitioning with respect to a shared buffer in time domain
- 2. Slot mapping along a VC path in space domain
- Consequence
- Birth of LN, associated (time slot, buffer) pairs.
- Eventually, we can precisely define traffic flow on VCs.

Avoid contention with the example

Slot partitioning

- V1 \cap V2 = {b1}
- Even { (2k, b1)} and odd { (2k+1, b1) } slot sets
- Slot mapping
 - Map b1's odd slot set on V1.N²(v1,b1) = { (2k+1, b1), (2k,b2) }
 - Map b1's even slot set on V2, N²₀(v2,b1) = { (2k, b1), (2k+1,b3) }

Satisfy bandwidth

A LN owns dedicated slots, thus BW.

For each VC with its LNs, check supported_BW ≥ demanded_BW ?
If supported_BW > demanded_BW, do <u>slot refinement</u>, i.e., allocate/consume slots not more than necessary
If supported_BW = demanded_BW, consume slots
If supported_BW < demanded_BW, LNs are not sufficient to satisfy BW requirement

Satisfy bandwidth with the example

Slot allocation summary

The properties of a LN

- Owns dedicated slots in buffers ((slot, buffer) pairs)
- Function of VC and a reference buffer
- One LN owns 1/NLN bandwidth

Slot allocation becomes VC-to-LN assignment:

- 1. Slot partitioning to create LNs referring to a shared buffer
- 2. Slot mapping to assign VCs to different LNs
- 3. Slot refinement to allocate enough BW to LNs

How to generalize the results?

Essential issues

How many LNs exist when VCs overlap? • How to partition slots?

Is allocating VCs to different LNs sufficient and necessary?

How to select a reference buffer when VCs have multiple shared buffers?

Does the result change if a different reference buffer is selected?

Addressed by the contention-free theory

The number of LNs

Two VCs, V1 and V2, with admission window W1 and W2, the max. number of LNs, NLN (V1, V2)=GCD (W1, W2)
W1 and W2 are derivable from BW requirement and subject to application constraints
More than one solution, reflecting design space

V1=<b1, b2>, BVV1=1/2 V2=<b1, b3>, BVV2=1/4 VV1=2, VV2=4 NLN (V1, V2)=GCD (2, 4)=2 U b1 0 1 2 3 4 5 6 7 8 9 10

Sufficient and necessary condition

- VC-to-LN assignment steps:
- 1. Slot partitioning to create LNs with respect to a reference buffer
- 2. Slot mapping to assign VCs to different LNs
- 3. Slot refinement

Assigning VCs to different LNs is sufficient and necessary to promise contention-free.

Multiple shared buffers

If two VCs have multiple shared buffers, how to select the reference buffer?

Example • $V1 \cap V2 = \{b1, bn, bm\}$ Consistency check • No conflict in bn => No conflict in bm mod(dbnbm(V1) - dbnbm(V2), NLN)=0 b3

Linear check instead of complete check(b1,bn) and (bn, bm) => (b1, bm)

bn

bm)

LN-oriented slot allocation

VC configuration program

The LN-based slot allocation method has been implemented in our VC configuration program

The VC configuration program
supports both open-ended and closed-loop VCs
explores the network path diversity via back-tracking

Overview

Topology and Structure The Network Layer and the Switch TDM Allocation for Quality of Service

Contracts based on Regulated Flows

Data Protection

Clocking Dynamic Voltage Scaling Network Simulator
Contract based Flows

Regulated Flows

A Flow F is (σ,ρ) regulated if

$$F(b) - F(a) \le \sigma + \rho(b - a)$$

for all time intervals $[a, b], 0 \le a \le b$ and where $F(t) \cdots$ the cumulative amount of traffic between 0 and $t \ge 0$. $\sigma \ge 0$ is the burstiness constraint; $\rho \ge 0$ is the maximum average rate;

Regulated Flows

A Flow F is (σ, ρ) regulated if

$$F(b) - F(a) \le \sigma + \rho(b - a)$$

for all time intervals $[a, b], 0 \le a \le b$ and where $F(t) \cdots$ the cumulative amount of traffic between 0 and $t \ge 0$. $\sigma \ge 0$ is the burstiness constraint; $\rho \ge 0$ is the maximum average rate;

Regulated Flows - Delay Element

Regulated Flows - Delay Element

Regulated Flows - Work Conserving Multiplexer

Regulated Flows - Work Conserving Multiplexer

 $\begin{array}{rcl} F_1 & \sim & (\sigma_1, \rho_1) \\ F_2 & \sim & (\sigma_2, \rho_2) \\ \\ \mbox{link bandwidth } b & < & \rho_1 + \rho_2 \\ F_3 & \sim & ? \\ \\ \mbox{maximum delay } D & = & ? \\ \\ \mbox{maximum backlog } B & = & ? \end{array}$

Phase 1 (t_1) : F_1 and F_2 transmit at full speed;

Phase 1 (t_1): F_1 and F_2 transmit at full speed; Assume: At t = 0 the queue is empty; $\sigma_1 \leq \sigma_2$

Phase 1 (t_1): F_1 and F_2 transmit at full speed; Assume: At t = 0 the queue is empty; $\sigma_1 \leq \sigma_2$ Injection rate: 2b; Drain rate: b

Phase 1 (t_1): F_1 and F_2 transmit at full speed; Assume: At t = 0 the queue is empty; $\sigma_1 \leq \sigma_2$ Injection rate: 2b; Drain rate: b

$$bt_1 = \sigma_1 + \rho_1 t_1$$
$$t_1 = \frac{\sigma_1}{b - \rho_1}$$

Phase 2 (t_2): F_1 transmits at rate ρ_1 , F_2 transmits at full speed;

Phase 2 (t_2) : F_1 transmits at rate ρ_1 , F_2 transmits at full speed; Injection rate: $b + \rho_1$; Drain rate: b

Phase 2 (t_2): F_1 transmits at rate ρ_1 , F_2 transmits at full speed; Injection rate: $b + \rho_1$; Drain rate: b

$$bt_{\text{accu}} = \sigma_2 + \rho_2 t_{\text{accu}}$$
$$t_{\text{accu}} = \frac{\sigma_2}{b - \rho_2}$$

Phase 3 (t_{drain}): F_1 transmits at rate ρ_1 , F_2 transmits at rate ρ_2 ;

Phase 3 (t_{drain}): F_1 transmits at rate ρ_1 , F_2 transmits at rate ρ_2 ; Injection rate: $\rho_1 + \rho_2$; Drain rate: b

Phase 3 (t_{drain}): F_1 transmits at rate ρ_1 , F_2 transmits at rate ρ_2 ; Injection rate: $\rho_1 + \rho_2$; Drain rate: b

$$t_{\rm drain} = \frac{B_{\rm max}}{b - \rho_1 - \rho_2}$$

Phase 3 (t_{drain}): F_1 transmits at rate ρ_1 , F_2 transmits at rate ρ_2 ; Injection rate: $\rho_1 + \rho_2$; Drain rate: b

$$t_{\text{drain}} = \frac{B_{\text{max}}}{b - \rho_1 - \rho_2}$$
$$B_{\text{max}} = bt_1 + \rho_1 t_2$$

Phase 3 (t_{drain}): F_1 transmits at rate ρ_1 , F_2 transmits at rate ρ_2 ; Injection rate: $\rho_1 + \rho_2$; Drain rate: b

$$t_{\text{drain}} = \frac{B_{\text{max}}}{b - \rho_1 - \rho_2}$$
$$B_{\text{max}} = bt_1 + \rho_1 t_2 = \sigma_1 + \frac{\rho_1 \sigma_2}{b - \rho_2}$$

$$B_{\max} = \sigma_1 + \frac{\rho_1 \sigma_2}{b - \rho_2}$$

$$B_{\max} = \sigma_1 + \frac{\rho_1 \sigma_2}{b - \rho_2}$$
$$D_{\max} = t_{\text{accu}} + t_{\text{drain}} = \frac{\sigma_1 + \sigma_2}{b - \rho_1 - \rho_2}$$

$$B_{\max} = \sigma_1 + \frac{\rho_1 \sigma_2}{b - \rho_2}$$
$$D_{\max} = t_{accu} + t_{drain} = \frac{\sigma_1 + \sigma_2}{b - \rho_1 - \rho_2}$$
$$F_3 \sim (\sigma_1 + \sigma_2, \rho_1 + \rho_2)$$

 $F_1 \sim (0, \rho_t)$

 $F_1 \sim (0, \rho_t)$

 $C_1 : (\rho_t, D_1)$ $C_2 : (\rho_t, D_2)$ $C_1 : (\rho_t, D_3)$ $C_4 : (\rho_t, D_4)$

 $F_1 \sim (0, \rho_t)$

 $C_1 : (\rho_t, D_1)$ $C_2 : (\rho_t, D_2)$ $C_1 : (\rho_t, D_3)$ $C_4 : (\rho_t, D_4)$

 $F_2 \sim (\rho_t D_1, \rho_t)$

MPEG Encoding Case Study - Memory

 $M' \quad : \quad (2\rho_t, D_{M'})$

$$M' \quad : \quad (2\rho_t, D_{M'})$$

For a general multiplexer we have:

$$D_{\text{mux}} = \frac{\sigma_1 + \sigma_2}{C_{\text{out}} - \rho_1 - \rho_2}$$
$$F_{\text{muxout}} \sim (\sigma_1 + \sigma_2, \rho_1 + \rho_2)$$

$$M' \quad : \quad (2\rho_t, D_{M'})$$

For a general multiplexer we have:

$$D_{\text{mux}} = \frac{\sigma_1 + \sigma_2}{C_{\text{out}} - \rho_1 - \rho_2}$$

$$F_{\text{muxout}} \sim (\sigma_1 + \sigma_2, \rho_1 + \rho_2)$$

$$F_{M3} \sim (\rho_t (D_1 + D_{\text{mux}} + D_{M'}), \rho_t)$$

$$M' \quad : \quad (2\rho_t, D_{M'})$$

For a general multiplexer we have:

$$D_{\text{mux}} = \frac{\sigma_1 + \sigma_2}{C_{\text{out}} - \rho_1 - \rho_2}$$

$$F_{\text{muxout}} \sim (\sigma_1 + \sigma_2, \rho_1 + \rho_2)$$

$$F_{M3} \sim (\rho_t (D_1 + D_{\text{mux}} + D_{M'}), \rho_t)$$

$$F_{M4} \sim ?$$

 $R_{M1} \sim (S_{\text{buffer}}, \rho_t);$ $R_{M2} \sim (S_{\text{buffer}}, \rho_t);$ $R_S \sim (S_{\text{buffer}}, \rho_t);$

 S_{buffer} is the size of the input buffer in S.

$$\begin{split} R_{M1} &\sim (S_{\text{buffer}}, \rho_t); \\ R_{M2} &\sim (S_{\text{buffer}}, \rho_t); \\ R_S &\sim (S_{\text{buffer}}, \rho_t); \end{split}$$

 S_{buffer} is the size of the input buffer in S.

$$D_{(\sigma, \rho)\text{-regulator}} = \frac{\max(0, \sigma' - \sigma)}{\rho}$$
$$B_{(\sigma, \rho)\text{-regulator}} = \max(0, \sigma' - \sigma)$$

 $\begin{aligned} R_{M1} &\sim (S_{\text{buffer}}, \rho_t); \\ R_{M2} &\sim (S_{\text{buffer}}, \rho_t); \\ R_S &\sim (S_{\text{buffer}}, \rho_t); \end{aligned}$

 S_{buffer} is the size of the input buffer in S.

 $F_{6} \sim (S_{\text{buffer}}, \rho_{t})$ $C_{3} : (\rho_{t}, D_{3})$ $F_{7} \sim (S_{\text{buffer}} + \rho_{t} D_{3}, \rho_{t})$

$$M' : (2\rho_t, D_{M'})$$

$$D_{\text{mux}} = \frac{\sigma_1 + \sigma_2}{C_{\text{out}} - \rho_1 - \rho_2} = \frac{S_{\text{buffer}} + \rho_t (D_1 + D_3)}{C_{\text{out}} - 2\rho_t}$$

$$F_{M1} \sim (S_{\text{buffer}} + \rho_t (D_1 + D_3), 2\rho_t)$$

$$F_{M2} \sim (S_{\text{buffer}} + \rho_t (D_1 + D_3 + 2D_{M'}), 2\rho_t)$$

$$F_{M3} \sim (\rho_t (D_1 + D_{mux} + D_{M'}), \rho_t)$$

$$F_{M4} \sim (S_{\text{buffer}} + \rho_t (D_3 + D_{mux} + D_{M'}), \rho_t)$$

Backlog of the regulators:

$$B_{RM1} = \max(0, \rho_t (D_1 + D_{\max} + D_{M'}))$$
$$-S_{\text{buffer}})$$
$$B_{RM2} = \max(0, 128B + \rho_t (D_3 + D_{\max}) + D_{M'}) - S_{\text{buffer}})$$

Delay of the regulators:

$$D_{RM1} = \frac{B_{RM1}}{\rho_t}$$
$$D_{RM2} = \frac{B_{RM2}}{\rho_t}$$

The flow from the memory to S:

 $F_3 \sim (S_{\text{buffer}}, \rho_t)$ $C_2 : (\rho_t, D_2)$ $F_4 \sim (S_{\text{buffer}} + \rho D_2, \rho_t),$

A charatcerization of S and its output:

$$S \quad : \quad (\rho_t, \frac{S_{\text{buffer}}}{\rho_t})$$

$$F_5 \sim (2S_{\text{buffer}} + \rho_t D_2, \rho_t)$$

The flows between memory and V:

 $F_8 \sim (S_{\text{buffer}}, \rho_t)$ $C_4 \qquad : (\rho, D_4)$ $F_9 \sim (S_{\text{buffer}} + \rho_t D_4, \rho_t)$

V Т S F_5 $F_{4/}$ F_9 F_1 $R_{\rm S}$ C_2 C_4 F_{6} C_1 C_3 F_8 F_7 F_2 F_3 R_{M2} $R_{\rm M1}$. Кмз<u>т</u> F_{M4} Μ

MPEG Encoding Case Study - cont'd

End to end delay:

$$D_{\text{total}} = D_1 + D_{\text{mux}} + D_{M'} + D_{RM1} + D_2 + D_S + D_{RS} + D_3 + D_{\text{mux}} + D_{M'} + D_{RM2} + D_4$$

The flow at V:

$$F_{T \to V} \sim (0 + \rho_t D_{total}, \rho_t)$$

Modeling with Regulated Flows

- Interconnect:
 - Model each channel by available bandwidth and maximum delay variation;
 - ★ Model each node in the interconnect as an arbiter;
- Model read request, write acknowledge as separate flows;
- Model synchronization as separate flows;
- A simple generalization of (σ, ρ) flows is

 $F \sim \min(\sigma_i, \rho_i), i > 0$

$$F(b) - F(a) \le \min_{i}(\sigma_i + \rho_i(b - a))$$

• Good analysis depends on good element models;

Network Calculus - Arrival Curves

Given a monotonically increasing function α , defined for $t \ge 0$, α is an arrival curve for flow F if for all $0 \le a \le b$:

$$F(b) - F(a) \le \alpha(b - a)$$

Network Calculus - Min-Plus Convolusion

Given two monotonically increasing functions f and g. The min-plus convolusion of f and g is the function

$$(f \otimes g)(t) = \inf_{0 \le s \le t} (f(t-s) + g(s))$$

Network Calculus - Min-Plus Convolusion

Given two monotonically increasing functions f and g. The min-plus convolusion of f and g is the function

$$(f \otimes g)(t) = \inf_{0 \le s \le t} (f(t-s) + g(s))$$

If α is an arrival curve for F we have:

 $F \leq F \otimes \alpha$

Network Calculus - Min-Plus Convolusion

Given two monotonically increasing functions f and g. The min-plus convolusion of f and g is the function

$$(f \otimes g)(t) = \inf_{0 \le s \le t} (f(t-s) + g(s))$$

If α is an arrival curve for F we have:

 $F \leq F \otimes \alpha$

and

$F \leq \alpha \otimes \alpha$

with $\alpha \otimes \alpha$ being the best bound that we can find based on information of α .

Given a system S with an input flow F and an output flow F^* . S offers the flow a service curve β if and only if β is a monotonically increasing function and $F^* \geq F \otimes \beta$ which means that

$$F^*(t) \ge \inf_{s \le t} (F(t) + \beta(t-s))$$

Given a flow F constrained by arrival curve α and a system offering a service curve β , the backlog $F(t)-F^*(t)$ for all t satisfies

$$F(t) - F^*(t) \le \sup_{s \ge 0} (\alpha(s) - \beta(s))$$

Given a flow F constrained by arrival curve α and a system offering a service curve β , the delay d(t) at time t is

$$d(t) = \inf(\tau \ge 0 : F(t) \le F^*(t+\tau)).$$

It satisfies

$$d(t) \le h(\alpha, \beta) = \sup_{t \ge 0} (\inf(\tau \ge 0 : \alpha(t) \le \beta(t + \tau)))$$

Given a flow F constrained by arrival curve α and a system offering a service curve β , the output flow F^* is constrained by the arrival curve α^*

$$\alpha^* = \alpha \oslash \beta.$$

$$(\alpha \oslash \beta)(t) = \sup_{s \ge 0} (\alpha(t+s) - \beta(s))$$

Network Calculus - Concatenation of Nodes $S \ / \ \beta_1 \otimes \ \beta_2$

Network Calculus - Concatenation of Nodes $S \ / \ \beta_1 \otimes \ \beta_2$

Example:
$$\begin{split} \beta_1 &= \beta_{R_1,T_1} \\ \beta_2 &= \beta_{R_2,T_2} \\ \beta_{R_1,T_1} \otimes \beta_{R_2,T_2} &= \beta_{\min(R_1,R_2),T_1+T_2} \end{split}$$
 Network Calculus - Concatenation of Nodes $S \ / \ \beta_1 \otimes \ \beta_2$

Example:

 $\beta_2 = \beta_{R_2, T_2}$ $\beta_{R_1, T_1} \otimes \beta_{R_2, T_2} = \beta_{\min(R_1, R_2), T_1 + T_2}$

 $\beta_1 = \beta_{R_1,T_1}$

Useful properties: $\begin{array}{l} f\otimes g = g\otimes f\\ (f\otimes g)\otimes h = f\otimes (g\otimes h)\\ (f+c)\otimes g = (f\otimes g) + c \text{ for any constant } c\in \mathbb{R} \end{array}$

$$\alpha = \gamma_{\rho,\sigma}$$

$$\beta_1 = \beta_{R_1,T_1} = R_1 \max(0, t - T_1)$$

$$\beta_2 = \beta_{R_2,T_2} = R_2 \max(0, t - T_2)$$

$$\alpha = \gamma_{\rho,\sigma}$$

$$\beta_1 = \beta_{R_1,T_1} = R_1 \max(0, t - T_1)$$

$$\beta_2 = \beta_{R_2,T_2} = R_2 \max(0, t - T_2)$$

$$\beta_{R_1,T_1} \otimes \beta_{R_2,T_2} = \beta_{\min(R_1,R_2),T_1+T_2} = \min(R_1,R_2) \max(0, t - (T_1 + T_2))$$

$$\alpha = \gamma_{\rho,\sigma}$$

$$\beta_1 = \beta_{R_1,T_1} = R_1 \max(0, t - T_1)$$

$$\beta_2 = \beta_{R_2,T_2} = R_2 \max(0, t - T_2)$$

$$\beta_{R_1,T_1} \otimes \beta_{R_2,T_2} = \beta_{\min(R_1,R_2),T_1+T_2} = \min(R_1,R_2) \max(0, t - (T_1 + T_2))$$

$$D_1 + D_2 = \frac{\sigma}{R_1} + \frac{\sigma}{R_2} + \frac{\rho T_1}{R_2} + T_1 + T_2$$

$$\alpha = \gamma_{\rho,\sigma}$$

$$\beta_1 = \beta_{R_1,T_1} = R_1 \max(0, t - T_1)$$

$$\beta_2 = \beta_{R_2,T_2} = R_2 \max(0, t - T_2)$$

$$\beta_{R_1,T_1} \otimes \beta_{R_2,T_2} = \beta_{\min(R_1,R_2),T_1+T_2} = \min(R_1,R_2) \max(0, t - (T_1 + T_2))$$

$$D_1 + D_2 = \frac{\sigma}{R_1} + \frac{\sigma}{R_2} + \frac{\rho T_1}{R_2} + T_1 + T_2$$
$$D_S = \frac{\sigma}{\min(R_1, R_2)} + T_1 + T_2$$

Overview

Topology and Structure The Network Layer and the Switch TDM Allocation for Quality of Service Regulated Flows

Data Protection

Clocking Dynamic Voltage Scaling Network Simulator

Data Protection

- Two level protection: Link layer and transport layer
- Data link layer protection:
 - * SEC-DED header protection (16/26 bits)
 - ★ Four levels of payload protection:
 - * Maximum bandwidth no protection (102/102 bits)
 - * Guaranteed integrity DED protection (90/102 bits)
 - * Minimum latency SEC protection (90/102 bits)
 - * High reliability SEC-DED protection (81/102 bits)
 - ★ Parity based codes used (Hamming or Hsiao codes) to allow for low logic depth implementations
- Transport layer:
 - ★ Normal mode: Send-and-Forget (SaF) service
 - ★ Reliability mode: Acknowledgement-and-Retransmit (AaR) service
 - * window size $N, 1 \leq N \leq 64$
 - * 2N packets are buffered in sender and receiver
 - * End-to-end flow control mechanism
- in total 8 modes available

Error Protection for Low Power

Scenario I:

- 8×8 network
- 80 bits payload
- 15 bits header

Scenario II: Link layer error protection

- Block code with DED/SEC capability
- 20 payload bits and 5 protection bits per block;
- 80 payload bits
- 15 header bits
- 30 protecting bits
- 125 total bits

Scenario III: End-to-end protection

- Header is protected at the link layer as in Scenario II
- Payload is protected by a block code with SEC/DED capability
- 80 payload bits
- 15 header bits
- 24 protecting bits
- 119 total bits
Errors per Packet

Power Consumption per Useful Bit

Power Consumption vs. Error Rate

Low Power encoding - Conclusion

- Low power bus encoding is of limited value and probably increases the overall power consumption.
- Link-level error protection to allow for lower voltage does not give significant improvements.
- End-to-end data protection decreases power consumption for 8×8 networks, with slowly increasing gain for larger networks.

Overview

Topology and Structure The Network Layer and the Switch TDM Allocation for Quality of Service Regulated Flows Data Protection

Clocking

Dynamic Voltage Scaling

Network Simulator

Globally Pseudosynchronous - Locally Synchronous Clocking

Every switch uses same frequency; phase difference is constant and known.

- Latency reduce with 29% at low load; 40% at high load
- Can handle 10% higher load
- More skew tolerant
- Clock skew and jitter is depending only on local constraints
- No global clock distribution with associated power gains
- Reduced peak power with 50% at best
- Jitter reduced significantly

Globally Pseudosynchronous Clocking - cont'd

- Downstream data create low latency paths (Data Motorways)
 - \star Guaranteed data motorways
 - ★ Phase related data motorways
- Periphery roundtrip:
 - \star 14 cycles downstream
 - ★ 21 cycles upstream
 - ★ 24 cycles synchronous

Globally Pseudosynchronous Clocking - cont'd

Overview

Topology and Structure The Network Layer and the Switch TDM Allocation for Quality of Service Regulated Flows Data Protection Clocking

Dynamic Voltage Scaling

Network Simulator

Potential of Dynamic Voltage Scaling - Power

Potential of Dynamic Voltage Scaling - Hops

Potential of Dynamic Voltage Scaling - Load variations

Potential of Dynamic Voltage Scaling - Delay

Potential of Dynamic Voltage Scaling - Power

Overview

Topology and Structure The Network Layer and the Switch TDM Allocation for Quality of Service Regulated Flows Data Protection Clocking Dynamic Voltage Scaling

Network Simulator

Nostrum Simulation Environment

- Nostrum NoC Simulation Environment (NNSE)
- Based on SystemC simulator
- Configuration paramaters:
 - ★ Size
 - ★ Topology (Mesh, Torus)
 - * Switching and routing (deflective, wormhole)
 - ★ Traffic pattern (temporal, spatial, random, locality, per channel, ...)
 - ★ Analysis plots (delay, load, power, ...)
- Useful to analyse the zillion trade-offs in NoC design.

NNSE Network Configuration

<u>Project</u> <u>N</u> etwork <u>T</u> raff	ic <u>S</u> imulation				<u>H</u> elp
'roject: testproject.p	1	Network an	d Traffic configuration files		
testproject.nxml		Netwo	ork Configuration		
Configured Traffic: traffic-1.dxml traffic-2.dxml Evaluation Results:	Network topology Number of nodes on X [2, 8]: 8 Number of nodes on Y [2, 8]: 4 Oeflection routing Routing algorithm: Dimension X-Y Deflection policy: Age	Num	Choose structure: Choose connection: Link bandwidth (data bits): Wormhole routing ber of VCs per PC [2, 4]: 4 ber of buffers per VC [2, 8]: 2 Routing algorithm: Dime	Mesh Duplex 96	
Menu status:					

NNSE Traffic Configuration

<u>P</u> roject <u>N</u> etwork <u>T</u> raffic	Simulation	<u>H</u> elt	p
<pre>'roject: testproject.p Configured Network: testproject.nxml</pre>		Network and Traffic configuration files Traffic Configuration	
Configured Traffic: traffic-1.dxml traffic-2.dxml Evaluation Results:	Spatial specification Distribution specification Array of source nodes: Array of destination nodes: Array of locality factor:	Distribution: Locality -	Σ
	Temporal specification Inter-arrival Time Specification Mean Interarrival: [3, 5, 7, 9] Standard Deviation: [0, 0, 0, 0]	Distribution: Normal -	
Menu status:			1

Summary of Nostrum Status

- Nostrum defines a 2 D mesh topology;
- Protocol stack for link layer, network layer and session layer;
- Packet switched and virtual circuit communication services;
- Buffer-less, loss-less switch with no routing tables;
- 2 level data protection scheme;
- Session layer communication primitives;
- Flexible NoC Simulator;

Further information: www.imit.kth.se/info/FOFU/Nostrum/