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Network Layer Communication Performance in Network-on-Chips

Introduction

Communication Performance

Organizational Structure

Interconnection Topologies

Trade-offs in Network Topology

Routing

Quality of Service

A. Jantsch, KTH
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Introduction

Interconnection
Network

Network
interface

Communication
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Network
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Communication
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• Topology: How switches and
nodes are connected

• Routing algorithm: determines
the route from source to
destination

• Switching strategy: how a
message traverses the route

• Flow control: Schedules the
traversal of the message over
time

A. Jantsch, KTH
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Basic Definitions
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Basic Definitions

Message is the basic communication entity.
Flit is the basic flow control unit. A message consists of 1 or

many flits.
Phit is the basic unit of the physical layer.
Direct network is a network where each switch connects to

a node.
Indirect network is a network with switches not connected

to any node.
Hop is the basic communication action from node to switch

or from switch to switch.
Diameter is the length of the maximum shortest path

between any two nodes measured in hops.
Routing distance between two nodes is the number of hops

on a route.
Average distance is the average of the routing distance

over all pairs of nodes.

A. Jantsch, KTH
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Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a
direct connection between source and destination.
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Basic Switching Techniques

Circuit Switching A real or virtual circuit establishes a
direct connection between source and destination.

Packet Switching Each packet of a message is routed
independently. The destination address has to be provided
with each packet.

Store and Forward Packet Switching The entire packet is
stored and then forwarded at each switch.

Cut Through Packet Switching The flits of a packet are
pipelined through the network. The packet is not
completely buffered in each switch.

Virtual Cut Through Packet Switching The entire packet
is stored in a switch only when the header flit is blocked
due to congestion.

Wormhole Switching is cut through switching and all flits
are blocked on the spot when the header flit is blocked.

A. Jantsch, KTH
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Latency

4

A
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21 3

Time(n) = Admission + RoutingDelay + ContentionDelay

Admission is the time it takes to emit the message into the network.

RoutingDelay is the delay for the route.

ContentionDelay is the delay of a message due to contention.

A. Jantsch, KTH
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Routing Delay

Store and Forward:
Tsf(n, h) = h(n

b + ∆)

n ... message size in bits
np ... size of message fragments in bits
h ... number of hops
b ... raw bandwidth of the channel
∆ ... switching delay per hop
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Routing Delay

Store and Forward:
Tsf(n, h) = h(n

b + ∆)

Circuit Switching:
Tcs(n, h) = n

b + h∆

Cut Through:
Tct(n, h) = n

b + h∆

Store and Forward with
fragmented packets:

Tsf(n, h, np) = n−np

b + h(np

b + ∆)

n ... message size in bits
np ... size of message fragments in bits
h ... number of hops
b ... raw bandwidth of the channel
∆ ... switching delay per hop

A. Jantsch, KTH
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Routing Delay: Store and Forward vs Cut Through
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Local and Global Bandwidth

Local bandwidth = b
(

n
n+nE+w∆

)
Total bandwidth = Cb[bits/second] = Cw[bits/cycle] = C[phits/cycle]

Bisection bandwidth ... minimum bandwidth to cut the net into two equal parts.

b ... raw bandwidth of a link;

n ... message size;

nE ... size of message envelope;

w ... link bandwidth per cycle;

∆ ... switching time for each switch in cycles;

w∆ ... bandwidth lost during switching;

C ... total number of channels;

For a k×k mesh with bidirectional channels:

Total bandwidth = (4k2 − 4k)b
Bisection bandwidth = 2kb

4

A
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C

D

21 3

A. Jantsch, KTH
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Link and Network Utilization

total load on the network: L =
Nhl

M
[phits/cycle]

load per channel: ρ =
Nhl

MC
[phits/cycle] ≤ 1

M ... each host issues a packet every M cycles
C ... number of channels
N ... number of nodes
h ... average routing distance
l = n/w ... number of cycles a message occupies a channel
n ... average message size
w ... bitwidth per channel

A. Jantsch, KTH
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Network Saturation
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Typical saturation points are between 40% and 70%.
The saturation point depends on

• Traffic pattern

• Stochastic variations in traffic

• Routing algorithm

A. Jantsch, KTH
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Organizational Structure

• Link

• Switch

• Network Interface

A. Jantsch, KTH
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Link

Short link At any time there is only one data word on the
link.

Long link Several data words can travel on the link
simultaneously.

Narrow link Data and control information is multiplexed on
the same wires.

Wide link Data and control information is transmitted in
parallel and simultaneously.

Synchronous clocking Both source and destination operate
on the same clock.

Asynchronous clocking The clock is encoded in the
transmitted data to allow the receiver to sample at the
right time instance.

A. Jantsch, KTH
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Switch

Crossbar

Control
(Routing, Scheduling)

Input
bufferReceiver

Output
buffer Transmitter

Input
ports

Output
ports

A. Jantsch, KTH
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Switch Design Issues

Degree: number of inputs and outputs;

Buffering

• Input buffers

• Output buffers

• Shared buffers

Routing

• Source routing

• Deterministic routing

• Adaptive routing

Output scheduling

Deadlock handling

Control flow

A. Jantsch, KTH
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Network Interface

• Admission protocol

• Reception obligations

• Buffering

• Assembling and disassembling
of messages

• Routing

• Higher level services and
protocols

A. Jantsch, KTH
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Interconnection Topologies

• Fully connected networks

• Linear arrays and rings

• Multidimensional meshes and tori

• Trees

• Butterflies

A. Jantsch, KTH
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Fully Connected Networks

Node Node

Node

Node

Node

Node

Bus: switch degree = N
diameter = 1
distance = 1
network cost = O(N)
total bandwidth = b
bisection
bandwidth

= b

Crossbar: switch degree = N
diameter = 1
distance = 1
network cost = O(N2)
total bandwidth = Nb
bisection
bandwidth

= Nb

A. Jantsch, KTH
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Linear Arrays and Rings

Folded torus

Torus

Linear array

Linear
array: switch degree = 2

diameter = N − 1
distance ∼ 2/3N
network cost = O(N)
total bandwidth = 2(N − 1)b
bisection
bandwidth

= 2b

Torus: switch degree = 2
diameter = N/2
distance ∼ 1/3N
network cost = O(N)
total bandwidth = 2Nb
bisection
bandwidth

= 4b

A. Jantsch, KTH
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Multidimensional Meshes and Tori

2−d mesh

2−d torus

3−d cube

k-ary d-cubes are d-dimensional tori with
unidirectional links and k nodes in each
dimension:

number of nodes N = kd

switch degree = d

diameter = d(k − 1)

distance ∼ d1
2(k − 1)

network cost = O(N)

total bandwidth = 2Nb

bisection bandwidth = 2k(d−1)b

A. Jantsch, KTH
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Routing Distance in k-ary n-Cubes
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Projecting High Dimensional Cubes

2−ary 2−cube

2−ary 4−cube 2−ary 5−cube

2−ary 3−cube

A. Jantsch, KTH
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Binary Trees

4

0

1

2

3

number of nodes N = 2d

number of switches = 2d − 1
switch degree = 3
diameter = 2d
distance ∼ d + 2
network cost = O(N)
total bandwidth = 2 · 2(N − 1)b
bisection bandwidth = 2b

A. Jantsch, KTH
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k-ary Trees

4

0

1

2

3

number of nodes N = kd

number of switches ∼ kd

switch degree = k + 1
diameter = 2d
distance ∼ d + 2
network cost = O(N)
total bandwidth = 2 · 2(N − 1)b
bisection bandwidth = kb

A. Jantsch, KTH
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Binary Tree Projection

• Efficient and regular 2-layout;

• Longest wires in resource width:

lW = 2b
d−1
2 c−1

d 2 3 4 5 6 7 8 9 10
N 4 8 16 32 64 128 256 512 1024
lW 0 1 1 2 2 4 4 8 8

A. Jantsch, KTH
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k-ary n-Cubes versus k-ary Trees

k-ary n-cubes:

number of nodes N = kd

switch degree = d + 2

diameter = d(k − 1)

distance ∼ d1
2(k − 1)

network cost = O(N)

total bandwidth = 2Nb

bisection bandwidth = 2k(d−1)b

k-ary trees:

number of nodes N = kd

number of switches ∼ kd

switch degree = k + 1
diameter = 2d

distance ∼ d + 2
network cost = O(N)
total bandwidth = 2 · 2(N − 1)b
bisection bandwidth = kb

A. Jantsch, KTH
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Butterflies

butterfly
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A. Jantsch, KTH
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Butterfly Characteristics

3

4

0

1

2

number of nodes N = 2d

number of switches = 2d−1d

switch degree = 2
diameter = d + 1
distance = d + 1
network cost = O(Nd)
total bandwidth = 2ddb

bisection bandwidth = N
2 b

A. Jantsch, KTH
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k-ary n-Cubes versus k-ary Trees vs Butterflies

k-ary n-cubes binary tree butterfly

cost O(N) O(N) O(N log N)

distance 1
2

d
√

N log N 2 log N log N

links per node 2 2 log N

bisection 2N
d−1

d 1 1
2N

frequency limit of
random traffic

1/( d

√
N
2 ) 1/N 1/2

A. Jantsch, KTH
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Problems with Butterflies

• Cost of the network

? O(N log N)

? 2-d layout is more difficult than for binary trees

? Number of long wires grows faster than for trees.

• For each source-destination pair there is only one route.

• Each route blocks many other routes.

A. Jantsch, KTH
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Benes Networks

• Many routes;

• Costly to compute
non-blocking routes;

• High probability for
non-blocking route by
randomly selecting an
intermediate node
[Leighton, 1992];

A. Jantsch, KTH
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Fat Trees

fa
t n

od
es

16−node 2−ary fat−tree

A. Jantsch, KTH
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k-ary n-dimensional Fat Tree Characteristics
fa

t n
od

es

16−node 2−ary fat−tree

number of nodes N = kd

number of switches = kd−1d

switch degree = 2k

diameter = 2d

distance ∼ d

network cost = O(Nd)
total bandwidth = 2kddb

bisection bandwidth = 2kd−1b

A. Jantsch, KTH
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k-ary n-Cubes versus k-ary d-dimensional Fat Trees

k-ary n-cubes:

number of nodes N = kd

switch degree = d

diameter = d(k − 1)

distance ∼ d1
2(k − 1)

network cost = O(N)

total bandwidth = 2Nb

bisection bandwidth = 2k(d−1)b

k-ary n-dimensional fat trees:

number of nodes N = kd

number of switches = kd−1d

switch degree = 2k

diameter = 2d

distance ∼ d

network cost = O(Nd)
total bandwidth = 2kddb

bisection bandwidth = 2kd−1b

A. Jantsch, KTH
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Relation between Fat Tree and Hypercube

binary 1−cube

binary 2−dim fat tree

A. Jantsch, KTH
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Relation between Fat Tree and Hypercube - cont’d

binary 3−dim fat tree

binary 2−cube
binary 2−cube

A. Jantsch, KTH
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Relation between Fat Tree and Hypercube - cont’d

binary 3−cubebinary 3−cube

binary 4−dim fat tree

A. Jantsch, KTH
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Trade-offs in Topology Design for the k-ary n-Cube

• Unloaded Latency

• Latency under Load

A. Jantsch, KTH
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Network Scaling for Unloaded Latency

Latency(n) = Admission + RoutingDelay + ContentionDelay

RoutingDelay Tct(n, h) =
n

b
+ h∆

RoutingDistance h =
1
2
d(k − 1) =

1
2
(k − 1) logk N =

1
2
(d d
√

N − 1)
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Unloaded Latency for Small Networks and Local Traffic
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Unloaded Latency under a Free-Wire Cost Model

Free-wire cost model: Wires are free and can be added
without penalty.

N=64
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Unloaded Latency under a Fixed-Wire Cost Models

Fixed-wire cost model: The number of wires is constant per
node:
128 wires per node: w(d) = b64

d c.

d 2 3 4 5 6 7 8 9 10
w(d) 32 21 16 12 10 9 8 7 6

N=64
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Unloaded Latency under a Fixed-Bisection Cost Models

Fixed-bisection cost model: The number of wires across the
bisection is constant:
bisection = 1024 wires: w(d) = k

2 =
d√

N
2 .

Example: N=1024:

d 2 3 4 5 6 7 8 9 10
w(d) 512 16 5 3 2 2 1 1 1
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Unloaded Latency under a Logarithmic Wire Delay Cost Models

Fixed-bisection Logarithmic Wire Delay cost model: The
number of wires across the bisection is constant and the delay
on wires increases logarithmically with the length [Dally, 1990]:
Length of long wires: l = k

n
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Tc ∝ 1 + log l = 1 + (
d
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− 1) log k
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Unloaded Latency under a Linear Wire Delay Cost Models

Fixed-bisection Linear Wire Delay cost model: The number
of wires across the bisection is constant and the delay on wires
increases linearly with the length [Dally, 1990]:
Length of long wires: l = k

n
2−1

Tc ∝ l = k
d
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Latency under Load

Assumptions [Agarwal, 1991]:

• k-ary n-cubes

• random traffic

• dimension-order cut-through routing

• unbounded internal buffers (to ignore flow control and
deadlock issues)

A. Jantsch, KTH
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Latency under Load - cont’d

Latency(n) = Admission + RoutingDelay + ContentionDelay

T (m, k, d, w, ρ) = RoutingDelay + ContentionDelay

T (m, k, d, w, ρ) =
m

w
+ dhk(∆ + W (m, k, d, w, ρ))

W (m, k, d, w, ρ) =
m

w
· ρ

(1− ρ)
· hk − 1

h2
k

·
(

1 +
1
d

)
h =

1
2
d(k − 1)

m · · · message size
w · · · bitwidth of link
ρ · · · aggregate channel utilization
hk · · · average distance in each dimension
∆ · · · switching time in cycles

A. Jantsch, KTH
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Latency vs Channel Load
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Routing

Deterministic routing The route is determined solely by
source and destination locations.

Arithmetic routing The destination address of the
incoming packet is compared with the address of the
switch and the packet is routed accordingly. (relative or
absolute addresses)

Source based routing The source determines the route and
builds a header with one directive for each switch. The
switches strip off the top directive.

Table-driven routing Switches have routing tables, which
can be configured.

Adaptive routing The route can be adapted by the switches
to balance the load.

Minimal routing allows only shortest paths while
non-minimal routing allows even longer paths.

A. Jantsch, KTH
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Quality of Service

• Best Effort (BE)

? Optimization of the average case

? Loose or non-existent worst case bounds

? Cost effective use of resources

• Guaranteed Service (GS)

? Maximum delay

? Minimum bandwidth

? Maximum Jitter

? Requires additional resources

A. Jantsch, KTH
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Regulated Flows

A Flow F is (σ, ρ) regulated if

F (b)− F (a) ≤ σ + ρ(b− a)

for all time intervals [a, b], 0 ≤ a ≤ b and where
F (t) · · · the cumulative amount of traffic between 0 and t ≥ 0.
σ ≥ 0 is the burstiness constraint;
ρ ≥ 0 is the maximum average rate;
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Regulated Flows

A Flow F is (σ, ρ) regulated if

F (b)− F (a) ≤ σ + ρ(b− a)

for all time intervals [a, b], 0 ≤ a ≤ b and where
F (t) · · · the cumulative amount of traffic between 0 and t ≥ 0.
σ ≥ 0 is the burstiness constraint;
ρ ≥ 0 is the maximum average rate;

F(t)

1 t2 t3 t5t4 t

σ

ρ

t
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Regulated Flows - Delay Element

F1 F2
D
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Regulated Flows - Delay Element

F1 F2
D

F1 ∼ (σ, ρ)

F2 ∼ (σ + ρD, ρ)
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Regulated Flows - Work Conserving Multiplexer

F3
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Regulated Flows - Work Conserving Multiplexer

F3

F2

F1

b

D

B

b

b

F1 ∼ (σ1, ρ1)

F2 ∼ (σ2, ρ2)

link bandwidth b < ρ1 + ρ2

F3 ∼ ?

maximum delay D = ?

maximum backlog B = ?
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Work Conserving Multiplexer - 1

t
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tdrain

1ρ

t2t
= 0

1ρ 2ρ

B

b

1

11
b−

Time

−

max B

A. Jantsch, KTH



Network on Chip Tutorial, Princeton, May 6, 2007 Quality of Service - 53

Work Conserving Multiplexer - 1
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Phase 1 (t1): F1 and F2 transmit at full speed;
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Work Conserving Multiplexer - 1
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Phase 1 (t1): F1 and F2 transmit at full speed;
Assume: At t = 0 the queue is empty; σ1 ≤ σ2

Injection rate: 2b; Drain rate: b

A. Jantsch, KTH



Network on Chip Tutorial, Princeton, May 6, 2007 Quality of Service - 53

Work Conserving Multiplexer - 1

t
1

taccu

tdrain

1ρ

t2t
= 0

1ρ 2ρ

B

b

1
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b−

Time

−

max B

Phase 1 (t1): F1 and F2 transmit at full speed;
Assume: At t = 0 the queue is empty; σ1 ≤ σ2

Injection rate: 2b; Drain rate: b

bt1 = σ1 + ρ1t1

t1 =
σ1

b− ρ1

A. Jantsch, KTH
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Work Conserving Multiplexer - 2
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Work Conserving Multiplexer - 2
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Phase 2 (t2): F1 transmits at rate ρ1, F2 transmits at full speed;
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Work Conserving Multiplexer - 2
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Phase 2 (t2): F1 transmits at rate ρ1, F2 transmits at full speed;
Injection rate: b + ρ1; Drain rate: b
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Work Conserving Multiplexer - 2
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tdrain
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−

max B

Phase 2 (t2): F1 transmits at rate ρ1, F2 transmits at full speed;
Injection rate: b + ρ1; Drain rate: b

btaccu = σ2 + ρ2taccu

taccu =
σ2

b− ρ2
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Work Conserving Multiplexer - 3
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Work Conserving Multiplexer - 3
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Phase 3 (tdrain): F1 transmits at rate ρ1, F2 transmits at rate ρ2;
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Work Conserving Multiplexer - 3

t
1

taccu

tdrain

1ρ

t2t
= 0

1ρ 2ρ

B

b

1

11
b−

Time

−

max B

Phase 3 (tdrain): F1 transmits at rate ρ1, F2 transmits at rate ρ2;
Injection rate: ρ1 + ρ2; Drain rate: b
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Work Conserving Multiplexer - 3
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Phase 3 (tdrain): F1 transmits at rate ρ1, F2 transmits at rate ρ2;
Injection rate: ρ1 + ρ2; Drain rate: b

tdrain =
Bmax

b− ρ1 − ρ2

A. Jantsch, KTH



Network on Chip Tutorial, Princeton, May 6, 2007 Quality of Service - 55

Work Conserving Multiplexer - 3
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= 0
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−

max B

Phase 3 (tdrain): F1 transmits at rate ρ1, F2 transmits at rate ρ2;
Injection rate: ρ1 + ρ2; Drain rate: b

tdrain =
Bmax

b− ρ1 − ρ2

Bmax = bt1 + ρ1t2
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Work Conserving Multiplexer - 3

t
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taccu

tdrain

1ρ

t2t
= 0

1ρ 2ρ

B
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b−

Time

−

max B

Phase 3 (tdrain): F1 transmits at rate ρ1, F2 transmits at rate ρ2;
Injection rate: ρ1 + ρ2; Drain rate: b

tdrain =
Bmax

b− ρ1 − ρ2

Bmax = bt1 + ρ1t2 = σ1 +
ρ1σ2

b− ρ2

A. Jantsch, KTH
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Work Conserving Multiplexer - Summary
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Work Conserving Multiplexer - Summary
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Work Conserving Multiplexer - Summary

t
1

taccu

tdrain

1ρ

t2t
= 0

1ρ 2ρ

B

b

1

11
b−

Time

−

max B

Bmax = σ1 +
ρ1σ2

b− ρ2

Dmax = taccu + tdrain =
σ1 + σ2

b− ρ1 − ρ2
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Work Conserving Multiplexer - Summary

t
1

taccu

tdrain

1ρ

t2t
= 0

1ρ 2ρ

B

b

1

11
b−

Time

−

max B

Bmax = σ1 +
ρ1σ2

b− ρ2

Dmax = taccu + tdrain =
σ1 + σ2

b− ρ1 − ρ2

F3 ∼ (σ1 + σ2, ρ1 + ρ2)
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MPEG Encoding Case Study
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MPEG Encoding Case Study
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MPEG Encoding Case Study - cont’d

T
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1

F1 ∼ (0, ρt)
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MPEG Encoding Case Study - cont’d
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MPEG Encoding Case Study - cont’d
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C1 : (ρt, D1)
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MPEG Encoding Case Study - cont’d
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F1 ∼ (0, ρt)

C1 : (ρt, D1)

C2 : (ρt, D2)

C1 : (ρt, D3)

C4 : (ρt, D4)

F2 ∼ (ρtD1, ρt)
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MPEG Encoding Case Study - Memory
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M ′ : (2ρt, DM ′)
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MPEG Encoding Case Study - Memory

M2M’

F

F FM4

M3

7

F2 FM1 F

M ′ : (2ρt, DM ′)
For a general multiplexer we have:

Dmux =
σ1 + σ2

Cout − ρ1 − ρ2

Fmuxout ∼ (σ1 + σ2, ρ1 + ρ2)
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M ′ : (2ρt, DM ′)
For a general multiplexer we have:

Dmux =
σ1 + σ2

Cout − ρ1 − ρ2

Fmuxout ∼ (σ1 + σ2, ρ1 + ρ2)

FM3 ∼ (ρt(D1 + Dmux + DM ′), ρt)
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MPEG Encoding Case Study - Memory

M2M’

F

F FM4

M3

7

F2 FM1 F

M ′ : (2ρt, DM ′)
For a general multiplexer we have:

Dmux =
σ1 + σ2

Cout − ρ1 − ρ2

Fmuxout ∼ (σ1 + σ2, ρ1 + ρ2)

FM3 ∼ (ρt(D1 + Dmux + DM ′), ρt)
FM4 ∼ ?
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MPEG Encoding Case Study - cont’d
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MPEG Encoding Case Study - cont’d
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RM1 ∼ (Sbuffer, ρt);

RM2 ∼ (Sbuffer, ρt);

RS ∼ (Sbuffer, ρt);

Sbuffer is the size of the input buffer in S.
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MPEG Encoding Case Study - cont’d
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RM1 ∼ (Sbuffer, ρt);

RM2 ∼ (Sbuffer, ρt);

RS ∼ (Sbuffer, ρt);

Sbuffer is the size of the input buffer in S.

D(σ, ρ)-regulator =
max(0, σ′ − σ)

ρ

B(σ, ρ)-regulator = max(0, σ′ − σ)
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MPEG Encoding Case Study - cont’d
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RM1 ∼ (Sbuffer, ρt);

RM2 ∼ (Sbuffer, ρt);

RS ∼ (Sbuffer, ρt);

Sbuffer is the size of the input buffer in S.

D(σ, ρ)-regulator =
max(0, σ′ − σ)

ρ

B(σ, ρ)-regulator = max(0, σ′ − σ)

F6 ∼ (Sbuffer, ρt)

C3 : (ρt, D3)

F7 ∼ (Sbuffer + ρtD3, ρt)
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MPEG Encoding Case Study - Memory
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MPEG Encoding Case Study - Memory

M2M’

F

F FM4

M3

7

F2 FM1 F

M ′ : (2ρt, DM ′)

Dmux =
σ1 + σ2

Cout − ρ1 − ρ2
=

Sbuffer + ρt(D1 + D3)
Cout − 2ρt

FM1 ∼ (Sbuffer + ρt(D1 + D3), 2ρt)

FM2 ∼ (Sbuffer + ρt(D1 + D3 + 2DM ′), 2ρt)

FM3 ∼ (ρt(D1 + Dmux + DM ′), ρt)

FM4 ∼ (Sbuffer + ρt(D3 + Dmux + DM ′), ρt)
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MPEG Encoding Case Study - cont’d
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MPEG Encoding Case Study - cont’d
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Backlog of the regulators:

BRM1 = max(0, ρt(D1 + Dmux + DM ′)

−Sbuffer)

BRM2 = max(0, 128B + ρt(D3 + Dmux

+DM ′)− Sbuffer)

Delay of the regulators:

DRM1 =
BRM1

ρt

DRM2 =
BRM2

ρt
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MPEG Encoding Case Study - cont’d
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MPEG Encoding Case Study - cont’d
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The flow from the memory to S:

F3 ∼ (Sbuffer, ρt)

C2 : (ρt, D2)

F4 ∼ (Sbuffer + ρD2, ρt),

A charatcerization of S and its output:

S : (ρt,
Sbuffer

ρt
)

F5 ∼ (2Sbuffer + ρtD2, ρt)

The flows between memory and V:

F8 ∼ (Sbuffer, ρt)

C4 : (ρ,D4)

F9 ∼ (Sbuffer + ρtD4, ρt)
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MPEG Encoding Case Study - cont’d
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MPEG Encoding Case Study - cont’d
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F1
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M

End to end delay:

Dtotal =D1 + Dmux + DM ′

+ DRM1 + D2 + DS + DRS + D3

+ Dmux + DM ′ + DRM2 + D4

The flow at V:

FT→V ∼ (0 + ρtDtotal, ρt)

A. Jantsch, KTH
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Modeling with Regulated Flows

• Interconnect:

? Model each channel by available bandwidth and
maximum delay variation;

? Model each node in the interconnect as an arbiter;

• Model read request, write acknowledge as separate flows;

• Model synchronization as separate flows;

• A simple generalization of (σ, ρ) flows is

F ∼ min(σi, ρi), i > 0

F (b)− F (a) ≤ min
i

(σi + ρi(b− a))

• Good analysis depends on good element models;

A. Jantsch, KTH
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Network Calculus - Arrival Curves

bits

a

b−a

α(t)

Given a monotonically increasing function α, defined for t ≥ 0,
α is an arrival curve for flow F if for all 0 ≤ a ≤ b:

F (b)− F (a) ≤ α(b− a)

A. Jantsch, KTH
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Network Calculus - Min-Plus Convolusion

Given two monotonically increasing functions f and g. The
min-plus convolusion of f and g is the function

(f ⊗ g)(t) = inf
0≤s≤t

(f(t− s) + g(s))
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Given two monotonically increasing functions f and g. The
min-plus convolusion of f and g is the function

(f ⊗ g)(t) = inf
0≤s≤t

(f(t− s) + g(s))

If α is an arrival curve for F we have:

F ≤ F ⊗ α

A. Jantsch, KTH



Network on Chip Tutorial, Princeton, May 6, 2007 Quality of Service - 68

Network Calculus - Min-Plus Convolusion

Given two monotonically increasing functions f and g. The
min-plus convolusion of f and g is the function

(f ⊗ g)(t) = inf
0≤s≤t

(f(t− s) + g(s))

If α is an arrival curve for F we have:

F ≤ F ⊗ α

and

F ≤ α⊗ α

with α ⊗ α being the best bound that we can find based on
information of α.

A. Jantsch, KTH
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Network Calculus - Service Curves

β(t)

F(t)

βF (t))(F(t) F*(t)

bits

(t)F*

S

Given a system S with an input flow F and an output flow
F ∗. S offers the flow a service curve β if and only if β is
a monotonically increasing function and F ∗ ≥ F ⊗ β which
means that

F ∗(t) ≥ inf
s≤t

(F (t) + β(t− s))

A. Jantsch, KTH
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Network Calculus - Backlog Bound
F*

(t)

F(t) F*(t)
F

(t)

bits

β

α β

t

ba
ck

lo
gα

S

Given a flow F constrained by arrival curve α and a system
offering a service curve β, the backlog F (t) − F ∗(t) for all t
satisfies

F (t)− F ∗(t) ≤ sup
s≥0

(α(s)− β(s))

A. Jantsch, KTH
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Network Calculus - Delay Bound F*

(t)

F(t) F*(t)
F

(t)

bits

t

α β

α
βdelay

S

Given a flow F constrained by arrival curve α and a system
offering a service curve β, the delay d(t) at time t is

d(t) = inf(τ ≥ 0 : F (t) ≤ F ∗(t + τ)).

It satisfies

d(t) ≤ h(α, β) = sup
t≥0

(inf(τ ≥ 0 : α(t) ≤ β(t + τ)))

A. Jantsch, KTH
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Network Calculus - Output Arrival Curve

F(t)

F(t) F*(t)

bits
F*(t)

β

β α β

α∗

Sα

α

t

Given a flow F constrained by arrival curve α and a system
offering a service curve β, the output flow F ∗ is constrained
by the arrival curve α∗

α∗ = α� β.

(α� β)(t) = sup
s≥0

(α(t + s)− β(s))

A. Jantsch, KTH
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Network Calculus - Useful Functions
bits

t

R

Peak rate function:
λR(t) = Rt

t

bits

T

R

Rate latency function:
βR,T (t) = R[t− T ]+

bits

t

σ

ρ

Affine function:

γσ,ρ(t) =

{
0 for t = 0
σ + ρt for t > 0

bits

tT

Burst-delay function:

δT (t) =

{
0 for t ≤ T

∞ for t > T

bits

tT−t 2T−t 3T−t 5T−t 6T−t4T−t

ρ
2
1

3
4
5

Staircase function:
vT,τ(t) = d(t + τ)/T e

t

bits

1

T

Step function:

uT (t) =

{
0 for t ≤ T

1 for t > T

A. Jantsch, KTH
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Network Calculus - Concatenation of Nodes

F*F

2

β1

β1 β

α S1 S2
β2

S /
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Network Calculus - Concatenation of Nodes

F*F

2

β1

β1 β

α S1 S2
β2

S /

Example:
β1 = βR1,T1

β2 = βR2,T2

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2

A. Jantsch, KTH



Network on Chip Tutorial, Princeton, May 6, 2007 Quality of Service - 74

Network Calculus - Concatenation of Nodes

F*F

2

β1

β1 β

α S1 S2
β2

S /

Example:
β1 = βR1,T1

β2 = βR2,T2

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2

Useful properties:
f ⊗ g = g ⊗ f

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

(f + c)⊗ g = (f ⊗ g) + c for any constant c ∈ R
A. Jantsch, KTH
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Network Calculus - Pay Bursts Only Once

F*F

2

β1

β1 β

α S1 S2
β2

S /

R2

T2T1

R1 R2

R1

R2

T2T1
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Network Calculus - Pay Bursts Only Once

F*F

2

β1

β1 β

α S1 S2
β2

S /

R2

T2T1

R1 R2

R1

R2

T2T1

bits

t+

=min( , )

ρ

σ

α = γρ,σ

β1 = βR1,T1 = R1 max(0, t− T1)

β2 = βR2,T2 = R2 max(0, t− T2)
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Network Calculus - Pay Bursts Only Once

F*F

2

β1

β1 β

α S1 S2
β2

S /

R2

T2T1

R1 R2

R1

R2

T2T1

bits

t+

=min( , )

ρ

σ

α = γρ,σ

β1 = βR1,T1 = R1 max(0, t− T1)

β2 = βR2,T2 = R2 max(0, t− T2)

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2
= min(R1, R2) max(0, t− (T1 + T2))

A. Jantsch, KTH
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Network Calculus - Pay Bursts Only Once

F*F

2

β1

β1 β

α S1 S2
β2

S /

R2

T2T1

R1 R2

R1

R2

T2T1

bits

t+

=min( , )

ρ

σ

α = γρ,σ

β1 = βR1,T1 = R1 max(0, t− T1)

β2 = βR2,T2 = R2 max(0, t− T2)

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2
= min(R1, R2) max(0, t− (T1 + T2))

D1 + D2 =
σ

R1
+

σ

R2
+

ρT1

R2
+ T1 + T2
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Network Calculus - Pay Bursts Only Once

F*F

2

β1

β1 β

α S1 S2
β2

S /

R2

T2T1

R1 R2

R1

R2

T2T1

bits

t+

=min( , )

ρ

σ

α = γρ,σ

β1 = βR1,T1 = R1 max(0, t− T1)

β2 = βR2,T2 = R2 max(0, t− T2)

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2
= min(R1, R2) max(0, t− (T1 + T2))

D1 + D2 =
σ

R1
+

σ

R2
+

ρT1

R2
+ T1 + T2

DS =
σ

min (R1, R2)
+ T1 + T2
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Summary

• Communication Performance: bandwidth, unloaded latency, loaded
latency

• Organizational Structure: NI, switch, link

• Topologies: wire space and delay domination favors low dimension
topologies;

• Routing: deterministic vs source based vs adaptive routing;
deadlock;

• Quality of Service and flow regulation

A. Jantsch, KTH
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