
Slot allocation using logical
networks for TDM virtual circuit
configuration for network-on-chip

Slot allocation using logical
networks for TDM virtual circuit
configuration for network-on-chip

Zhonghai Lu and Axel Jantsch

Royal Institute of Technology (KTH), Stockholm,
Sweden

OutlineOutline

Background on TDM (Time-Division-Multiplexing) VC
The problem of slot allocation
Our approach and contributions

The key concept is Logical Network (LN)
Contention-free theory
LN-oriented slot allocation method

Results of an industrial case study
Conclusion and future work

TDM Virtual CircuitTDM Virtual Circuit

What is that?
A VC is a connection in a packet-switched network.
A TDM VC means multiple connections use shared
buffers and links in a time-division fashion.

Example

Why do we need it?
Contention-less, offering guaranteed latency and BW.

Two variants of TDM VCTwo variants of TDM VC

Open-ended
A VC path is not a loop
for buffered flow control networks, e.g. wormhole, VCT

Closed-loop
A VC is a loop
for buffer-less flow control networks, e.g. deflection

Containers are looped on VCs to carry data packets.

How to configure TDM VCs?How to configure TDM VCs?

Properties of a TDM VC
A deterministic path
Use dedicated time slots to pass buffers, freeing from
contention

Problems of TDM VC configuration
Path selection: explore network path diversity
Slot allocation: determine when (time slots) VC packets
use buffers to be contention free and satisfy BW

Path SelectionPath Selection

Multi node VC Configuration
Node visiting order: Hamiltonian Path / Traveling
Salesman problem
Path selection + Slot Allocation by a Depth first
search with backtracking

Ordering of VCs into a list
Finding shortest tour for multi-node comunication
Path selection
Slot allocation

On the slot allocation problemOn the slot allocation problem

How to avoid contention?
Use exclusive slots
Globally synchronize slot tables such that no
simultaneous use of a buffer or link is possible

How to guarantee bandwidth
In the first place, contention free
In the second place, allocate enough slots

Our approach and contributionsOur approach and contributions

Propose the concept of Logical Network (LN)
Formulate a contention-less theory with necessary
and sufficient conditions to assign VCs to LNs
Develop a LN-based slot allocation algorithm

A running exampleA running example

To explain the concepts and method intuitively

b1 b2

b3

V1

V2

V1=<b1, b2>, BW1=1/2
V2=<b1, b3>, BW2=1/4

• Given:

• Determine:
Packet admission pattern for v1

and v2 such that
(1) there is no contention and
(2) both BW requirements are met

Admission pattern: N packets
are admitted over W slots

t

VC traffic flow: repeating this
admission pattern

W=4

N=2

Avoid contentionAvoid contention

Two steps
1. Slot partitioning with respect to a shared buffer in

time domain
2. Slot mapping along a VC path in space domain

Consequence
Birth of LN, associated (time slot, buffer) pairs.
Eventually, we can precisely define traffic flow on
VCs.

Avoid contention with the exampleAvoid contention with the example

1. Slot partitioning

Even { (2k, b1)} and odd { (2k+1, b1) } slot sets

2. Slot mapping
Map b1’s odd slot set on V1,
Map b1’s even slot set on V2,

b1 b2

b3

V1

V2

b2 0 1 2 3 4 5 6 7 8 9 10

b1 0 1 2 3 4 5 6 7 8 9 10

b3 0 1 2 3 4 5 6 7 8 9 10
t

LN (v2,b1)0
2LN (v1,b1)1

2

= { (2k, b1), (2k+1,b3) }
= { (2k+1, b1), (2k,b2) }

V1 ∩ V2 = {b1}

LN (v2,b1)0
2

LN (v1,b1)1
2

Satisfy bandwidthSatisfy bandwidth

A LN owns dedicated slots, thus BW.
For each VC with its LNs, check supported_BW ≥
demanded_BW ?

If supported_BW > demanded_BW, do slot refinement,
i.e., allocate/consume slots not more than necessary
If supported_BW = demanded_BW, consume slots
If supported_BW < demanded_BW, LNs are not
sufficient to satisfy BW requirement

Satisfy bandwidth with the exampleSatisfy bandwidth with the example
V1:
V2:

b1 b2

b3

V1

V2

b2 0 1 2 3 4 5 6 7 8 9 10

b1 0 1 2 3 4 5 6 7 8 9 10

b3 0 1 2 3 4 5 6 7 8 9 10
t

LN (v2,b1)0
2LN (v1,b1)1

2

BW()=1/2 > 1/4LN (v2,b1)0
2

b1 0 1 2 3 4 5 6 7 8 9 10

b3 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 12
t

0 1 2 3 4 5 6 7 8 9 10 12
tV1

V2
t

BW()=1/2 =BW1LN (v1,b1)1
2

BW()=1/2 >BW2LN (v2,b1)0
2

Refine slots

Slot allocation summarySlot allocation summary

The properties of a LN
Owns dedicated slots in buffers ((slot, buffer) pairs)
Function of VC and a reference buffer
One LN owns 1/NLN bandwidth

Slot allocation becomes VC-to-LN assignment:
1. Slot partitioning to create LNs referring to a shared

buffer
2. Slot mapping to assign VCs to different LNs
3. Slot refinement to allocate enough BW to LNs

How to generalize the results?

Essential issuesEssential issues

How many LNs exist when VCs overlap?
How to partition slots?

Is allocating VCs to different LNs sufficient and
necessary?
How to select a reference buffer when VCs have
multiple shared buffers?
Does the result change if a different reference buffer
is selected?

Addressed by the contention-free theory

The number of LNsThe number of LNs

Two VCs, V1 and V2, with admission window W1 and
W2, the max. number of LNs, NLN (V1, V2)=GCD (W1, W2)

W1 and W2 are derivable from BW requirement and
subject to application constraints
More than one solution, reflecting design space

Example

b1 b2

b3

V1

V2
V1=<b1, b2>, BW1=1/2
V2=<b1, b3>, BW2=1/4

W1=2, W2=4

NLN (V1, V2)=GCD (2, 4)=2

b1 0 1 2 3 4 5 6 7 8 9 10

Sufficient and necessary conditionSufficient and necessary condition

VC-to-LN assignment steps:
1. Slot partitioning to create LNs with respect to a

reference buffer
2. Slot mapping to assign VCs to different LNs
3. Slot refinement

Assigning VCs to different LNs is sufficient and
necessary to promise contention-free.

Multiple shared buffersMultiple shared buffers

If two VCs have multiple shared buffers, how to
select the reference buffer?
Example

Consistency check
No conflict in bn => No conflict in bm

Linear check instead of complete check
(b1,bn) and (bn, bm) => (b1, bm)

b1 b2

b3

V1

bm

bn

V2
V1 ∩ V2 = {b1, bn, bm}

mod(dbnbm(v1) - dbnbm(V2), NLN)=0

LN-oriented slot allocationLN-oriented slot allocation
Input

VC spec. set, V1, V2, … Vn,
with BW and path known
Admission windows, W1, W2,
…, Wn, respectively

Output
Fail or succeed
If succeed, admission pattern
for each VC

Slot allocation procedure
Pair-wise (vi, vj) and
incremental
Compute LNs: slot
partitioning and LN mapping
Consume LNs: slot mapping
and refinement

Reference consistency?

Calculate NLN

Compute available LNs

Start

Consume sufficient LNs

Supported BW ≥ BW demand?

Ret. 0 Ret. 1

Y

N

N

Y

VC configuration programVC configuration program

The LN-based slot allocation method has been
implemented in our VC configuration program
The VC configuration program

supports both open-ended and closed-loop VCs
explores the network path diversity via back-tracking

An industrial applicationAn industrial application

A radio system
26 node-to-node traffic flows classified into 9 multi-node flows. ‘a’
and ‘h’ are multicast, others unicast.

Implement flows on a 4x4 mesh with closedclosed--loop VCsloop VCs

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

a
h i

i

c

c
d
e

g

f

f

b b b
b b b

to/from all 512
4096

64
128
512

2048
512
512

4096
BW

2i
3h
1g
4f
1e
2d
4c
6b
3a

Num.Flow

BW unit: Mbits/s

The case studyThe case study

VC specification
S1: find a heaviest load link
S2: e.g. if BWlink=4096, 512=1/8BWlink

S3: explore multi-node VC for
Multicast, ‘a’ and ‘h’
Low bandwidth, ‘f’
Round-trip, ‘d’

S3’: only for closed-loop VCs,
compute # of containers for each.

VC configuration

Determine link BW

Normalize BW demand

Execute conf. program

Merge traffic flows,

Satisfied?

Start

End

S1

S2

S3

compute # of containers

Y

N

ResultsResults

VC implementations
one VC for one type of flow
For Illustration, not optimal

VC conf. program execution
experimenting on the impact
of VC sorting, exploring all
possible paths

Sort 1: random
Sort 2: higher BW first
Sort 3: less number of path
options first

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

a
h i

c

d
e

g

f

b

to/from all

1266Exe. time (s)

763033# of solutions

321Sort scheme

Conclusion and future workConclusion and future work

Conclusion
Slot allocation can be formally conducted with
sufficient and necessary conditions.
Logical network is a powerful concept to ensure
correct-by-construction.

Future work
Optimize admission patterns to improve slot allocation
Asynchronous communication

Asynchronous links, nodes with different notion of time
Stallable packet delivery

Merging of VCs into LNs
Merging of Flows into VCs

Thank you for your attention!

