Standards for NoC: What can we gain?

Axel Jantsch

Royal Institute of Technology, Stockholm

March 2006

What Kind of Standards

- Informal Standards are a set of assumptions shared and agreed upon in a community
- Industrial standards are set by companies that guess right
- Formal standards (IEEE, ISO, ...) are usually preceded by an informal consensus

Standardizing Interfaces and Protocols

- Pins
- Data link
- Transactions
- End-to-end communication services
- Functionality + performance contracts

Standardizing Interfaces and Protocols

We gain:

- Reuse of IPs
- Reuse or verification
- Outsourcing and specialization
- Separation of
 - ★ Physical design issues
 - ★ Communication design
 - ⋆ Component design
 - \star Verification
 - ★ System design

- Data link
- Transactions
- End-to-end communication services
- Functionality + performance contracts

Standardization of Design Methodologies

- Reuse of concepts
- Methodologies
- Methods
- Design languages
- Tools

Reuse, separation of concerns and specialization are driving forces

We can build on top of standards

Assuming we have standard communication services, we build on top of them:

We can build on top of standards

Assuming we have standard communication services, we build on top of them:

- Design tools:
 - ★ System performance analysis
 - ★ Formal communication verification
 - \star Allocation, mapping, and scheduling
 - ★ etc.

We can build on top of standards

Assuming we have standard communication services, we build on top of them:

- Design tools:
 - ★ System performance analysis
 - ★ Formal communication verification
 - ★ Allocation, mapping, and scheduling
 - ★ etc.
- New services:
 - Dynamic resource allocation and management
 - ★ Dynamic power management
 - \star On-line testing and diagnostics
 - \star Off-chip communication services
 - ★ etc.

• Benchmark applications and Stochastic micro-benchmarks

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
- Various temporal and Spatial distributions of traffic

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
- Various temporal and Spatial distributions of traffic
- Best effort and Guaranty services

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
- Various temporal and Spatial distributions of traffic
- Best effort and Guaranty services
- Sizes between 16 and 200 nodes

Unloaded Case

	Delay	Bandwidth	Energy	Area
Packet				
Transaction				
Read 16/32/64b				
Write 16/32/64b				
Open Stream				
Close Stream				
Message 1/4/16/32B				

	Loaded Case							
	D_1	D_2	D_3	D_n	Sustained bandwidth	Energy /byte		
Packet								
Transaction								
Read 16/32/64b								
Write 16/32/64b								
Open Stream								
Close Stream								
Message 1/4/16/32B								

$$1 - 10^{-i}$$
 of all packets p : $\frac{\text{delay}(p)}{\text{mindelay}(p)} \le D_i$

 $D_1:90\%, \quad D_2:99\%, \quad D_3:99.9\%, \quad D_n:100\%$

Temporal Distributions

• Uniform

• Bursty traffic according to the B-Model: $B_{0.2}$, $B_{0.3}$, $B_{0.4}$

• Uniform

• Bit Rotate

• Hot Spot

• Bit Complement

• Fork-Join Pipeline

• Uniform with locality

Spatial Patterns

Uniform

Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline

Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline

Bit Complement

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline

Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline

Fork–Join Pipeline

Size

Number of nodes: 8, 16, 25, 40, 60, 80, 100, 150, 200

Data Points for Stochastic Micro Benchmarks

- Temporal distribution: $4\times$
- Spatial patterns: $12\times$
- Unloaded case: $((14 \times 4) +$
- Loaded case: $((14 \times 6)) \times$
- Size: 9 = 60480

D_1 versus network size in Nostrum

D_2 versus network size in Nostrum

D_3 versus network size in Nostrum

D_n versus network size in Nostrum

Summary

- Standards are crucial and complementary to innovative research
- Let's standardize performance metrics

