
ForSyDe: A Denotational Framework for
Heterogeneous Models of Computation

Axel Jantsch, Ingo Sander, Jun Zhu
Royal Institute of Technology, Stockholm

Models of Computation and Communication
ARTIST2 Workshop

November 2006



ForSyDe Features

outputinput
A2A1

A3

Processes

• Communicate through signals only;

• Functional

• State-full

• Blocking read

• Partition input and output signals

• Evaluate when required input is
available

Signals:

• Sequences of events

• Preserve event order

• Have one writer and multiple readers

• Untimed MoC: Events are partially
ordered

• Discrete Time MoCs: Signals carry
timing information

1



The ForSyDe Design Flow

Ideal System Model
No resource limitation on

processors
communication bandwidth and delay
memory

Implementation Model
with Finite resources

processors, HW blocks,
reconfigurable resources
buffers
communication architecture
schedulers, arbiters

C

Program VHDL

Design
SystemC

Model

2



Process Constructors

process = constructor + function + initial state + invokation condition

state

f

Process functionality

Process Constructor

Invokation
condition

output
signal

input
signal

γ

3



Layered View of Process Constructors

Function + State

(C++, Java,
Haskell, etc.)

Process Type

Constructor Wrapper
Communication/Time/
Synchronization Layer

Process Constructor Layer

Computation Layer

outputinput
signal

signal

Models of Computation

• Untimed MoC (Datflow, SDF,
Rendezvous)

• Synchronous MoC (Perfectly,
Clocked)

• Discrete Time MoC
• Soon: Continuous Time MoC

Process Combinators

• Sequential
Composition

• Parallel
Composition

• Feed-back
Composition

Process Constructor
Types

• State-less
Processes

• FSM Machines
• Zip / Unzip

Processes
• Sources and Sinks

4



The mapU Process Constructor

mapU(c, f) = p

where p(ṡ) = ṡ′

f(ȧi) = ȧ′
i

π(ν, ṡ) = 〈ȧi〉, ν(i) = c

π(ν′, ṡ′) = 〈ȧ′
i〉, ν′(i) = #f(ȧi)

5



The mapU Process Constructor

mapU(c, f) = p

where p(ṡ) = ṡ′

f(ȧi) = ȧ′
i

π(ν, ṡ) = 〈ȧi〉, ν(i) = c

π(ν′, ṡ′) = 〈ȧ′
i〉, ν′(i) = #f(ȧi)

Example:

A = mapU(c, f)
where c = 1

f(x) = 2x

Process A
mapU

Invokation
condition

1

f(x) = 2x
<< 2 >, < 4 >, < 6 >, · · ·<< 1 >, < 2 >, < 3 >, · · · >

Process functionality

5



Definition of a Model of Computation

The Untimed Model of Computation (Untimed MoC) is
defined as Untimed MoC=(C,O), where

C = { mapU, scanU, scandU, mealyU, mooreU,
zipU, zipUs, zipWithU, unzipU,

sourceU, sinkU, initU}

O = {‖, ◦,FBP}

• Synchronous Model of Computation

• Clocked Synchronous Model of Computation

• Discrete Time Model of Computation

6



The Integrated MoC

The Integrated Model of Computation (Integrated MoC)
is defined as Integrated HMoC=(M,C,O), where

M = {U-MoC, S-MoC, CS-MoC, T-MoC}
C = { intSup, intSdown, intTup, intTdown,

stripT2S, stripT2U, stripS2U,

insertS2T, insertU2T, insertU2S}

O = {‖, ◦,FBP}

7



Process Migration

Untimed Domain Synchronous Domain

Synchronous DomainUntimed Domain

p1 p3p′
2

p1 p2 p3

pinsertU2S

pinsertU2S

8



Process Refinement - FM Software Radio Example

SDF Model Synchronous Model

9



Process Refinement - FM Software Radio Example

10



Transformation Rules - Scheduling

11



Transformation Rules - Scheduling

12



Transformation Rules - Scheduling

13



Transformation Rules - Scheduling

14



Transformation Rules - Scheduling

15



NoC Simulator Case Study

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

S

I

R

16



ForSyDe Status

Implementation Model
with Finite resources

processors, HW blocks,
reconfigurable resources
buffers
communication architecture
schedulers, arbiters

C

Program VHDL

Design
SystemC

Model

Stable modeling technique

U-MoC, S-MoC, CS-MoC, DT-MoC

ForSyDe library based on Haskel

Mapping for synchronous HW defined

Mapping for sequential SW defined

Set of transformations defined

Verification of local transformations

proposed

Ideal System Model
No resource limitation on

processors
communication bandwidth and delay
memory

17



ForSyDe Status

Implementation Model
with Finite resources

processors, HW blocks,
reconfigurable resources
buffers
communication architecture
schedulers, arbiters

C

Program VHDL

Design
SystemC

Model

Stable modeling technique

U-MoC, S-MoC, CS-MoC, DT-MoC

ForSyDe library based on Haskel

Mapping for synchronous HW defined

Mapping for sequential SW defined

Set of transformations defined

Verification of local transformations

proposed

Ideal System Model
No resource limitation on

processors
communication bandwidth and delay
memory

proposed

Ideal System Model
No resource limitation on

processors
communication bandwidth and delay
memory

Stable modeling technique

U-MoC, S-MoC, CS-MoC, DT-MoC

ForSyDe library based on Haskel

Mapping for synchronous HW defined

Mapping for sequential SW defined

Set of transformations defined

Verification of local transformations

Implementation Model
with Finite resources

processors, HW blocks,
reconfigurable resources
buffers
communication architecture
schedulers, arbiters

C

Program

Communication refinement method

Modeling of adaptive resources

Definition of a CT-MoC

Ongoing work

GME based tool support for transformations

Modeling of non-functional properties

17


