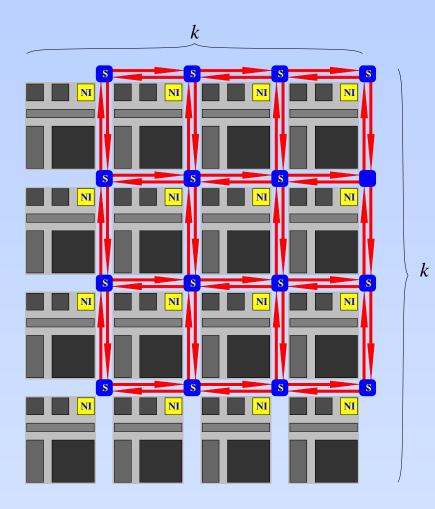
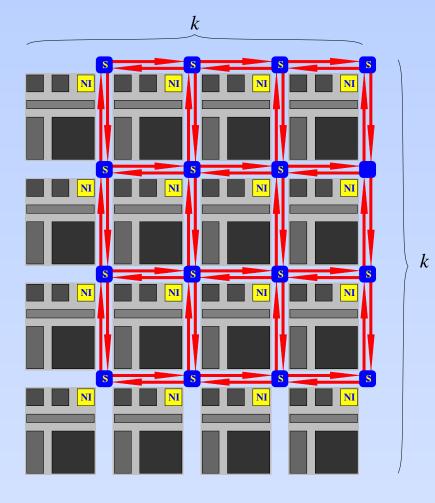
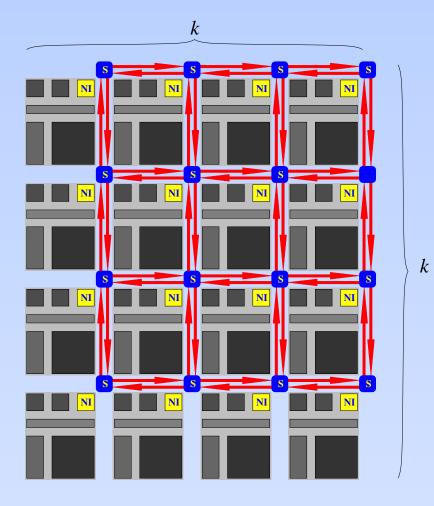
Compositional Traffic in Networks on Chip

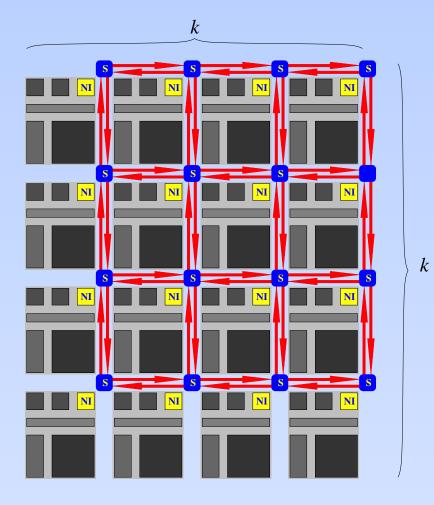
Axel Jantsch Royal Institute of Technology, Stockholm


BEC 2006

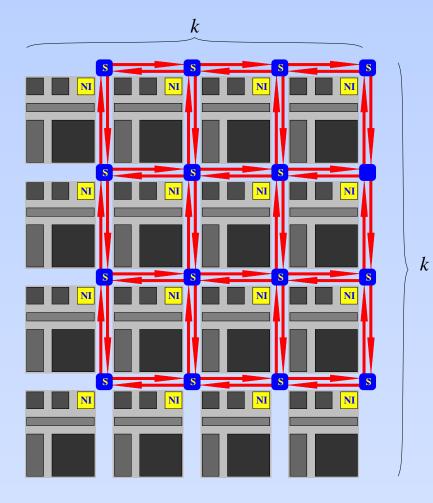



Overview

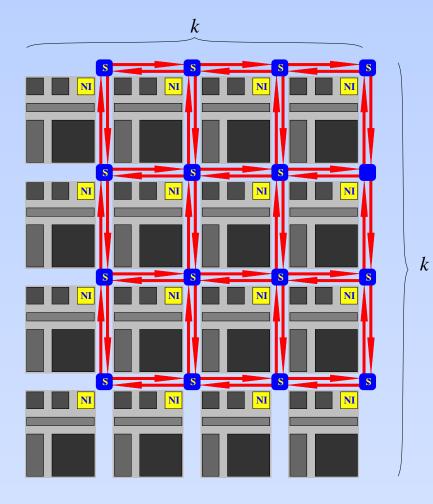
- Scalability of meshes and k-ary n-cubes
- Traffic contracts
- Composition of traffic contracts



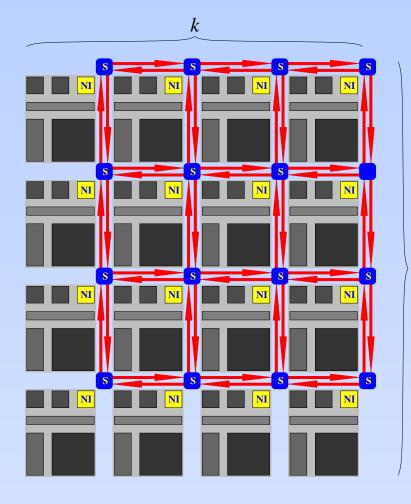
Under uniform traffic:



Under uniform traffic: average distance: 2/3k

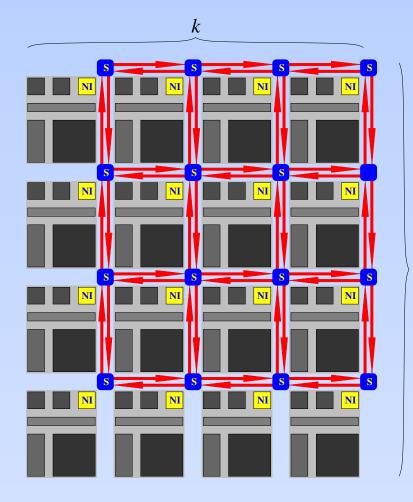

Under uniform traffic:

average distance: 2/3kemission probability: $p, 0 \le p \le 1$


Under uniform traffic:

average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$

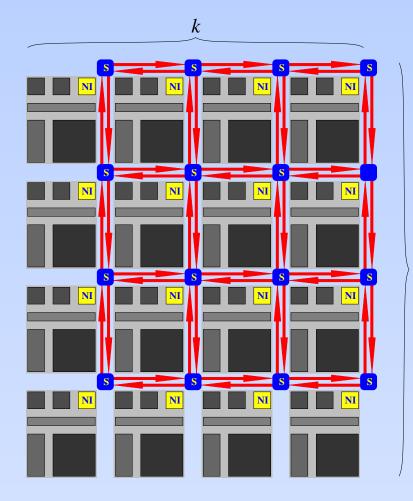
Under uniform traffic:


average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$ network capacity: $4k^2 - 4k$

Under uniform traffic:

average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$ network capacity: $4k^2 - 4k$

Balance:



Under uniform traffic:

average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$ network capacity: $4k^2 - 4k$

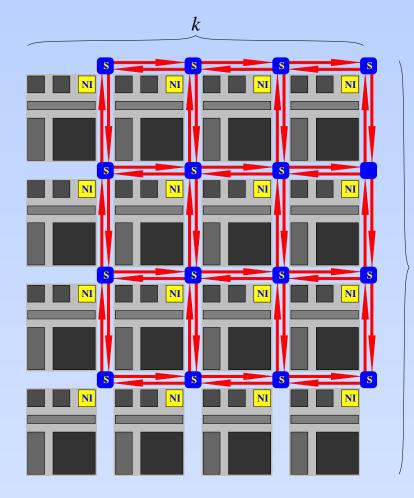
Balance:

$$\frac{2}{3}k^{3}p = 4k^{2} - 4k$$

Under uniform traffic:

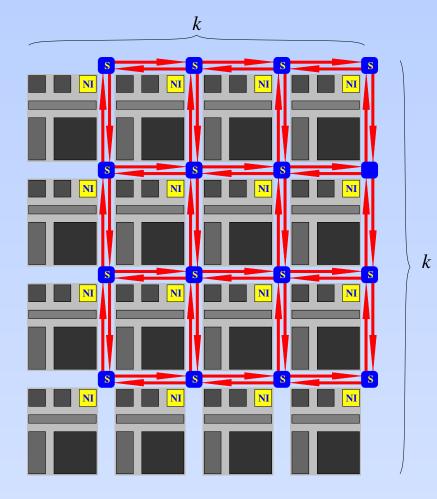
average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$ network capacity: $4k^2 - 4k$

Balance:

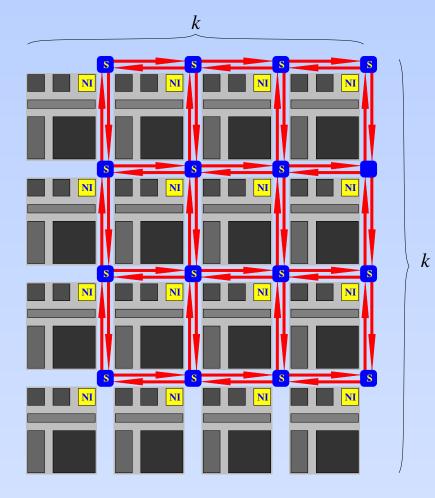

$$\frac{2}{3}k^{3}p = 4k^{2} - 4k$$
$$\frac{2}{3}k^{2}p = 4k - 4$$

Under uniform traffic:

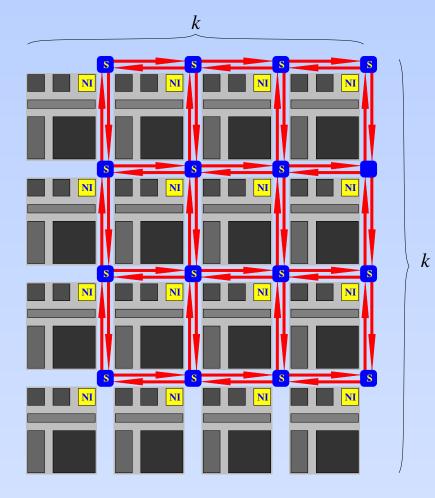
average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$ network capacity: $4k^2 - 4k$


$$\frac{2}{3}k^3p = 4k^2 - 4k$$
$$\frac{2}{3}k^2p = 4k - 4$$
$$p = \frac{6(k-1)}{k^2}$$

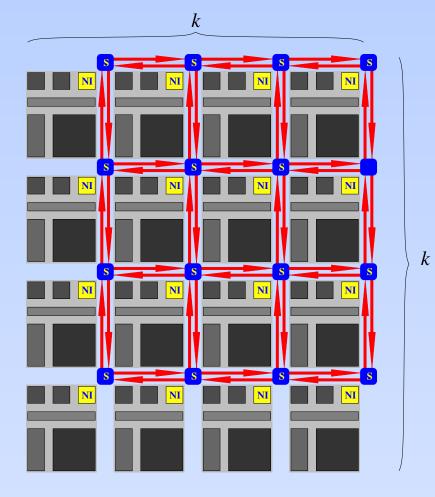
Under uniform traffic:


average distance: 2/3kemission probability: $p, 0 \le p \le 1$ network load: $2/3kpk^2$ network capacity: $4k^2 - 4k$

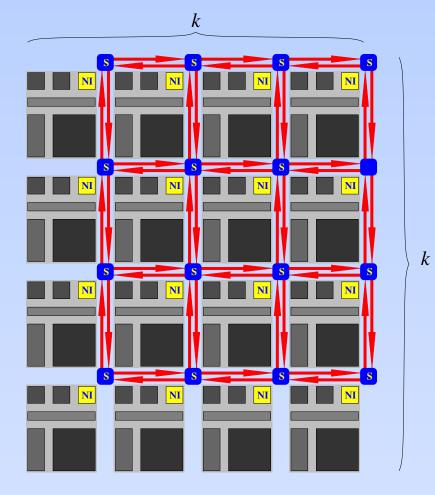
Balance:


Under uniform traffic and bisection constraints:

emission probability: $p, 0 \leq p \leq 1$

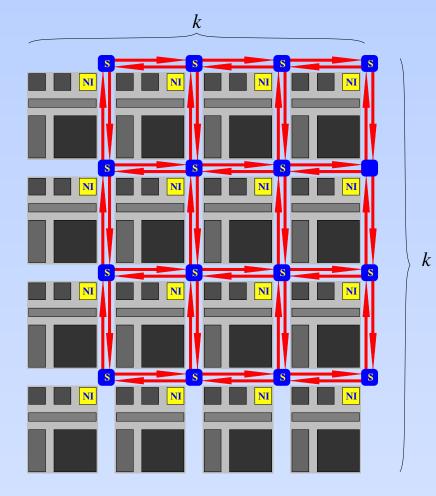

Under uniform traffic and bisection constraints:

emission probability: $p, 0 \le p \le 1$ half the traffic crosses the bisection: $k^2p/2$


Under uniform traffic and bisection constraints:

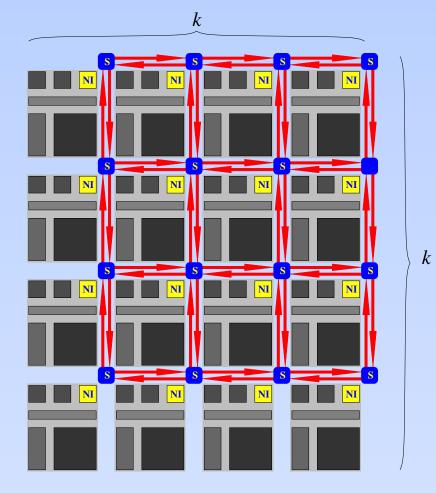
emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^2p/2$ bisection bandwidth: 2k

Under uniform traffic and bisection constraints:


emission probability: $p, 0 \le p \le 1$ half the traffic crosses the bisection: $k^2p/2$ bisection bandwidth: 2k

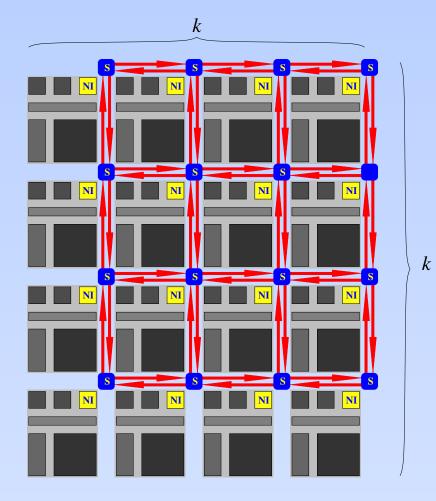
Under uniform traffic and bisection constraints:

emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^2p/2$ bisection bandwidth: 2k

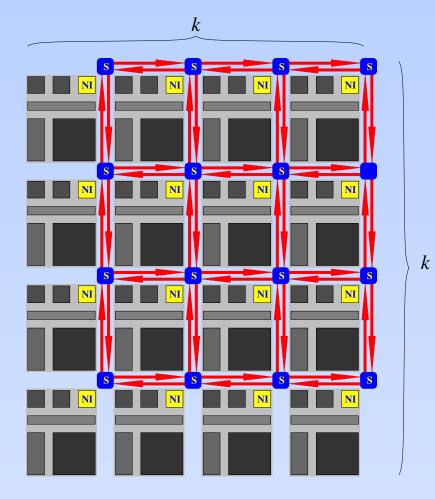

$$\frac{k^2p}{2} = 2k$$

Under uniform traffic and bisection constraints:

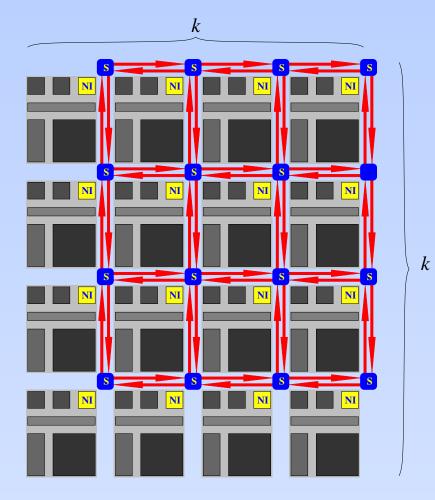
emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^2p/2$ bisection bandwidth: 2k


$$\frac{k^2 p}{2} = 2k$$
$$p = \frac{4}{k}$$

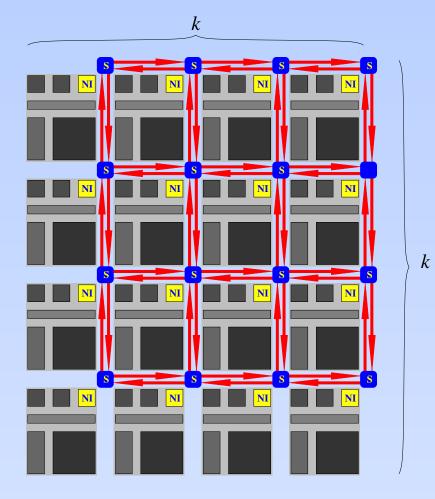
Under uniform traffic and bisection constraints:


emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^2p/2$ bisection bandwidth: 2k

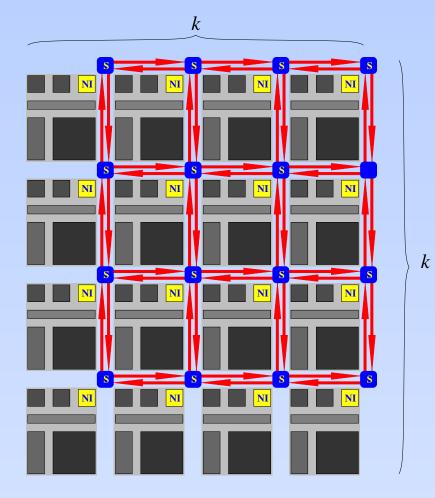
$$\frac{k^2 p}{2} = 2k \qquad \frac{k p}{2 2} \\
p = \frac{4}{k} \qquad \frac{4}{5} 0.8 \\
10 0.4$$


Under uniform traffic and bisection constraints:

emission probability: $p, 0 \leq p \leq 1$

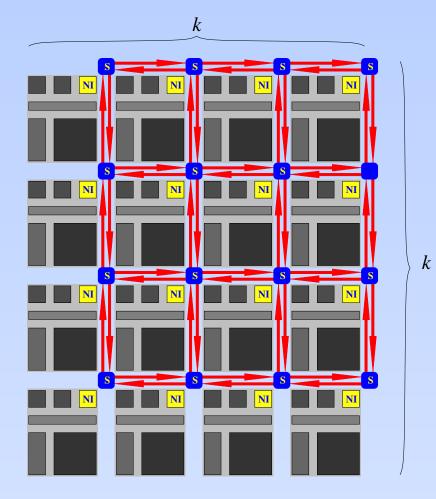

Under uniform traffic and bisection constraints:

emission probability: $p, 0 \le p \le 1$ half the traffic crosses the bisection: $k^n p/2$


Under uniform traffic and bisection constraints:

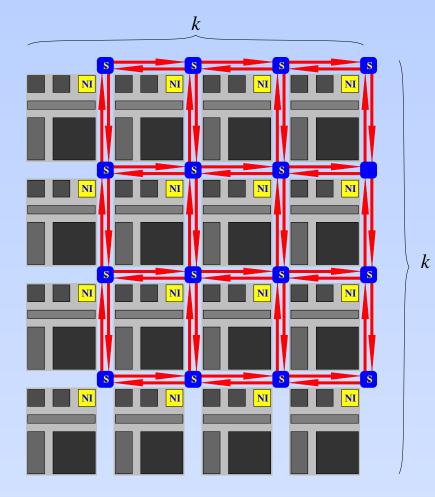
emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^np/2$ bisection bandwidth: $2k^{n-1}$

Under uniform traffic and bisection constraints:


emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^np/2$ bisection bandwidth: $2k^{n-1}$

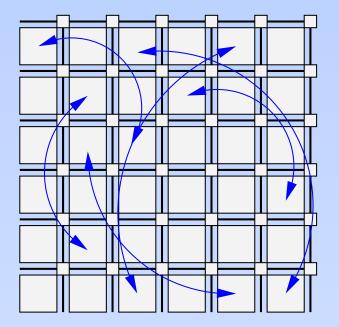
Under uniform traffic and bisection constraints:

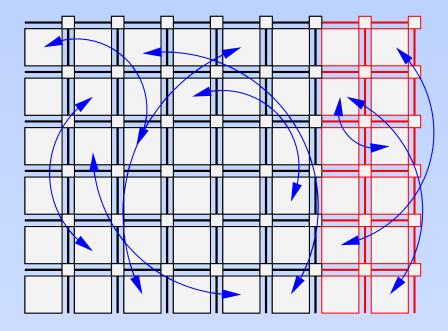
emission probability: $p, 0 \le p \le 1$ half the traffic crosses the bisection: $k^n p/2$ bisection bandwidth: $2k^{n-1}$

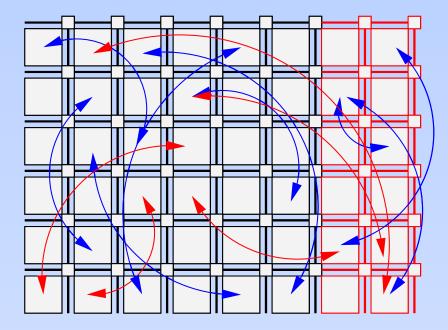

$$\frac{k^n p}{2} = 2k^{n-1}$$

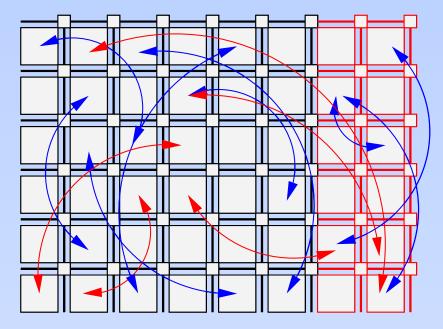
Under uniform traffic and bisection constraints:

emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^np/2$ bisection bandwidth: $2k^{n-1}$


$$\frac{k^n p}{2} = 2k^{n-1}$$
$$p = \frac{4}{k}$$




Under uniform traffic and bisection constraints:


emission probability: $p,0\leq p\leq 1$ half the traffic crosses the bisection: $k^np/2$ bisection bandwidth: $2k^{n-1}$

$$\frac{k^{n}p}{2} = 2k^{n-1} \qquad \begin{array}{c|c} k & p \\ \hline 2 & 2 \\ 3 & 1.33 \\ p & = \frac{4}{k} \qquad & 4 & 1 \\ 5 & 0.8 \\ 10 & 0.4 \end{array}$$

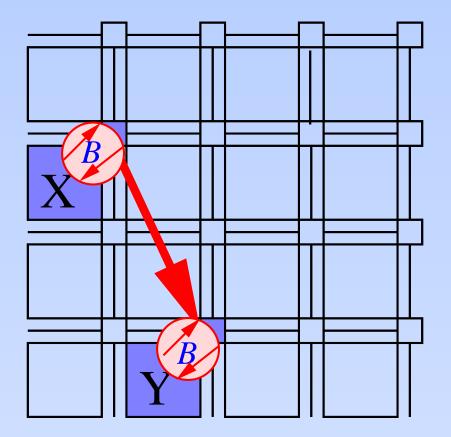
- Composition of Functionality with predictable performance
- Composition of Functions in network nodes
- Composition of Traffic

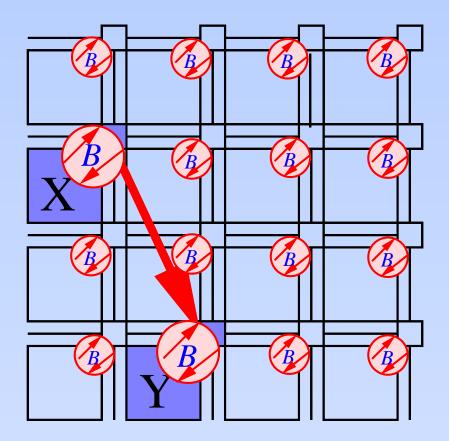
Traffic Contract between Resource and Network

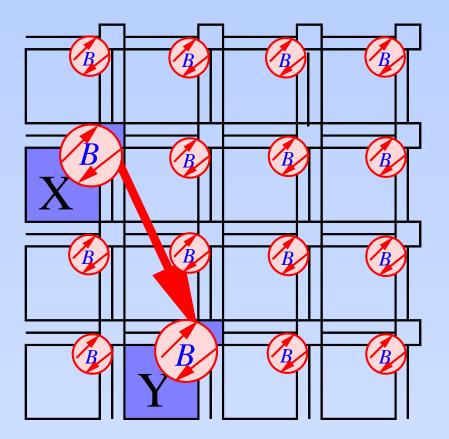
Traffic Contract between Resource and Network

Resource		Network	
Obligation	Benefit	Obligation	Benefit

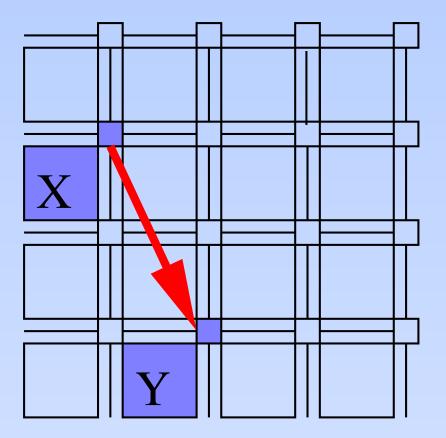

Resource		Network	
Obligation	Benefit	Obligation	Benefit

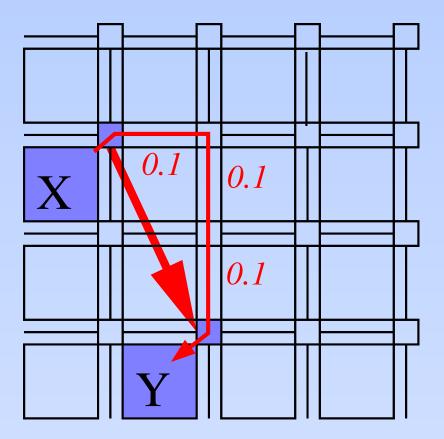

- limit outgoing traffic
- consume incoming traffic with guaranteed delay bounds

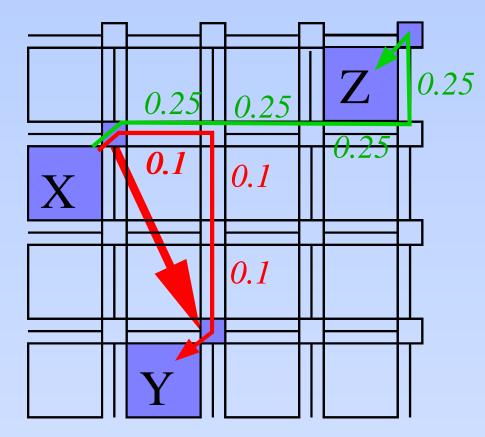

Resource		Network	
Obligation	Benefit	Obligation	Benefit
 limit outgoing traffic consume incoming traffic with guaranteed delay bounds 	 all emitted traffic is transported by the network transportation delay has guaranteed bounds known buffer requirements 		

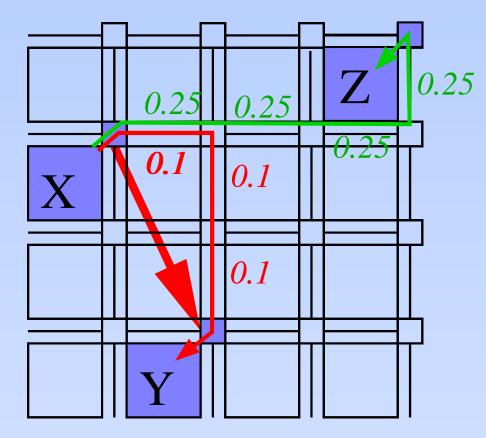

Resource		Network	
Obligation	Benefit	Obligation	Benefit
 limit outgoing traffic consume incoming traffic with guaranteed delay bounds 	 all emitted traffic is transported by the network transportation delay has guaranteed bounds known buffer requirements 	 provide bandwidth guarantee transportation delay bounds 	

Resource		Network	
Obligation	Benefit	Obligation	Benefit
 limit outgoing traffic consume incoming traffic with guaranteed delay bounds 	 all emitted traffic is transported by the network transportation delay has guaranteed bounds known buffer requirements 	 provide bandwidth guarantee transportation delay bounds 	 limited and known incoming traffic recourses consume outgoing traffic within guaranteed delay bounds

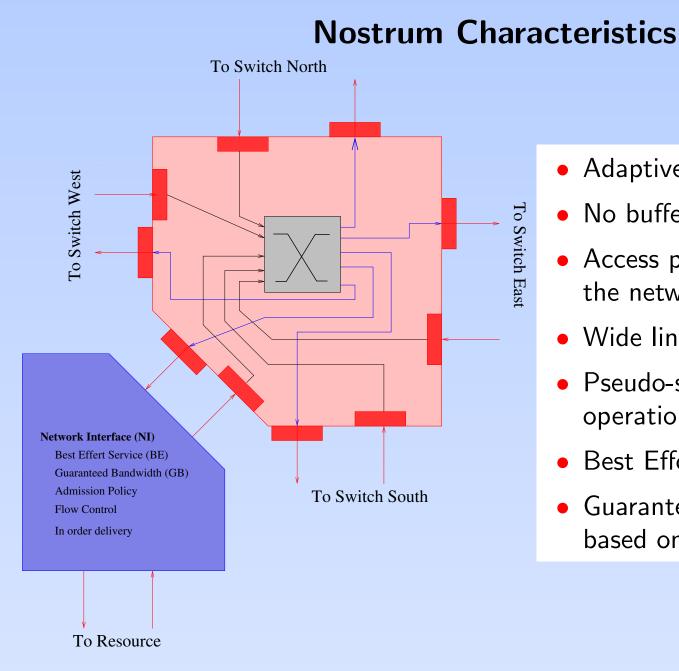


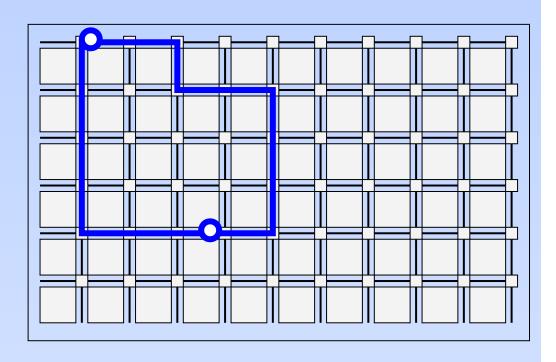




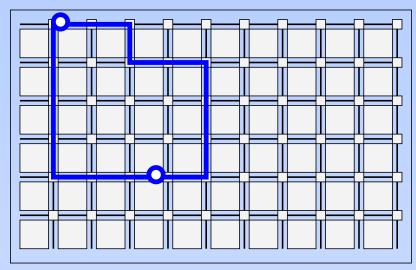


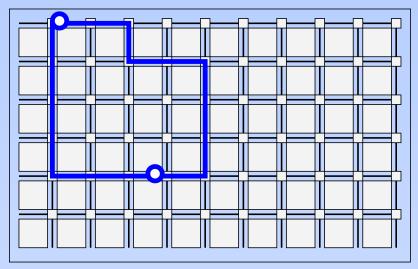
- Resource based budget allocation
- Assigning budgets is based on network global analysis
- Using budgets is a resource local decision
- Opening new end-to-end connections within budgets is local

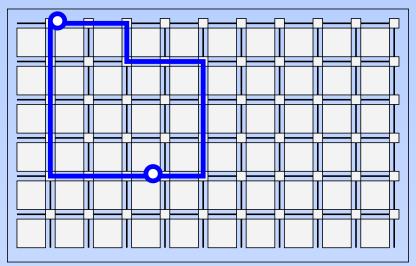



- Link based traffic allocation
- Allocating links is based on network global analysis
- Using allocated links is a resource local decision
- Opening new end-to-end connections requires global analysis

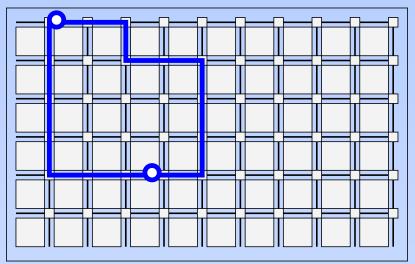
• Adaptive, hot potato routing


- No buffering in switches
- Access policy and buffering in the network interface
- Wide links
- Pseudo-synchronous network operation
- Best Effort service
- Guaranteed Bandwidth service based on virtual circuits


Nostrum Communication Services

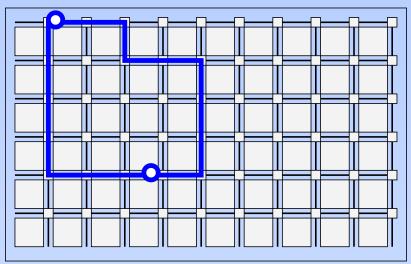

• Best Effort:

- ★ On congestion packets are deflected
- ★ Higher Priority:
 - * Older Packets
 - * Shorter distance to destination
- Guaranteed Bandwidth
 - ★ Virtual Circuits (VC)
 - Looping containers reserve resources



Load and performance is considered within a time window W cycles.

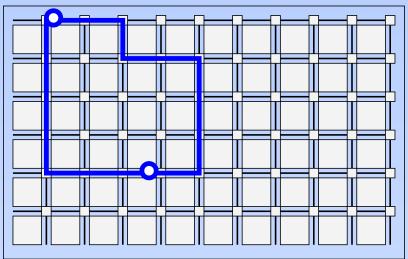
Load and performance is considered within a time window \boldsymbol{W} cycles.


 $v_{i,k}$: the load on link *i* by VC *k* in window *W*;

Load and performance is considered within a time window \boldsymbol{W} cycles.

 $v_{i,k}$: the load on link *i* by VC *k* in window *W*;

If VC k uses a single container, $v_{i,k} = 1$ on all links of the VC path;

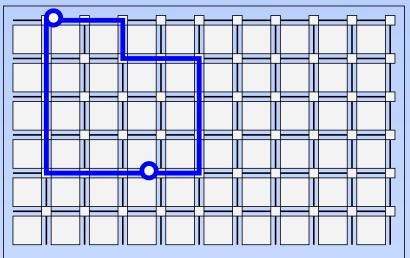


Load and performance is considered within a time window ${\cal W}$ cycles.

 $v_{i,k}$: the load on link *i* by VC *k* in window *W*;

If VC k uses a single container, $v_{i,k} = 1$ on all links of the VC path;

 $v_{i,k} \leq W$ for all links i and all VCs k.


Load and performance is considered within a time window \boldsymbol{W} cycles.

 $v_{i,k}$: the load on link *i* by VC *k* in window *W*;

If VC k uses a single container, $v_{i,k} = 1$ on all links of the VC path;

 $v_{i,k} \leq W$ for all links *i* and all VCs *k*.

 $V_k = \sum_i v_{i,k}$ is the load of VC k on the network.

Load and performance is considered within a time window \boldsymbol{W} cycles.

 $v_{i,k}$: the load on link *i* by VC *k* in window *W*;

If VC k uses a single container, $v_{i,k} = 1$ on all links of the VC path;

 $v_{i,k} \leq W$ for all links *i* and all VCs *k*.

 $V_k = \sum_i v_{i,k}$ is the load of VC k on the network.

Traffic Constraints:

$$\sum_{k} V_{k} \leq CG_{\mathrm{VC}} \leq WL$$

 $\sum_{k} v_{i,k} \leq CL_{\mathrm{VC}} \leq W$ for all links i

Bandwidth:

$$BW_k = \frac{c_k}{\operatorname{len}_k} \quad \frac{\operatorname{packets}}{\operatorname{cycle}}$$

Bandwidth:

$$BW_k = \frac{c_k}{\operatorname{len}_k} \quad \frac{\operatorname{packets}}{\operatorname{cycle}}$$

Maximum Latency:

 $\max \operatorname{Lat}_k = \max \operatorname{Init}_k + \operatorname{len}_k$

Bandwidth:

$$BW_k = \frac{c_k}{\operatorname{len}_k} \quad \frac{\operatorname{packets}}{\operatorname{cycle}}$$

Maximum Latency:

 $\max \operatorname{Lat}_k = \max \operatorname{Init}_k + \operatorname{len}_k$

Average latency:

$$\operatorname{avgLat}_k = \frac{\operatorname{len}_k}{2c_k} + \operatorname{len}_k$$

BE Traffic Composition - Network Load

BE traffic between source **A** and **B** is **channel based**.

BE Traffic Composition - Network Load

BE traffic between source **A** and **B** is **channel based**. Channel *h* loads the network with

$$E_h = n_h d_h \delta$$

 n_h : the number of packets **A** injects on channel h during the window W d_h : the shortest distance between **A** and **B** δ : the **average deflection factor**

BE Traffic Composition - Network Load

BE traffic between source **A** and **B** is **channel based**. Channel *h* loads the network with

$$E_h = n_h d_h \delta$$

 n_h : the number of packets **A** injects on channel *h* during the window *W* d_h : the shortest distance between **A** and **B** δ : the **average deflection factor**

 $\delta = \frac{\text{sum of traveling time of all packets}}{\text{sum of shortest path of all packets}}$

Constraints for BE Traffic - Resources

$$\sum_{h \in H_r^o} E_h \leq B_r^o$$
$$\sum_{h \in H_r^i} E_h \leq B_r^i$$
$$\sum_r B_r^o = \sum_r B_r^i \leq CG_{\rm BE}$$

 E_h : Network load due to channel h H_r^o : Set of outgoing channels in resource r H_r^i : Set of ingoing channels in resource r B_r^o : Outgoing traffic budget for resource r B_r^i : Incoming traffic budget for resource r $CG_{\rm BE}$: Global constraint on BE traffic

Under incoming and outgoing resource budget constraints;

 n_h : number of emitted packets in each window on channel h;

 d_h : shortest distance on channel h;

D: diameter of the network;

N: number of nodes in the network;

Bandwidth:

$$BW_r = \sum_{h \in H_r^o} \frac{n_h}{W}$$

Under incoming and outgoing resource budget constraints;

 n_h : number of emitted packets in each window on channel h;

 d_h : shortest distance on channel h;

- D: diameter of the network;
- N: number of nodes in the network;

Bandwidth:

$$BW_r = \sum_{h \in H_r^o} \frac{n_h}{W}$$

Maximum Latency:

 $\max \text{Lat}_k = 5DN$

Under incoming and outgoing resource budget constraints;

 n_h : number of emitted packets in each window on channel h;

 d_h : shortest distance on channel h;

- D: diameter of the network;
- N: number of nodes in the network;

Bandwidth:

$$BW_r = \sum_{h \in H_r^o} \frac{n_h}{W}$$

Maximum Latency:

 $\max \text{Lat}_k = 5DN$

Average latency:

$$\operatorname{avgLat}_k = d_h \delta$$

Under incoming and outgoing resource budget constraints;

 n_h : number of emitted packets in each window on channel h;

 d_h : shortest distance on channel h;

D: diameter of the network;

N: number of nodes in the network;

Nostrum Traffic Contract Summary

Traffic Constraints:

Traffic Properties:

$$\sum_{k} V_{k} \leq CG_{\rm VC} \leq WL$$

$$\sum_{k} v_{i,k} \leq CL_{\rm VC} \leq W$$

$$\sum_{h \in H_{r}^{o}} E_{h} \leq B_{r}^{o}$$

$$\sum_{h \in H_{r}^{i}} E_{h} \leq B_{r}^{i}$$

$$\sum_{r} B_{r}^{o} = \sum_{r} B_{r}^{i} \leq CG_{\rm BE}$$

r

$$BW_{k} = \frac{c_{k}}{\operatorname{len}_{k}} \frac{\operatorname{packets}}{\operatorname{cycle}}$$

$$BW_{r} = \sum_{h \in H_{r}^{o}} \frac{n_{h}}{W}$$

$$\operatorname{maxLat}_{k} = \operatorname{maxInit}_{k} + \operatorname{len}_{k}$$

$$\operatorname{maxLat}_{k} = 5DN$$

$$\operatorname{avgLat}_{k} = \frac{\operatorname{len}_{k}}{2c_{k}} + \operatorname{len}_{k}$$

$$\operatorname{avgLat}_{k} = d_{h} \delta$$

Traffic Contract Design Options and Parameters

Traffic Contract Design Options and Parameters

• Link based (GB) vs. node based traffic allocation (BE)

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing
 - \star Cost of guarantees

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing
 - \star Cost of guarantees
 - \star Delay characteristics under load

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing
 - ★ Cost of guarantees
 - ★ Delay characteristics under load
- Application characteristics

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing
 - ★ Cost of guarantees
 - ★ Delay characteristics under load
- Application characteristics
 - ★ Traffic scenarios

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing
 - ★ Cost of guarantees
 - ★ Delay characteristics under load
- Application characteristics
 - ★ Traffic scenarios
 - ★ Well known or unknown

- Link based (GB) vs. node based traffic allocation (BE)
- Central planning (GB) vs. distribution of budgets (BE)
- Design time allocation (GB) vs. run time allocation (BE)
- Accurate prediction (GB) vs. estimated bounds (BE)
- Network characteristics
 - ★ Deterministic vs adaptive routing
 - ★ Cost of guarantees
 - ★ Delay characteristics under load
- Application characteristics
 - ★ Traffic scenarios
 - ★ Well known or unknown
 - ★ Real-time requirements

Traffic Contracts

 result in communication performance characteristics for a NoC platform

Traffic Contracts

- result in communication performance characteristics for a NoC platform
- allow for composition of traffic with predictable performance

Traffic Contracts

- result in communication performance characteristics for a NoC platform
- allow for composition of traffic with predictable performance
- imply requirements for service users (nodes, applications) and service providers (communication network, component implementations)