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Platform Example: Nexperia
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Platform Example: ARM Multiprocessor Core
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Platform Example: Octeon Network Processor
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Platform Example: Emulator Chip with 768 Processing Units
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What is a SoC Platform

. Library of HW and SW IP blocks
. Communication infrastructure
. Resource management services

. Design methodology and tools



Platform Characteristics

Tradeoff between efficiency and cost
Application area specific

Predictable performance characteristics
(Guarantees if possible)

Scalability (Size, Performance, Functionality)

* Performance - Cost
* Reliability
* Design methodology



Platform Based Design
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Arbitrary Composability

Given a set of components C and
combinators O.

Let A1 be a component assemblage.
(C, O) is arbitrary composable if

A1‘|—B:>A2

can be done for any B € C,+ € O without
changing the relevant behaviour of A;.

(reused)

(new)

(new)
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Platform and Composability

e A good platform has the arbitrary composability property.

e There are building blocks that can be added without
changing the rest of the system.

e The building blocks can be:

* Computation resources
* Communication resources
* Storage resources
* 1/O resources

* Resource manager modules (Scheduler, OS, ...)
* Features: Resources + System functionality

e The “relevant behaviour” includes functionality,
performance, cost, reliability, power consumption.

e —> We can make guarantees.

12



Linear Effort Property

Given a set of components C' and
combinators O.

Let Aq,..., A, be component assemblages. > A 5
A design process using C' and O to build (reused) (new)

a system has the linear effort property if

Aq,..., A, can be integrated into a system C

S with an effort dependent on n but not on (new)

the size of the assemblages: Ieffort(n).
Total design effort for .S is

Deffort(S) = Deffort(A;) + -+ Deffort(A,) + Ieffort(n)



Methodology and Linear Effort

e A good platform comes with a methodology that has the
linear effort property.

e The platform is then scalable with respect to capacity
increase by reusing ever larger components.

e This implies an invariance with respect to hierarchy:
Composition works as well for primitive components as
for arbitrary assemblages.
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Platform Summary

A good Platform greatly restricts the design space.

It trades in optimality for design efficiency and
predictability.

The arbitrary composability and the linear effort
properties provide a scalable platform.

The reuse of ever bigger assemblages and
components is platform inherent.

Predictability of functionality, performance, cost,
power consumption and reliability is a prerequisite
as well as a consequence for the arbitrary
composability property.

15



Model of Computation

A MoC is an abstraction of a computation device that

e Exposes relevant properties;
e Eliminates irrelevant details;

e Allows for efficient analysis, design, simulation,
verification, synthesis, ...;
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Model of Computation

A MoC is an abstraction of a computation device that

e Exposes relevant properties;

e Eliminates irrelevant details:

e Allows for efficient analysis, design, simulation,

verification, synthesis, ...;

Examples:

Turing Machine

Lambda calculus

Algorithm

Random Access Machine (RAM)
Parallel Random Access
Machine (PRAM)

Petri net

Kahn Process Network
Synchronous Data Flow
Boolean Logic

Clocked synchronous model
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The Nostrum Network on Chip Platform
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The Nostrum Network on Chip Platform
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Nostrum Characteristics
To Switch North

To Switch West

To Switch South

To Resource

158 YONMS O,

Adaptive, hot potato routing
No buffering in switches

Access policy and buffering in
the network interface

Wide links

Pseudo-synchronous network
operation

Best Effort service

Guaranteed Bandwidth service
based on virtual circuits



Nostrum Communication Services

e Best Effort:

I L e * On congestion packets are

deflected

* Higher Priority:

+ QOlder Packets

+ Shorter distance to destination

e Guaranteed Bandwidth

x Virtual Circuits (VC)

* Looping containers reserve

Fresources
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A Nostrum Model of Computation
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A Nostrum Model of Computation
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A Nostrum Model of Computation
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A Nostrum Model of Computation
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e Composition of Functionality with predictable performance

e Composition of Functions in network nodes
e Composition of Traffic
* GB traffic composition

* BE traffic composition



GB Traffic Composition

-
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GB Traffic Composition

-

Load and performance is considered within a
time window W cycles.
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GB Traffic Composition
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GB Traffic Composition

+——+—+——+——0 | Load and performance is considered within a

/| time window W cycles.

v; k. the load on link ¢ by VC k in window W;

If VC £ uses a single container, v; , = 1 on all

links of the VC path;

- | v < W for all links ¢ and all VCs k.

| Vie = >, vi i is the load of VC k on the network.

MoC Constraints:

> Vi £ CGvc<WL

Y vig < CLyc<W forall links i
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Properties of GB Traffic

ck: number of containers in the VC k;
leng: the length of the VC in cycles.
maxInit,: maximum time between two containers.
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Properties of GB Traffic

Bandwidth:
cr  packets

BW,, =
g leny, cycle

ck: number of containers in the VC k;
leng: the length of the VC in cycles.

maxInit,: maximum time between two containers.

22



Properties of GB Traffic

Bandwidth:

C ackets
BW, — k p

leny, cycle

Maximum Latency:

maxLat;, = maxInit, + leny

ck:. number of containers in the VC k;
leng: the length of the VC in cycles.
maxInit,: maximum time between two containers.

22



Properties of GB Traffic

Bandwidth: ket
BW, — C packets

leny, cycle

Maximum Latency:

maxLat;, = maxInit, + leny

Average latency:

]
avglLat, = %n: + leny

ck:. number of containers in the VC k;
leng: the length of the VC in cycles.
maxInit,: maximum time between two containers.



BE Traffic Composition - Network Load

BE traffic between source A and B is channel based.
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BE Traffic Composition - Network Load

BE traffic between source A and B is channel based.
Channel h loads the network with

Eh:nhdh5

np. the number of packets A injects on channel A during the window W
d;,: the shortest distance between A and B
0: the average deflection factor
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BE Traffic Composition - Network Load

BE traffic between source A and B is channel based.
Channel h loads the network with

Eh:nhdh5

np. the number of packets A injects on channel A during the window W
d;,: the shortest distance between A and B
0: the average deflection factor

5 sum of traveling time of all packets
~ sum of shortest path of all packets
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BE Traffic Composition - Link Load

Channel h loads individual links with

S5 = T B O

Ph.i Is the probability that link ¢ is used by a packet of channel i on the shortest
path between A and B.
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BE Traffic Composition - Link Load

Channel h loads individual links with

€h,i = Nh Ph,i 0

ph.i 1s the probability that link 7 is used by a packet of channel & on the shortest
path between A and B.

[ ] [ ] [ ] [
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MoC Constraints for BE Traffic - Channels

ZEh < CGpeg < LW — CGvc
h

Y ein < CLpg <W —CLyc for all links i
h
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MoC Constraints for BE Traffic - Resources

] 20
SIS
VAN A
R

heH!
Y Bl=)» Bl < CGgg

B?: Outgoing traffic budget for resource r
B?: Incoming traffic budget for resource r
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Traffic Ceiling

CGg = Iﬂ)(LW — CGvc) with 0 < k <1

k is the margin that allows for accommodation of temporal
and spatial burstiness of traffic

27



Properties of BE Traffic

Under incoming and outgoing resource budget constraints;
np: number of emitted packets in each window on channel A;
dj,: shortest distance on channel A;

D: diameter of the network;

N: number of nodes in the network;
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Properties of BE Traffic

Bandwidth:

Under incoming and outgoing resource budget constraints;
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N: number of nodes in the network;
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Properties of BE Traffic

Bandwidth:

Maximum Latency:

maxLat, = 5DN

Under incoming and outgoing resource budget constraints;
np: number of emitted packets in each window on channel h;
dj,: shortest distance on channel A;

D: diameter of the network;

N: number of nodes in the network;
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Properties of BE Traffic

Bandwidth:

Maximum Latency:

maxLat, = 5DN

Average latency:

avglat, = djp 0
Under incoming and outgoing resource budget constraints;
np: number of emitted packets in each window on channel h;
dj,: shortest distance on channel A;

D: diameter of the network;
N: number of nodes in the network:



Nostrum MoC Summary

MoC Constraints: MoC Properties:

S Vi < CGye <WL Bw, — Gk packets

k g len;  cycle
Zvi,k < CLyc <W BW, = L

k heH
Z E, < By maxLat;, = maxInit; + leny
= maxLat, = 5DN

. 1
ZE’”‘ = B avglat, = ﬂ—l—lenk
heH 2cy;
L —
S B =3 Bl < CGy=r(LW — CGvo) avglaty, = dn0
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MoC Design Methodology
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MoC Design Methodology

1. Divide the communication capacity between GB and BE;
Set CGvye and CLyc.
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MoC Design Methodology

. Divide the communication capacity between GB and BE;
Set CGvye and CLyc.

. Set the BE traffic ceiling x;

. Distribute the available BE traffic capacity among the
resources; for a uniform allocation we have

kLW
B° =
" N
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MoC Design Methodology

. Divide the communication capacity between GB and BE;
Set CGvye and CLyc.

. Set the BE traffic ceiling x;

. Distribute the available BE traffic capacity among the
resources; for a uniform allocation we have

kLW
B =
" N

. Determine 0 empirically; Use D7 as an upper bound for o.

delay(p) <D (1)

1 — 107" of all packets p: — <
mindelay(p)

90% of all packets have a delay less or equal D;.
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Deflection Factor 0 Measured for Various Traffic Budgets

B /W
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1.04
1.07
1.10
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1.18
1.23
1.28
1.35
1.57

1.02
1.05
1.08
1.12
1.17
1.22
1.28
1.36
1.54
1.98

1.02
1.04
1.08
1.11
1.15
1.20
1.27
1.40
1.75
1.82

1.02
1.06
1.11
1.17
1.26
1.46
1.78
1.98
1.99
1.99

1.02
1.06
1.10
1.15
1.24
1.41
1.65
1.84
1.85
sat.

1.02
1.05
1.09
1.15
1.23
1.36
sat.
sat.
sat.
sat.

0 depending on traffic budget and network size;

1.02
1.05
1.09
1.14
1.22
1.33
sat.
sat.
sat.
sat.

1.02
1.06
1.10
1.16
1.24
1.33
sat.
sat.
sat.
sat.

1.02
1.05
1.09
1.14
1.22
1.29
sat.
sat.
sat.
sat.

1.02
1.05
1.09
1.14
sat.
sat.
sat.
sat.
sat.
sat.
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B /W

D+ Measured for Various Traffic Budgets
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3.44
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1.12
1.15
1.30
1.40
1.45
1.61
1.72
6.10
sat.
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1.15
1.25
1.41
1.46
1.65
4.65
sat.
sat.
sat.
sat.

1.15
1.23
1.41
1.46
1.64
sat.
sat.
sat.
sat.
sat.

1.15
1.23
1.30
1.46
1.71
sat.
sat.
sat.
sat.
sat.

0 depending on traffic budget and network size;

1.16
1.23
1.35
1.46
1.80
sat.
sat.
sat.
sat.
sat.

1.16
1.27
1.41
1.46
2.39
sat.
sat.
sat.
sat.
sat.

1.11
1.23
1.35
1.47
3.46
sat.
sat.
sat.
sat.
sat.

1.11
1.23
1.35
1.55
sat.
sat.
sat.
sat.
sat.
sat.
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Deflection Factor 0 Measured for Various Traffic Patterns

B?/W | Uniform BitComp. BitRev. BitRot. BitShuf. BitTrans. BUni.
0.05 1.02 1.01 1.01 1.00 1.01 1.00 1.00
0.10 1.04 1.02 1.02 1.00 1.02 1.01 1.02
0.15 1.07 1.05 1.03 1.00 1.03 1.02 1.03
0.20 1.10 1.07 1.04 1.01 1.05 1.02 1.05
0.25 1.14 1.11 1.04 1.01 1.06 1.02 1.05
0.30 1.18 1.17 1.06 1.02 1.09 1.02 1.07
0.35 1.23 1.24 1.07 1.02 1.11 1.03 1.08
0.40 1.28 1.34 1.09 1.03 1.15 1.03 1.09
0.45 1.35 1.62 1.11 1.04 1.18 1.04 1.11
0.50 1.57 1.62 1.14 1.04 1.21 1.05 1.12

d depending on traffic budget and traffic pattern for a 4 X 4 net;
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How to Use the Nostrum MoC
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How to Use the Nostrum MoC

For a new platform instance:
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How to Use the Nostrum MoC

For a new platform instance:

1.

Model the application as a process

graph

Configure the NoC platform

Mapping

e Map the processes to resource
nodes

e Map the process communication
to network services

Determine k, assign the traffic

budgets to channels and resource

nodes

Derive the deflection factor

empirically

Back-annotate the process graph

with performance figures
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How to Use the Nostrum MoC

For a new platform instance:

1.

Model the application as a process

graph

Configure the NoC platform

Mapping

e Map the processes to resource
nodes

e Map the process communication
to network services

Determine k, assign the traffic

budgets to channels and resource

nodes

Derive the deflection factor

empirically

Back-annotate the process graph

with performance figures

For an existing platform instance:

1. Model the application as a process

graph

2. Mapping

e Map the processes to resource
nodes

e Map the process communication
to network services

3. assign the traffic budgets to

channels and resource nodes

4. Back-annotate the process graph

with performance figures
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characteristics for a NoC platform
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Summary

e An MoC provides communication performance
characteristics for a NoC platform

e Allows for composition of traffic with predictable
performance

e Based on contracts between service users (nodes,

applications) and service providers (communication
network)

35



Summary - MoC Design Options

36



Summary - MoC Design Options

e Link based (GB) vs. node based traffic allocation (BE)

36



Summary - MoC Design Options

e Link based (GB) vs. node based traffic allocation (BE)
e Central planning (GB) vs. distribution of budgets (BE)

36



Summary - MoC Design Options

e Link based (GB) vs. node based traffic allocation (BE)
e Central planning (GB) vs. distribution of budgets (BE)

e Design time allocation (GB) vs. run time allocation (BE)

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)

Accurate prediction (GB) vs. estimated bounds (BE)

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)

Network characteristics

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing
* Cost of guarantees

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing
* Cost of guarantees
* Delay characteristics under load

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing
* Cost of guarantees
* Delay characteristics under load

Application characteristics

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing
* Cost of guarantees
* Delay characteristics under load

Application characteristics

x Traffic scenarios

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing
* Cost of guarantees
* Delay characteristics under load

Application characteristics

x Traffic scenarios
x Well known or unknown

36



Summary - MoC Design Options

Link based (GB) vs. node based traffic allocation (BE)
Central planning (GB) vs. distribution of budgets (BE)
Design time allocation (GB) vs. run time allocation (BE)
Accurate prediction (GB) vs. estimated bounds (BE)
Network characteristics

* Deterministic vs adaptive routing
* Cost of guarantees
* Delay characteristics under load

Application characteristics

* Traffic scenarios
* Well known or unknown
* Real-time requirements
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Conclusion

Designing a MoC for NoC platforms is necessary
Designing a MoC for NoC platforms is feasible
It depends on the network characteristics

It depends on the application characteristics
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