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Overview

• System on Chip (SoC) Platforms

• Composability

• The Nostrum NoC

• A Nostrum MoC

? Composition of Guaranteed Bandwidth traffic

? Composition of Best Effort traffic

? MoC Properties

• Summary and Conclusions
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Platform Example: Nexperia
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Nexperia Platform Instance: Viper
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Platform Example: ARM Multiprocessor Core
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Platform Example: Octeon Network Processor
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Platform Example: Emulator Chip with 768 Processing Units
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What is a SoC Platform

1. Library of HW and SW IP blocks

2. Communication infrastructure

3. Resource management services

4. Design methodology and tools
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Platform Characteristics

• Tradeoff between efficiency and cost

• Application area specific

• Predictable performance characteristics
(Guarantees if possible)

• Scalability (Size, Performance, Functionality)

? Performance - Cost
? Reliability
? Design methodology
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Platform Based Design
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Design Productivity Gap

Source: International Technology Roadmap for Semiconductors 1999
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Arbitrary Composability

Given a set of components C and
combinators O.
Let A1 be a component assemblage.
(C,O) is arbitrary composable if

A1 + B ⇒ A2

can be done for any B ∈ C,+ ∈ O without
changing the relevant behaviour of A1.

B

C
(new)

(new)
(reused)

A
S
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Platform and Composability

• A good platform has the arbitrary composability property.

• There are building blocks that can be added without
changing the rest of the system.

• The building blocks can be:

? Computation resources
? Communication resources
? Storage resources
? I/O resources
? Resource manager modules (Scheduler, OS, ...)
? Features: Resources + System functionality

• The “relevant behaviour” includes functionality,
performance, cost, reliability, power consumption.

• =⇒ We can make guarantees.
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Linear Effort Property

Given a set of components C and
combinators O.
Let A1, . . . , An be component assemblages.

A design process using C and O to build
a system has the linear effort property if
A1, . . . , An can be integrated into a system
S with an effort dependent on n but not on
the size of the assemblages: Ieffort(n).
Total design effort for S is

B

C
(new)

(new)
(reused)

A
S

Deffort(S) = Deffort(A1) + · · ·+ Deffort(An) + Ieffort(n)
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Methodology and Linear Effort

• A good platform comes with a methodology that has the
linear effort property.

• The platform is then scalable with respect to capacity
increase by reusing ever larger components.

• This implies an invariance with respect to hierarchy:
Composition works as well for primitive components as
for arbitrary assemblages.
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Platform Summary

• A good Platform greatly restricts the design space.

• It trades in optimality for design efficiency and
predictability.

• The arbitrary composability and the linear effort
properties provide a scalable platform.

• The reuse of ever bigger assemblages and
components is platform inherent.

• Predictability of functionality, performance, cost,
power consumption and reliability is a prerequisite
as well as a consequence for the arbitrary
composability property.
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Model of Computation

A MoC is an abstraction of a computation device that

• Exposes relevant properties;

• Eliminates irrelevant details;

• Allows for efficient analysis, design, simulation,
verification, synthesis, ...;
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Model of Computation

A MoC is an abstraction of a computation device that

• Exposes relevant properties;

• Eliminates irrelevant details;

• Allows for efficient analysis, design, simulation,
verification, synthesis, ...;

Examples:
• Turing Machine
• Lambda calculus
• Algorithm
• Random Access Machine (RAM)
• Parallel Random Access

Machine (PRAM)

• Petri net
• Kahn Process Network
• Synchronous Data Flow
• Boolean Logic
• Clocked synchronous model
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The Nostrum Network on Chip Platform
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The Nostrum Network on Chip Platform
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Nostrum Characteristics
To Switch North
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In order delivery

Network Interface (NI)
Best Effert Service (BE)

Guaranteed Bandwidth (GB)

Admission Policy

Flow Control

• Adaptive, hot potato routing

• No buffering in switches

• Access policy and buffering in
the network interface

• Wide links

• Pseudo-synchronous network
operation

• Best Effort service

• Guaranteed Bandwidth service
based on virtual circuits
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Nostrum Communication Services

• Best Effort:

? On congestion packets are
deflected

? Higher Priority:

∗ Older Packets
∗ Shorter distance to destination

• Guaranteed Bandwidth

? Virtual Circuits (VC)

? Looping containers reserve
resources
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A Nostrum Model of Computation
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A Nostrum Model of Computation
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A Nostrum Model of Computation

• Composition of Functionality with predictable performance

• Composition of Functions in network nodes

• Composition of Traffic

? GB traffic composition

? BE traffic composition
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GB Traffic Composition
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GB Traffic Composition
Load and performance is considered within a
time window W cycles.
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GB Traffic Composition
Load and performance is considered within a
time window W cycles.
vi,k: the load on link i by VC k in window W ;
If VC k uses a single container, vi,k = 1 on all
links of the VC path;
vi,k ≤ W for all links i and all VCs k.
Vk =

∑
i vi,k is the load of VC k on the network.

MoC Constraints:

∑
k

Vk ≤ CGVC ≤ WL

∑
k

vi,k ≤ CLVC ≤ W for all links i
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Properties of GB Traffic

ck: number of containers in the VC k;
lenk: the length of the VC in cycles.
maxInitk: maximum time between two containers.
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Properties of GB Traffic

Bandwidth:

BWk =
ck

lenk

packets
cycle

ck: number of containers in the VC k;
lenk: the length of the VC in cycles.
maxInitk: maximum time between two containers.
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Properties of GB Traffic
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Properties of GB Traffic

Bandwidth:

BWk =
ck

lenk

packets
cycle

Maximum Latency:

maxLatk = maxInitk + lenk

Average latency:

avgLatk =
lenk

2ck
+ lenk

ck: number of containers in the VC k;
lenk: the length of the VC in cycles.
maxInitk: maximum time between two containers.
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BE Traffic Composition - Network Load

BE traffic between source A and B is channel based.
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BE Traffic Composition - Network Load

BE traffic between source A and B is channel based.
Channel h loads the network with

Eh = nh dh δ

nh: the number of packets A injects on channel h during the window W
dh: the shortest distance between A and B
δ: the average deflection factor
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BE Traffic Composition - Network Load

BE traffic between source A and B is channel based.
Channel h loads the network with

Eh = nh dh δ

nh: the number of packets A injects on channel h during the window W
dh: the shortest distance between A and B
δ: the average deflection factor

δ =
sum of traveling time of all packets

sum of shortest path of all packets
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BE Traffic Composition - Link Load

Channel h loads individual links with

eh,i = nh ph,i δ

ph,i is the probability that link i is used by a packet of channel h on the shortest
path between A and B.
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BE Traffic Composition - Link Load

Channel h loads individual links with

eh,i = nh ph,i δ

ph,i is the probability that link i is used by a packet of channel h on the shortest
path between A and B.
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MoC Constraints for BE Traffic - Channels

∑
h

Eh ≤ CGBE ≤ LW − CGVC∑
h

ei,h ≤ CLBE ≤ W − CLVC for all links i
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MoC Constraints for BE Traffic - Resources

∑
h∈Ho

r

Eh ≤ Bo
r

∑
h∈Hi

r

Eh ≤ Bi
r

∑
r

Bo
r =

∑
r

Bi
r ≤ CGBE

Bo
r : Outgoing traffic budget for resource r

Bi
r: Incoming traffic budget for resource r
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Traffic Ceiling

CGBE = κ(LW − CGVC) with 0 ≤ κ ≤ 1

κ is the margin that allows for accommodation of temporal
and spatial burstiness of traffic
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Properties of BE Traffic

Under incoming and outgoing resource budget constraints;
nh: number of emitted packets in each window on channel h;
dh: shortest distance on channel h;
D: diameter of the network;
N : number of nodes in the network;
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Properties of BE Traffic

Bandwidth:
BWr =

∑
h∈Ho

r

nh

W

Under incoming and outgoing resource budget constraints;
nh: number of emitted packets in each window on channel h;
dh: shortest distance on channel h;
D: diameter of the network;
N : number of nodes in the network;
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Properties of BE Traffic

Bandwidth:
BWr =

∑
h∈Ho

r

nh

W

Maximum Latency:

maxLatk = 5DN
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Properties of BE Traffic

Bandwidth:
BWr =

∑
h∈Ho

r

nh

W

Maximum Latency:

maxLatk = 5DN

Average latency:

avgLatk = dh δ

Under incoming and outgoing resource budget constraints;
nh: number of emitted packets in each window on channel h;
dh: shortest distance on channel h;
D: diameter of the network;
N : number of nodes in the network;
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Nostrum MoC Summary

MoC Constraints:

∑
k

Vk ≤ CGVC ≤ WL∑
k

vi,k ≤ CLVC ≤ W∑
h∈Ho

r

Eh ≤ Bo
r∑

h∈Hi
r

Eh ≤ Bi
r∑

r

Bo
r =

∑
r

Bi
r ≤ CGBE = κ(LW − CGVC)

MoC Properties:

BWk =
ck

lenk

packets
cycle

BWr =
∑
h∈Ho

r

nh

W

maxLatk = maxInitk + lenk

maxLatk = 5DN

avgLatk =
lenk

2ck
+ lenk

avgLatk = dh δ
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MoC Design Methodology
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MoC Design Methodology

1. Divide the communication capacity between GB and BE;
Set CGVC and CLVC.
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MoC Design Methodology

1. Divide the communication capacity between GB and BE;
Set CGVC and CLVC.

2. Set the BE traffic ceiling κ;

3. Distribute the available BE traffic capacity among the
resources; for a uniform allocation we have

Bo
r =

κLW

N

4. Determine δ empirically; Use D1 as an upper bound for δ.

1− 10−i of all packets p:
delay(p)

mindelay(p)
≤ Di (1)

90% of all packets have a delay less or equal D1.
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Deflection Factor δ Measured for Various Traffic Budgets

Bo
r/W 16 20 30 40 50 60 70 80 90 100
0.05 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
0.10 1.04 1.05 1.04 1.06 1.06 1.05 1.05 1.06 1.05 1.05
0.15 1.07 1.08 1.08 1.11 1.10 1.09 1.09 1.10 1.09 1.09
0.20 1.10 1.12 1.11 1.17 1.15 1.15 1.14 1.16 1.14 1.14
0.25 1.14 1.17 1.15 1.26 1.24 1.23 1.22 1.24 1.22 sat .
0.30 1.18 1.22 1.20 1.46 1.41 1.36 1.33 1.33 1.29 sat .
0.35 1.23 1.28 1.27 1.78 1.65 sat . sat . sat . sat . sat .
0.40 1.28 1.36 1.40 1.98 1.84 sat . sat . sat . sat . sat .
0.45 1.35 1.54 1.75 1.99 1.85 sat . sat . sat . sat . sat .
0.50 1.57 1.98 1.82 1.99 sat . sat . sat . sat . sat . sat .

δ depending on traffic budget and network size;
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D1 Measured for Various Traffic Budgets

Bo
r/W 16 20 30 40 50 60 70 80 90 100
0.05 1.12 1.12 1.12 1.15 1.15 1.15 1.16 1.16 1.11 1.11
0.10 1.12 1.12 1.15 1.25 1.23 1.23 1.23 1.27 1.23 1.23
0.15 1.12 1.28 1.30 1.41 1.41 1.36 1.35 1.41 1.35 1.35
0.20 1.36 1.44 1.40 1.46 1.46 1.46 1.46 1.46 1.47 1.55
0.25 1.44 1.44 1.45 1.65 1.64 1.71 1.80 2.35 3.46 sat .
0.30 1.44 1.60 1.61 4.65 sat . sat . sat . sat . sat . sat .
0.35 1.60 1.61 1.72 sat . sat . sat . sat . sat . sat . sat .
0.40 1.60 1.81 6.10 sat . sat . sat . sat . sat . sat . sat .
0.45 1.80 3.44 sat . sat . sat . sat . sat . sat . sat . sat .
0.50 6.17 sat . sat . sat . sat . sat . sat . sat . sat . sat .

δ depending on traffic budget and network size;
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Deflection Factor δ Measured for Various Traffic Patterns

Bo
r/W Uniform BitComp. BitRev. BitRot. BitShuf. BitTrans. BUni.

0.05 1.02 1.01 1.01 1.00 1.01 1.00 1.00

0.10 1.04 1.02 1.02 1.00 1.02 1.01 1.02

0.15 1.07 1.05 1.03 1.00 1.03 1.02 1.03

0.20 1.10 1.07 1.04 1.01 1.05 1.02 1.05

0.25 1.14 1.11 1.04 1.01 1.06 1.02 1.05

0.30 1.18 1.17 1.06 1.02 1.09 1.02 1.07

0.35 1.23 1.24 1.07 1.02 1.11 1.03 1.08

0.40 1.28 1.34 1.09 1.03 1.15 1.03 1.09

0.45 1.35 1.62 1.11 1.04 1.18 1.04 1.11

0.50 1.57 1.62 1.14 1.04 1.21 1.05 1.12

δ depending on traffic budget and traffic pattern for a 4× 4 net;
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How to Use the Nostrum MoC
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How to Use the Nostrum MoC

For a new platform instance:

1. Model the application as a process
graph

2. Configure the NoC platform
3. Mapping

• Map the processes to resource
nodes

• Map the process communication
to network services

4. Determine κ, assign the traffic
budgets to channels and resource
nodes

5. Derive the deflection factor
empirically

6. Back-annotate the process graph
with performance figures
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For a new platform instance:

1. Model the application as a process
graph

2. Configure the NoC platform
3. Mapping

• Map the processes to resource
nodes

• Map the process communication
to network services

4. Determine κ, assign the traffic
budgets to channels and resource
nodes

5. Derive the deflection factor
empirically

6. Back-annotate the process graph
with performance figures

For an existing platform instance:

1. Model the application as a process
graph

2. Mapping
• Map the processes to resource

nodes
• Map the process communication

to network services
3. assign the traffic budgets to

channels and resource nodes
4. Back-annotate the process graph

with performance figures
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Summary

• An MoC provides communication performance
characteristics for a NoC platform

• Allows for composition of traffic with predictable
performance

• Based on contracts between service users (nodes,
applications) and service providers (communication
network)
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Summary - MoC Design Options

• Link based (GB) vs. node based traffic allocation (BE)

• Central planning (GB) vs. distribution of budgets (BE)

• Design time allocation (GB) vs. run time allocation (BE)

• Accurate prediction (GB) vs. estimated bounds (BE)

• Network characteristics

? Deterministic vs adaptive routing
? Cost of guarantees
? Delay characteristics under load

• Application characteristics

? Traffic scenarios
? Well known or unknown
? Real-time requirements
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Conclusion

• Designing a MoC for NoC platforms is necessary

• Designing a MoC for NoC platforms is feasible

• It depends on the network characteristics

• It depends on the application characteristics
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