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Overview
✰ Introduction

✙ Types of Codesign
✙ Main issues and challanges

✰ Methodology
✰ HW/SW Cosimulation
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Introduction
✰ Vertical and Horizontal Codesign
✰ Figures of merits

✙ Favorable for HW
✙ Favorable for SW

✰ Intellectual Property (IP) blocks and Reuse
✰ Integration of HW design and SW design
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Vertical vs. Horizontal Codesign

Specification

Program
on a
processor

ASIC

Specification

Program

ASIP

Instruction set
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Vertical vs. Horizontal Codesign

DSP DSP Processor Processor ASIC

ASIPRAMRAMRAMRAMRAMRAM



E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 6 (45)A. Jantsch

Interfaces between HW and SW
✰ Instruction set

✙ Standard instruction sets
✙ Application specific instruction sets

✰ Bus protocol
✰ Device drivers
✰ FPGA configuration file
✰ Configuration of multiple concurrent resources
✰ Compilers
✰ Operating system
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Figures of Merit
✰ Favorable for HW:

✙ Delay
✙ Throughput
✙ Real-time systems
✙ Power
✙ Size

✰ Favorable for SW:
✙ Time to market
✙ Flexibility
✙ Volume

✰ Others
✙ Cost across products and product families - platform
✙ Design productivity
✙ Available tools and methodologies
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IP and Reuse
✰ Integration of IP blocks

✙ Development environment and tools
✙ Interfaces: HW interfaces, device drivers
✙ Testing
✙ Business model and legal issues

✰ IP Blocks:
✙ Processors
✙ DSPs
✙ Protocol implementations
✙ Encryption/decryption blocks
✙ I/O devices
✙ Operating systems
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Problems with Traditional System
Development

✰ Manual partitioning based on a ambiguous and incomplete system
specification.

✰ Hardware and software development is conducted without sufficient
exchange of information.

✰ Errors that are detected in the integration phase can be very costly.
✰ The cost of correcting errors is an exponential function of the time

between error generation and error detection.
✰ If possible, integration problems are corrected in the software which

reduces maintainability and reusability.
✰ Because of this danger the hardware is often over-equipped with fea-

tures that are never used.
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Advantages
✰ Specification is more stable.
✰ Systematic partitioning is less dependent on intuition.
✰ Simulation results from system simulation serve as reference.
✰ Avoid multiple test-benches
✰ Errors are detected earlier
✰ Development time is shorter
✰ Reusability and maintainability is higher
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Function - Architecture Codesign

Function

Application Architecture

System
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Methodology
✰ Development phases
✰ Life cycle models
✰ Effort distribution in different phases
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Involved People
✰ Customers

✙ Users
✙ Marketing and sales personnel
✙ Operators
✙ Maintenance personnel

✰ Product manager
✰ Project manager
✰ Requirement definition engineer
✰ Specification engineer
✰ Designer
✰ Implementation engineer
✰ Test engineer
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Life Cycle Models
✰ Waterfall model
✰ V-cycle
✰ Spiral model



ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 19 (45)A. Jantsch

Based on the assumption of
document completion at the
end of each stage. This is prob-
lematic for applications for
which the requirements and
implementation technology is
poorly understood.

The Waterfall Model
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Design
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The Spiral Model - Risk Driven
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Effort DistributionEffort/time unit

Specification Design Implementation Production

Approach with high effort Approach with low effort
on specification on Specification
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Cost Commitment over the Product Life Cycle
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Codesign Related Tasks -
Design

✰ Specification of functionality as a set of concur-
rent tasks

✰ Specification of architecture and resource allo-
cation

✙ Type and number of processors
✙ Operating system
✙ Communication structure

➮ One central bus vs Several separated buses
➮ Hierarchical bus structure
➮ Switches

✙ Protocols
➮ Data link layer
➮ Network layer
➮ Application layer

✙ Memory structure and hierarchy
➮ Shared memory
➮ Local memory
➮ Caches - Cache coherence
➮ Memory allocation to different tasks and protection from

other tasks
✙ Application specific HW resources

✰ Task partitioning and binding
✰ Task synthesis and implementation
✰ Communication synthesis and implementation
✰ System integration
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Codesign Related Tasks - Performance
✰ System level performance analysis

✙ Error rate, failure rate and reliability, buffering requirements, etc.

✰ Architecture performance analysis
✙ Capacity of computation resources
✙ Capacity of communication resources
✙ Capacity of storage resources
✙ Performance of operating systems (context switching, worst case reaction time, etc.)

✰ System performance verification
✙ Performance for each task
✙ Communication performance
✙ Memory size and performance, footprint of SW in the memory
✙ Overall cost analysis

✰ Worst case and average case performence
✰ Static analysis and simulation and profiling based techniques
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Codesign Related Tasks - Validation
✰ Validation of requirements (“Do we make the right system?”)
✰ Functional validation of the task graph
✰ Validation of each task’s implementation
✰ Validation of the implementation of the communication between tasks
✰ System validation (“Did we make the system right?”)

✰ Simulation
✙ Test bench development
✙ Testcase development

✰ Formal verification
✙ Equivalence checking
✙ Property checking
✙ Theorem proving
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Models and Languages
✰ System level

✙ Application oriented (e.g. SDL, Matlab, UML)
✙ Co-modelling to integrate different application aspects

✰ Design and implementation level
✙ Implementation oriented (e.g. VHDL, C, C++, Esterel, Java)
✙ Modelling of the architecture to gain accurate performance estimates by means of simulation

and profiling
✙ Co-modeling to integrate different implementation technologies
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HW-SW Cosimul
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Contents
✰ Dimensions of Cosimulation

✙ Communication
✙ Synchronization
✙ Scheduling
✙ Models of Computation

✰ Techniques
✙ Processor Models
✙ Tool Structures
✙ Speed-up Mechanisms

✰ Tool Examples
HW/SW Codesign, May 2001, A. Jantsch 30 (45). Jantsch
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Communication

Underlying interconnection:

✰ Unix InterProcess Communication (IPC)
✙ Pipe
✙ Socket Interface
✙ Remote Procedure Call (RPC)

utilized by:

✰ Simulator Interfaces
✙ VHDL: Foreign Language Interface
✙ Verilog: Programming Language Interface
HW/SW Codesign, May 2001, A. Jantsch 31 (45). Jantsch
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Communication (cont’d)
✰ Methods:

✙ Shared Memory
✙ Message Passing

✰ Mechanisms:
✙ buffered / unbuffered
✙ blocking / non-blocking
✙ synchronized / unsynchronized data transfer
✙ handshaking
HW/SW Codesign, May 2001, A. Jantsch 32 (45). Jantsch
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Scheduling
Global Timing Concept:
✰ scheduler keeps global time
✰ each component keeps its local time
Scheduling Methods:
✰ conservative scheduling

✙ always: global time≤ local time
✙ global time monotonously increasing
✙ region A: time has past
✙ region B:send actions are allowed;get actions block;

✰ optimistic scheduling
✙ get actions in region B are allowed.
HW/SW Codesign, May 2001, A. Jantsch 33 (45). Jantsch
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Processor Models I
✰ Hardware and software models exist
✰ principles of choice:

✙ model availability
✙ performance
✙ timing accuracy
✙ debugging features

✰ Hardware Models
✙ target processor
✙ logic emulator (FPGA)

Target Processor
or

FPGA

Memory

 Interface
modeller board

software execution

C code

Hardware Model

hardware simulator

HDL code
HW/SW Codesign, May 2001, A. Jantsch 34 (45). Jantsch
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Processor Models II
✰ Software Processor Models

✙ nanosecond accurate model
✙ cycle accurate model
✙ instruction set accurate model (ISS)
✙ bus functional model (BFM)

✰ Techniques Requiring No Processor Model
✙ host code execution (HCE)
✙ virtual operating system

Virtual Operating System
HW/SW Codesign, May 2001, A. Jantsch 35 (45). Jantsch
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Tool Structures
✰ Backplane Based Simulation

✙ contains interconnecting kernel
✙ kernel provides all required translations
✙ all signals are translation to a general type

✰ Heterogeneous Simulation
✙ simulators are directly connected
✙ explicit control and translation of signals in the

simulators

✰ S
✙ e
✙ e
✙ e

Kernel

Sim 1 Sim 2

Sim 3
Sim 1

Sim 2

Sim 3

Comp 1 Comp2 Comp 3

Simulator (Sim)

Backplane Based Simulation

Single Process Simulation
HW/SW Codesign, May 2001, A. Jantsch

ingle Process Simulation
ntire simulation in a single simulator
asy to implement
.g. VHDL-based simulation

Heterogeneous
Simulation
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Speed-Up Mechanism
ultiple Communication Models
llow communication on different levels of abstraction

emory Image Server
aintain two memory models

istributed Simulation
xecute the cosimulation on several machines

igh Powered Coprocessor
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Tools I: Ptolemy
developed at University of California at Berk
simulation framework
written in object-oriented language (C++)
build on basic classes
allows design of heterogeneous systems
designer is enabled to build arbitrary simula



E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

39 (45)A. Jantsch

✰ H
✰ D
✰ G ains
✰ S

✙ S
✙ F
✙ D
TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Ptolemy
eterogenous simulation environment
ifferent domains for different subsystems
eneral and flexible interface between dom
upported simulation domains:
ynchronous data flow
unctional simulator for digital hardware
iscrete event simulation



ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 40 (45)A. Jantsch

Ptolemy

Algorithm Development

System Specification

HW-SW partitioning

Hardware Synthesis:
1. Analog versus digital
2. Architecture selection:
    type, # processors
3. Register word length
    selection
4. Custom hardware:
    FPGA, data path, ...

Software Synthesis:
1. Selection of target code
    generator
2. Algorithm tuning for
    fixed word length
3. Scheduler selection
4. Partitioning:
    # processors, I/O.
   memory, ...

Interface synthesis
1. IPC (between DSPs)
2. Communication between
    custom hardware and
      processors

System simulation

Software
for

programmable
components

Hardware
configuration

Hardware-Software interface
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Tools III: Seamless

✰ distributed by Mentor Graphics
✰ contains three parts:

✙ software simulator (e.g. ISS)
✙ cosimulation kernel
✙ hardware simulator (BFM & additional hardware)

✰ support speed-up mechanisms
✙ unsynchronized simulation
✙ memory image server

✰ similar tools exist (EagleI, Virtual CPU)
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ssor Simulator
ISS, HCS)

oftware
pplication code

read mem1

write mem2
.
.
.

.

.

.

.

.

.

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Seamless: Memory Model -
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Summary
✰ Most electronic systems consist of both HW and SW
✰ HW and SW design have different histories, tools, methodologies con-

cepts and require different competence
✰ Types of Codeisgn:

✙ Vertical Codesign
✙ Horizontal Codesign

✰ Tasks
✙ Modelling
✙ Design
✙ Validation
✙ Performance analysis and validation

✰ HW/SW Cosimulation is the most widely used codesign technique
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