
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 1 (45)A. Jantsch

HW/SW Codesign
May 2001

Axel Jantsch
Royal Institute of Technology

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 2 (45)A. Jantsch

Overview
✰ Introduction

✙ Types of Codesign
✙ Main issues and challanges

✰ Methodology
✰ HW/SW Cosimulation

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 3 (45)A. Jantsch

Introduction
✰ Vertical and Horizontal Codesign
✰ Figures of merits

✙ Favorable for HW
✙ Favorable for SW

✰ Intellectual Property (IP) blocks and Reuse
✰ Integration of HW design and SW design

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 4 (45)A. Jantsch

Vertical vs. Horizontal Codesign

Specification

Program
on a
processor

ASIC

Specification

Program

ASIP

Instruction set

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 5 (45)A. Jantsch

Vertical vs. Horizontal Codesign

DSP DSP Processor Processor ASIC

ASIPRAMRAMRAMRAMRAMRAM

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 6 (45)A. Jantsch

Interfaces between HW and SW
✰ Instruction set

✙ Standard instruction sets
✙ Application specific instruction sets

✰ Bus protocol
✰ Device drivers
✰ FPGA configuration file
✰ Configuration of multiple concurrent resources
✰ Compilers
✰ Operating system

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 7 (45)A. Jantsch

Figures of Merit
✰ Favorable for HW:

✙ Delay
✙ Throughput
✙ Real-time systems
✙ Power
✙ Size

✰ Favorable for SW:
✙ Time to market
✙ Flexibility
✙ Volume

✰ Others
✙ Cost across products and product families - platform
✙ Design productivity
✙ Available tools and methodologies

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 8 (45)A. Jantsch

IP and Reuse
✰ Integration of IP blocks

✙ Development environment and tools
✙ Interfaces: HW interfaces, device drivers
✙ Testing
✙ Business model and legal issues

✰ IP Blocks:
✙ Processors
✙ DSPs
✙ Protocol implementations
✙ Encryption/decryption blocks
✙ I/O devices
✙ Operating systems

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 9 (45)A. Jantsch

Traditional System Develop-
ment

Informal Concept of

Partitioning

Programming Hardware Modelling

Integration

System

Early, Manual

Software
Specification

Hardware
Specification

Software Simulation
Hardware Simulation

Implementation
Hardware

Implementation

Software

 Test

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 10 (45)A. Jantsch

Problems with Traditional System
Development

✰ Manual partitioning based on a ambiguous and incomplete system
specification.

✰ Hardware and software development is conducted without sufficient
exchange of information.

✰ Errors that are detected in the integration phase can be very costly.
✰ The cost of correcting errors is an exponential function of the time

between error generation and error detection.
✰ If possible, integration problems are corrected in the software which

reduces maintainability and reusability.
✰ Because of this danger the hardware is often over-equipped with fea-

tures that are never used.

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 11 (45)A. Jantsch

Breaking a Hole

Informal Concept of

Partitioning

Programming Hardware Modelling

Integration

System

Early, Manual

Software
Specification

Hardware
Specification

Software Simulation
Hardware Simulation

Implementation
Hardware

Implementation

Software

 Test

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 12 (45)A. Jantsch

Hardware-Software
Codesign

System Simulation

Partitioning

Programming Hardware Modelling

Integration

Executable

Software
Specification

Hardware
Specification

Software Simulation
Hardware Simulation

Implementation
Hardware

Implementation
Software

 Test

Cosimulation

Cosimulation

System Specification

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 13 (45)A. Jantsch

Advantages
✰ Specification is more stable.
✰ Systematic partitioning is less dependent on intuition.
✰ Simulation results from system simulation serve as reference.
✰ Avoid multiple test-benches
✰ Errors are detected earlier
✰ Development time is shorter
✰ Reusability and maintainability is higher

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 14 (45)A. Jantsch

Function - Architecture Codesign

Function

Application Architecture

System

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 15 (45)A. Jantsch

Methodology
✰ Development phases
✰ Life cycle models
✰ Effort distribution in different phases

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 16 (45)A. Jantsch

Project Phases
Expression
of need

Project
definition

Planning &
organization

Project
development

Project
completion

Project management

Time

A
bs

tr
ac

tio
n

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 17 (45)A. Jantsch

Involved People
✰ Customers

✙ Users
✙ Marketing and sales personnel
✙ Operators
✙ Maintenance personnel

✰ Product manager
✰ Project manager
✰ Requirement definition engineer
✰ Specification engineer
✰ Designer
✰ Implementation engineer
✰ Test engineer

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 18 (45)A. Jantsch

Life Cycle Models
✰ Waterfall model
✰ V-cycle
✰ Spiral model

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 19 (45)A. Jantsch

Based on the assumption of
document completion at the
end of each stage. This is prob-
lematic for applications for
which the requirements and
implementation technology is
poorly understood.

The Waterfall Model
Requirements Definition

Specification

Design

Implementation

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 20 (45)A. Jantsch

The V life Cycle
Specification

Design&
Development

Test&
Evaluation

Operation&
Maintenance

Need Product

Requirements

Specification

System Design

Component Design

Coding

System Integration

System Validation

Operational
 Test

Unit Test

Design

Va
lid

at
ion

Validation

Validation

Certification

Definition

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 21 (45)A. Jantsch

The Spiral Model - Risk Driven
Cumulative cost

proto-
type

concept
of oper-
ation

life cycle
 plan

risk
analysis

R
A

proto
type

require-
ment

requ.
validation

development
plan

risk
analysis

proto-
type

operational

prototype

SW product
design

design validation
&verification

integration
and test

risk analysis

detailed
design

unit
test

integration
and test

acceptance
test

implementation

Determination of
objectives, alternatives
and constraints

Planning
next phases

Evaluate alternatives
identify and resolve
 risks

Develop and
verify

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 22 (45)A. Jantsch

Effort DistributionEffort/time unit

Specification Design Implementation Production

Approach with high effort Approach with low effort
on specification on Specification

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 23 (45)A. Jantsch

Cost Commitment over the Product Life Cycle

o

20

40

60

80

100

P
er

ce
nt

ag
e

of
 to

ta
l c

os
t

Requirements
definition Specification Design Implementation Production

Time

Cost commited

Cost incurred

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 24 (45)A. Jantsch

L : lost revenue
E : total expected revenue

L = E

:

 :

 :

3wd d
2

–

2w
2

d
1
3
---w= L 0.44E=

d
1
2
---w= L 0.63E=

d
2
3
---w= L 0.78E=

Time-to-market Cost Model
R

ev
en

ue
s

(d
ol

la
rs

/m
on

th
)

Maximum available revenue

Maximum revenue
from delayed entry

M
ar

ke
t r

ise

M
arket fall

System
concept

Production
and deployment

Time to
market

Time
(months)

d=delay

ww=market window

Product life = 2w

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 25 (45)A. Jantsch

Codesign Related Tasks -
Design

✰ Specification of functionality as a set of concur-
rent tasks

✰ Specification of architecture and resource allo-
cation

✙ Type and number of processors
✙ Operating system
✙ Communication structure

➮ One central bus vs Several separated buses
➮ Hierarchical bus structure
➮ Switches

✙ Protocols
➮ Data link layer
➮ Network layer
➮ Application layer

✙ Memory structure and hierarchy
➮ Shared memory
➮ Local memory
➮ Caches - Cache coherence
➮ Memory allocation to different tasks and protection from

other tasks
✙ Application specific HW resources

✰ Task partitioning and binding
✰ Task synthesis and implementation
✰ Communication synthesis and implementation
✰ System integration

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 26 (45)A. Jantsch

Codesign Related Tasks - Performance
✰ System level performance analysis

✙ Error rate, failure rate and reliability, buffering requirements, etc.

✰ Architecture performance analysis
✙ Capacity of computation resources
✙ Capacity of communication resources
✙ Capacity of storage resources
✙ Performance of operating systems (context switching, worst case reaction time, etc.)

✰ System performance verification
✙ Performance for each task
✙ Communication performance
✙ Memory size and performance, footprint of SW in the memory
✙ Overall cost analysis

✰ Worst case and average case performence
✰ Static analysis and simulation and profiling based techniques

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 27 (45)A. Jantsch

Codesign Related Tasks - Validation
✰ Validation of requirements (“Do we make the right system?”)
✰ Functional validation of the task graph
✰ Validation of each task’s implementation
✰ Validation of the implementation of the communication between tasks
✰ System validation (“Did we make the system right?”)

✰ Simulation
✙ Test bench development
✙ Testcase development

✰ Formal verification
✙ Equivalence checking
✙ Property checking
✙ Theorem proving

ROYAL

INSTITUTE OF

TECHNOLOGY
E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 28 (45)A. Jantsch

Models and Languages
✰ System level

✙ Application oriented (e.g. SDL, Matlab, UML)
✙ Co-modelling to integrate different application aspects

✰ Design and implementation level
✙ Implementation oriented (e.g. VHDL, C, C++, Esterel, Java)
✙ Modelling of the architecture to gain accurate performance estimates by means of simulation

and profiling
✙ Co-modeling to integrate different implementation technologies

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

29 (45)A. Jantsch

ation

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

HW-SW Cosimul

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

A

Contents
✰ Dimensions of Cosimulation

✙ Communication
✙ Synchronization
✙ Scheduling
✙ Models of Computation

✰ Techniques
✙ Processor Models
✙ Tool Structures
✙ Speed-up Mechanisms

✰ Tool Examples
HW/SW Codesign, May 2001, A. Jantsch 30 (45). Jantsch

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

A

Communication

Underlying interconnection:

✰ Unix InterProcess Communication (IPC)
✙ Pipe
✙ Socket Interface
✙ Remote Procedure Call (RPC)

utilized by:

✰ Simulator Interfaces
✙ VHDL: Foreign Language Interface
✙ Verilog: Programming Language Interface
HW/SW Codesign, May 2001, A. Jantsch 31 (45). Jantsch

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

A

Communication (cont’d)
✰ Methods:

✙ Shared Memory
✙ Message Passing

✰ Mechanisms:
✙ buffered / unbuffered
✙ blocking / non-blocking
✙ synchronized / unsynchronized data transfer
✙ handshaking
HW/SW Codesign, May 2001, A. Jantsch 32 (45). Jantsch

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

A

Scheduling
Global Timing Concept:
✰ scheduler keeps global time
✰ each component keeps its local time
Scheduling Methods:
✰ conservative scheduling

✙ always: global time≤ local time
✙ global time monotonously increasing
✙ region A: time has past
✙ region B:send actions are allowed;get actions block;

✰ optimistic scheduling
✙ get actions in region B are allowed.
HW/SW Codesign, May 2001, A. Jantsch 33 (45). Jantsch

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

A

Processor Models I
✰ Hardware and software models exist
✰ principles of choice:

✙ model availability
✙ performance
✙ timing accuracy
✙ debugging features

✰ Hardware Models
✙ target processor
✙ logic emulator (FPGA)

Target Processor
or

FPGA

Memory

 Interface
modeller board

software execution

C code

Hardware Model

hardware simulator

HDL code
HW/SW Codesign, May 2001, A. Jantsch 34 (45). Jantsch

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

A

Processor Models II
✰ Software Processor Models

✙ nanosecond accurate model
✙ cycle accurate model
✙ instruction set accurate model (ISS)
✙ bus functional model (BFM)

✰ Techniques Requiring No Processor Model
✙ host code execution (HCE)
✙ virtual operating system

Virtual Operating System
HW/SW Codesign, May 2001, A. Jantsch 35 (45). Jantsch

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

36 (45)A. Jantsch

Tool Structures
✰ Backplane Based Simulation

✙ contains interconnecting kernel
✙ kernel provides all required translations
✙ all signals are translation to a general type

✰ Heterogeneous Simulation
✙ simulators are directly connected
✙ explicit control and translation of signals in the

simulators

✰ S
✙ e
✙ e
✙ e

Kernel

Sim 1 Sim 2

Sim 3
Sim 1

Sim 2

Sim 3

Comp 1 Comp2 Comp 3

Simulator (Sim)

Backplane Based Simulation

Single Process Simulation
HW/SW Codesign, May 2001, A. Jantsch

ingle Process Simulation
ntire simulation in a single simulator
asy to implement
.g. VHDL-based simulation

Heterogeneous
Simulation

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

37 (45)A. Jantsch

s
✰ M

✙ a

✰ M
✙ m

✰ D
✙ e

✰ H
TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Speed-Up Mechanism
ultiple Communication Models
llow communication on different levels of abstraction

emory Image Server
aintain two memory models

istributed Simulation
xecute the cosimulation on several machines

igh Powered Coprocessor

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

38 (45)A. Jantsch

✰ eley
✰

✰

✰

✰

✰ tion environments
TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Tools I: Ptolemy
developed at University of California at Berk
simulation framework
written in object-oriented language (C++)
build on basic classes
allows design of heterogeneous systems
designer is enabled to build arbitrary simula

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

39 (45)A. Jantsch

✰ H
✰ D
✰ G ains
✰ S

✙ S
✙ F
✙ D
TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Ptolemy
eterogenous simulation environment
ifferent domains for different subsystems
eneral and flexible interface between dom
upported simulation domains:
ynchronous data flow
unctional simulator for digital hardware
iscrete event simulation

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 40 (45)A. Jantsch

Ptolemy

Algorithm Development

System Specification

HW-SW partitioning

Hardware Synthesis:
1. Analog versus digital
2. Architecture selection:
 type, # processors
3. Register word length
 selection
4. Custom hardware:
 FPGA, data path, ...

Software Synthesis:
1. Selection of target code
 generator
2. Algorithm tuning for
 fixed word length
3. Scheduler selection
4. Partitioning:
 # processors, I/O.
 memory, ...

Interface synthesis
1. IPC (between DSPs)
2. Communication between
 custom hardware and
 processors

System simulation

Software
for

programmable
components

Hardware
configuration

Hardware-Software interface

ROYAL

INSTITUTE OF

TECHNOLOGY

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

HW/SW Codesign, May 2001, A. Jantsch 41 (45)A. Jantsch

Tools III: Seamless

✰ distributed by Mentor Graphics
✰ contains three parts:

✙ software simulator (e.g. ISS)
✙ cosimulation kernel
✙ hardware simulator (BFM & additional hardware)

✰ support speed-up mechanisms
✙ unsynchronized simulation
✙ memory image server

✰ similar tools exist (EagleI, Virtual CPU)

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

42 (45)A. Jantsch

del

ssor Simulator
ISS, HCS)

oftware
plication code

ead mem1

write mem2
.
.
.

.

.

.

.

.

.

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Seamless: Memory Mo

Processor

custom

custom Memory

Memory

HW

HW

Proce
(

S
ap

r

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

43 (45)A. Jantsch

 cont’d

ssor Simulator
ISS, HCS)

oftware
pplication code

read mem1

write mem2
.
.
.

.

.

.

.

.

.

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

Seamless: Memory Model -

Processor

custom

custom
Memory

Memory
HW

HW

Proce
(

S
a

Memory
Image Server

FFFF

8000

6000

3000
2000

0000

illegal

Hardware

Optimisable

Software

Memory
Image
Server

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

44 (45)A. Jantsch

Se ronization

ssor Simulator
ISS, HCS)

oftware
plication code

nstruction 1

struction n

struction 2
struction3

.

.

.

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch

amless: Relaxation of Synch

Processor

custom

custom Memory

Memory

HW

HW

Proce
(

S
ap
i

in

in
in

Bus cycle true
synchronization

Instruction
lock-step
synchronization

Date flow
synchronization

E L E C T R O N I C S Y S T E M D E S I G N L A B O R A T O R Y

ROYAL

INSTITUTE OF

TECHNOLOGY

HW/SW Codesign, May 2001, A. Jantsch 45 (45)A. Jantsch

Summary
✰ Most electronic systems consist of both HW and SW
✰ HW and SW design have different histories, tools, methodologies con-

cepts and require different competence
✰ Types of Codeisgn:

✙ Vertical Codesign
✙ Horizontal Codesign

✰ Tasks
✙ Modelling
✙ Design
✙ Validation
✙ Performance analysis and validation

✰ HW/SW Cosimulation is the most widely used codesign technique

	Seamless: Memory Model
	Seamless: Memory Model - cont’d
	Seamless: Relaxation of Synchronization
	Tools III: Seamless
	distributed by Mentor Graphics
	contains three parts:
	software simulator (e.g. ISS)
	cosimulation kernel
	hardware simulator (BFM & additional hardware)

	support speed-up mechanisms
	unsynchronized simulation
	memory image server

	similar tools exist (EagleI, Virtual CPU)
	Methodology
	Development phases
	Life cycle models
	Effort distribution in different phases

	Ptolemy
	Overview
	Introduction
	Types of Codesign
	Main issues and challanges

	Methodology
	HW/SW Cosimulation

	HW/SW Codesign
	May 2001 Axel Jantsch Royal Institute of Technology
	Introduction
	Vertical and Horizontal Codesign
	Figures of merits
	Favorable for HW
	Favorable for SW

	Intellectual Property (IP) blocks and Reuse
	Integration of HW design and SW design

	Vertical vs. Horizontal Codesign
	Vertical vs. Horizontal Codesign
	Figures of Merit
	Favorable for HW:
	Delay
	Throughput
	Real-time systems
	Power
	Size

	Favorable for SW:
	Time to market
	Flexibility
	Volume

	Others
	Cost across products and product families - platform
	Design productivity
	Available tools and methodologies

	IP and Reuse
	Integration of IP blocks
	Development environment and tools
	Interfaces: HW interfaces, device drivers
	Testing
	Business model and legal issues

	IP Blocks:
	Processors
	DSPs
	Protocol implementations
	Encryption/decryption blocks
	I/O devices
	Operating systems

	Traditional System Development

	Problems with Traditional System Development
	Manual partitioning based on a ambiguous and incomplete system specification.
	Hardware and software development is conducted without sufficient exchange of information.
	Errors that are detected in the integration phase can be very costly.
	The cost of correcting errors is an exponential function of the time between error generation and...
	If possible, integration problems are corrected in the software which reduces maintainability and...
	Because of this danger the hardware is often over-equipped with features that are never used.
	Breaking a Hole

	Advantages
	Specification is more stable.
	Systematic partitioning is less dependent on intuition.
	Simulation results from system simulation serve as reference.
	Avoid multiple test-benches
	Errors are detected earlier
	Development time is shorter
	Reusability and maintainability is higher

	Hardware-Software Codesign
	Interfaces between HW and SW
	Instruction set
	Standard instruction sets
	Application specific instruction sets

	Bus protocol
	Device drivers
	FPGA configuration file
	Configuration of multiple concurrent resources
	Compilers
	Operating system

	Function - Architecture Codesign
	Project Phases
	Involved People
	Customers
	Users
	Marketing and sales personnel
	Operators
	Maintenance personnel

	Product manager
	Project manager
	Requirement definition engineer
	Specification engineer
	Designer
	Implementation engineer
	Test engineer

	Life Cycle Models
	Waterfall model
	V-cycle
	Spiral model
	Based on the assumption of document completion at the end of each stage. This is problematic for ...

	The Waterfall Model
	The V life Cycle
	The Spiral Model - Risk Driven
	Effort Distribution
	Cost Commitment over the Product Life Cycle
	L : lost revenue
	E : total expected revenue
	L = E
	:
	:
	:

	Time-to-market Cost Model
	Codesign Related Tasks - Design
	Specification of functionality as a set of concurrent tasks
	Specification of architecture and resource allocation
	Type and number of processors
	Operating system
	Communication structure
	One central bus vs Several separated buses
	Hierarchical bus structure
	Switches

	Protocols
	Data link layer
	Network layer
	Application layer

	Memory structure and hierarchy
	Shared memory
	Local memory
	Caches - Cache coherence
	Memory allocation to different tasks and protection from other tasks

	Application specific HW resources

	Task partitioning and binding
	Task synthesis and implementation
	Communication synthesis and implementation
	System integration

	Models and Languages
	System level
	Application oriented (e.g. SDL, Matlab, UML)
	Co-modelling to integrate different application aspects

	Design and implementation level
	Implementation oriented (e.g. VHDL, C, C++, Esterel, Java)
	Modelling of the architecture to gain accurate performance estimates by means of simulation and p...
	Co-modeling to integrate different implementation technologies

	Codesign Related Tasks - Performance
	System level performance analysis
	Error rate, failure rate and reliability, buffering requirements, etc.

	Architecture performance analysis
	Capacity of computation resources
	Capacity of communication resources
	Capacity of storage resources
	Performance of operating systems (context switching, worst case reaction time, etc.)

	System performance verification
	Performance for each task
	Communication performance
	Memory size and performance, footprint of SW in the memory
	Overall cost analysis

	Worst case and average case performence
	Static analysis and simulation and profiling based techniques

	Codesign Related Tasks - Validation
	Validation of requirements (“Do we make the right system?”)
	Functional validation of the task graph
	Validation of each task’s implementation
	Validation of the implementation of the communication between tasks
	System validation (“Did we make the system right?”)
	Simulation
	Test bench development
	Testcase development

	Formal verification
	Equivalence checking
	Property checking
	Theorem proving

	Summary
	Most electronic systems consist of both HW and SW
	HW and SW design have different histories, tools, methodologies concepts and require different co...
	Types of Codeisgn:
	Vertical Codesign
	Horizontal Codesign

	Tasks
	Modelling
	Design
	Validation
	Performance analysis and validation

	HW/SW Cosimulation is the most widely used codesign technique

	HW-SW Cosimulation

	Contents
	Dimensions of Cosimulation
	Communication
	Synchronization
	Scheduling
	Models of Computation

	Techniques
	Processor Models
	Tool Structures
	Speed-up Mechanisms

	Tool Examples

	Communication
	Underlying interconnection:
	Unix InterProcess Communication (IPC)
	Pipe
	Socket Interface
	Remote Procedure Call (RPC)

	utilized by:
	Simulator Interfaces
	VHDL: Foreign Language Interface
	Verilog: Programming Language Interface

	Communication (cont’d)
	Methods:
	Shared Memory
	Message Passing

	Mechanisms:
	buffered / unbuffered
	blocking / non-blocking
	synchronized / unsynchronized data transfer
	handshaking

	Scheduling
	Global Timing Concept:
	scheduler keeps global time
	each component keeps its local time

	Scheduling Methods:
	conservative scheduling
	always: global time £ local time
	global time monotonously increasing
	region A: time has past
	region B: send actions are allowed; get actions block;

	optimistic scheduling
	get actions in region B are allowed.

	Processor Models I
	Hardware and software models exist
	principles of choice:
	model availability
	performance
	timing accuracy
	debugging features

	Hardware Models
	target processor
	logic emulator (FPGA)

	Target Processor
	or
	FPGA
	Processor Models II
	Software Processor Models
	nanosecond accurate model
	cycle accurate model
	instruction set accurate model (ISS)
	bus functional model (BFM)

	Techniques Requiring No Processor Model
	host code execution (HCE)
	virtual operating system

	Tool Structures
	Backplane Based Simulation
	contains interconnecting kernel
	kernel provides all required translations
	all signals are translation to a general type

	Heterogeneous Simulation
	simulators are directly connected
	explicit control and translation of signals in the simulators

	Single Process Simulation
	entire simulation in a single simulator
	easy to implement
	e.g. VHDL-based simulation

	Speed-Up Mechanisms
	Multiple Communication Models
	allow communication on different levels of abstraction

	Memory Image Server
	maintain two memory models

	Distributed Simulation
	execute the cosimulation on several machines

	High Powered Coprocessor

	Tools I: Ptolemy
	developed at University of California at Berkeley
	simulation framework
	written in object-oriented language (C++)
	build on basic classes
	allows design of heterogeneous systems
	designer is enabled to build arbitrary simulation environments

	Ptolemy
	Heterogenous simulation environment
	Different domains for different subsystems
	General and flexible interface between domains
	Supported simulation domains:
	Synchronous data flow
	Functional simulator for digital hardware
	Discrete event simulation

