System Modelling and
SDL-Matlab Cosimulation

Axel Jantsch, Royal Institute of Technology

Stockholm, Sweden

Overview
OModels of Concurrency
< Dataflow
< Perfect synchrony
= Discrete event
OSDL/Matlab Cosimulation

@ Synchronisation and Communication
#Design Flow

Computational Paradigms

QO State machine
= Hierarchy
= Data path

O Algorithm
= Procedural hierarchy
= Imperative

QO Declarative
= Functions
= Relations

Axel Jantsch
Royal Institute of Technology, Stockholm

—— o
> C_nextstate J

fori=1to 10 do
ifi==5
then ...
else ...
endif
enddo

f(x) =3x+9
g(x.y) = {filter(x,p1,p2), mode(x,y,p3,p4)}

r(x)>3x+9
S(AD 1 Ox, x;OA ijO/:i<jO x<X

Dataflow Process Networks

O Networks of actors connected with streams

O Hierarchy of networks
O Communication is buffered with unbounded FIFOs

Axel Jantsch
Royal Institute of Technology, Stockholm

Functional Actors

f(xy)

_

axy)

O No side effects

O For the same input values produce the same output
values

= Functional for each firing cycle
= Functional over the entire streams

Axel Jantsch
Royal Institute of Technology, Stockholm

Firing Rules

O Sequential with blocking read

O An actor with p= 1 input streams can have Nfiring
rules:

0={R,R,,...R}
R ={R.R2 R}

adder: R, ={[*1.[*]} selector: R, ={[*],0,[T]}
R, ={G.[*L.[F]}

Nondeterminate R: ={[*1.0C}
merge: R, ={0,[*]}

Axel Jantsch
Royal Institute of Technology, Stockholm

Sequential Firing Rules

Firing _rul&s are sequential if tl.ﬁe] _ R, ={[*].0}
following procedure succeeds: Nondeterminate 1

merge: R, ={0,[*]}
1) Find an input j such, that all firing rulesrequire
at least one token from that input; If no such input
exists, falil; 1) fails.

2) For the input j divide the firing rulesinto
subsets, one for each specific token value
mentioned in thefirst position of the firing rules;

3) Remove the first element for the input j of al
firing rules;

4) If al subsets have empty firing rules, succeed;
Otherwise repeat these steps for any subset with
nonempty firing rules,

Axel Jantsch
Royal Institute of Technology, Stockholm

Execution Models

O Concurrent processes

O Dynamic scheduling

QO Static scheduling

QO Execution on parallel architectures

Axel Jantsch
Royal Institute of Technology, Stockholm

Execution Models

QO Concurrent processes

driver
process

'/

Axel Jantsch
Royal Institute of Technology, Stockholm

Execution Models - cont'd

O Dynamic scheduling - data flow networks can in general
not be statically scheduled

@@ @

Axel Jantsch
Royal Institute of Technology, Stockholm

Execution Models - cont'd

QO Static scheduling: For Synchronous Data Flow a static
schedule can always be found and a complete cycle can be
executed with bounded memory.

e
o

Schedule: A,A,B,A,AB,C,D,D

Axel Jantsch
Royal Institute of Technology, Stockholm

Execution Models - cont'd

O Schedule on a parallel architecture

e S
&

Schedule: A,AAALAAAAAAA
B B,CBDB,.CB
D D

O Good heuristics exist for a maximum throughput schedule on a parallel
architecture.

2

Axel Jantsch
Royal Institute of Technology, Stockholm n

Perfect Synchrony

O Perfect synchrony assumption:
= Computation takes no time

= Communication takes no
time (synchronous
broadcast)

Y

synchronized

<Initialize memory> @)
foreach period do

<Read inputs>

<Compute outputs>

<Update memory>

Assumption: The system
reacts rapidly enough to
perceive all external
events in suitable order.
end

Axel Jantsch
Royal Institute of Technology, Stockholm 12

Features of Synchronous Languages

O Deterministic

O Amenable to formal analysis

QO Efficient synthesis

QO Substitution of equivalent blocks preserves behaviour

Axel Jantsch
Royal Institute of Technology, Stockholm

Substitution of Equivalent Blocks

0
s =y

Axel Jantsch
Royal Institute of Technology, Stockholm

Clocked Synchronous Models

O Computation takes 1 clock cycle
O Communication takes no time
O Substitution of blocks must consider timing behavour

2D lcycle

fa b

Axel Jantsch
Royal Institute of Technology, Stockholm

Causality in Synchronous Languages

O Programs in a synchronous language represent
eqguations.

O Recursive equations may have 0, 1 or more solutions.

if Cthen Velse W,

X
y
z= (zz+ 1.0)/2.0
u
V = if C then W else U;

Axel Jantsch
Royal Institute of Technology, Stockholm

Discrete Event Models

O Event driven dynamics
O Events:
= Primary input stimuli
= Internally generated

events

Events have totally ordered
time stamps

Components have arbitrary J
delays

Discrete or continuous time
Most general timing model

Primarily targeted to
simulation

co0oo0 0O O

Axel Jantsch
Royal Institute of Technology, Stockholm

Y

Simultaneous Events

A delay model
t t
e BEE
t t

Axel Jantsch
Royal Institute of Technology, Stockholm

Delta Time

time
I | l l I >
0 . t t+A t+2A t+3A .. t+1
A The model allows infinite
feed back loops between
t and t+1

Axel Jantsch
Royal Institute of Technology, Stockholm

Event List

tp ° -

T

t A J (0, v) o, Vj’) *
t, . While (‘event list not empty)

begin

t=nexttimeinlist

process entries for time t

end

Axel Jantsch

Royal Institute of Technology, Stockholm 2

Event Driven Simulation

|

i no more events
| Advance simulation time

!

‘ Determine Current Events ‘ @
|

‘ Update Value ‘

!

‘ Propogate Events ‘

: I -EE
‘ Evaluate activated elements ‘

!

‘ Schedule resulting events ‘

|

Axel Jantsch

Royal Institute of Technology, Stockholm 2

Discrete Event Models

O Global event queue is a bottleneck
O Timing model is close to physical time

= Good to simulate timing behaviour of existing
components;

= Difficult to synthesize
= Difficult to formally verify

O DE Models are interpreted according to a different
timing model: Clocked synchronous model

t i
Axel Jantsch

Royal Institute of Technology, Stockholm

Bsibey

——
—

Bisibey

22

Heterogeneous System Modelling

O Heterogeneous Systems

O Different Communities of Engineers

O Established Languages with different profiles
O Established design flows

Axel Jantsch

Royal Institute of Technology, Stockholm =

SDL and Matlab

O SDL
= Communicating State Machines
= Communication is buffered with infinite FIFOs
= Non-deterministic elements
= Partially or totally ordered global time
= Discrete events govern the execution

O Matlab
= Data flow model
= Demand driven execution
= Deterministic
= Partially ordered events; no global time
= Vector oriented computation

Axel Jantsch

Royal Institute of Technology, Stockholm 24

Matlab - SDL Integration: Timing

O Equip Matlab with a timing model with totally ordered
events

r = f(a) wherea= <ay, a,, ..., > andr=<rg, ry, ..., >

Re-interpretation !

a?n llraa}_, @ rlm |1r|r°

Axel Jantsch

Royal Institute of Technology, Stockholm %

Matlab - SDL: Synchronisation

O Provide a synchronization mechanism which preserves
Matlab’s vector oriented computation

Events

Data streams

Axel Jantsch

Royal Institute of Technology, Stockholm %

Composite Signal Flow

signa

O Execution Model
= Data flow process
= Processes may have state
O Signals
= Signals are sets of events
= An event is a (value, tag) pair

Axel Jantsch
Royal Institute of Technology, Stockholm 2

Signals

O Signals

= Signals are sets of events

= An eventis a (value, tag) pair
O Sampled Signals

= Values are only defined for tags t = t,+n A
O Vectorized Signals

= Event values are vectors of constant length

O Vectorized, sampled signals ~
> event

N n N <

\% v- v 5

T T T T

| | | |

> signal

Axel Jantsch
Royal Institute of Technology, Stockholm %

Vectorization

A

(A %A ™A A > 7)

Ah> ,®> _m> ,v>V _._V +Hv|l

Ao> _Hvll

(nTH) 1

(A ‘2+1)

(A'en) T

O Head vectorization

(<> T

A TA NS ‘g +1)-

Ao> .“_v|
(A T+) 7
A ‘2+1)

(°A ‘g +1)

O Tail vectorization

=

29

Royal Institute of Technology, Stockholm

De-Vectorization

Cr)

n2+1)

(°A‘e+1)

O Head de-vectorization

A

(BA °A A 7>)~

Ah> .©> _m> .¢>V ..V+“—v|l

(nTH) 1

A
[
©
..nm Ao> .Hv'l
N
o (nT+) 1
(&)
g
3 Cn‘z+H) T
©
T (neq)T
T
O <

+—

G

(<> T

=

AN NS ‘g +1)-

30

Royal Institute of Technology, Stockholm

Conversion and Synchronization

O Pin Encoding 2 @ =
O Pin Decoding s @ s

O Punch S)_) s’
S

Axel Jantsch

Royal Institute of Technology, Stockholm =

Causality

O A process is causal if for all possible input and output
streams two output streams never differ earlier than
the corresponding two input streams.

I =pap, 0,=04 B,

i (:) 0, I,=PyYPs 0,=0; 603
aZy B#£0

Piscausal if and only if tag(a) < tag(p)

O Tail vectorization is O Head vectorization is
causal not causal

O Tail de-vectorizationis @ Head de-vectorization
not causal is causal

Axel Jantsch

Royal Institute of Technology, Stockholm 2

Causality and Delay Processes

O By combining a non-causal process with a delay
process, the resulting compound process can be causal

O A delay process outputs every input event delayed by a
specific time.

~~~
™ D D
- - - ~
S ™ N - F
- - s —~ + + + -
™ (qV] — >O c [ c c
+ + + - + + + o+
R el = = Rl = = =
| | | | - A | | | | -
I I | ! i n I I I ! -
Axel Jantsch
Royal Institute of Technology, Stockholm s

Constraints on Modelling

O Modelling constraints must ensure that processes have
data available when they need it.

@~

Unsafe situation Safe situation

Axel Jantsch
Royal Institute of Technology, Stockholm




Applications

O Co-Modelling of Matlab and SDL

= Causality constraints imply modelling constraints to
safely mix Matlab and SDL processes

O Timing analysis

= Causality constraints can be interpreted as timing
constraints derived from the timing of streams

O Parallel Simulation
= A partition must be a causal process

= Only periodic signals may cross partition
boundaries

Axel Jantsch

Royal Institute of Technology, Stockholm *

SDL - Matlab Design Flow

O Decomposition

O Domain Selection ~

O Simulation

O Estimation

Q lIteration —| sbL Matlab |—
O Hand-Over

o

Implementation

Hand-Over

v A
Control Function Data Path
Implementation Implementation

Axel Jantsch

Royal Institute of Technology, Stockholm %




Equalizer Example

O Demonstration of Concept

O Input
= Audio In
= Bass Up/Down
= Treble Up/Down
O Output
= Audio Out
O Distortion Guard

Axel Jantsch
Royal Institute of Technology, Stockholm

37

Decomposition

+ Audio Processing
+ Button Handling
+ Distortion Guard
+ Source & Sink

= System Model

Axel Jantsch
Royal Institute of Technology, Stockholm

Buttons > Button | g Distortion
Control | Control
A

\4

Filter —p| Analyzer
A

Audio In vy _Audio Out
CD Player Speakers

Equalizer

38




Domain Selection

use ctypes;
use DataFlow]

L4 Contr0| SyiteT Equalizer 1(1)
e ButtonCtrl L%
e DistortionCtrl
[ ] Data FIOW [Trem:mt::em} O ‘Bunonc&rl [L:ivzzji} Distorlionctrl“,‘
[ ) Filter e [;v;l. ------ R.e.‘e.a ............. 'D\s‘&;r!ion
° Analyzer [rrebie, Baﬁ ........................ [fjsjwﬂ
“;‘ PostFilter 'n'.
[ CD Player ..'0 Filter [:mevom] Analyzer ..“
[} Speakers :: FromCD ToSpeakers":
L [udon] [Ausiooud]
“". .CDP\ayer Speakers “o".
Axel Jantsch
Royal Institute of Technology, Stockholm 3
Control Flow Modeling
O Reactive
O SDL Processes
i i Process ButtonCtrl St t 101)
= Extended Finite o
State Machines
= Asynchronous ‘ =
Communication e
= Synchronous
Transitions

Axel Jantsch
Royal Institute of Technology, Stockholm

40




Data Flow Modeling

O Transformation

O Matlab Processes
= Streams & Vectors
= Functions
= State

Axel Jantsch

Matlab Process

% ExecuteFilter

%

% Input: Filter.stream.AudioIn
% Filter.stream.Treble

% Filter.stream.Bass

%

% output: Filter.Stream.Filterout

% Low pass filter

[Filter.LoPass.Stream Filter.LoPass.Init] = ...
filter(Filter.LoPass.Filter, 1, ...
Filter.stream.AudioIn, Filter.LoPass.Init);

% High pass fi
[Filter.Hir{
Filter(Fi

Filter.s

Tter.HiPass.Init] = ...

_ (. Output :
e o Fﬂterout
exp(Fil

LoPass.Stream .* ...

Filter.HiPass.stream .* exp(Filter.stream.Treble);

Tter.BdPass.Stream + ...

Royal Institute of Technology, Stockholm “a
Signal Types
O Data Flow Signals
= Continuously Sampled Data
= Only Data Flow (Matlab) Processes
O Control Signals
= Only Control (SDL) Processes
O Notification Signals
O Message Signals
= Containing Data
O Punch Signals
Axel Jantsch w2

Royal Institute of Technology, Stockholm




Choosing Signal Type

e Control Signals
¢ Buttons and Guards

e Data Flow Signals
e Audio

e Message Signals
e Treble and Bass

* Notification Signals
e Pass and Fail

Axel Jantsch
Royal Institute of Technology, Stockholm

Buttons
Button

Control

Guards

Distortion
Control

Treble, Bass ¢

Filtered

T Pass, Fail

Filter

Audio

Analyzer

Audio InT

lAudio Out

CD Player

Speakers

43

Synchronization Guidelines

O Head Synchronization

= Use for sources

= Start with large frames - split
= Keep as long as possible

QO Tail Synchronization

= Begin as late as possible
= Start with small frames - concatenate

= Use for sinks

O Avoid Switching between Head and Tail

Axel Jantsch
Royal Institute of Technology, Stockholm

44




Choosing Synchronization

¢ CD Player (Source) System
e Head Synchronization 44100Hz
e Max Frame Size For all data flow
. components
e Filter Process
e Tail Synchronization oo 1 F—
e Frame Size = 1024 control [ Control
e Analyzer Process 4 04 4
* Tail Synchronization iter o] Anaiyzer
 Frame Size = 1024 i’
A )
* Speakers (Sink) (Head, Max) 4 (el M)
e Tail Synchronization D Player Speakers
e Max Frame Size

Axel Jantsch

Royal Institute of Technology, Stockholm ®

Summary

Heterogeneous system modeling is a nhecessity;

Multiple Models of Computation and Concurrency must
be integrated;

O Conceptual integration is the basis for the integration of
simulation, synthesis, and formal analysis

(OO,

Axel Jantsch

Royal Institute of Technology, Stockholm a6




References

O Data flow process networks:
E. A. Lee and T. M. Parks, "Dataflow Process Networks", Proceedings of the IEEE, May 1995.

Edward Ashford Lee and David G. Messerschmitt, "Synchronous Data Flow", Proceedings of the IEEE, vol. 75, no. 9,

pp. 1235-1245, September 1987.
O Perfectly synchronous models:

Gerard Berry, "The Foundations of Esterel", Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT

Press, edited by G. Plotkin and C. Stirling and M. Tofte, 1998.

Nicolas Halbwachs, "Synchronous Programming of Reactive Systems", Proceedings of Computer Aided Verification

(CAV), 2000.
Nicolas Halbwachs, Synchronous Programming of Reactive Systems, Kluwer Academic Publishers, 1993.
G. Berry, P. Chouronné, and and G. Gonthier, "The Synchronous Approach to Reactive and Real-Time Systems",
Proceedings, September" 1991.
O Discrete Event Models:
Christos G. Cassandras, Discrete Event Systems, Aksen Associates, 1993.
Most VHDL books have a chapter on the simulation cycle, the event queue and the concept of delta delays.

O On theintegration of SDL and Matlab:

Axel Jantsch and Per Bjureus, "Composite Signal Flow: A Computational Model Compining Events, Sampled Streams,
and Vectors", Proceedings of the Design and Test Europe Conference (DATE), 2000.

Per Bjureus and Axel Jantsch, "MASCOT: A Specification and Cosimulation Method Integrating Data and Control Flow",
Proceedings of the Design and Test Europe Conference (DATE), 2000.

Axel Jantsch
Royal Institute of Technology, Stockholm

IEEE

47




