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Overview
OModels of Concurrency
< Dataflow
< Perfect synchrony
= Discrete event
OSDL/Matlab Cosimulation

@ Synchronisation and Communication
#Design Flow

Computational Paradigms

QO State machine
= Hierarchy
= Data path

O Algorithm
= Procedural hierarchy
= Imperative

QO Declarative
= Functions
= Relations
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> C_nextstate J

fori=1to 10 do
ifi==5
then ...
else ...
endif
enddo

f(x) =3x+9
g(x.y) = {filter(x,p1,p2), mode(x,y,p3,p4)}

r(x)>3x+9
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Dataflow Process Networks

O Networks of actors connected with streams

O Hierarchy of networks
O Communication is buffered with unbounded FIFOs
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Functional Actors

f(xy)

_

axy)

O No side effects

O For the same input values produce the same output
values

= Functional for each firing cycle
= Functional over the entire streams
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Firing Rules

O Sequential with blocking read

O An actor with p= 1 input streams can have Nfiring
rules:

0={R,R,,...R}
R ={R.R2 R}

adder: R, ={[*1.[*]} selector: R, ={[*],0,[T]}
R, ={G.[*L.[F]}

Nondeterminate  R: ={[*1.0C}
merge: R, ={0,[*]}
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Sequential Firing Rules

Firing _rul&s are sequential if tl.ﬁe ] _ R, ={[*].0}
following procedure succeeds: Nondeterminate 1

merge: R, ={0,[*]}
1) Find an input j such, that all firing rulesrequire
at least one token from that input; If no such input
exists, falil; 1) fails.

2) For the input j divide the firing rulesinto
subsets, one for each specific token value
mentioned in thefirst position of the firing rules;

3) Remove the first element for the input j of al
firing rules;

4) If al subsets have empty firing rules, succeed;
Otherwise repeat these steps for any subset with
nonempty firing rules,
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Execution Models

O Concurrent processes

O Dynamic scheduling

QO Static scheduling

QO Execution on parallel architectures
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Execution Models

QO Concurrent processes

driver
process

'/
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Execution Models - cont'd

O Dynamic scheduling - data flow networks can in general
not be statically scheduled

@@ @
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Execution Models - cont'd

QO Static scheduling: For Synchronous Data Flow a static
schedule can always be found and a complete cycle can be
executed with bounded memory.

e
o

Schedule: A,A,B,A,AB,C,D,D
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Execution Models - cont'd

O Schedule on a parallel architecture

e S
&

Schedule: A,AAALAAAAAAA
B B,CBDB,.CB
D D

O Good heuristics exist for a maximum throughput schedule on a parallel
architecture.

2
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Perfect Synchrony

O Perfect synchrony assumption:
= Computation takes no time

= Communication takes no
time (synchronous
broadcast)

Y

synchronized

<Initialize memory> @)
foreach period do

<Read inputs>

<Compute outputs>

<Update memory>

Assumption: The system
reacts rapidly enough to
perceive all external
events in suitable order.
end
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Features of Synchronous Languages

O Deterministic

O Amenable to formal analysis

QO Efficient synthesis

QO Substitution of equivalent blocks preserves behaviour
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Substitution of Equivalent Blocks

0
s =y
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Clocked Synchronous Models

O Computation takes 1 clock cycle
O Communication takes no time
O Substitution of blocks must consider timing behavour

2D lcycle

fa b
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Causality in Synchronous Languages

O Programs in a synchronous language represent
eqguations.

O Recursive equations may have 0, 1 or more solutions.

if Cthen Velse W,

X
y
z= (zz+ 1.0)/2.0
u
V = if C then W else U;
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Discrete Event Models

O Event driven dynamics
O Events:
= Primary input stimuli
= Internally generated

events

Events have totally ordered
time stamps

Components have arbitrary J
delays

Discrete or continuous time
Most general timing model

Primarily targeted to
simulation

co0oo0 0O O
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Simultaneous Events

A delay model
t t
e BEE
t t
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Delta Time

time
I | l l I >
0 . t t+A t+2A t+3A .. t+1
A The model allows infinite
feed back loops between
t and t+1
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Event List

tp ° -

T

t A J (0, v) o, Vj’) *
t, . While (‘event list not empty)

begin

t=nexttimeinlist

process entries for time t

end
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Event Driven Simulation

|

i no more events
| Advance simulation time

!

‘ Determine Current Events ‘ @
|

‘ Update Value ‘

!

‘ Propogate Events ‘

: I -EE
‘ Evaluate activated elements ‘

!

‘ Schedule resulting events ‘

|
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Discrete Event Models

O Global event queue is a bottleneck
O Timing model is close to physical time

= Good to simulate timing behaviour of existing
components;

= Difficult to synthesize
= Difficult to formally verify

O DE Models are interpreted according to a different
timing model: Clocked synchronous model

t i
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Bsibey

——
—

Bisibey
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Heterogeneous System Modelling

O Heterogeneous Systems

O Different Communities of Engineers

O Established Languages with different profiles
O Established design flows
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SDL and Matlab

O SDL
= Communicating State Machines
= Communication is buffered with infinite FIFOs
= Non-deterministic elements
= Partially or totally ordered global time
= Discrete events govern the execution

O Matlab
= Data flow model
= Demand driven execution
= Deterministic
= Partially ordered events; no global time
= Vector oriented computation

Axel Jantsch
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Matlab - SDL Integration: Timing

O Equip Matlab with a timing model with totally ordered
events

r = f(a) wherea= <ay, a,, ..., > andr=<rg, ry, ..., >

Re-interpretation !

a?n llraa}_, @ rlm |1r|r°
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Matlab - SDL: Synchronisation

O Provide a synchronization mechanism which preserves
Matlab’s vector oriented computation

Events

Data streams
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Composite Signal Flow

signa

O Execution Model
= Data flow process
= Processes may have state
O Signals
= Signals are sets of events
= An event is a (value, tag) pair
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Signals

O Signals

= Signals are sets of events

= An eventis a (value, tag) pair
O Sampled Signals

= Values are only defined for tags t = t,+n A
O Vectorized Signals

= Event values are vectors of constant length

O Vectorized, sampled signals ~
> event

N n N <

\% v- v 5

T T T T

| | | |

> signal
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Vectorization

A

(A %A ™A A > 7)

Ah> ,®> _m> ,v>V _._V +Hv|l

Ao> _Hvll

(nTH) 1
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(A'en) T

O Head vectorization
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O Tail vectorization

=
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De-Vectorization

Cr)

n2+1)
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O Head de-vectorization
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Conversion and Synchronization

O Pin Encoding 2 @ =
O Pin Decoding s @ s

O Punch S)\_) s’
S
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Causality

O A process is causal if for all possible input and output
streams two output streams never differ earlier than
the corresponding two input streams.

I =pap, 0,=04 B,

i ( : ) 0, I,=PyYPs 0,=0; 603
aZy B#£0

Piscausal if and only if tag(a) < tag(p)

O Tail vectorization is O Head vectorization is
causal not causal

O Tail de-vectorizationis @ Head de-vectorization
not causal is causal
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Causality and Delay Processes

O By combining a non-causal process with a delay
process, the resulting compound process can be causal

O A delay process outputs every input event delayed by a
specific time.

~~~
™ D D
- - - ~
S ™ N - F
- - s —~ + + + -
™ (qV] — >O c [ c c
+ + + - + + + o+
R el = = Rl = = =
| | | | - A | | | | -
I I | ! i n I I I ! -
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Constraints on Modelling

O Modelling constraints must ensure that processes have
data available when they need it.

@~

Unsafe situation Safe situation
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Applications

O Co-Modelling of Matlab and SDL

= Causality constraints imply modelling constraints to
safely mix Matlab and SDL processes

O Timing analysis

= Causality constraints can be interpreted as timing
constraints derived from the timing of streams

O Parallel Simulation
= A partition must be a causal process

= Only periodic signals may cross partition
boundaries

Axel Jantsch
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SDL - Matlab Design Flow

O Decomposition

O Domain Selection ~

O Simulation

O Estimation

Q lIteration —| sbL Matlab |—
O Hand-Over

o

Implementation

Hand-Over

v A
Control Function Data Path
Implementation Implementation

Axel Jantsch
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Equalizer Example

O Demonstration of Concept

O Input
= Audio In
= Bass Up/Down
= Treble Up/Down
O Output
= Audio Out
O Distortion Guard
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Decomposition

+ Audio Processing
+ Button Handling
+ Distortion Guard
+ Source & Sink

= System Model

Axel Jantsch
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Buttons > Button | g Distortion
Control | Control
A

\4

Filter —p| Analyzer
A

Audio In vy _Audio Out
CD Player Speakers

Equalizer
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Domain Selection

use ctypes;
use DataFlow]

L4 Contr0| SyiteT Equalizer 1(1)
e ButtonCtrl L%
e DistortionCtrl
[ ] Data FIOW [Trem:mt::em} O ‘Bunonc&rl [L:ivzzji} Distorlionctrl“,‘
[ ) Filter e [;v;l. ------ R.e.‘e.a ............. 'D\s‘&;r!ion
° Analyzer [rrebie, Baﬁ ........................ [fjsjwﬂ
“;‘ PostFilter 'n'.
[ CD Player ..'0 Filter [:mevom] Analyzer ..“
[} Speakers :: FromCD ToSpeakers":
L [udon] [Ausiooud]
“". .CDP\ayer Speakers “o".
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Control Flow Modeling
O Reactive
O SDL Processes
i i Process ButtonCtrl St t 101)
= Extended Finite o
State Machines
= Asynchronous ‘ =
Communication e
= Synchronous
Transitions

Axel Jantsch
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Data Flow Modeling

O Transformation

O Matlab Processes
= Streams & Vectors
= Functions
= State

Axel Jantsch

Matlab Process

% ExecuteFilter

%

% Input: Filter.stream.AudioIn
% Filter.stream.Treble

% Filter.stream.Bass

%

% output: Filter.Stream.Filterout

% Low pass filter

[Filter.LoPass.Stream Filter.LoPass.Init] = ...
filter(Filter.LoPass.Filter, 1, ...
Filter.stream.AudioIn, Filter.LoPass.Init);

% High pass fi
[Filter.Hir{
Filter(Fi

Filter.s

Tter.HiPass.Init] = ...

_ (. Output :
e o Fﬂterout
exp(Fil

LoPass.Stream .* ...

Filter.HiPass.stream .* exp(Filter.stream.Treble);

Tter.BdPass.Stream + ...

Royal Institute of Technology, Stockholm “a
Signal Types
O Data Flow Signals
= Continuously Sampled Data
= Only Data Flow (Matlab) Processes
O Control Signals
= Only Control (SDL) Processes
O Notification Signals
O Message Signals
= Containing Data
O Punch Signals
Axel Jantsch w2
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Choosing Signal Type

e Control Signals
¢ Buttons and Guards

e Data Flow Signals
e Audio

e Message Signals
e Treble and Bass

* Notification Signals
e Pass and Fail

Axel Jantsch
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Buttons
Button

Control

Guards

Distortion
Control

Treble, Bass ¢

Filtered

T Pass, Fail

Filter

Audio

Analyzer

Audio InT

lAudio Out

CD Player

Speakers
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Synchronization Guidelines

O Head Synchronization

= Use for sources

= Start with large frames - split
= Keep as long as possible

QO Tail Synchronization

= Begin as late as possible
= Start with small frames - concatenate

= Use for sinks

O Avoid Switching between Head and Tail

Axel Jantsch
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Choosing Synchronization

¢ CD Player (Source) System
e Head Synchronization 44100Hz
e Max Frame Size For all data flow
. components
e Filter Process
e Tail Synchronization oo 1 F—
e Frame Size = 1024 control [ Control
e Analyzer Process 4 04 4
* Tail Synchronization iter o] Anaiyzer
 Frame Size = 1024 i’
A )
* Speakers (Sink) (Head, Max) 4 (el M)
e Tail Synchronization D Player Speakers
e Max Frame Size

Axel Jantsch
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Summary

Heterogeneous system modeling is a nhecessity;

Multiple Models of Computation and Concurrency must
be integrated;

O Conceptual integration is the basis for the integration of
simulation, synthesis, and formal analysis

(OO,

Axel Jantsch
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