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Abstract. Many powerful anomaly detection algorithms are based on
machine learning and rely on datasets for training and evaluation. How-
ever, anomalous samples are often rare in real-world datasets and might
not be representative of anomalies encountered in the field. In this pa-
per, we propose a synthetic anomaly generation methodology that fo-
cuses on generating large numbers of synthetic anomalies in images with
defined variances in size, shape, and texture, achieving higher diversity
scores than the state-of-the-art. To demonstrate the value of the pro-
posed generation methodology for in-depth performance analysis, we
generate anomalies in three MVTec AD datasets, which we then use
to analyze and evaluate several anomaly detection algorithms. While all
analyzed anomaly detection algorithms showed strong recall rates on
these datasets, significant sensitivity differences regarding an anomaly’s
size, shape, and texture are observable through the analysis with our
synthetic datasets. While we observed some algorithms’ robustness to-
wards different anomaly shapes and textures, others showed differences
in recall rates of up to 80 percentage points for some pixel manipulation
methods. The results demonstrate the value of our synthetic anomalies,
as they boost the capability to scrutinize anomaly detection algorithms.
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1 Introduction

An efficient and high output with less manual effort drives today’s economy.
Monitoring images of goods, systems, and critical infrastructure is often crucial
for detecting anomalies and ensuring quality and operability [23]. Increasing com-
putational power in recent decades has enabled the development of new anomaly
detection algorithms [24,2], many of which rely on deep learning and datasets
used for training [31]. These datasets may require anomaly-free data, anomalous
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data only, or a mixture [5,16]. Regardless, the quality and quantity of data signif-
icantly impact algorithm performance [1]. Even for algorithms not trained with
a dataset, anomalous data is needed to measure performance metrics like recall
rate or accuracy. However, due to their rarity, annotation effort, and associated
costs, gathering labeled anomaly data is often difficult in real-world datasets [18].
Additionally, obtaining high-quality, real-world data is challenging due to privacy
concerns, data scarcity, and collection costs. Moreover, even with high-quality
data, there is no guarantee that it contains all possible types of anomalies. This
scarcity of labeled anomalies emphasizes the need for approaches, such as syn-
thetic anomaly generation, to thoroughly assess the performance of anomaly
detection algorithms. Hence, it is essential to develop techniques that enable the
controlled introduction of anomalies into the analysis process to ensure the ef-
fectiveness of anomaly detection algorithms in real-world scenarios and to avoid
leaving crucial blindspots undetected. Several research groups have introduced
various anomaly generation methodologies [15,27,12,26,25]. While a few algo-
rithms focus on inserting annotated anomalies from similar datasets into the
one of interest [25], others aim to learn the properties and characteristics of
already-known anomalies to generate synthetic ones. Although these methods
help increase the number of anomalies with specific properties, they rely on some
knowledge about anomalies within a dataset. Other methods like CutPaste [15]
and NSA [27] aim to create synthetic anomalies from anomaly-free images for
self-supervised training of models. Because the generated anomalies come from
patches of anomaly-free data, these methods do not introduce a large variety
of textures and shapes. This paper proposes Synthetic Anomaly Generator
(SYNAGEN)1, which enables researchers to enrich existing image datasets with
synthetic anomalies with vast variances in size, shape, and texture to reduce the
risk of biases towards certain features. We focus on generating surface anomalies
for three industrial texture datasets to demonstrate SYNAGEN’s value for anal-
ysis. In order to ensure the generation of different-looking anomalies while still
having control over the anomalies’ sizes, shapes, and textures, our SYNAGEN
approach is based on three steps, namely:

– a randomized mask generation based on four different complex shapes, mod-
ified by noise and added artifacts,

– five different kinds of pixel manipulation modes, and
– a smoothing operation to let the anomaly appear with realistic gradients.

2 Related Work

Natural anomalies are often challenging to obtain [32]. Traditional data aug-
mentation methods like scaling, rotating, and shifting can help address imbal-
anced datasets, but they often leave known anomaly features unchanged [14,19].
Synthetic anomalies offer a controlled means to create labeled data [28]. One
popular technique, the Synthetic Minority Oversampling Technique (SMOTE),
1 SYNAGEN’s code: https://github.com/embedded-machine-learning/synagen

https://github.com/embedded-machine-learning/synagen
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Fig. 1: Overview of SYNAGEN’s processing steps.

generates synthetic outliers by interpolating between minority class instances
and their nearest neighbors [6]. In [20], Mohammed et al. show its effectiveness
in improving classification performance. Several variants of SMOTE, such as
Borderline-SMOTE and Adaptive Synthetic (ADASYN), have been developed
to address specific challenges and data distributions [10,11]. In 2014, Good-
fellow et al. introduced Generative Adversarial Networks (GANs), which have
become a widely used tool in various applications, including image synthesis,
super-resolution, and more [17]. For some application domains like fabric defect
detection, the consistency in visual defect appearance across fabrics allows the
transfer of features and knowledge of one fabric to others [25]. Rippel et al. used
a GAN-based approach to replicate the anomalies in one type of fabric in oth-
ers [25]. Since this approach relies on available anomalies and replicates those,
lacking representation of previously unseen anomalies is a problem. Salem et al.
proposed a Cycle-GAN-based method to generate anomalous image data from
anomaly-free images [26], yet it still depends on known anomalies. Recently, self-
supervised anomaly detection methods, where the training of models only relies
on label-free data without any external annotations, have gained more attention
in the community [12,15]. Schlüter et al. introduced a self-supervision task called
Natural Synthetic Anomalies [27] for anomaly detection and localization, which
generates anomalies by inserting resized patches from anomaly-free images into
random locations. However, since only patches of the original anomaly-free im-
age data are used to generate synthetic anomalies, there is limited variety in
anomalous textures and shapes.

3 Synthetic Anomaly Generation

SYNAGEN is a synthetic image anomaly generation tool that modifies regions
in anomaly-free input images to create surface anomalies. Fig. 1 illustrates the
methodology of SYNAGEN’s process, which consists mainly of three steps, as
explained below.
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3.1 Anomaly Mask Generation

Since real-world anomalies appear in various, often unpredictable, forms, creat-
ing numerous shapes of different sizes and characteristics is essential. SYNAGEN
offers four groups of anomaly masks (spattered, elongated, rough, and complex ),
all based on the same primary mask generation step. While this step fully defines
spattered and elongated masks, rough and complex masks rely on an additional
mask modification step.

Primary Mask Generation Fig. 2 shows example arrangements for a spattered
mask (top row) and an elongated mask (bottom row). The generation process
depends on several parameters, such as the maximum possible size, the number
of cluster centers, their sizes, and the distance between them. Randomly chosen
values for each parameter from predefined uniform distributions ensure the cre-
ation of unique shapes. The maximum possible size defines a square of interest
(red square in Fig. 1) where SYNAGEN locates the anomaly mask. Cluster cen-
ters are rectangles with pixel values of three that are positioned in the center
of larger rectangles with pixel values of two. SYNAGEN places these clusters
within the square of interest (Fig. 2a and 2g). This square is then multiplied
pixel-wise with a square of the same size whose pixel values are sampled from
a uniform distribution over [0, 1) (Fig. 2b and 2h). After blurring the resulting
product with a Gaussian filter (Fig. 2c and 2i), pixels larger than a threshold
value of 1.5 are set to one and all others to zero (Fig. 2d and 2j). This primary
mask generation process completely defines the spattered and elongated masks.
The only difference between these two mask groups is the difference in the clus-
ter center rectangle’s height-to-width ratio and constraints regarding positioning
cluster centers next to each other.

(a) Clusters (b) Noise (c) Filtering (d) Spattered (e) Primary (f) Rough

(g) Clusters (h) Noise (i) Filtering (j) Elongated (k) Primary (l) Complex

Fig. 2: The steps for generating a spattered (a to d), elongated (g to j), rough (e
and f), and complex (k and l) mask.
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Mask Modification Fig. 2e and 2f show example arrangements for a rough
mask, and Fig. 2k and 2l for a complex mask. For rough masks, SYNAGEN
multiplies the primary mask (Fig. 2e) with salt noise of varying density and adds
straight lines to model cracks and scratches (Fig. 2f). For complex masks, a small
square filled with pixel values sampled from a uniform distribution over [0, 1) is
upscaled to the size of the primary mask’s square of interest. After multiplying
the primary mask (Fig. 2k) with this up-scaled noise image, SYNAGEN blurs
the result with a Gaussian filter (Fig. 2l).

3.2 Pixel Manipulation

SYNAGEN provides five different pixel manipulation modes to modify pixels
within the anomaly mask:
1. The transparent mode multiplies all pixels of each channel of an image by

a random factor. This allows the pixels within the anomaly mask to appear
darker or brighter than the original and change colors through different fac-
tors for each channel. Since all pixels within a channel are changed by the
same factor, features and the texture of the original image are still visible
after this manipulation (see the first two wood anomalies in Figure 4).

2. The first step of the transparent upscaled noise mode does the same manip-
ulation as the transparent mode, but all color channels are multiplied by the
same factor. In a second step, the pixels within the anomaly mask are multi-
plied pixel-wise with an up-scaled noise image, where the noise pixel values
are sampled from a uniform distribution over [0.5, 1.5). The original size of
the noise image varies to introduce additional texture differences through the
up-scaling. After this pixel manipulation, some of the original texture is still
visible but is overlaid with noise (see the first leather anomaly in Figure 4).

3. The transparent color upscaled noise mode performs the same pixel manip-
ulation as the transparent upscaled noise mode except that the factors by
which each pixel is multiplied in the first step can be different for each color
channel (see the first tile anomaly in Figure 4).

4. In the first step of the mean upscaled noise mode, all pixel values within
the anomaly mask are replaced by their mean value multiplied by a random
factor sampled from a uniform distribution. Then, like in the other modes
with upsampled noise, all anomaly pixels are multiplied by the upscaled noise
image (see the second leather anomaly in Figure 4).

5. The gray upscaled noise mode replaces all pixels within the anomaly mask
with gray upscaled noise. Therefore, no texture of the original image is left
within the anomalous region after the mean upscaled noise and gray upscaled
noise manipulation modes (see the second tile anomaly in Figure 4).

3.3 Smoothing Edges

As the final step, smoothing with a Gaussian filter avoids high gradients at
the border between a synthetic anomaly and the original image. The filter alters
only pixels of an anomaly’s edge and its direct neighbors to preserve the intended
change in texture. All other anomaly pixels stay unaltered.
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4 Datasets for Analysis

MVTec AD is a collection of fifteen datasets for benchmarking anomaly detec-
tion algorithms focusing mainly on industrial inspection [4]. All these datasets
contain anomaly-free training data and separate test data, including anomalous
samples. Thus, they are usable for training and evaluating unsupervised algo-
rithms. Each dataset contains between 30 and 141 test images with anomalies
and 12 to 58 test images without any anomalies. Because researchers worldwide
have used this dataset collection to compare various anomaly detection meth-
ods and demonstrate the performance of novel approaches [3,9,27], we also use
them to demonstrate SYNAGEN’s capabilities and usefulness for an in-depth
analysis of five anomaly detection algorithms (see Section 6). For many MVTec
AD datasets, including all object datasets and the texture datasets grid and
carpet, segmentation masks are necessary to distinguish the objects of interest
from the background. Since such masks are not available, and for the benefit of a
more detailed analysis, we focus here on three of MVTec AD ’s texture datasets,
namely wood, tile, and leather. We only used SYNAGEN to modify images that
do not contain real anomalies from the respective MVTec AD dataset’s test
folder. Since all algorithms are exclusively trained with images from the respec-
tive train folders, none of the analyzed algorithms has seen any of SYNAGEN’s
input images during training. We created three unique anomalies for each input
image with SYNAGEN for every combination of the four shapes and the five dif-
ferent pixel manipulation methods (Section 3). Before any pixel manipulations,
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Fig. 3: The combined anomaly size distributions of the original (left) and syn-
thetic extension (right) of MVTec AD ’s wood, tile, and leather datasets.

SYNAGEN randomly rotates and positions the anomaly masks by drawing an
angle and position from uniform distributions over the valid ranges. Anomalies
are then down- or upscaled to fit into one of five predefined size ranges, ensuring
that they match the user’s specified size distribution. The exact size within each
range is sampled from a uniform distribution. For all experiments conducted, we
defined these ranges as [0.02%, 0.1%), [0.1%, 0.5%), [0.5%, 1.5%), [1.5%, 2.5%),
and [2.5%, 15.0%], indicating the percentage of image pixels altered. Anomaly
sizes are evenly distributed between these five bins and sampled from uniform
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distributions within the bins. Fig. 3 shows the size distribution of the generated
anomalies on the left side. The slight deviations from a uniform distribution re-
sult from the last Gaussian filter step. Through this almost uniform distribution,
anomalies of different sizes are represented equally in contrast to the size dis-
tribution of the original anomalies within the MVTec AD dataset. By creating
three unique anomalies for every combination of the proposed anomaly masks
and pixel manipulation methods and resizing it for the five size ranges, SYNA-
GEN generated 300 anomalies for every test image without natural anomalies.
We did this for the wood, tile, and leather datasets, resulting in 5,700, 9,900, and
9,600 anomalous images, respectively.

5 Comparison with State of the Art

Generative approaches that learn from already known real anomalies [25,8,13]
aim at replicating these anomalies and, therefore, introduce a bias toward this
training data. This bias renders these approaches useless for our analysis be-
cause we want to generate anomalies not represented by available anomalous
data. Therefore, we compared SYNAGEN’s generated synthetic extensions of the
wood, tile, and leather datasets within MVTec AD (Section 4) to the datasets
created by the state-of-the-art approaches CutPaste [15], NSA [27], FPI [29],
and DRAEM [33], which like SYNAGEN do not rely on available real anoma-
lous data. For a fair comparison between all approaches, we used all five methods
to generate 300 anomalous images from every good image within the test folder
of the MVTec AD wood, tile, and leather datasets following a unified size distri-
bution shown in Figure 3.

We quantify the diversity of the synthetic anomalous image dataset ex-
tensions with the Learned Perceptual Image Patch Similarity (LPIPS) metric.
Zhang et al. introduced LPIPS as a metric for assessing the perceptual similarity
between two images [34]. We used AlexNet as the feature extractor. For each im-
age within a dataset, we define a random pair to calculate the LPIPS score and
interpret the average of calculated LPIPS scores within a dataset as its diver-
sity score. We obtained the LPIPSwood, LPIPStile, and LPIPSleather scores
by calculating the LPIPS diversity score on the synthetic anomalous extensions
of the MVTec AD wood, tile, and leather datasets, respectively. We calculate
LPIPSAbsDiff on the dataset, which consists of absolute differences between the
synthetic images and their original unaltered versions. Therefore, only the feature
differences due to the inserted anomalies contribute to the LPIPS score. LPIPS
is based on quantifying the differences in extracted features within two images.
Most image pixels stay unaltered through CutPaste, NSA, FPI, DRAEM, and
SYNAGEN. Therefore, we can calculate LPIPS exclusively on resized square
patches that fully enclose all non-zero pixels within the absolute difference be-
tween the synthetic images and their original unaltered versions. These square
patches were resized to 256×256 pixels and used as input images to calculate the
LPIPS□

AbsDiff score. Analogous to the LPIPS□
AbsDiff score, the LPIPS□

wood,
LPIPS□

tile, and LPIPS□
leather scores calculate the LPIPS score on the resized
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square patches that fully enclose the anomaly within images. Since the LPIPS□

scores aim to eliminate anomaly sizes’ influence on diversity scores through focus-
ing and rescaling, they can be interpreted as relative scores regarding anomaly
size. The higher the LPIPS scores, the more diverse the according dataset is.
Table 1 lists all calculated LPIPS scores for MVTec AD ’s real anomalies and for

Table 1: LPIPS score listing of MVTec AD ’s real anomalies and the approaches’
generated anomalies.

Score MVTec AD CutPaste FPI NSA DRAEM SYNAGEN

LPIPSwood - 0.291 0.286 0.296 0.321 0.343
LPIPStile - 0.358 0.358 0.376 0.372 0.397
LPIPSleather - 0.227 0.228 0.239 0.249 0.257

LPIPS□
wood 0.403 0.448 0.406 0.379 0.453 0.647

LPIPS□
tile 0.490 0.571 0.579 0.592 0.542 0.663

LPIPS□
leather 0.514 0.486 0.475 0.458 0.478 0.612

LPIPSAbsDiff - 0.071 0.056 0.053 0.080 0.134

LPIPS□
AbsDiff - 0.433 0.306 0.224 0.515 0.569

the five synthetic anomaly generation approaches. For MVTec AD ’s real anoma-
lies, the LPIPSwood, LPIPStile, and LPIPSleather scores are not listed because
the deviating anomaly size distributions render these scores meaningless for a
fair comparison. However, since the LPIPS□ scores only consider the rescaled
regions of images containing anomalies, the influence of an anomaly’s size on the
LPIPS□ score is minimized. Furthermore, since the absolute difference images
between images with and without anomalies only exist for the synthetic images,
the LPIPSAbsDiff scores are not applicable to the real MVTec AD anomalies.

SYNAGEN achieves the highest diversity scores for all analyzed LPIPS
metrics compared to the four state-of-the-art approaches. In the CutPaste, FPI,
and NSA approaches, the anomaly shapes are rectangular patches of varying
height-to-width ratios, which clearly limits shape diversity. Furthermore, these
three approaches replace the pixels within the anomaly shape with other orig-
inal pixels within the images and do not introduce a large variety of texture
changes. Therefore, their diversity scores are consistently lower than SYNA-
GEN’s scores. Although DRAEM introduces various textures from the Describ-
able Texture Dataset [7], SYNAGEN still consistently achieves higher diversity
scores. One reason for this might be the higher variance in SYNAGENs’ shapes
since DRAEM uses Perlin noise for every anomaly mask generation. The LPIPS
scores suggest that SYNAGEN succeeds at generating more diverse anomalies
than the state-of-the-art. Furthermore, MVTec AD ’s real anomalies achieve sig-
nificantly lower diversity scores than SYNAGEN’s generated datasets. Fig. 4
shows a few example anomalies generated by each analyzed approach.
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SYNAGEN SYNAGEN CutPaste FPI NSA DRAEM

Fig. 4: These figures show examples of generated anomalies by our approach
SYNAGEN and state-of-the-art approaches CutPaste, FPI, NSA, and DRAEM.

6 Analysis of Anomaly Detection Algorithms

Different metrics are available to analyze anomaly detection algorithms. Auroc
is often used to compare algorithms on imbalanced datasets since it consid-
ers both the recall and false positive rates. Auroc is defined as the area under
the recall rate versus the false positive rate curve. It depends on anomaly-free
images in the dataset and is influenced by the ratio between anomalous and
anomaly-free images. Therefore, our analysis focuses on recall rate as a metric
while setting a fixed false positive rate for the experiments on a given dataset.
To demonstrate the benefit of synthetic anomalies created by SYNAGEN, we
evaluated five anomaly detection algorithms—EfficientAD [3], MSFlow [35], Re-
Contrast [9], DDAD [21], and RD++ [30]—on three subsets of the MVTec AD
dataset [4], namely wood, tile, and leather datasets. We trained the models with
the train directories through unsupervised training without any anomalous im-
ages of the respective MVTec AD dataset. On MVTec AD, these algorithms
achieve an auroc for anomaly detection of 99.8%, 99.7%, 99.5%, 99.5%, and
99.44% when evaluated on all images within the test folders of the MVTec AD
datasets [22]. We chose to compare these five algorithms’ performances with
each other because they are based on different detection approaches and achieve
similar auroc scores on MVTec AD. Although the algorithms’ anomaly localiza-
tion capabilities could also be analyzed using this methodology, we exclusively
focused on anomaly detection for a more detailed analysis. Through systemic
variation of anomaly characteristics, our synthetic anomaly creation methodol-
ogy enables the analysis of a detection algorithm’s sensitivity. The large variety
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Fig. 5: Algorithms’ recall rates for anomalies of different sizes, shapes, and pixel
manipulation methods in the wood, tile, and leather datasets. T, TN, TCN,
MN, and GN refer to transparent, transparent upscaled noise, transparent color
upscaled noise, mean upscaled noise, and gray upscaled noise, and S, E, R, and
C to spattered, elongated, rough, and complex, respectively.
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in anomaly sizes, shapes, and textures helps to minimize the risk of analysis
bias towards specific anomaly features. Using recall rate as a comparison metric
allows us to analyze an algorithm’s performance on subsets of the datasets with-
out focusing on anomaly-free test data. To ensure a fair comparison, we set a
uniform threshold for each algorithm to maintain consistent false positive rates;
i.e., one of the corresponding original dataset’s anomaly-free test images is falsely
classified. Figure 5 demonstrates each algorithm’s sensitivity to anomalies’ size,
shape, and texture within SYNAGEN’s wood, tile, and leather datasets. The
first two rows, the middle two rows, and the last two rows show the recall rates
measured on the wood, tile, and leather datasets, respectively. The respective
first rows for each dataset present the recall rates for different shapes. Two facts
apply to all algorithms: the anomaly size always positively correlates with the
recall rate, and anomalies with a rough shape lead to the lowest recall rates. The
most significant difference between the rough and other shapes is that rough
shapes consist of many small anomalies since masks of this type consist of thin
lines and small spots (i.e., Fig. 2f). EfficientAD and ReContrast show the largest
differences in recall rate between the rough and other shapes. Since such rough
shapes consist of multiple small anomalous regions, these results are consis-
tent with EfficientAD ’s and ReContrast ’s low recall rates for smaller anomalies.
The second, fourth, and sixth rows in Figure 5 show the recall rates of all ana-
lyzed algorithms for the five proposed pixel manipulation methods and different
anomaly sizes on the respective dataset. Interestingly, an anomaly’s texture has
a larger influence on the recall rate of smaller anomalies.

Despite the generally positive correlation between anomaly size and recall
rate, this correlation is weaker for DDAD ’s detection of anomalies with transpar-
ent and transparent color upscaled noise pixel manipulations. Moreover, DDAD
is significantly more sensitive to the transparent, transparent color upscaled noise
and gray upscaled noise pixel manipulations. Therefore, DDAD ’s recall rates for
these types of pixel manipulations are high, even for the smallest anomalies. The
transparent upscaled noise and mean upscaled noise pixel manipulations do not
introduce significant relative differences between the color channels like the other
three techniques. Therefore, these experiments suggest that DDAD is more sen-
sitive to such color changes and struggles when only the brightness is altered.
Figure 6 plots the recall rates of all analyzed algorithms on the three generated
anomalous datasets for five different false positive rates. For each dataset, we
considered all synthetic anomalies without distinction between shapes, textures,
or sizes to calculate these recall rates. The false positive rates differ for the three
datasets because we defined the threshold for each algorithm and dataset to
allow for exactly one, two, three, four, or five false positives. Because each of
MVTec AD ’s datasets has a different number of anomaly-free test images, the
corresponding false positive values vary. Since higher false positive rates cor-
respond with lower threshold values of the algorithms, a positive correlation
exists between the recall rates and the false positive rate. Although all algo-
rithms achieve similar auroc scores between 99.44% and 99.8% on the original
MVTec AD dataset, resulting from almost identical recall rates, there are sig-
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Fig. 6: Recall rates of the analyzed algorithms on our synthetic anomalous wood,
tile, and leather datasets. The results show significant performance differences.

nificant differences in the overall recall rates between the five algorithms on our
synthetic datasets. The algorithms’ sensitivities towards size, shape, and texture
mostly show the same trends on these datasets. However, for our synthetic tile
dataset, we observed a difference in DDAD ’s recall rate between the anomalies
with different pixel manipulation methods of up to 80 percentage points for all
analyzed ranges of anomaly sizes. While MSFlow achieves similar results on all
three datasets, the other algorithms score significantly lower recall rates for the
tile datasets. The reason for both of these statements might be that the tile
images consist of multiple gray pixel regions of different brightness values and
sizes. All algorithms struggle most with small transparent upscaled noise, mean
upscaled noise, and grey upscaled noise textures within the tile dataset. These
pixel manipulations lead to changes in brightness rather than color, which are
harder to detect. DDAD ’s recall rates for the transparent and mean upscaled
noise textures within the tile dataset even stay below 13% for all size ranges.

Compared to the other algorithms, DDAD shows a higher overall recall rate
on the leather dataset but struggles with detecting our synthetic tile anomalies.
One reason for this might be the lower perceptual diversity in the leather images
compared to the tile images, which is supported by LPIPSleather < LPIPStile

(see Table 1). DDAD might profit from such datasets with lower perceptual di-
versity since one of its mechanisms tries to capture the perceptual similarity of
extracted features as a metric for anomalies [21]. Our experiments show that
ReContrast ’s overall recall rate on our synthetic wood dataset is more than 20
percentage points lower than the recall rates of other algorithms. ReContrast ’s
recall rate of smaller anomalies, especially on the wood and tile datasets, is clearly
outperformed by the other algorithms. Since such small anomalies are underrep-
resented in the original MVTec AD datasets, this lack of sensitivity stays hidden
when only evaluated with the labeled real anomalies. We can obtain more de-
tailed information regarding each algorithm’s recall rate for specific anomaly
types by simultaneously fixing the shape and pixel manipulation method and fo-
cusing on different size ranges. The left graph in Figure 7 demonstrates this on
the leather dataset with the shape rough and pixel manipulation method mean
upscaled noise. On this specific type of anomaly, MSFlow outperforms the other
algorithms for relative anomaly sizes larger than 0.1%. MSFlow ’s asymmetrical
parallel flows and the fusion flow for multi-scale perception exchange target the
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anomaly size variation problem [35]. Since the rough shapes typically include
multiple small-scale anomalies, this approach enables MSFlow to outperform
the other algorithms. Besides the shape, pixel manipulation method, and size
of an anomaly, the mean background brightness and mean relative brightness
difference due to an anomaly can also affect the recall rate. The right graph
of Figure 7 shows how the relative brightness difference resulting from anoma-
lies with a relative size between 0.02 and 0.1%, an elongated shape, and the
transparent pixel manipulation method affects the algorithm’s recall rate. The
relative brightness difference significantly impacts the recall rates, and DDAD
outperforms the other algorithms for this specific type of anomaly in the leather
dataset. Besides the pixel differences between the input and reconstructed image,
which partly rely on perceptual color variations, DDAD also considers features
extracted by deep neural networks to capture perceptual similarity [21]. This
perceptual similarity comparison seems to enable DDAD to detect this type of
anomaly even with small relative brightness differences between 10 and 20%.

Fig. 7: These graphs show how the relative anomaly size and brightness difference
of specific anomaly types influence the algorithm’s recall rates on the leather
dataset. In the right graph the relative anomaly size is fixed to 0.02-0.01%.

7 Conclusion and Outlook

The combination of increasing computational power and recent progress in ma-
chine learning and computer vision led to novel anomaly detection approaches
that enable the automatic inspection of goods, systems, and critical infrastruc-
ture. When annotated anomalies are scarce, synthetic anomalous data can be
used to enrich datasets for more detailed algorithm analysis. Our proposed Syn-
thetic Anomaly Generator (SYNAGEN) can generate anomalies with a wide
range of shapes, sizes, and textures to analyze algorithms. Combining a ran-
domized shape generation process and several pixel manipulation techniques for
random textures enables an in-depth analysis of anomaly detection approaches
while reducing the risk of hidden biases in analysis. With SYNAGEN, we gen-
erated thousands of surface anomalies with a predefined size distribution for
MVTec AD ’s wood, tile, and leather datasets. SYNAGEN achieved higher diver-
sity scores than state-of-the-art approaches on all analyzed datasets. We ana-
lyzed five anomaly detection algorithms based on different approaches on these



14 Breuss D. et al.

three synthetic datasets to highlight how SYNAGEN’s synthetic anomalies en-
able a detailed analysis of the algorithm’s sensitivities regarding the size, shape,
and texture of anomalies. By comparing the performance of these five detection
algorithms on our synthetic data, we observed significant differences in recall
rates for different shapes, textures, and sizes. Experiments showed differences in
recall rates of some anomaly textures of up to 80 percentage points. Similarly,
some algorithms’ recall rates change by up to 70 percentage points for certain
anomaly shapes of the same size range. When the analysis only considers the
original MVTec AD test datasets, these significant performance differences stay
undetected due to the low variability and number of anomalies.

Even though we solely demonstrated SYNAGEN’s capabilities for analyz-
ing and evaluating anomaly detection algorithms, self-supervised anomaly train-
ing methodologies, where synthetic anomaly images are utilized during train-
ing, might also benefit from SYNAGEN’s anomalies. Although we demonstrated
SYNAGEN for three texture datasets, this tool can also be used in more complex
scenarios by exclusively inserting anomalies in optionally defined regions by an
input mask and leaving the rest of the image (e.g., the background) unaltered.
Adding additional shape generation and pixel manipulation modes to SYNA-
GEN could further increase anomaly diversity. Furthermore, this could enable
SYNAGEN to generate anomalies with characteristics specialized for other use
cases and fields other than surface anomaly detection.
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