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Abstract—Today’s energy grids face an increasing number of
decentralized and renewable energy sources as well as grow-
ing e-mobility. Therefore, reliable grid monitoring becomes a
key element for a sustainable grid operation. Traditional grid
monitoring concepts are either fully manual, need a detailed
system model, or rely on computationally heavy machine learning
concepts. However, with the given complexity of the energy grid,
a model-free and context-aware monitoring approach can save
resources and efforts. Recently, we introduced the Confidence-
based Context-Aware Condition Monitoring (CCAM) system and
successfully tested it on two different industrial use-cases: a
hydraulic circuit and an AC motor. In this paper, we enhance
CCAM for a third, entirely different industrial use case, an
energy grid, by introducing two extensions - a continuous
reevaluation and a state mooring approach. Furthermore, we
present a new Smart Grid monitoring methodology on top of
CCAM, paving the way for new real-time grid control systems.
We evaluate our approach based on historical load data from a
low voltage grid section. Our results show that characteristics of
a daily load profile can be learned and outliers can be detected.

Index Terms—Smart grids, Context awareness, Monitoring

I. INTRODUCTION

The increase of diversity of distributed energy producers and
consumers poses a great challenge for the future energy grid.
The generation of renewable energy as well as e-mobility or
demand-response applications require intelligent monitoring-
and controlling concepts.

In general, it is expected that grid infrastructures will
have to be operated closer to the limits to keep the level
of new investment within an economically justifiable range.
This approach follows the vision of Smart Grids, which refers
to the electric power grid’s modernization by introducing an
intelligent bidirectional flow of energy and information [1].
Nevertheless, systems need to remain safe and secure in the
advent of faults and threats, which could even be unpredictable
at design-time or emerge during run-time [2]. Failing to
address such issues in time results in supply outages, and the
associated costs continually increase. First negative impacts
can already be observed regarding the costs of congestion
management. In Austria, those costs in August 2019 were
almost equal to the costs for the entire year 2016 [3].

The future grid operation will and already does rely on a
vast and heterogeneous data set from various sensors. There-
fore, classic (threshold-based) monitoring is no longer suffi-
cient for detecting anomalies and important events to prevent

faults. While machine learning techniques based on Artificial
Neural Networks (ANNs) constitute possible solutions, they
are resource-intensive. However, edge and Internet of Things
(IoT) devices require small footprint solutions.

In a recent work [4] we proposed the Confidence-based
Context-Aware Condition Monitoring (CCAM) system, a
black-box condition monitor system for detecting system
states. It is based on the principles of self-awareness [5]–[7],
and its little computational power footprint makes it a good
match for on-site usage in grid monitoring devices. However,
the complex behavior of energy grids leads to the necessity
of further enhancing CCAM’s signal state detection algorithm.
This paper, therefore, presents a novel Smart Grid monitoring
methodology for low voltage grids to be able to handle the
growing amount and complexity of existing data.
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Fig. 1. Concept of the proposed Smart Grid monitoring methodology

Figure 1 gives an overview of our approach. During a train-
ing phase, multiple CCAM instances with different parameters
are evaluated based on a training data set (e.g., favored
daily load profile). As a result, the best CCAM parameter
set as well as the best state matching are calculated and
used for the monitoring phase. From now on, live grid data
can be monitored by the single CCAM instance, and every
new label under investigation (e.g., a day) will be evaluated.
This enables the grid operator to detect anomalous behavior
(e.g., a maintenance event) of specific grid segments among
numerous others, enabling fast and targeted intervention. The
key contributions of our work are:
(i) Enhancing CCAM with a continuous reevaluation con-

cept to optimize the state detection,
(ii) Introducing a state mooring approach, which gives

CCAM the ability to remember past states and prevents
slow state drifts over time,

(iii) Presenting a novel Smart Grid monitoring methodology
on top of CCAM and verify our approach based on978-1-7281-9023-5/21/$31.00 ©2021 IEEE



historical data within a low voltage distribution substation
of the Aspern1 testbed in Vienna, Austria.

The rest of this paper is organized as follows: After a
review of related work in Section II, Section III describes
the proposed CCAM enhancements as well as the Smart Grid
monitoring methodology. Subsequently, Section IV introduces
the Smart Grid case study and provides results. Finally,
Section V shows open directions for further research.

II. RELATED WORK

A. Smart Grid Monitoring

Today, grid monitoring mostly depends on threshold-based
protection systems (e.g., fuses) and human-centered supervi-
sion via so-called Supervisory Control and Data Acquisition
(SCADA) systems [8]. These concepts are well suited for the
classic grid operation with a unidirectional energy flow from
power plants to consumers. However, they do not scale for the
growing diversity of energy producers and consumers, along
with a highly unpredictable bidirectional energy flow and an
increasing number of sensors and heterogeneous data [2].

Smart Grid monitoring, therefore, has to evolve from a
human-centered system to an intelligent and self-aware one,
which can deal with a large number of sensors with different
characteristics. It is suggestive that from 2010 to 2019 72% of
Smart Grid-related machine learning research was published in
the last three years [9]. While these approaches often depend
on large training sets and are computationally heavy, solutions
with a smaller footprint and without the need for complex sys-
tem models could pave the way for new monitoring systems.
Recent works state the need and challenges for context-aware
(or more general self-aware) Smart Grid monitoring but lack
concrete implementations and results (see [10]–[12]). This gap
is closed by the presented work.

B. Black-Box Monitoring

Like in industrial applications where it is neither economical
nor feasible to implement a monitoring unit for each system
or machine from scratch, the multitude of different sections in
a Smart Grid would also benefit from a generic solution.

While ANN-based monitoring methods (such as [13], [14])
are, as already mentioned, mostly computationally heavy and
depend on a vast amount of training data, also other solutions
exist. Guo et al. [15] used a Hidden Markov Model (HMM) to
find probabilistic relationships between variables of interest.
Their monitoring system could detect most of the events,
but all of them had to be trained to the HMM in advance.
In contrast, fuzzy logic-based condition monitoring requires
less computing power, can model nonlinear behavior and, if
desired, can be extended with expert knowledge [16]. On the
other hand, their results are often less precise, and rule-based
descriptions are cumbersome to develop.

Another example of such black-box condition monitoring
systems is CCAM, introduced in one of our previous pa-
pers [4]. It proved its condition monitoring capabilities when

1https://www.ascr.at

monitoring systems of different types. Besides, we showed that
it is executable on different ARM-based Embedded Systems
(ESs) in real-time [17]. For these purposes, we further explore
this system in this work.

III. SMART GRID MONITORING METHODOLOGY

CCAM was initially designed to monitor a system which
can be represent by a bijective function. Its main goal was
to detect different states within the monitored in- and output
signals and observe whether the system works as expected,
drifts, or malfunctions. As shown in Figure 1, we introduce a
novel Smart Grid monitoring methodology on top of CCAM.
By using CCAM solely as a state detector and combining it
with a training and monitoring concept, we enable monitoring
of more complex systems, such as a Smart Grid. We will give a
short overview of the original CCAM system and its proposed
enhancement in subsection III-A and present our monitoring
methodology in subsection III-B.

A. Confidence-based Context-Aware Condition Monitoring

CCAM was developed to provide a generic method to moni-
tor a black-box system for determining in which working state
it is and whether it functions correctly or malfunctions [4]. For
this purpose, CCAM observes the system’s in- and outputs
(Figure 2) to determine in what states the corresponding
signals are. CCAM avoids a large computational footprint
by making all decisions using confidence values and only
contextual knowledge. CCAM was successfully applied to two
different use cases [4]: an AC motor and a water pipe system.
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Fig. 2. Block diagram of the Confidence-based Context-Aware Condition
Monitoring (CCAM) system

Because CCAM works on the principles of self-awareness
and benefits from a hierarchical agent-based architecture, it
was implemented in the Research on Self-Awareness (RoSA)
framework, proposed in the work [17]. Roughly speaking,
CCAM consists of one signal state detector for each monitored
signal and one additional system state detector. The system
state detector abstracts the system’s operation based on all
present signal states. Moreover, CCAM detects whether the
system is working correctly, based on the assumption that
the observed system behaves like a bijective function, which
means that one single input data set corresponds exactly to
one single output data set and vice versa. Thus, if one or
more inputs change their states, at least one output also must
change its state.



Due to the modular design of CCAM and its versatile
modules, it can also be used for load profile monitoring in
a Smart Grid. In the use case presented in this work, just one
signal is monitored. Thus, the bijective condition monitoring
is disabled. Here, CCAM’s task is to recognize patterns in the
power grid. For instance, considering the power measurement
of a certain power line, CCAM can detect local behavior such
as time- and date-dependent consumer patterns (e.g., evening
peaks) or unusual operation modes (e.g., maintenance event at
a battery storage system).

Due to the high complexity of a Smart Grid’s load profile,
with both slow and fast changes, a multitude of participants,
and high noise, CCAM’s algorithm needs to be extended.
Thus, we enhance the CCAM system by introducing a contin-
uous state reevaluation as well as a state mooring concept.

1) Continuous State Reevaluation: Within the original al-
gorithm of CCAM [4], the currently active signal state is
preferred over any other existing state. Only if the sample
does not fit the active state anymore, it gets compared to all
other existing states, and the first matching one is selected.

We propose to enhance this state detection process by a
continuous evaluation over all existing states. Figure 3 (shaded
area) visualizes the new approach in which each new sample
is compared with all existing states to find the best matching.
Although the computational effort grows linearly with the
number of states, it is moderate and unproblematic for the
application cases we considered.
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Fig. 3. Flow Chart of our continuous reevaluation (shaded area) and state
mooring approach

2) State Mooring: CCAM compares every new signal sam-
ple with the sample history of all already existing states.
However, as the history has size sh, CCAM does not re-
member all historical values of a state but only the last ones
when choosing the best matching state for the new sample.
Thus, the original CCAM system cannot interpret a slow
change in a signal as a state change but would stay within
the same state and eventually raise a drift alarm. This is a
valid approach for stable systems, which have defined and
step-wise state transitions (e.g., a motor that changes from
one mode to another), but does not generate useful results for
more fluctuating and complex systems.

We therefore propose a state mooring approach, which
allows CCAM to remember the entry of a state even after the
current sample history window has deleted those values. In
particular, we replace the drift detection with a new mooring
concept, also shown in Figure 3. Every signal state additionally
stores a mooring history of size mh, which holds the state’s
initial sample values.

When a new signal state is created, its mooring history is
empty and does not influence the state matching calculation
of CCAM. Every new sample value is added to the state’s
mooring history until it is full (has mh entries). Once the
mooring history is full, it characterizes the state’s initial
behavior and can be used to compare the evolution of the
state over time. From now on, every new sample also has
to match this history and not just the current sample history
which might already be slowly drifting. This is done by adding
an additional step to the state matching approach of CCAM.
Every time the confidence that a sample matches a particular
state is calculated, the new sample value is also compared
to the mooring history’s mean value. If the distance between
those two values is too large, the matching confidence is set
to zero. In other words, if the current state has slowly drifted
away from its initial behavior and is not close enough to its
mooring history, the matching confidence declines, and CCAM
will either find another matching state or create a new one.
Because we use the same fuzzy functions for the mooring
history comparison as for the original state detection (see [4]
for detailed information), we avoid the introduction of a new
independent parameter and follow the original CCAM concept.

B. Monitoring methodology

While the already described modifications of CCAM im-
prove the state detection (see subsection IV-B), an additional
evaluation step on top of CCAM introduces a new concept for
system monitoring. The approach described in the following
also helps to overcome the difficulty of choosing suitable
CCAM parameters for the given system under investigation.
Although CCAM does not need to have apriori knowledge
about the monitored system, the system’s characteristics still
influence the choice of parameter values.

As shown in Figure 1, we distinguish a training and moni-
toring phase:

1) Training Phase: At the beginning a time series for the
training data set {xt ∈ Rn : t = 1, 2, ..} has to be defined.
This data set can either be a historical time series of the system
under investigation or a defined period for real-time training.
During the training phase, multiple CCAM instances with
different parameter settings simultaneously process the same
time series. Each run r creates an individual CCAM output,
including the detected state ID {ost,r ∈ Si : t = 1, 2, ..} (with
state IDs Si) as well as the confidence about this decision
for every timestamp {oct,r ∈ R : t = 1, 2, ..}. This training
step could also be done off-line with historical data on an
appropriate server.

After the training runs are finished, the data set has to
be labeled manually according to the targeted monitoring



approach with m different labels Lm resulting in a time series
of labels {lat ∈ Lm : t = 1, 2, ..}. This can, for example,
be a daytime-based label such as day and night. Our current
approach is limited to a single label per timestamp as well
as continuous labeling for all sample points. However, if a
specific event is of interest, the labeling could be done based
on its occurrence (labels Lm: event and regular).

Using the labeled data set, the training phase now calculates
the best matching state-to-label assignment and the corre-
sponding state distribution for all training runs. This procedure
assumes that every label can be defined by a specific set of
CCAM states. The finite combination set C represents all
possible state-to-label combinations c for a given number of
states and labels (s, l). Now, the best matching combination in
C for one run r is calculated according to Algorithm 1 with
the following resulting parameters:

• clc,r, the confidence (0 .. 1) that this combination c is
valid for the given training data set and run r.

• coc,r, the confidence (0 .. 1) that additionally multiplies
clc,r with the percentage of valid states within the training
data sets and therefore represents the overall confidence
whether this is a valid state-to-label combination and a
suitable CCAM parameter set.

• ds,l,c,r, the percentage distribution of state s (∈ Si) within
label l (∈ Lm) (e.g., the state with ID 1 has an occurrence
of 22% within the label day)

Algorithm 1 Finding the best combination in C for run r

Input: xt, ost,r , oct,r , Lm, lat

Output: clc,r , coc,r , ds,l,c,r
for every state-to-label combination c in C do

cnt, labelcntl, statecntl,ost,r = 0
for every timestamp, t do

if oct,r > 0.5 then
cnt++
for every label l in Lm do

if l = lat and (lat, ost,r) in c then
labelcntl ++
statecntl,ost,r ++

confeval = cnt/len(xt)
clc,r = (

∑
l labelcntl)/cnt

coc,r = clc,r ∗ confeval
for every label l in Lm do

for every state s in ost,r do
ds,l,c,r = statecntl,s/labelcntl

After all runs have been evaluated, the one with the highest
overall confidence coc,r provides the best CCAM parameter
set r and the corresponding state-to-label assignment c.

2) Monitoring Phase: The results obtained from the train-
ing phase can then be used to monitor the operating system.
From now on the signals of the system under investigation
are fed into a single CCAM instance using the determined
parameter set r. The sample points have to be additionally
labeled, and every time the label changes (e.g., day-night
change), the past time series (e.g., past day) is evaluated based
on the training results (i.e. best parameter set r and state-to-
label assignment c). The evaluation is done as follows:

• The distributions for all occurring states are calculated.
The distribution cds of one state s is defined by the pro-
portion between the number of data-points being assigned
to the valid state s and the total number of data-points
with valid states.

• Then, all distances between the distributions cds and
the distributions from the training data set ds,l,c,r are
calculated for the currently evaluated label l. If a state
is not present in the training data, it is skipped.

• An overall evaluation result oe (0 ..1) is calculated by the
mean of all distribution distances.

The overall evaluation result oe represents the matching of
the currently analyzed time series and the training data set. It,
therefore, indicates whether the monitored system is operating
as expected (according to the trained label) or not. The value
oe represents the proximity to the training data and can be
used to detect outliers and unusual behavior within the current
system behavior. The next section will evaluate this concept
based on a Smart Grid use case to verify this approach.

IV. SMART GRID CASE STUDY

For our case study, we are using the active power values
from a low voltage distribution substation of the Aspern
testbed in Vienna, Austria1. The grid parameters were recorded
over a period of multiple years using grid monitoring devices.
Specifically, we consider a time-series recorded for one se-
lected substation transformer supported by a battery storage
system, which prevents daily load peaks by intelligent charging
and discharging. The battery is charged overnight and, during
the daytime, it limits the grid load of each phase to 60 kW
(peak-shaving). While this is the desired behavior, an analysis
has shown that this behavior cannot be observed continuously
over the whole year. Instead, the investigated data set can be
divided into four different daily categories. Figure 4 gives an
overview of the corresponding load profiles.
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Fig. 4. Load day profiles of the investigated substation

While peak-shaving should be active over the whole day, the
majority of the observed days are only partly peak-shaved, and
for some periods, there is no peak-shaving at all. In addition,
a few battery maintenance events occur, as this testbed was
under continuous extension. As the correct operation of the



battery storage is essential for a safe grid operation (to avoid
overloads) and for optimized load distribution, information
about the current situation is required for the grid operators.

Therefore, we use our proposed methodology to monitor the
load of the transformer under investigation. Furthermore we
train CCAM based on the identified daily load profiles. Thus
we can evaluate every new day according to these profiles.
This evaluation can then serve as information for the grid
operator to distinguish correct operation from anomalies.

A. Experimental Setup

The evaluation is based on historical data from one specific
transformer substation from January 1 to December 31, 2018,
with a sample rate of 2.5 min. For our experiments we used
the power flow measured on phase 1 (P1) as single CCAM
input. The parameter space of CCAM was selected according
to Table I.

TABLE I
CCAM PARAMETER RANGE

Parameter Range Steps

Inner Bound ib [5%, 60%] 2%
Outer Bound ob ib + [1%, 30%] 2%

Sample History size sh [5, 30] 5
Down-sampling rate ds [1, 7] 2

Mooring history size mh [5, 15] 5

The Inner- and Outer Bound represent the borders of
the fuzzy functions for the confidence calculations according
to [4]. The Sample History size specifies the window size for
the stored samples taken into account for the state detection of
every new sample. The Down-sampling rate is used to modify
the sampling rate of the time series (e.g., only take every third
value). While the drift and malfunction functions of CCAM
are turned off, the new mooring history is introduced.

Furthermore, we introduce the labels day and night (Lm =
{day, night}), where a day starts at 4 am and ends at 8 pm.
These timestamps were chosen based on the observed profiles
— according to the morning load peak and evening drop.
This evaluation aimed to train our monitoring system based on
selected days with one specific day profile (Figure 4) and to
evaluate the following days based on this training. Therefore,
we selected seven days with a ”partly peak-shaving” profile
during September. This profile represents the typical operation
of this grid segment, in which peak-shaving is turned on but
is not active over an entire day because of a too small battery
storage. Due to the goal of finding anomalies to the typical
behavior, we chose this profile. As a result we get an overall
evaluation for every new day, how well this day matches the
trained ones. In accordance with subsection III-B, we trained
our algorithm using those days. The result of this process is
the best CCAM parameter set as well as the best state-to-label
assignment to those two labels.

B. Results

Before we evaluate the final results, Figures 5 and 6 show
the output of the original CCAM and the enhanced one (with

continuous reevaluation and state mooring), respectively, using
the same parameter set. Besides the original load profile, the
detected State ID is plotted if CCAM is confident that a state
is currently valid. The following improvements can be seen:

• Continuous Reevaluation: During the first night, a short
peak leads to a state change from State ID 1 to 2. The
original CCAM stays with this new ID, although the
signal falls back to similar values as before the peak.
In contrast, the continuous reevaluation improves this
behavior as CCAM immediately changes back to State
ID 1 as the old state matches better than the new one.

• State Mooring: While the original algorithm detects the
same state (ID 4) before and after the battery event due
to the slow drift of the sample history, our new approach
distinguishes between multiple states (mostly IDs 3 and
5), as the values are not close enough to each other.

• Combination of both: While the original algorithm contin-
uously introduces new states during the evening and often
stays with them although the states are drifting, the two
enhancements together lead to a better state separation as
well as the change back to already known states.
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Fig. 5. Original CCAM result (ib = 19%; ob = 24%; sh = 5; ds = 1)
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Fig. 6. New CCAM result (ib = 19%; ob = 24%; sh = 5; ds = 1; mh = 10)

As the two enhancements influence the state detection
algorithm of CCAM, we also verified that this does not change
its originally intended behavior. Therefore, we applied the new
version to the AC motor case study from [4] and got equally
good results with the exact same state detection.

For the Smart Grid monitoring setup described in subsec-
tion IV-A, the best CCAM parameter set is ib = 45%, ob = 1%,
sh = 5, ds = 1 and mh = 10. Using these training results, we
then monitored the subsequent 14 weeks. As a result, every day
(more general, every label that has been trained) is evaluated,
and an overall evaluation metric (oe) indicates whether the
observed value progressed expected during the day.
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Figure 7, finally exemplary, shows classified measurements
of selected relevant days. The upper left day nearly perfectly
matches the trained data set. In contrast, the upper right day
has the lowest matching value because no peak-shaving is
active and the load is way higher than usual. In the lower area
of the figure, the battery event and the following days can be
seen. All those days have a low matching value. Furthermore, a
second maintenance event similar to the one in Figure 7 was
detected on December 11 with oe = 74%. After this event,
the peak-shaving was turned off for the rest of the year. Out
of those 20 days, only eight had an oe > 80%. Interestingly,
seven of them can directly be related to a Sunday or Christmas
holiday, suggesting that the load consumption during those
days is low. Therefore, CCAM cannot differ whether it is low
due to active peak-shaving or general low consumption. This
is a reasonable result as the goal was to detect anomalous
behavior and not to find the underlying cause of a particular
daily load profile.

V. CONCLUSION AND OUTLOOK

In this paper, we have shown a novel Smart Grid monitoring
methodology — a combination of the context-aware black-box
monitoring system, CCAM, which we have enhanced with
two new features, combined with a new evaluation concept
based on training and monitoring. By finding a suitable CCAM
parameter set and an appropriate state matching for given
labels during a training phase, our approach can analyze
new and live data streams and evaluate their similarity to
the training data while still having a lightweight footprint
compared to neural network-based ML algorithms. We have
verified our approach by analyzing historical load profiles
from a transformer substation within a testbed and could
detect outliers such as a maintenance event. The output of
our Smart Grid monitoring is useful for grid operators to
identify potential anomalous behavior as support for preventive
maintenance and during operation.

As the results are promising, we are working on the in-
clusion of CCAM into Smart Grid simulation environments to

get more useful data and further enhance our methodology. For
example, the training phase could be improved by dynamically
adapting and changing the CCAM parameter space (e.g., with
evolutionary algorithms). Finally, the future energy grid also
depends on influences from other domains such as weather and
socio-ecological aspects (e.g., pricing strategies). Including
these data sets into our context-aware monitoring system
can further enhance the quality and reliability of monitoring
results.
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