
New circuit switching techniques in

on-chip networks

SHAOTENG LIU

Doctoral Thesis in Electronic and Computer Systems

Stockholm, Sweden 2015

TRITA-ICT 2015:18
ISSN 1653-6363
ISRN KTH/ICT-15/18-SE
ISBN 978-91-7595-727-2

KTH School of Information
and Communication Technology

SE-164 40 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av teknologie doktorsexamen
i datalogi torsdagen den 04 Dec 2015 klockan 9.00 i Sal A, Electrum, Kista,
Stockholm.

c© Shaoteng Liu, June 2015

Tryck: Universitetsservice US AB

iii

Abstract

Network on Chip (NoC) is proposed as a promising technology
to address the communication challenges in deep sub-micron era. NoC
brings network-based communication into the on-chip environment and
tackles the problems like long wire complexities, bandwidth scaling and
so on. After more than a decade's evolution and development, there are
many NoC architectures and solutions available. Nevertheless, NoCs
can be classi�ed into two categories: packet switched NoC and cir-
cuit switched NoC. In this thesis, targeting circuit switched NoC, we
present our innovations and considerations on circuit switched NoCs
in three areas, namely, connection setup method, time division mul-
tiplexing (TDM) technology and spatial division multiplexing (SDM)
technology.

Connection setup technique deeply in�uences the architecture and
performance of a circuit switched NoC, since circuit switched NoC re-
quires to set up connections before launching data transfer. We propose
a novel parallel probe based method for dynamic distributed connec-
tion setup. This setup method on one hand searches all the possible
minimal paths in parallel. On the other hand, it also has a mecha-
nism to reduce resource occupation during the path search process by
reclaiming redundant paths. With this setup method, connections are
more likely to be established because of the exploration on the path
diversity.

TDM based NoC constitutes a sub-category of circuit switched
NoC. We propose a double time-wheel technique to facilitate a probe
based connection setup in TDM NoCs. With this technique, path
search algorithms used in connection setup are no longer limited to
deterministic routing algorithms. Moreover, the hardware cost can
be reduced, since setup requests and data �ows can co-exist in one
network. Apart from the double time-wheel technique for connection
setup, we also propose a highway technique that can enhance the slot
utilization during data transfer. This technique can accelerate the
transfer of a data �ow while maintaining the throughput guarantee
and the packet order.

SDM based NoC constitutes another sub-category of circuit switched
NoC. SDM NoC can bene�t from high clock frequency and simple syn-
chronization e�orts. To better support the dynamic connection setup
in SDM NoCs, we design a single cycle allocator for channel allocation
inside each router. This allocator can guarantee both strong fairness
and maximal matching quality. We also build up a circuit switched
NoC, which can support multiple channels and multiple networks, to

iv

study di�erent ways of organizing channels and setting up connec-
tions. Finally, we make a comparison between circuit switched NoC
and packet switched NoC. We show the strengths and weaknesses on
each of them by analysis and evaluation.

v

To mother, father and Jie

Acknowledgment

This is the �rst chapter of the thesis, but this is the last chapter I write. This
is the easiest part for the readers, but this is the hardest one for me � I
am indebted. I am indebted to many people who have o�ered their generous
help and genuine concern to me during my PhD study. I would like to try
my best to express my sincere gratitude here.

I am especially grateful to my two supervisors: Axel Jantsch and Zhong-
hai Lu. I would like to thank Axel for giving me the opportunity for being
his student and inspiring me with many good ideas and interesting topics.
Axel is a very respectable person. He sets a good example to me on how
to behave as a researcher. I would like to thank Zhonghai for imparting
me the knowledge and skills, for sharing the wisdom of doing research, for
motivating me and helping me, for giving the warmth and strength to get
through di�culties in both life and research.

I want to specially thank several people who helped my PhD research
career. I would like to thank Prof. Elena Dubrova. The talks with her
are always very encouraging. She also reviewed this thesis. I would like to
thank Graham Schelle for giving me the great opportunity to experience the
industrial research in American. I would like to thank my Master supervisor
Prof. Jinmei Lai, who inculcated me with the love of research. I would like
to thank Prof. Lirong Zheng and Prof. Shili Zhang, who were the �rst to
introduce me about the on-going research topics in KTH and Sweden.

Additionally, I would like to deeply thank many current and former col-
leagues in my department. I would like to thank Prof. Ahmed Hemani, Ingo
Sander, Alina Munteanu and Johnny Öberg for facilitating my PhD study.
I would like to thank Ming Liu, Yuan Yao, Jian Wang, Shuo Li, Pei Liu,
Yanchen Long, Mohammad Badawi, Xueqian Zhao, Huimin She, Nan Li for
the inspiring discussions and laughter we have together. I would also like to
thank Jue Shen, Liang Rong, Li Xie, Chuanying Zhai, Junhe Gan, Ning Ma,

vii

viii

Kunlong Yang, Geng Yang, Botao Shao, Qiansu Wan, Zhuo Zhou, Jia Mao,
Tao Sha and Byron Roberto Navas Viera for all the joys and fun shared with
me.

Furthermore, I would also like to extend my gratitude to colleagues and
friends in KTH, Xilinx and in SICS. Especially, I would like to thank Prof.
Mats Brorson, Patrick Lysaght, Rebecca Stainert, Jan Ekman, Per Kreuger
for their help and concern.

Moreover, I would like to give my heartfelt thanks to my friends. Thank
Song Lu, Zhiyun Pei, Bo Wei, Jing Sun, Ze Ni, Jitong Sun, Kai Yu, Yueyue
Lin, Martin Ericsson and Jing Fu for accompanying me in Sweden for so
many years.

Finally, and most importantly, I am indebted to my parents and my wife
Jie Ji. Without your consistent and sel�ess supports, this work will never be
�nished. Many thanks to my parents. Thanks for your permanent love and
good-to-excellent care and concern. Many thanks to Jie. Thanks for being
with me all along the way. Thanks for making every day of mine special.

Shaoteng Liu
October 2015, Stockholm Sweden

Contents

List of Figures xi

List of Abbreviations xiii

List of Publications xv

1 Introduction 1

1.1 Background . 1
1.2 Classi�cation of NoCs . 4
1.3 Contributions . 7

2 Dynamic Connection Setup 11

2.1 Introduction . 11
2.2 Parallel probe based connection setup 14
2.3 Future work . 21

3 Time Division Multiplexing 25

3.1 Introduction on TDM NoCs 25
3.2 Double time-wheel based dynamic connection setup 28
3.3 Highway in TDM NoC . 36
3.4 Future work . 45

4 Spatial Division Multiplexing NoC 47

4.1 Introduction . 47
4.2 An allocator for channel allocation 49
4.3 Sub-networks and sub-channels 56
4.4 Circuit switching versus packet switching 59
4.5 Future work . 63

ix

x CONTENTS

5 Summary 65

5.1 Thesis summary . 65
5.2 Future directions . 66

Bibliography 69

Publications 82

A Parallel Probing: Dynamic and Constant Time Setup Pro-

cedure in Circuit Switching NoC 83

B Parallel probe based dynamic connection setup in TDM

NoCs 91

C Highway in TDM NoC 99

D A Fair and Maximal Allocator for Single-Cycle On-Chip

Homogeneous Resource Allocation 109

E MultiCS: Circuit Switched NoC with Multiple Sub-Networks

and Sub-Channels 117

F Analysis and evaluation of circuit switched NoC and Packet

Switched NoC 131

List of Figures

1.1 The structure of a typical bus . 2
1.2 AXI interconnect: an example of point-to-point communication

architectures . 2
1.3 The overview of NoC . 4
1.4 The overview of circuit switched NoC 5

2.1 Path diversity expressed by using Pascal's triangle 15
2.2 Set up a connection with the parallel probing search algorithm . 17
2.3 Live-lock and priority preemption based live-lock avoidance method 19
2.4 General operating phases of connection setup with parallel prob-

ing algorithm . 20
2.5 Establish a multicast tree by using the parallel probing algorithm 22

3.1 Illustration of TDM concept . 26
3.2 Source routing based con�guration in TDM NoCs needs reserved

slots of a connection to be adjacent 26
3.3 Illustration of the slot-table based con�guration method 27
3.4 The overview of a router which supports the probe based connec-

tion setup method . 29
3.5 Route back Ack/Nack with the double orientation time-wheel

technique . 31
3.6 Router architecture of the double time-wheel TDM NoC 33
3.7 The slot-table in a router . 35
3.8 Illustration of slot utilization in TDM NoC 37
3.9 Illustration of the function of a highway 38
3.10 The overview of a router with highway support 40
3.11 Highway setup process . 41

xi

xii List of Figures

3.12 Flit storing and forwarding rule 43
3.13 The structure of the two-stage arbitrator 44

4.1 TDM NoC and SDM NoC . 48
4.2 Illustration of a channel allocation problem in NoC 49
4.3 Illustration for homogeneous resource allocation problem 52
4.4 Reduction of the request matrix 53
4.5 Overview of the resource allocation logic 54
4.6 The loop-free structure of the WTF allocator 55
4.7 Channel organization methods 58
4.8 Unbalanced tra�c caused by large packets in packeted switched

NoC using round-robin arbitration 61
4.9 Markov model for circuit switched NoC 61

List of Abbreviations

ATM Asynchronous Transfer Mode

AXI Advanced Extensible Interface

FIFO First-In-First-Out

HRA Homogeneous Resource Allocation

HWC Highway Channel

IP Intellectual Property

MRR Massive Round-Robin

MultiCS Multi-channel and Multi-network Circuit Switched

NI Network Interface

NoC Network on Chip

QoS Quality of Service

SDM Spatial Division Multiplexing

TDM Time Division Multiplexing

VC Virtual Channel

xiii

List of Publications

Papers included in the thesis

1. Shaoteng Liu, Axel Jantsch and Zhonghai Lu, "Parallel Probing: Dy-
namic and Constant Time Setup Procedure in Circuit Switching NoC,"
In Proceedings of the Design, Automation Test in Europe Conference
Exhibition (DATE'12), pages: 1289-1294, Dresden, German 2012.

2. Shaoteng Liu, Axel Jantsch and Zhonghai Lu, "Parallel probe based
dynamic connection setup in TDM NoCs," In Proceedings of the De-
sign, Automation Test in Europe Conference Exhibition (DATE'14),
pages: 239:1�239:6, Dresden, German 2014.

3. Shaoteng Liu, Zhonghai Lu and Axel Jantsch, "Highway in TDM
NoC," In Proceedings of the Ninth ACM/IEEE International Sympo-
sium on Networks-on-Chip (NoCS'15), pages: 15:1�15:8, Vancouver,
Canada, 2015 (The best paper award).

4. Shaoteng Liu, Axel Jantsch and Zhonghai Lu, "A Fair and Maximal Al-
locator for Single-Cycle On-Chip Homogeneous Resource Allocation,"
IEEE transactions on very large scaled integration systems (TVLSI),
vol 22, no. 10, pages: 2229�2233, 2014.

5. Shaoteng Liu, Axel Jantsch and Zhonghai Lu, "MultiCS: Circuit Switched
NoC with Multiple Sub-Networks and Sub-Channels," Journal of Sys-
tems Architecture (JSA), vol 61, issue 9, pages: 423�434, 2015.

6. Shaoteng Liu, Axel Jantsch and Zhonghai Lu, "Analysis and evaluation
of circuit switched NoC and Packet Switched NoC," IEEE Euromicro
Conference on Digital System Design (DSD'13), pages: 21�28, 2013

xv

xvi LIST OF PUBLICATIONS

Papers not included in the thesis

1. Meganathan Deivasigamani, Shaghayeghsadat Tabatabaei, Naveed Mustafa,
Hamza Ijaz, Haris Bin Aslam, Shaoteng Liu, Axel Jantsch, "Concept
and design of exhaustive-parallel search algorithm for Network-on-
Chip," IEEE International SOC Conference (SOCC'11), pages:150�
155, 2011

2. HuaQiu Yang, LiGuang Chen, Shaoteng Liu, HaiXiang Bu, YuanWang,
JinMei La, "A �exible bit-stream level evolvable hardware platform
based on FPGA," NASA/ESA Conference on Adaptive Hardware and
Systems (AHS'09), pages:51�56 2009.

3. Shaoteng Liu, Jinmei Lai, Liguang Chen, Jiarong Tong, Lichun Bao,
"An Evolvable and Recon�gurable Image Filter," Journal of Fudan
University (Natural Science), issue 06, 2010.

4. Shuo Li, Jamshaid Malik, Shaoteng Liu, Ahmed Hemani. "A code gen-
eration method for system-level synthesis on ASIC, FPGA and many-
core CGRA," In Proceedings of the First International Workshop on
Many-core Embedded Systems, pages: 25�32, 2013

Chapter 1

Introduction

This chapter begins with introducing the background and the classi�cation
of NoCs. Then, it gives an overview about our works on circuit switched
NoC and outlines the author's contributions in the papers enclosed to the
thesis.

1.1 Background

The development of semiconductor technology shrinks the feature size of
transistors while enlarging the die size. As a result, more devices and In-
tellectual Property (IP) cores can be integrated on a single chip. However,
on-chip interconnects tend to get worse, since the shrinking feature size will
cause the increase of wire delay and crosstalk. Besides, as the number of
devices increases, more communication bandwidth is required. Therefore,
new communication architectures are required to overcome the limitations
on wire delay and bandwidth.

In the past, a single bus was used to connect all the devices (IP cores) on
a chip, as illustrated in Figure 1.1. Data sent out by a device is broadcast
on the bus and can be received by all other devices. At one time, only one
device is allowed to transmit data to the bus. An arbiter decides which
one can transmit. Bus is not a scalable solution for communication since
the service rate of each device decreases as the number of devices connected
to the bus increases. Besides, the broadcast way of transmitting data is
ine�cient. Moreover, as the number of devices grows, the bandwidth of a
bus may decrease due to the growing wiring delay, which is the result of

1

2 CHAPTER 1. INTRODUCTION

Device A
Trans. Rec.

ET ER

Device B
Trans. Rec.

ET ER

Device C
Trans. Rec.

ET ER

Abiter
BUS

Figure 1.1: The structure of a typical bus

the increase in wire length and capacitance. Consequently, bus becomes the
communication bottleneck as the number of devices on a chip goes up.

Device
A

Device
B

Device
C

Device
D

Device
E

Device
F

P
2 P1

Figure 1.2: AXI interconnect: an example of point-to-point communication
architectures

To overcome the limitation of the single bus based communication ar-
chitecture, crossbar based point-to-point communication architectures are
proposed. For example, Advanced Extensible Interface (AXI) interconnect
[1] allows point-to-point communications via a big crossbar structure, as de-
picted in Figure 1.2. This architecture enhances the communication band-
width by allowing several data �ows on-going simultaneously inside a cross-
bar. However, one signi�cant drawback of this solution is that the crossbar
structure does not scale up well. Firstly, the number of wires and transis-
tors consumed by the crossbar and the arbiters scales up with O(n2), where

1.1. BACKGROUND 3

n is the number of connected devices. Secondly, inside this architecture,
the wiring delay between di�erent sources and destinations are non-uniform
since the physical distance varies. As illustrated in Figure 1.2, the distance
of path P1 is longer than that of P2. As the number of devices scales up,
such non-uniformity issue becomes more severe, resulting in the design of
the clock system and synchronization scheme very challenging.

Because of all of these limitations and challenges, more advanced commu-
nication architectures are required. Network-on-Chip (NoC) emerges under
this background. As a promising technology, NoC is expected to exceed the
limitation on the communication bandwidth, overcome the increasing wiring
delay problem and become a scalable communication solution. NoC, as its
name suggests, intends to build a communication network inside a chip. The
concept of communication network is well-known since it has been widely
used in our everyday life, for example, telephony network and Internet.

NoC inherits some of the merits from those macro-networks like Inter-
net or Asynchronous Transfer Mode (ATM) network. For example, it also
distributes a number of routers between all the terminal devices and in-
terconnects the routers and terminal devices according to a certain topol-
ogy, as illustrated in Figure 1.3. We name the wires that interconnect two
routers/devices as a link. Inside a NoC, point-to-point data delivery is re-
layed by routers. Thus, instead of connecting source and destination directly
by using long wires, data transmitted from a source node takes multiple hops
and traverses multiple short links to reach its destination. This approach can
solve the complexities caused by long wires and thus increases the scalabil-
ity. Besides, in many cases, NoCs take a regular topology, e.g. mesh (as
illustrated in Figure 1.3) or torus, which are very suitable for expanding.
Moreover, inside a NoC, multiple data �ows can co-exist on di�erent links,
or take turns to use one link. In such a way, the communication resources
are exploited very e�ciently. When compared with other approaches, NoC
can provide larger communication bandwidth with relatively less area cost
and less wiring complexity.

NoC also presents some varieties from those macro-networks. For exam-
ple, NoC design can utilize more wires for a link and operating at very
high clock speed since it operates in an on-chip environment. Besides,
NoC design focuses more on router delay, area cost, and power consump-
tion. For example, NoC design restricts the usage of complicated rout-
ing/arbitration/�ow control algorithms, deep bu�ers and so on. Therefore,
existing macro-network solutions are often infeasible for NoC design. We

4 CHAPTER 1. INTRODUCTION

SRC DST

i1

o1

o0

i0

o3i3

o2

i2

i1o1

Netw
ork

Interface

Router
REG

R
EG

R
EG

REG

REG

Link1 Link2

Figure 1.3: The overview of NoC

have to consider new communication architectures and components that are
suitable for on-chip environments.

1.2 Classi�cation of NoCs

At present, no well-formulated standard exists for guiding NoC design. There
are many published NoC architectures in the literature. Generally speaking,
these NoC architectures can be classi�ed into two categories: packet switched
NoC [2, 3, 4, 5] and circuit switched NoC [6, 7, 8, 9, 10].

In a packet switched NoC, a data �ow is split and wrapped into blocks
of a certain size, called packets. Normally, a packet is composed of a header
and a payload. The header contains the information needed by the routers
to direct the packet to its destination. The payload contains the information
a source node wants to deliver. Communication resources, such as bu�ers
and channels inside a router are allocated to individual packets. When a
packet arrives at a router, resources are allocated. When the packet leaves,
the allocated resources are reclaimed. In packet switched NoCs, �ow control
is often required between every two hops. This is called hop-by-hop �ow
control.

1.2. CLASSIFICATION OF NOCS 5

Links in a packet switched NoC are normally shared in a work-conserving
manner [11] in the sense that a link is never idle if there are packets to
transmit. Packets of di�erent data �ows take turns to use a shared link. An
arbiter decides the order. When a packet gets its turn, a certain amount of
its data is delivered by the link. Otherwise, the packet has to be bu�ered.
Depending on the bu�ering policy and the amount of data allowed to deliver
each time, packet switched NoC can further be classi�ed into sub-categories
like wormhole [12, 13, 14, 3], virtual cut-through [15, 16], de�ective [17, 2, 18]
and so on.

The main di�erence between circuit switched NoC and packet switched
NoC is that, a circuit switched NoC pre-allocates a path for a data �ow before
the data transfer launches. In circuit switched NoC, since all the required
communication resources are pre-allocated, there is no contention and thus
no need for arbitration during the data transfer process. Besides, circuit
switched NoCs often do not need a header for directing individual packets
since each data �ow is transmitted along a pre-allocated path between the
source and the destination.

In a circuit switched NoC, normally links are shared in a non-work-
conserving manner [11] between di�erent data �ows, if there are link sharings,
e.g. in TDM NoC. The bandwidth of a link is pre-allocated to a data �ow
and each �ow can only use its allocated share. In circuit switched NoC, �ow
control is often only needed between the source and destination. This is
called end-to-end �ow control [19].

1.2.1 Fundamentals about circuit switched NoC

Data
transfer

Path
setup

Path
release

(a) General operating �ow

Control
path

Data Path

… …

(b) Router architecture overview

Figure 1.4: The overview of circuit switched NoC

6 CHAPTER 1. INTRODUCTION

As depicted in Figure 1.4a, the general operating �ow of a circuit switched
NoC consists of 3 phases: path setup, data transfer, and path release. During
the path setup phase, link resources are allocated to a data �ow to build up
a connection from the source to the destination. During the data transfer
phase, data is switched by routers on the established path. After data trans-
fer is �nished, the routers reclaim the allocated resources. The three phases
are distinctively isolated. Thus, the router architecture of a circuit switched
NoC can often be divided into a data path and a control path (plane), as
suggested by Figure 1.4b. The control plane is used in path setup and re-
claim phase. It controls the allocation and con�gurations of communication
resources such as channels and crossbars. The data plane is used in the data
transfer phase and responsible for switching data to the established path.

In the past, packet switched NoCs have been explored more thoroughly
and intensively. However, circuit switched NoC has some appealing merits
and could be preferable under certain tra�c or service scenarios. Compared
with packet switched NoC, although circuit switched NoC has path setup
overhead time, it can o�er guaranteed throughput and latency. Besides, it
can also present lower hardware complexity and higher energy e�ciency, and
may work at a higher clock frequency.

Link bandwidth sharing techniques

Time Division Multiplexing (TDM) and Spatial Division Multiplexing (SDM)
are the two techniques frequently adopted by circuit switched NoC to share
the bandwidth of a link between di�erent connections. With TDM tech-
nique, connections can take turns to use a link. Each connection can only
use a link for a predetermined fraction of time. With SDM technique, a link
is physically divided into sub-links. Each connection reserves a number of
sub-links and use them exclusively. We will discuss the two techniques in
Chapter 3 and Chapter 4 in detail.

Besides TDM and SDM, some other circuit switched NoC designs [20, 21]
utilize per-connection virtual channels and round-robin arbitration to share
links. To o�er guaranteed throughput for each connection, this technique
pre-allocates virtual channels to connections and puts limitations on the vir-
tual channels that share a link. However, virtual channels are expensive
resources, since they consist of bu�ers, multiplexers, demultiplexers and re-
quire separate hop-to-hop �ow control. Thus, the hardware cost is high with
this technique.

1.3. CONTRIBUTIONS 7

1.3 Contributions

In this thesis, we focus on circuit switched NoC. We present our research
on advanced path setup methods and data switching techniques. The the-
sis summarizes a collection of papers, which are grouped into three blocks:
Dynamic connection setup, Time division multiplexing, Spatial division mul-
tiplexing. Each block corresponds to one chapter. We concentrate on in-
troducing the author's contributions in these chapters. In the following, we
summarize our contributions:

• Dynamic connection setup
Paper A Shaoteng Liu, Axel Jantsch and Zhonghai Lu. Parallel Prob-
ing: Dynamic and Constant Time Setup Procedure in Circuit Switch-
ing NoC. In proceedings of the Design, Automation Test in Europe
Conference Exhibition (DATE'12), pages 1289-1294, Dresden, Ger-
man, 2012.

In this paper, we proposed a novel parallel probe based path searching
algorithm. This algorithm can search the entire network topology and
�nd an available path from a source to a destination in constant time.
We implemented this algorithm in a circuit switched NoC for dynamic
connection search and set up, by solving tricky issues like live-lock
inside this setup method. We also proposed and evaluated several
connection search and setup policies. Compared to previous works,
our design can reduce the setup time and enhance the setup success
rate. Moreover, the router in our design has a concise structure with
an inexpensive and e�cient implementation.

Author's contribution: The author proposed the parallel probing algo-
rithm and utilized this algorithm in a circuit switched NoC for con-
nection setup, made the hardware implementation, established exper-
imental platform to evaluate the design, and wrote the manuscript.

• Time division multiplexing
Paper B. Shaoteng Liu, Axel Jantsch and Zhonghai Lu. Parallel
probe based dynamic connection setup in TDM NoCs. In proceed-
ings of the Design, Automation Test in Europe Conference Exhibition
(DATE'14), pages 239:1�239:6, Dresden, German, 2014.

8 CHAPTER 1. INTRODUCTION

In this paper, we proposed a double time-wheel technique that used in
TDM based circuit switched NoC to facilitate the two-way communi-
cation of a TDM connection. A slot-table is shared by both upward
and downward messages of a connection. Based on this technique, we
introduced a probe based connection setup method into TDM circuit-
switched NoC. Our design provides shorter connection setup delay and
higher success rate while presenting lower hardware complexity than
any previously known method.

Author's contribution: The author proposed the idea and made the
hardware implementation of the double-time wheel technique. The
author also proposed a probe based path setup method that can be
applied in TDM NoC for connection setup. Besides, the author estab-
lished an experimental platform to evaluate the design and wrote the
manuscript.

Paper C Shaoteng Liu, Zhonghai Lu and Axel Jantsch. Highway
in TDM NoC. In Proceedings of the Ninth ACM/IEEE International
Symposium on Networks-on-Chip (NoCS'2015), pages: 15:1-15:8, Van-
couver, Canada, 2015 (The best paper award)

In this paper, we proposed a novel highway technique that can enhance
the performance of TDM NoCs. The proposed technique can dynami-
cally set up highways without contention. Once highways are built, the
delivery of data �ows can be accelerated by utilizing unallocated and
idle TDM slots of links, while preserving the guarantee on minimum
bandwidth and data packet order. This highway technique has no de-
pendency on the TDM NoC architectures and introduces no additional
tra�c. It is a generic technique that can be applied in many di�erent
kinds of TDM NoCs.

Author's contribution: The author developed the concept of highway,
de�ned detailed procedures for highway setup, transfer and release.
The author also solved tricky hardware implementation issues, utilized
both synthetic tra�c patterns and benchmarks for test and evaluation.
The author wrote the manuscript.

• Spatial division multiplexing
Paper D Shaoteng Liu, Axel Jantsch and Zhonghai Lu. A Fair and
Maximal Allocator for Single-Cycle On-Chip Homogeneous Resource

1.3. CONTRIBUTIONS 9

Allocation. IEEE transactions on very large scale integration systems
(TVLSI), 22.10, pages: 2229-2233, 2014.

In this paper, we exposed a special allocation problem in NoC environ-
ment and named it as the Homogeneous Resource Allocation (HRA)
problem. We developed a novel Waterfall (WTF) allocator for the ho-
mogeneous resource allocation. The WTF allocator provides maximal
matching quality while keeping the strong fairness guarantee. It can
have a loop-free structure and solve a homogeneous resource allocation
problem within one clock cycle. It achieves strong fairness and o�ers
better performance and lower area than known solutions.

Author's contribution: The author proposed the homogeneous resource
allocation concept and the idea of the waterfall allocator. The author
also e�ciently implemented the allocator in hardware, proved its ad-
vantages in matching quality and fairness by comparising with existing
solutions. The author wrote the manuscript.

Paper E Shaoteng Liu, Axel Jantsch and Zhonghai Lu. MultiCS:
Circuit Switched NoC with Multiple Sub-Networks and Sub-Channels.
Journal of System Architecture (JSA), vol 61, issue 9, pages: 423-434,
2015.

In this paper, we explored the methods of organizing multiple physical
channels in a circuit switched NoC. We proposed a Multi-channel and
Multi-network Circuit Switched (MultiCS) to study channel partition-
ing and con�guration policies. Based on the analysis and experiments
results, we revealed the bene�ts and burden of using di�erent number
of channels and con�gurations.

Author's contribution: The author proposed the MulitCS NoC, de-
signed di�erent channel partitioning and con�guration policies, ana-
lyzed and evaluated these policies, and wrote the manuscript.

Paper F Shaoteng Liu, Axel Jantsch and Zhonghai Lu. Analysis
and evaluation of circuit switched NoC and packet switched NoC. In
proceedings of IEEE Euromicro Conference on Digital System Design
(DSD'2013), pages: 21-28, 2013

In this paper, we compared circuit switched NoC against packet switched
NoC. We showed that performance decreases for packet switched NoC
as the packet size increases, whereas it increases for circuit switched

10 CHAPTER 1. INTRODUCTION

NoC. We revealed that circuit switched NoC can operate at a higher
clock frequency than packet switched NoC and thus could be better
than packet switched NoC in some cases.

Author's contribution: The author designed a circuit switched NoC and
compared with packet switched NoC based on speculation, circuit-level
analysis, and evaluation. The author built the experiment platform,
conducted all the experiments and wrote the manuscript.

The remainder of the thesis is structured as follows. Chapter 2 intro-
duces our research on the dynamic connection setup method. Chapter 3
summarizes our works on TDM based circuit switched NoC. In Chapter 4,
we present our works related to SDM based circuit switched NoC. Finally,
we conclude the thesis and discuss future works in Chapter 5.

Chapter 2

Dynamic Connection Setup

In this chapter, we introduce how to set up connections in circuit switched
NoCs. Particularly, we will present our novel parallel probing algorithm, and
show how to use this algorithm to dynamically search and set up connections
in a circuit switched NoC [Paper A].

2.1 Introduction

How to set up connections is vital to a circuit switched NoC, since data
transfer in circuit switched NoC relies on established connections. Con-
nection setup methods a�ect the performance and resource utilization of a
circuit switched NoC. Connection setup methods can be classi�ed into static
scheduling methods, and dynamic setup methods.

In this chapter, we focus on connection setup methods. In order to sim-
plify our illustration, in the following discussions, we just consider the case
that a physical single directional link can only be used by one communication
channel without sharing with others. We will discuss link-sharing techniques
such as TDM and SDM in Chapter 3 and Chapter 4, respectively.

2.1.1 Static scheduling method

Static scheduling methods schedule the channel resources of a network for
connections at compilation time [22, 23]. During the past decade, many NoC
architectures supporting static connection scheduling have been proposed

11

12 CHAPTER 2. DYNAMIC CONNECTION SETUP

[24, 8, 25, 26], based on a variety of static scheduling algorithms [27, 28, 29,
30, 31, 32, 33, 34, 35, 36].

Z.Lu and A.Jantsch in [37] has formulated a static connection scheduling
problem. According to [37], inside a network, all the possible paths of a con-
nection compose a tree-like search space, and a static scheduling algorithm's
responsibilities are the following. 1) Explore the solution space and schedule
a path for a connection. 2) Make sure all the connections scheduled on a link
summed together does not exceed the link's bandwidth. 3) Try to optimize
the path schedule. A good schedule should satisfy as many communication
requirements as possible, and consume as less communication resources as
possible.

The advantage of static scheduling methods is that advanced algorithms
can be applied to optimize the scheduling of connections. However, static
schedule methods often su�er from the following disadvantages. Firstly,
they assume that all communication needs and connection requirements are
known at compile time. Thus, they are not well suited for applications like
H.264 [38] with requirements for dynamic communication setups or dynamic
tra�c mixes of applications. Secondly, those static scheduling algorithms are
often complicated and take several iterations to produce an optimal solution.
As the number of nodes inside a circuit-switched NoC grows up, the required
processing time and storage area for scheduling connections can increase ex-
ponentially. Thirdly, connections scheduled by static methods cannot be
aware of the dynamic �uctuation of network tra�c load. Thus, the network
bandwidth utilization is often sub-optimal.

2.1.2 Dynamic setup method

Dynamic connection setup methods [39, 40, 41, 42, 43, 44, 45, 46, 47] were
proposed to overcome the shortcomings of static scheduling method. Dy-
namic connection setup methods allocate and release connections at run-
time, according to dynamic communication requirements and network sta-
tus. With dynamic methods, network resources can be dynamically and
e�ciently allocated and reclaimed.

Dynamic setup methods can further be classi�ed into centralized methods
and distributed methods.

2.1. INTRODUCTION 13

Centralized methods

In centralized methods, a resource allocation algorithm is running inside a
special coordinator node of a network. This node manages all the network
resources and connections. All the other nodes need to send requests to
the coordinator node in order to set up or release a connection. When the
coordinator node receives a connection setup request, it will make a quick
check on available channels and decide how to allocate channels inside the
network to the connection. When it receives a connection release request,
it will reclaim the allocated channels. The resource allocation algorithm
can be either running as a software inside a processor like [39, 40, 41, 48],
or running on hardware based accelerators [43, 44]. Normally, hardware
accelerators based algorithms are about 100-1000 times faster than running
as software inside a processor.

After an allocation decision is made by the allocation algorithm inside
the coordinator node, channel reservation process starts. The channel reser-
vation process reserves and con�gures channels in di�erent routers according
to the allocation decision on a connection. Two di�erent channel reservation
approaches are frequently used in centralized methods. The �rst approach
utilizes a dedicated network to distribute allocation decisions to routers in-
side a NoC [8, 26], and directly initiates the con�guration processes inside
each router. With the second approach [43], the coordinator node �rstly
sends the channel allocation decision to the source node of a connection.
Then, the source node will compose and send out a reservation packet to the
destination by using contention-free source routing method. This reserva-
tion packet carries all the channel reservation and routing information, and
reserves the corresponding channels inside each router on its traveling path.
When the reservation request reaches the destination, the connection has
been established.

The main limitation with centralized allocation methods is the lack of
scalability. The coordinator node needs to handle all the setup/release re-
quests and distribute allocation decisions from/to the entire network. Such
multiple-to-one and one-to-multiple tra�c patterns can become the perfor-
mance bottleneck. Besides, resource allocation algorithms cannot be occu-
pied by one setup request for a long time. Otherwise, the following setup
requests will be delayed and blokced, resulting in the overall performance
degradation. For example, if the allocation algorithm fails to �nd free chan-
nels for a setup request, it has to discard the setup request immediately,

14 CHAPTER 2. DYNAMIC CONNECTION SETUP

rather than retry the failed request repeatedly.

Distributed methods

Distributed setup methods [46, 42, 45, 49] are proposed to overcome the
scalability issue in centralized methods. With distributed methods, each
source node can setup and release a connection independently, without the
inquiry of a coordinator node. To establish a connection, the source node
generates a set up request and sends it out. Compared with the reservation
packets used in centralized methods, the setup request in this case is more
concise. It contains only source and destination addresses, instead of all
the routing and channel allocating information. The setup request is routed
towards the destination by routers. Each router computes the next hop of
the setup request, and forwards the setup request to the next router. A
channel inside a router is reserved by the setup request when it passes the
router. When a setup request reaches the destination, a connection has been
established, since the setup request has reserved channels by the routers
along one path from the source to the destination. In distributed methods,
the channel allocation and channel reservation happen at the same time.

Routing algorithm inside each router used for routing the setup request
is crucial to distributed setup methods. It decides the speed and e�ciency
of setting up a connection to the destination.

In this chapter, we concentrate on dynamic distributed connection setup
methods. In the following discussions, the term path refers speci�cally to
minimal path.

2.2 Parallel probe based connection setup

2.2.1 Problem description

Inside a network, multiple minimal paths exist between a source node and
a destination node. As described in Figure 2.1, we use a mesh topology to
illustrate such path diversity. For example, from the source node(0, 0) to the
destination node(2, 2), there are multiple path choices. Speci�cally, since
there is 1 path from node(0, 0) to node(1, 0) and 1 path from node(0, 0) to
node(0, 1), there are in total 1 + 1 = 2 paths from node(0, 0) to node(1, 1).
With this method, since there is 1 path from node(0, 0) to node(2, 0) and
2 paths from node(0, 0) to node(1, 1), the number of possible paths from

2.2. PARALLEL PROBE BASED CONNECTION SETUP 15

00

10

20

23

30

32

33

01

02

03

11

12

13

21

2231

Src.

Dst.
Y X

1

1

55

1

10

1515

1

10

20

3535

11

55

1515

3535

1

1

1

11

2

3

4

3

64

11

11

11

66

772121

11

66

2121

11

7711

55 88776644332211

0

1

2

3

4

5

6

7

N

Src.

K

Dst.

Figure 2.1: Path diversity expressed by using Pascal's triangle

16 CHAPTER 2. DYNAMIC CONNECTION SETUP

node(0, 0) to node(2, 1) equals 1 + 2 = 3. Similarly, we can �nd that there
are also 3 paths from node(0, 0) to node(2, 1). Finally, the number of paths
from node(0, 0) to node(2, 2) is 3 + 3 = 6.

Therefore, we may conclude that the number of possible minimal paths
from a source node to a destination node in mesh topology can be expressed
by using a Pascal's triangle [50], as Figure 2.1 suggests. Suppose that the
source node has coordinate (0, 0), and the destination node is (x, y). The
Manhattan Distance [51] between source and destination node is D, where
D = x+ y. We have the number of paths m as

m = CxD = CyD =
D!

x!(D − x)! =
D!

y!(D − y)! (2.1)

By using Eq.2.1, we can simply get that there are C2
4 = 6 paths from

node(0, 0) to node(2, 2), which is in accordance with our previous analysis.
As the distance between source and destination increases, the number of
possible paths increases dramatically. For example, in a 4 by 4 mesh, the
number of shortest possible paths from a corner node to reach the node on
its diagonal corner is 20. For a 5 by 5 mesh, this number becomes 70. For
an 8 by 8 mesh, it becomes 3432.

The routing algorithm used to route setup requests determines how many
possible paths can be searched. Since routing algorithms are normally im-
plemented inside individual routers and in hardware, many previous works
[42, 45, 46, 52, 53, 54] just seek to apply simple deterministic routing algo-
rithms such as X-Y routing. However, deterministic routing algorithms can
only search one �xed path from source to destination. It fails to explore the
aforementioned path diversity and thus signi�cantly limits the connection
setup successes probability and the setup e�ciency.

In order to exploit the path diversity, powerful routing algorithms need
to be developed for the setup request. It is possible to implement powerful
distributed routing algorithms with reasonable hardware cost. For example,
in [49, 55], Pham et al. proposed a depth-�rst path search algorithm and
implemented it in hardware. With this algorithm, a setup request �rstly
travels along a certain path from source to destination. If the setup request
cannot continue along the path, it will backtrack one or several nodes and try
another path. This depth-�rst algorithm can do an exhaustive search among
all the possible minimal paths. If a free path exists, it will �nd it. However,
as a depth-�rst search algorithm, it takes too long time to search over all the

2.2. PARALLEL PROBE BASED CONNECTION SETUP 17

possible paths. As Eq.2.1 suggests, the time complexity for the worst case
is O(D!), where the D is the distance between source and destination.

Towards a more e�cient solution, we propose a more powerful path setup
algorithm which is based on a breadth-�rst way for path search. Unlike the
depth-�rst setup algorithm proposed by Pham et al. [49, 55], our breadth-
�rst setup algorithm can exploit the parallelism of hardware. It can search
all the possible paths at one time in parallel. The time complexity for such
a search is only O(D). We name our algorithm as parallel probing.

2.2.2 The parallel probing dynamic setup algorithm

Figure 2.2: Set up a connection with the parallel probing search algorithm

We use an example to illustrate the key idea of our parallel probing path
search algorithm, as illustrated in Figure 2.2. In Figure 2.2, a source node
(node 1) tries to set up a connection to the destination node (node 16).
At the �rst cycle, the source node sends out two setup probes along two
productive directions toward the destination. Each probe consists of source

18 CHAPTER 2. DYNAMIC CONNECTION SETUP

address and destination address to guide its routing. At the second cycle,
when the two probes arrive at node 2 and node 5, each probe splits into
two probes, so there are four probes in total continuing travelling toward
destination along all the minimal paths. Following such a way, a number of
probes will be triggered out to search all the possible paths in parallel. As a
probe travels, it reserves the channels it has passed.

However, since we only need one path from source to destination in the
end, our algorithm eliminates redundant channels as soon as possible. This
is how our algorithm is di�erent from the �ood based setup algorithms [56].
One policy of our algorithm is that when two probes carrying the same setup
request meet at the same node, one probe dies, and the channels reserved by
the dead probe alone will be canceled. For example, as the second picture of
Figure 2.2 describes, two probes meet at node 6 that one probe dies. With
this policy, the channel between node 2 and node 6 will be canceled, whereas
the channel between the source node and node 2 remains, because it is still
needed by the probe that has travelled further to node 3. We identify these
released redundant channels with cross markers, as shown in Figure 2.2.
Following this way, in an ideal case (minimum paths exist and no contention
happened between probes of di�erent setup requests), only two probes can
enter into the destination node, which is node 16. Then one probe dies and
cancels its reserved path. In the end, only one path is left between the source
and the destination.

We summarize the general rules of our parallel probing algorithm as
follows:

1. Probe split rule

It is inspired by the idea "cell division". At �rst, only one setup probe
is sent out by the resource connected to the source node. When a probe
enters into a node and �nds multiple productive outputs towards the
destination (e.g. it can have two productive outputs in a mesh topol-
ogy), it will split into multiple probes to travel through all these output
channels in parallel, with one probe per output for an exhaustive search
and setup.

2. Probe cancel rule

This rule reduces the network resource consumption during a connec-
tion setup since the probe split rule generates too many probes and

2.2. PARALLEL PROBE BASED CONNECTION SETUP 19

occupies too many redundant channels. The probe cancel rule man-
dates the release of the redundant parallel paths as soon as possible.
This rule requires that 1) whenever two probes of the same request
meet, one of them dies, 2) if a probe cannot proceed because of con-
tention or obstruction, the probe dies as well. The channels reserved
by a dead probe is released and reclaimed immediately. The release
action proceeds backward hop by hop along the path reserved the dead
probe until reaches a channel that is still in use by an active probe.

Live-lock avoidance

Our parallel probing algorithm has no deadlock [57, 58] issue. This is due to
that if a probe cannot proceed, it will be canceled immediately and all the
resources reserved by the probe is released and reclaimed. When probes do
not hold resources and wait, there is no deadlock.

However, live-lock [59] may exist in our algorithm, since contentions for
resources between probes belonging to di�erent connection setup requests
may create live-lock. As illustrated in Figure 2.3a, if the four connection
setup requests A: 1 → 3 (it means node 1 trying to set up a connection to
node 3), B: 4→ 2, C: 2→ 4, D: 3→ 1 are sent out simultaneously, then they
will block each other. None of them can succeed. Retrying in a deterministic
manner will not help.

Node 1
(A src)

Node 2 (C
src)

Node 4 (B
src)

Node 3
(D src)

A

B

B

A

C

D

D C

(a) Live lock

Node 1
(A src)

Node 2 (C
src)

Node 4 (B
src)

Node 3
(D src)

A

D

A

A

D

D

D A

(b) Priority preemption
method to solve live-lock

Figure 2.3: Live-lock and priority preemption based live-lock avoidance
method

In paper A, we proposed a priority based preemption [60] method to deal
with live-lock. With this method, the live-lock illustrated by Figure 2.3a can

20 CHAPTER 2. DYNAMIC CONNECTION SETUP

be resolved. E.g., if setup probe A's priority is higher than C, it can preempt
the channel reserved by C between node 2 and node 3.

In paper A, we use a setup request's retry times and its source node ID
as priority values. Actually, we can use anything as a priority, just making
sure that two con�icting requests do not have the same priority.

2.2.3 Implementation of the parallel probing algorithm

Operating phases in a connection setup process

Stage1 :
Probe send-

out

Stage2:
 Reach Dest.

Stage 5:
Connection

established &
data transfer

launched

Stage 3:
Backward

cancellation of
booked

channels

Stage 4:
Path search

failed

Probe dies

Probe forw
arding

All probes fail

“Ack” send
back to Src.

Stage 6:
Data transfer

finished

Release the connection

Figure 2.4: General operating phases of connection setup with parallel prob-
ing algorithm

The general operating phases of the parallel probing algorithm is de-
picted in Figure 2.4. After probes are sent out from the source node, they
proceed toward destination while splitting and dying. When a probe reaches
destination, "Ack" signals will be sent back to the source node along the
established path to con�rm channel reservations and launch data transfer.
If probes failed, channels reserved by dead probes will be released by "Nack"
signal. If all the probes die, depending on di�erent setup polices, the setup
request may be retried or dropped.

According to our implementation in paper A, a probe takes 2 cycles
per hop to move forward while the backward Ack/Nack takes 1 cycles per

2.3. FUTURE WORK 21

hop. Thus, for a single search, it takes 2D cycles for a probe to reach the
destination and D cycles for sending back the ANS signal. There is also an
additional 6 cycles that are spent in the network interface as an overhead
(D is the hop distance between a source and a destination). In other words,
after sending out probes, a source node is noti�ed about the result of the
connection setup endeavour within 3D + 6 cycles.

Setup policies

We proposed three setup policies, which are no retry, retry for free path and
retry until success.

No retry policy only tries once for a setup request, and gives up the
request if the endeavor is failed. Therefore, it spends at most 3D + 6 cycles
on a setup request.

Retry for free path policy will retry the failed setup requests several times
before give-up. The interval between every two adjacent reties is �xed to
3 ∗Dmax + 6 cycles, where Dmax is the longest distance between two nodes
in a topology. In a n ∗ n mesh, Dmax = 2 ∗ (n − 1). After each retry, the
priority of the setup request is increased by 1. Suppose there are K source
nodes inside a network and each node at most serves one setup request at a
time. Then after K retries, if the setup request still cannot succeed, it will
be dropped. Since after K retries, the setup request will have the highest
priority inside the network. It will win every arbitration inside each router
according to our priority preemption based arbitration method. If it still
cannot succeed, it means that all the possible paths are occupied.

Retry until success policy has no limitation on retry times of a failed
setup requests. It keeps retrying a failed request until it becomes successful.
The retry interval may be set to zero, which means a source node will retry
a failed setup request immediately when it is noti�ed about the failure.

2.3 Future work

Our parallel probing algorithm is an adaptive routing algorithm. It can
search over all possible minimal paths and �nd an available path within a
time complexity O(D). Because of these good properties, we can explore the
parallel probing algorithm in the following three directions in the future.

22 CHAPTER 2. DYNAMIC CONNECTION SETUP

1. Using the parallel probing algorithm in topologies other than mesh. In
Paper A, the parallel probing algorithm is only implemented for a mesh
topology. However, dynamic connection setups in regular topologies,
such as torus [61], fat tree, benes [62], clos and butter�y [63], should
also bene�t from our algorithm. The principle of the parallel probing
algorithm is to use as many as possible probes to search among all
available shortest paths in parallel, while cancelling redundant paths
as soon as possible. Thus, on a network topology, as long as each router
knows how to forward incoming probes toward the destination along
minimal paths, our parallel probing algorithm could work.

2. Using the parallel probing algorithm for fault tolerance purpose. It is
possible to utilize our parallel probing algorithm for fault tolerance
purpose, since our algorithm can search all the minimal paths simulta-
neously and in parallel. Even if faults happen on some of the paths, our
algorithm can still �nd out the fault-free path to build up a connection.

sour
ce 22

5 6

3 44

77 88

99 10

13 1414

11 1212

1515 16

sour
ce 22

55 6

3 44

77 88

99 10

13 1414

11 1212

1515 16

Figure 2.5: Establish a multicast tree by using the parallel probing algorithm

3. Using the parallel probing algorithm for multicast communication pur-
pose. Multicast communication refers to that information sent by a
source node is addressed to a group of destinations simultaneously.
To support multicast in circuit switched NoC, a source node needs to
be connected to multiple destinations. Instead of establishing multi-
ple point-to-point connections, multicast can take a tree-like structure
[64, 65] to connect the source node as root and the destination nodes

2.3. FUTURE WORK 23

as leaves. In such a way, multicast can use communication channel
resources more e�ciently, since the consumption of channel resources
can be reduced.

Our parallel probing algorithm is suitable to establish such a tree-like
communication structure for multicast. As illustrated in Figure 2.5,
with one setup attempt, our parallel probing algorithm is possible to
establish a tree-like structure which connects all the destinations (green
nodes) to the source node (the yellow node).

Chapter 3

Time Division Multiplexing

This chapter summarizes our research on TDM NoCs. Particularly, we will
introduce our work on double time-wheel technique and its usage in the setup
of TDM based connections [Paper B]. We will also introduce our highway
technique and present its advantages [Paper C].

3.1 Introduction on TDM NoCs

3.1.1 Time division multiplexing technique

Time Division Multiplexing (TDM) [32, 35, 37, 24, 66, 34] technique has been
widely used for guaranteed data transfer in NoCs. In TDM NoC, a physi-
cal link can be contention-freely shared by di�erent connections, with each
connection reserving one or multiple speci�c time slots in a �nite repeating
time window. Each slot is exclusively reserved by one connection. A con-
nection can span many links from source to destination, by reserving slot(s)
at each of the links in a consecutive manner. For example, as illustrated in
Figure 3.1, connection v1 spans link 1 and link 2. If slot 0 and slot 2 of link
1 are reserved by v1, then slot 1 and slot 3 of link 2 must be reserved by
v1. TDM circuit switching treats the entire NoC as a single shared resource
with a single arbiter. In other words, packets wait only at the ingress Net-
work Interface (NI) until their reserved slots come, after which they progress
without contention to the egress NIs, with minimal latency [67].

In the following discussions of this chapter, we de�ne a TDM channel as
a simplex link between two routers with associated bu�ers in a particular

25

26 CHAPTER 3. TIME DIVISION MULTIPLEXING

Link 1 Link 2v1

node 1

0 1 2 3 4 5 6 7

v1 v1 v1 v1

0 1 2 3 4 5 6 7

v1 v1 v1 v1

node 2

W=4 W=4 W=4 W=4

Figure 3.1: Illustration of TDM concept

time slot. Thus, the same link in di�erent time slots belong to di�erent
channels.

3.1.2 Data path con�guration methods

In TDM NoC, data path con�guration refers to how to con�gure the cross-
bar inside each router to switch data �its of di�erent tra�c �ows correctly
through the pre-reserved channels. Generally speaking, there are two kind of
methods: source routing based con�guration [68, 67, 69] and slot-table based
con�guration [8, 70, 37].

Link 1 Link 2v1 & v2

node 1

0 1 2 3 4 5 6 7

h

0 1 2 3 4 5 6 7

node 2

W=4 W=4 W=4 W=4

b h b h b h b

h: head flit
b: body flit

h’ b’ b’

Lin
k 3

0 1 2 3 4 5 6 7 8

h’

h’ b’ h’ b’

v1

v2

crossbarcrossbar

Figure 3.2: Source routing based con�guration in TDM NoCs needs reserved
slots of a connection to be adjacent

With source routing based con�guration method, a data �ow is wrapped
into packets, each of which contains a head �it. The head �it carries all
the crossbars' con�gurations of a connection. The head �it con�gures every

3.1. INTRODUCTION ON TDM NOCS 27

cross-bar as it travels, with one crossbar per router. Body �its of a packet
follow the path paved by the head �it. Thus, it requires that the allocated
slots of a connection must be adjacent, so that body �its can follow closely
without interval. For example, as Figure 3.2 suggests, if a head �it of con-
nection v1 is delivered at slot 0 of link 1, then its body �it must be delivered
at slot 1 to follow the head �it closely. Otherwise, if head �it of another �ow
occupies slot 1 of link 1, the con�guration of the crossbar in node 1 is altered
and thus the body �it of v1 cannot be switched correctly.

Source routing does not require a slot-table inside each router to store
con�gurations in a distributive manner. However, the con�guration infor-
mation of each connection needs to be stored inside the network interface of
the source node of each connection.

node 1 node 2

Link 1
Link 2

v2

v1

v1

CrossbarCrossbar CrossbarCrossbar

v1

v1
v2
Slot table

v2

v1

v2

v2

Slot table

v1
v2

0 1 2 3 4 5 6 7

W=4

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

Link 3

W=4

Figure 3.3: Illustration of the slot-table based con�guration method

In slot-table based con�guration method, the con�guration information
is distributed and stored inside each router, as suggested by Figure 3.3. For
example, the slot-table inside node 2 denotes that slot 0 and slot 2 of link 3
are allocated to connection v1 and slot 1 and slot 3 of link 2 are allocated to
connection v2. Inside each router, a slot counter reads information from the
slot-table and updates the con�guration of the crossbar at each slot. Slot
counters of all the routers inside a NoC should update their values together
according to a global time notion. With slot-table based con�guration, there
is no need to use head �its and thus does not require the allocated slots of a
connection to be adjacent.

In the following, we will introduce some new techniques for TDM NoCs
proposed by us.

28 CHAPTER 3. TIME DIVISION MULTIPLEXING

3.2 Double time-wheel based dynamic connection

setup

3.2.1 Problem description

Traditionally, dynamic distributed TDM channel allocation algorithms can-
not be e�ciently implemented in TDM based circuit switched NoCs because
of the following reasons:

• During the connection setup process, messages such as setup requests,
Ack/Nack need to be sent back to the source node to notify the failure
or success of a setup request, and con�rm/cancel the reserved channels.
Traditionally, the delivery of these messages needs an auxiliary network
[71, 53, 72], which adds up the costs and lowers the cost e�ciency of a
TDM NoC.

• The routing algorithms of the auxiliary network has to be deterministic
[71, 53] to guarantee that setup, tear-down, and Ack/Nack messages of
a connection are routed along the same path. In this way, the booked
channels inside the routers along the path can be reserved/removed
correctly. However, deterministic routing algorithms limit the explo-
ration of path diversity. Setup requests routed by the deterministic
routing algorithm are always traveled on �xed paths, resulting in low
connection setup success probability.

• This auxiliary network is often a packet switched NoC [71, 53, 72].
It utilizes best e�ort packets to carry messages such as setup, re-
lease, Ack/Nack. These packets contend with each other, rendering
the setup/tear down delay long and highly unpredictable.

Therefore, in Paper B, we propose a probe based connection setup method
which can be used in TDM NoCs to eliminate the auxiliary network and
overcome above-mentioned limitations. To support the probe based setup
method, we developed a double time-wheel technique.

3.2. DOUBLE TIME-WHEEL BASED DYNAMIC CONNECTION

SETUP 29

3.2.2 Probe based connection setup in TDM NoCs

Probe based setup method

Generally speaking, in order to support our probe based setup method, we
add control signals request and ANS(answer) to a connection. The request
signal is used to denote the setup, data transfer and release requests for a
connection. The ANS signal is used to carry "Ack/Nack" messages. These
messages notify the source node whether a setup endeavour has failed or
succeeded.

ANS

Data/probe path

Request Backward
crossbar

Forward
crossbar

ANS

Data/probe path

Request

Netw
ork

Interface

Resource

Route
func.

Arbitor

Control
logic

i1

o1

o0

i0

o3i3

o2

i2

i1o1

Figure 3.4: The overview of a router which supports the probe based con-
nection setup method

The router used to support our probe-based setup method is illustrated
in Figure 3.4. Each link of the router has a 2-bit request signal which is
in parallel with the data path, and a 2-bit ANS signal goes in the opposite
direction of the data path. Note that, all wires of a link, including the data
path, the request signal, the ANS signal are all shared by a number of
channels in a TDM manner.

The setup process has two phases, namely, channel reservation phase and
acknowledge phase. During the setup process, setup requests are carried by
probes. When a probe arrives at a router, if the next slot of a desired output
link is free, the probe will reserve this slot and use this slot to continue its
movement toward the destination. Therefore, when a probe arrives at the
destination, a connection has been successfully built up and then the ac-

30 CHAPTER 3. TIME DIVISION MULTIPLEXING

knowledge phase begins. An "Ack" message will be sent back to the source
node hop by hop, through the backward ANS signal of these reserved chan-
nels.

With our probe based setup method, the setup/release request and data
�its of a connection can travel on the same TDM channels. This is possible
because setup, transfer and release stages of a connection do not overlap
with each other. This is due to 1) before a connection is established by a
setup request, no data �its can appear on that connection, and 2) only after
the transfer of data �its is �nished, release request can then be sent out to
release the slots of links reserved by the setup request.

Note that, if a probe fails to reserve a TDM channel in a router, a "Nack"
message must be sent back by using the ANS wires of the reserved TDM
channels. As the "Nack" messages travel backward, it can also release the
reserved channels.

As a result, with the probe based setup method, the auxiliary network for
setup is not needed any more. Since both forward and backward messages
are transferred over the same TDM channels and along the same path, path
search algorithm is no longer constrained to be deterministic.

However, backward "Ack/Nack" messages constitute a design challenge
in our probe based setup method, since the "Ack/Nack" messages consist
of only 1-2 bits, contain no address information, and need to be routed
back following a given path. Moreover, the "ANS" wires used to deliver
the "Ack/Nack" messages are also shared by di�erent connections in a TDM
manner, which mandates that the usage of correct slots to deliver the "Ack/Nack"
messages of connections in order to avoid contentions. To resolve this chal-
lenge, we propose the double time-wheel technique.

Double time-wheel TDM technique

The way to route the backward messages (such as "Ack/Nack") of a con-
nection is to rely on the slot table information inside each router along the
path of the connection. As illustrated in Figure 3.5, the setup probe re-
served time slots of a connection inside each router following the sequence
0 → 1 → 2 → 3 → 0. The slot table of each router on the path records
such information to con�gure its forward crossbar. Thus, if we can correctly
read and interpret the information that reside in the reserved slot table cell,
the backward crossbar can also be correctly con�gured to deliver backward
messages. For example, if a backward message is sent out at slot 0 in router

3.2. DOUBLE TIME-WHEEL BASED DYNAMIC CONNECTION

SETUP 31

A
A

A

A

Ack/
Nack

Ack/
Nack

Ack/
Nack

Data/Probe Data/Probe

D
ata/P

ro
b
e

0 1
2

3

A0

Ack/
Nack

Data/Probe

R1 R2 R3

R4 R5

Figure 3.5: Route back Ack/Nack with the double orientation time-wheel
technique

5, by reading the information from the slot table to con�gure the backward
crossbar, it can reach router 4 at slot 3. Following the same manner, it can
reach router 3 at slot 2, and so forth.

To support this scheme, we propose a double orientation time-wheel tech-
nique. With this technique, we apply two slot counters inside each router:
one is incremental counter and the other is decremental counter. The incre-
mental slot counter reads the slot table and con�gures the forward crossbar
for data �its and requests. The decremental counter con�gures the back-
ward crossbar for "Ack/Nack". With the two slot counters, there are two
slot access sequences inside a TDM NoC. For example, as Figure 3.5 de-
picts, the read sequence of a slot-table with an incremental counter is slot
0, 1, 2, 3, 0, 1, 2, 3 . . ., while the sequence is slot 0, 3, 2, 1, 0, 3, 2, 1 . . . with the
decremental counter. Following this way, if the "Ack/Nack" message is sent
out at the correct time slot, e.g. slot 0 from router 5, by using decremental
slot counters to read the slot-table and con�gure the backward crossbar in-
side each router, it can reach router 4 at slot 3, reach router 3 at slot 2, and
so forth. As a result, "Nack/Ack" messages are all delivered by slots of the
ANS wires without contention and miss routing. The backward messages of
a connection are naturally traveling on the same path that is reserved by the
setup request.

An additional bene�t of our double time-wheel technique is predictable

32 CHAPTER 3. TIME DIVISION MULTIPLEXING

delays of all kind of messages. Firstly, all the messages travel at a guaranteed
speed of one slot/hop since both forward slots and backward slots along the
path of a connection are consecutive, according to the requirements of a
TDM NoC. Secondly, for "Ack/Nack" messages, although they need to be
bu�ered at a node for a while to ensure that they are sent out at the correct
time slot, such bu�ering delay is also predictable. The maximum bu�ering
delay is the size of a time window. Thirdly, the delay of a single setup
attempt is predictable since all kinds of message delays are predictable.

In general, our probe-based double time-wheel TDM NoC can have the
following advantages.

• When probe based connection setup method is utilized in TDM NoCs,
auxiliary network for connection setup is no longer needed. Instead,
the setup/release messages and data �its of a connection share the
same TDM channels for traversal.

• The double time-wheel technique can route Ack/Nack messages which
are required in the connection setup phase. With this technique, the
Ack/Nack messages of a connection are carried by only a few bits of
wires and always attached to the path reserved by the setup request.

• By combining the probe-based method together with double time-
wheel technique, we can freely choose routing algorithms for the setup
probes to explore the path diversity. Besides, in our design, the deliv-
ery of all kinds of messages of a connection have predictable delays.

3.2.3 New features in a TDM router

The details about the TDM router supporting our double time-wheel tech-
nique have been described in Paper B. We designed a slot-table based router
with the double time-wheel technique that supports the probe based connec-
tion setup method. In the following, we emphasize the new features added
to a TDM router.

ANS signal management

Ack/Nack messages must be sent out at the correct time slot. As Figure 3.6
illustrates, we designed an ANS table at each input port to bu�er Ack/Nack
messages of di�erent connections until their correct backward time slots

3.2. DOUBLE TIME-WHEEL BASED DYNAMIC CONNECTION

SETUP 33

Slot table

Forward Cross Bar

Arbiter

Backward
Cross bar

REG

ANS

Data/
probe

Request

ANS table

ANS

ANS

ANS

ANS

ANS

Decrement
slot counter

Increment
slot

counter

Write

Erase when Request = 11

Control
unit

REG

ANS

ANS

Erase when ANS = 10

Look ahead route
computation

cancel

Request

Data/probe

Update
probe

information

Look ahead routing
information

Update
probe

information

Input manager

Input manager

ANS

Data/
probe

Request

Figure 3.6: Router architecture of the double time-wheel TDM NoC

come. Each ANS table just has one column, with the row number rep-
resenting di�erent slots of a time window. Thus, if a TDM time window
contains K slots, each ANS table should have K rows. In our design, for
di�erentiating di�erent kinds of backward messages, a table cell is 2 bits
wide. The ANS signal management principle works as follows.

• When an "Ack/Nack" message needs to send back to the source node
to notify the success/failure of a connection setup, it is �rstly written
into the corresponding ANS table cell pointed by the incremental slot
counter. The Ack/Nack message is created in the same slot at which
the connection setup probe arrives.

• The read position of the ANS table is pointed by the decremental slot
counter. After a cell is read, the bu�ered message is sent back through
ANS wires. Then, the cell will be erased at the beginning of the next
cycle.

With this ANS signal management principle, the maximum bu�ering
time of a message is K cycles, where K is the total slot number in the time

34 CHAPTER 3. TIME DIVISION MULTIPLEXING

window.

Slot table

Slot table plays a key role in our double time-wheel technique. Our double
time-wheel technique requires that a slot table can be read by using both
incremental slot sequence and decremental slot sequence simultaneously. It
also requires that a slot table is able to handle written/erased requests on
di�erent table cells from both forward request signals and backward ANS
signals at the same time.

As Figure 3.7 describes, rows in the slot table represent time slots, and
columns denote output directions. During the slot reservation process, input
port ID is written into a vacant table cell, whose row position is denoted by
the increment slot counter and column position is denoted by the aiming
output direction of the input probe. For example, the content of row 3 in
Figure 3.7 means that at slot 3 the forward crossbar is con�gured in such a
way: input port i1 connects output port o0, i2 connects o1. Meanwhile, it
also denotes that for the backward crossbar, output o0 connects input i1, o1
connects i2. As Figure 3.7 suggests, when implemented in a mesh topology,
the ID of each input port is encoded into 3 bits (suppose each router has 5
input/output ports). Thus, the slot table width equals 15 bits.

Both incremental slot counter and decrement slot counter simultaneously
read a slot table, for the con�gurations of the forward crossbar and back-
ward crossbar, respectively. To con�gure the multiplexers inside the forward
crossbar, a row of table cells can be read to directly get a vector of con�g-
uration bits, with 3 bits per group. Each group con�gures a multiplexer.
To con�gure the backward crossbar, the slot table's row content needs to
be translated into another format, in which columns denote input ports and
each table cell denotes the output port, as denoted by Figure 3.7. We im-
plement a combinational logic circuit to do such transformation.

In our implementation, a slot table functions like a dual-ported RAM.
Both incremental slot counter and decremental slot counter can issue the read
addresses. Write access on a slot-table is only issued by forward "setup"
probes. However, erase accesses can be issued by both forward "release"
signal and backward "Nack" signal.

Therefore, we have to enforce rules for slot-table access, to avoid collisions
between di�erent access requests. Our rules are as follows.

3.2. DOUBLE TIME-WHEEL BASED DYNAMIC CONNECTION

SETUP 35

i1 i2 - -

o0 o1 o2 o3

-

o4

000 i0

001 i1

010 i2

011 i3

100 i4
111 Vacancy

o1 o1 o2 o3 o4

Slot 1

Slot 2

Slot 3

...

Configure
forward crossbar

Configure
backward crossbar

Translation

Translation

Figure 3.7: The slot-table in a router

1) Read access to a slot table returns a value within a delta delay (some
combinational logic gates' delay), while write/erase access will be delayed
until the very beginning of the next cycle (or the next slot). Thus, if read
and write access to a cell happen at the same time, the read access gets the
old value; if write is issued in the previous cycle and read happens in the
current cycle, then read access gets the updated value.

2) We use a connection management mechanism to guarantee that write
and erase accesses to the same table cell never happen. This mechanism
states as follows.

1. For each connection, its forward "setup", "release", and backward
"Nack" signals never collide. This is ensured by the non-overlapping
phases in the connection setup and release. Therefore, write access
and erase access to a table cell can never happen at the same time.
Besides, this also guarantees that the erase access issued by forward
"release" action of the connection never collides with the erase access
issued by its backward "Nack" action.

2. Write accesses between di�erent connections are also impossible to col-
lide, since a slot table cell can only be exclusively reserved by one
connection. Before the connection removes its reservation, no other
connections can write or erase the table cell.

36 CHAPTER 3. TIME DIVISION MULTIPLEXING

Flow control with double time-wheel technique

In TDM NoCs, the absence of contention ensures that no link-level �ow con-
trol is required, but end-to-end �ow control per connection is still required.
For example, if the receiver's bu�er is full, it needs to notify the sender to
pause the data transfer. In previous works [25, 68, 8], TDM connections are
bidirectional, one way from source to destination for data, and one way from
destination to source to deliver end-to-end �ow control messages.

However, bidirectional connections have several limitations:

• It imposes more constraints on the connection schedule/setup algo-
rithms. Bidirectional connection setup requires a forward path as well
as a backward path available. Thus, the connection setup algorithm
su�ers more limitations and thus has less probability to successfully
build up such a connection.

• If a connection just has data �ow on one direction, it is a waste of
communication resources and bandwidth.

With our double time-wheel technique, connections can be unidirectional,
the �ow control messages can be carried by the backward ANS signal (1-2
bits) of a connection. Unidirectional connections can utilize the channel
resources of a TDM NoC more �exibly and e�ciently.

3.3 Highway in TDM NoC

3.3.1 Problem description

In TDM NoCs, quite often the utilizations of links are low. Because both
idle and unallocated slots commonly exist in TDM NoCs.

Unallocated slots refers to the slots that are not reserved by any connec-
tion. The generation of unallocated slots is due to the two reasons:

• Successive links on the path of a connection require consecutive slots.
Such mandatory sequence makes it di�cult to utilize all the slots of
links. For example, as illustrated in Figure 3.8, link 2 has one free slot,
which is slot 0 (the TDM window size is 4 slots), and link 3 have two
free slots, which are slot 0 and slot 2. Suppose that a connection v4
wants one slot on link 3 and one slot on link 2, although both link 3

3.3. HIGHWAY IN TDM NOC 37

and link 2 have free slots, they cannot be allocated to v4 since they
are not consecutive.

• When mapping an application onto a TDM NoC, it is common that
tra�c �ows are not uniformly distributed on all the links: some links
have more bandwidth reservation requirements and some links less.
Such unbalanced bandwidth requirements inside a network also cause
slots of some links unallocated.

Link 1 Link 2

Link 3

v1

node 1

v2

0 1 2 3 4 5 6 7

v1 v1 v1 v1 v1 v1 v1 v1
v2 v2

v2 v2

node 2

node 3

Time slot

Reserved time slot

v3

v2

v3

v3 v3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

W=4 W=4 W=4 W=4

W=4 W=4

Figure 3.8: Illustration of slot utilization in TDM NoC

Idle slots refers to allocated but unused slots. Considering the practical
tra�c situations inside a network, it is unlikely that all the connections are
busy all the time, especially for those statically scheduled connections. On
one hand, idle TDM connections hold all the pre-reserved slots even if they
have no data to deliver. On the other hand, busy TDM connections can just
use a �xed number of reserved slots for data transfer, no matter how many
data �its are bu�ering and waiting at the tra�c sources.

However, is it necessary to enhance the performance of a TDM connec-
tion? As we know, TDM connections are used to o�er guaranteed services.
So, is it necessary to o�er more service than guaranteed service?

In the streaming applications such as [73, 74] or H.264 decoding, each
connection carries a streaming �ow. In these applications, we might want

38 CHAPTER 3. TIME DIVISION MULTIPLEXING

such a property that a lower bound streaming quality for a �ow is always
guaranteed, whereas enhanced quality can be o�ered when the system has
free resources. To support such a property, we only need the NoC's promise
on the lower bound of communication bandwidth to o�er guaranteed quality,
whereas the upper bound of a tra�c �ow should be adjustable and adaptive
to the tra�c situations.

Besides, consider a computer system with a guaranteed connection be-
tween an L1 cache and L2 cache. Since cache misses are not completely pre-
dictable, often connection bandwidth is over allocated [68]. Thus, we might
want a mechanism that can keep the guarantee on minimum throughput
and on the predictable tra�c �ow, while o�ering additional non-guaranteed
bandwidth to enhance the overall system performance by absorbing peaks of
less predictable tra�c �ows.

Therefore, in some situations it would be a merit if a system can not
only provide guarantee service, but also o�er more and better service than
the guaranteed whenever possible. From this perspective, we propose a
novel highway technique. When applying this technique, a TDM connection
can dynamically acquire both idle and unallocated time slots to enhance its
throughput while still keeping the guarantee on lower bound of the band-
width.

3.3.2 Highway technique for TDM NoCs

HWC

A with highway

Router 2

Crossbar

Slot reservation

A
A
A
B

B Without
highway

HWC

A with highway

Router 1

Credit

Crossbar

Slot reservation

A
A
B
A

B Without
highway

Link 2

Connection A

Connect
io

n B

A

B

Link 1

Figure 3.9: Illustration of the function of a highway

Our proposed highway can accelerate the data transfer of an established
TDM connection by using unused time slots along the links of the connection.

3.3. HIGHWAY IN TDM NOC 39

A highway consists of one bu�er queue per router, and along the given path of
a TDM connection. We name the bu�er queue as Highway Channel (HWC).
With these HWCs, a connection can use both unallocated and idle slots of
the output links on its path.

The function of a highway is illustrated in Figure 3.9. Both connections,
A and B, span two routers by using slots of link 1 and link 2 in a consecutive
manner. Connection A books slot 0 of link 1 and slot 1 of link 2; connection
B books slot 2 of link 1 and slot 3 of link 2. Connection A also builds up
a highway path by using one HWC in router 1 and one HWC in router 2,
respectively. Thus, besides slot 0, connection A may also use slot 1 and 3,
even slot 2 (if connection B has no data) of link 1. In contrast, without
HWCs, connection B can only use slot 2 for data delivery.

In contrast to the free slot utilization methods proposed in [25, 66, 72],
our highway technique can guarantee in-order data delivery. In [25, 66, 72],
free slots are used to deliver best e�ort packets. However, the transfer delay
of best e�ort packets are highly unpredictable. As a result, if some packets
of a �ow are delivered in the form of the best e�ort packets while the others
are delivered by using TDM connections, the arrival order of packets at the
destination node may be di�erent from the sending order. In comparison,
our highway technique can maintain the packet order of a data �ow.

3.3.3 Router architecture overview

A router supporting the proposed highway technique is depicted in Figure
3.10. The input manager at each input link manages all the incoming �its
of that input. Each input manager contains one or more HWCs. To support
dynamic usage of the highway technique, each input/output link has a �ag
signal and a credit signal associated with the data path. The �ag signal
goes in parallel with the data path, while the credit signal is in the opposite
direction. The 3-bit wide �ag signal is used in highway setup, data transfer,
and release. The 2-bit credit signal is used for Ack/Nack purpose in the
highway setup phase and for credit-based �ow control when in data transfer
phase.

3.3.4 Highway setup process

As depicted in Figure 3.11, the procedure of setting up a highway for a 2-hop
TDM connection which has 2 reserved slots in a time window of 4 is used as

40 CHAPTER 3. TIME DIVISION MULTIPLEXING

CrossbarCrossbar

Arbitration

Data

Flag

HWC ID

Data

Flag

HWC ID

Data

HWC

Bypass
Data

Flag Flag

Control logic

Credit (out)

Registers

Without HWC

Credit (in)

Input manager

HWC ID Next HWC ID

Data

HWC

Bypass
Data

Flag Flag

Control logic

Credit (out)

Registers

Without HWC

Credit (in)

Input manager

HWC ID Next HWC ID

Figure 3.10: The overview of a router with highway support

an example to illustrate the dynamic highway setup process proposed by us.
When a reserved slot (slot 0) is coming, the source node of an established
TDM connection sends out a data �it carrying the flag signal "setup". This
�it travels on the reserved slots of links, at a guaranteed speed of one slot per
hop. If it can acquire an HWC in a router, its �ag signal remains "setup". If
the destination receives a �it with �ag signal as "setup", "Ack" message will
be sent back to the source node hop by hop, along the credit signal of each
reserved HWC. When the source node receives "Ack", data transfer can use
the established highway.

If the �it with �ag "setup" fails to reserve a HWC inside a router, the
setup process stops. The �it continues its traversal with the �ag turning into
"No HWC" (The default �ag for a �it without highway is "No HWC"). At
the same time, a "Nack" signal will be sent back to the source node hop by
hop, along the credit signals of the already reserved HWCs along the path.
As the "Nack" signal travels, it will release the reserved HWCs.

The proposed dynamic highway method has the following features:

3.3. HIGHWAY IN TDM NOC 41

H
W

C
-R

S

H
W

C
-R

S

N
o

 H
W

C

Flag=Setu
p

Flag=Steu
p

A
ck

A
ck

N
o

 H
W

C

H
W

C
-R

S
H

W
C

-N
S

H
W

C
-R

S
H

W
C

-N
S

H
W

C
-N

S

router 1
(source)

router 2

router 3
(destination)

0 1 2 3 4 5 6 7 8 9Time slot

Highway Setup succeeds

Arbitration
succeeds

H
W

C
-R

S

Arbitration
fails

a b c d e f

a b c d e f

a b c e fd

Sent on a RS slot

Sent on a NS slot
W=4 W=4 W=4

Figure 3.11: Highway setup process

• Highways can be dynamically established and released in a distributive
way. When a connection needs to accelerate its data transfer, the
source node of the connection can send out a "setup" �ag to build
up a highway by reserving HWCs in routers along the path of the
connection. When a highway is no longer needed, the source node can
release it by asserting a "release" �ag.

• The highway setup process is guaranteed to be contention free. This is
due to the fact that the "setup" �ag is delivered by using pre-reserved
TDM slots of links. As a result, this contention-free feature simpli-
�es the design of HWC allocation logic since there is no need to do
arbitration between setup requests.

• Our highway setup technique is applicable to many kinds of TDM
NoCs. It basically has no architectural dependency. We impose no
constraints on how connections are established and how crossbars are
con�gured. Thus, this technique can be applied for both statically and
dynamically built-up TDM connections. As long as a TDM connection

42 CHAPTER 3. TIME DIVISION MULTIPLEXING

delivers a �it to the destination, and the flag of the �it remains as
"setup", a highway has been established.

• The highway setup process has no in�uence on the normal TDM data
transfer, since the setup requests are carried by �ag signals, and do not
a�ect the data path.

• The setup time of a highway is predictable. This is due to the following
reasons. Firstly, a "setup" �ag travels at a guaranteed speed of one
slot per hop toward the destination, since it is delivered on an estab-
lished TDM connection with consecutive slots. Secondly, the backward
"Ack/Nack" signal also travels at a constant speed per hop, since it
is delivered by using the "credit" wires of the reserved HWCs and all
these HWCs are allocated exclusive to a connection. Assuming each
slot is one cycle and the propagating speed of "Ack/Nack" signal is
also one cycle per hop and D is the distance between source and des-
tination, then the total delay of a setup attempt is at most 2D + 2
cycles. The 2D cycles are the time spent on the traversal of the forward
"setup" �ag and backward "ACK" signal. The additional 2 cycles are
regarded as the overhead time spent at network interfaces.

3.3.5 Data transfer with highway

After a highway is built up, accelerated data transfer can be launched. As
described in Figure 3.12, when a data �it arrives at a router, the �rst step is
to judge whether the incoming �it has a booked HWC or not. If the �it has
no reserved HWC, the incoming �it must be delivered by using pre-reserved
slots. Due to the consecutive property of the reserved slots, the incoming
�it should be directly forwarded to the downstream node at the next slot.

However, as Figure 3.12 suggests, if the �it has an HWC, then the �it
will be dispatched to that HWC �rst. When entering into an HWC, if the
First-In-First-Out (FIFO) bu�er queue is non-empty, the �it is pushed into
the FIFO. However, if the FIFO is empty and if its requested output link
is granted by arbitration, the incoming �it can be directly forwarded by
using the bypass way, without being bu�ered into the FIFO. Otherwise, it
still needs to be bu�ered. The �it arbitration rule is described in the next
section.

3.3. HIGHWAY IN TDM NOC 43

Incoming flit

Has an HWC?

Multiplexing to that
HWC

Y

HWC is empty?

Y Got delivered
immediately

N

Win arbitration?

Store into the FIFO
of the HWC

Y

Y

N

N

The flit is delivered by
using reserved

consecutive slots along
links

Figure 3.12: Flit storing and forwarding rule

Flit arbitration rule

During the data transfer phase, when an output slot is requested by more
than one HWC, arbitration is needed. As suggested by Figure 3.10, each
input link of a router has an input manager, and each input manager can have
one or several HWCs. Thus, there are two stages of arbitration accordingly:
a �rst stage arbitration between all the HWCs of an input manager, and a
second stage arbitration between the input managers, as described in Figure
3.13.

Our arbitration mechanism needs to prioritize �its of a connection which
are delivered on the pre-reserved slots of the connection. Only in this way,
the lower bound of the bandwidth of a connection can be guaranteed. We
use priority based round-robin to implement this scheme.

However, unlike the standard priority based round-robin arbiter, our ar-
biter design can take advantage of the following properties to simplify its

44 CHAPTER 3. TIME DIVISION MULTIPLEXING

HWC

HWC

Input
port

Y

…

Request
Slot reserved

Request
Slot reserved

2rd Arbiter

…

Flag==”No
HWC”?

N

Request
Slot reserved

Request
Slot reserved

Request

Slot reserved

1st Arbiter

…

1st Arbiter

… …

…

Figure 3.13: The structure of the two-stage arbitrator

circuit logic.

• For the �rst stage arbitration at each input, at one time slot there is
at most one request claiming that it has reserved the current slot.

• For the second stage arbitration for each output link, at one time there
is also at most one request claiming that the current slot is reserved
by it.

Due to the above two properties, we can simplify the priority based arbiter
design for both stages. Our design just adds 2-3 gate-level delay to a classic
no-priority round-robin arbiter.

The implementation of the two-stage arbitration is abstracted in Figure
3.13. An HWC asserts its request signal when it has �its to deliver. Mean-
while, if the HWC meets one of its reserved slots, it will also assert the
reserved slot signal. Besides, if the input �it has a �ag "No HWC" and no
other HWC asserts its reserved slot signal1, the input port can assert the
reserved slot signal. The asserted reserved slot signal of the �rst stage will
be propagated to the second stage.

Both stages of arbitration prioritize the request with an asserted reserved
slot signal. If no one asserts the reserved slot signal, it will use round-robin
rule to decide a winner from all the requesters.

1This actually checks whether the incoming �it has an unreleased HWC or not. Refer
to Paper C for more details

3.4. FUTURE WORK 45

3.4 Future work

Both our double time-wheel technique and highway techniques are helpful
to TDM NoCs. The double time-wheel technique enables two-way commu-
nication on a TDM connection with a low cost. The highway techniques can
enhance the performance of a TDM NoC without disordering data �ows or
introducing additional communication overhead. In the future, we plan to
explore the two techniques in the following directions:

• Apply the double time-wheel technique for advanced control purpose
on the connection setup process. For example, the backward ANS
signals can be used to feed back the congestion information about
the network to source nodes. Based on the congestion information, a
source node can make better decisions on when to send out the new
connection setup requests, and how often to retry the failed ones. In
this way, we can try to lower down the contention probability between
setup requests and enhance the success probability of each connection
setup endeavor.

• Apply the double time-wheel technique for error correction purpose.
When soft errors [75, 76] occur in a data transfer process and are
detected by a destination node, the backward ANS signal path can be
used to inform the source node about the error. Then, the source node
can re-send the data to correct the errors.

• Design a network interface that can o�er better support to the TDM
highway technique. As a complete TDM NoC solution, network inter-
face [77] is always indispensable. In order to support the TDM highway
technique, the network interface also needs to add in a few new func-
tionalities. For example, there should be a decision-making unit at the
network interface to decide when to setup a highway for acceleration
and when to cancel it.

Chapter 4

Spatial Division Multiplexing NoC

This chapter summarizes our research on Spatial Division Multiplexing (SDM)
based circuit switched NoC. Particularly, we proposed a new allocator with
maximal matching quality and strong fairness guarantee [Paper D]. It can
be used for allocating channel resources in SDM NoCs. We also proposed
a circuit switched NoC which supports multiple channels (SDM) and mul-
tiple networks. Based on this NoC, we explored the e�ects of several chan-
nel partitioning and con�guration polices [Paper E]. Finally, we analyzed
the respective strengths and weaknesses of circuit switched NoC and packet
switched NoC [Paper F].

4.1 Introduction

4.1.1 An overview on SDM NoC

As the feature size in semiconductor technology scales down, more wires
can be utilized between on-chip routers. Using all the wire resources be-
tween two routers as one wide communication channel becomes awkward
and inadequate in many situations. Therefore, we may need to think about
breaking down the wire resources into several narrower links, which is called
sub-links, to o�er more �exibility. One popular way of organizing these sub-
links is called spatial division multiplexing (SDM) [78, 79, 80, 81, 82], which
interconnects all the sub-links of a router with one crossbar.

The comparison between TDM NoC and SDM NoC is illustrated in Fig-
ure 4.1. With TDM technique, a single link is shared by multiple data �ows

47

48 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

Link 1 Link 2

Link 3

v1

v2

0 1 2 3 4 5 6 7

v1 v1

0 1 2 3 4 5 6 7

v1 v1
v2 v2

v2 v2

node

Time slot

Reserved slot

v2

W=4 W=4

0 1 2 3 4 5 6 7

v1

v2

node

v1

v2

TDM

SDM

CrossbarCrossbar

Figure 4.1: TDM NoC and SDM NoC

by dividing the time of the link into many fractions. Each data �ow only uses
a fraction of the time of the link in an alternating pattern. In comparison,
SDM physically divides a link into sub-links. Each data �ow can occupy one
or several sub-links. All the �ows are physically and spatially isolated.

4.1.2 Properties of SDM NoCs

The advantage of SDM NoC is that established connections are physically
isolated. In other words, after a connection is established, the sub-links
reserved by the connection are exclusively utilized. Thus, advanced end-
to-end communication techniques such as source synchronized data transfer
technique [83, 84, 85, 6, 86] can be utilized in SDM based circuit switched
NoCs. With such techniques, data transfer can su�er less clock uncertainties
and thus bene�t from a higher clock frequency1.

1With source synchronous data transfer technique, the sender sends a clock together
with the data. Since the clock and data travel along the same path, they experience the

4.2. AN ALLOCATOR FOR CHANNEL ALLOCATION 49

The disadvantage of SDM NoCs is that, as the number of sub-links in-
creases, the area spent on the crossbar of a router increases dramatically.
Moreover, if dynamic connection setup method is applied, each router needs
an allocator for sub-link allocation. However, both the area and the criti-
cal timing path of the allocator increases signi�cantly, when the number of
sub-links grows up.

4.2 An allocator for channel allocation

In this section, we present a new allocator designed by us. This allocator
can make an allocation decision within one clock cycle. It also guarantees
maximal matching quality and strong fairness.

4.2.1 Background and problem description

On-chip communication networks often use allocators for resource allocation
purpose. For example, if we want to dynamically set up connections in a
distributive way, we have to allocate output channels in each router indi-
vidually according to the setup requests [87]. Besides, in virtual channel
based packet switched NoCs, an allocator is also needed inside each router
to allocate virtual channels for packets during run time [3].

We illustrate the allocation problem in Figure 4.2. Suppose two channel
setup requests arrive at a router simultaneously and each of them demands
an output channel from East output direction. If we de�ne the setup requests
as requesters and the output channels of as resources, an allocation problem
is about how to allocate resources to their requesters.

Out 1

Out 2

Request 1

Input request 1

Out 1

Out 2

In 1

In 2

Request 2

Input request 2

in1

Figure 4.2: Illustration of a channel allocation problem in NoC

similar delay and jitter. At the receiver side, data is re-sampled with the incoming clock.

50 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

Allocator inside a system is responsible for solving such allocation prob-
lems. It performs a matching between resources and the requesters. A
matching is a distribution of resources to requesters satisfying the following
three rules [88]:

• Only if the corresponding request exists, a resource can be granted to
the requester.

• Each resource is at most granted to one requester.

• Each requester is at most granted once.

Two criteria [89, 88] are often used to evaluate an allocator. One is
matching quality, and the other is fairness.

Matching quality refers to how well resources can match the needs of
the requesters. It can be classi�ed into Maximum matching and Maximal
matching (refer to Paper D and [88] for detailed de�nitions). Maximum
matching is often too costly to be realized in hardware. However, maximal
matching is achievable. Maximal matching refers to that the resources are
distributed in such a way that no additional requests can be served without
removing existing grants.

Fairness [89] can be classi�ed into strong fairness and weak fairness [90,
91]. Intuitively, fairness is about how requesters are served in proportion
to their relative request rates. In practice, strong fairness often means that
persistently active requesters are served in a periodic sequence equally often,
while weak fairness only guarantees that each active requester is eventually
granted, without any guarantee on the service behavior and the service rate.

Allocators designed for NoC confront many constraints. Firstly, since
they are hardware based, the allocation algorithms have to compromise for
hardware cost. Secondly, the allocator is desirable to work out an allocation
decision within one clock cycle [89, 3]. This is due to the performance of a
NoC is very sensitive to the delay in each router.

Because of these constraints, allocators used in NoC often su�er from
drawbacks in either matching quality or fairness. For example, on one hand,
the separable-input-�rst (SIF) and separable-output-�rst (SOF) [3, 92, 89]
allocators utilize two-stage round-robin arbitrations to ensure strong fairness.
However, they cannot guarantee the maximal matching quality. On the other
hand, the wave-front (WVF) [93, 94, 95, 92], rectilinear-propagation-arbiter

4.2. AN ALLOCATOR FOR CHANNEL ALLOCATION 51

(RPA) and diagonal-propagation-arbiter (DPA) [96] allocators provide max-
imal matching quality. However, they have no or only weak fairness guaran-
tees.

Although other kinds of allocators, such as SPAA [97], iSlip [98], D2DDR
[99], provide both maximal matching quality and strong fairness, they take
too many clock cycles to work out an allocation, since these allocation al-
gorithms need several iterations to optimize their allocation decisions. As a
result, it is infeasible to use them in NoC environment.

For general matching problems, no existing solution is known to meet
the constraints on timing while overcoming the shortcomings on matching
quality and fairness.

4.2.2 A fair and maximal allocator for HRA

By taking a close look at the allocation problems in NoCs, frequently we
encounter a special kind of allocation problems, which is named as homo-
geneous resource allocation (HRA) problem. For this kind of problems, we
propose a single-cycle allocator to guarantee both maximal matching and
strong fairness.

HRA problems in NoCs

The term homogeneous resources in our de�nition refers to a class of re-
sources that have the same functionality and can be used interchangeably.
homogeneous resource allocation problem obeys two more rules besides the
three rules aforementioned in section 4.2.1:

• For each requester, all desired resources should belong to the same
class;

• Any resource in a class can be granted to the requester which asserts
requests on this class.

As Figure 4.3 suggests, HRA problems commonly exist in the systems
which can be modeled by a multi-queue and multi-server model. In such a
system, the allocation of servers to serve input queues constitutes an HRA
problem if all servers are identical and can be used interchangeably. In this
model, the matching quality of the allocator describes how well idle servers
can discover and serve non-empty queues e�ciently and without con�icts.

52 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

Homogeneous allocation

S

S

S

Servers

Input queues
Allocator

Figure 4.3: Illustration for homogeneous resource allocation problem

The fairness of the allocator a�ects the service sequence and service frequency
on input queues. This example suggests that the HRA problem revealed by
us exists in di�erent kinds of NoCs as well as in other on-chip applications,
as long as they can obey the multi-queue and multi-server model. In NoC
design practices, HRA may exist in circuited switched NoC, for example,
SDM based channel allocation; or in packet switched NoC, such as virtual
channel allocation.

We can use a matrix with rows representing requesters and columns rep-
resenting resources to express a homogeneous resource allocation problem.
For example, as illustrated in Figure 4.4, input channels 0, 1, 3 (marked as
ch0, ch1, ch3 in the �gure) each requests a channel from output direction
1. Input channel 2 (ch2) requests a channel from output direction 2. It is
an HRA problem since 1) each input channel (requester) just has one de-
sirable output direction (resource class), and 2) any channel (resource) of a
requested output direction can satisfy the need of a requester.

An HRA problem has the properties that 1) the request matrix can be
split into sub-matrices based on resource classes, and 2) each of the sub-
matrices can be merged into a single column, as described in Figure 4.4. As
a result, we can assign an allocator to each reduced sub-matrix to solve the
allocation individually. In such a way, the complexity of the allocator design
can be reduced.

4.2. AN ALLOCATOR FOR CHANNEL ALLOCATION 53

ch0 ch1 ch2 ch3 direction 1 direction 2

ch0 1 1 0 0 1 0

ch1 1 1 0 0 1 0

ch2 0 0 1 1 0 1

ch3 1 1 0 0 1 0in
p

u
t

ch
an

n
el

s
(r

eq
u

es
te

rs
)

output channels
direction 1 direction 2
output channels (resources)

d
ir

ec
ti

o
n

 1
d

ir
ec

to
n

 2

direction 1

1

1

0

1

direction 2

0

0

1

0

2-port

Router

Output direction 1

Input direction 1

In
p

u
t
d

ir
e

c
ti
o

n
 1

o
u

tp
u

t
d

ir
e

c
ti
o

n
 2

ch0 ch1

ch0 ch1

c
h

2
c
h

3

c
h

2
c
h

3

Figure 4.4: Reduction of the request matrix

4.2.3 Single-cycle fair and maximal allocator

We proposed a single cycle fair and maximal allocator to solve each reduced
sub-matrix. The allocator used to solve each reduced matrix contains two
parts: the resource allocation logic part and the priority updating logic part.

Overview of the resource allocation logic

The resource allocation logic makes resource allocation decisions. As de-
picted in Figure 4.5a, a matrix-based structure is applied for making re-
source allocation decisions. We name it as "waterfall" (WTF) because it

54 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

�nds the matching with the help of consecutive rows of arbitration cells. For
an n-requester allocator, it requires n rows.

direction 1

CH 1 CH2

r0

r1

r3

r0

r1

r2

r3

direction 1

CH1 CH2

Grant r1

Grant r0

direction 1

1

1

0

1

`

(a) The water-fall allocation concept

channel 1 channel 2

r0

r1

r2

r3

p0

p1

p2

p3

(b) Rotation of the
start row

Figure 4.5: Overview of the resource allocation logic

We use an example to illustrate how an allocation decision is made by
using the WTF allocation logic. Suppose the allocation logic is used to solve
the reduced request matrix at the output direction 1 in Figure 4.4. Since it
has 2 resources and 4 requesters, the allocator is also composed of 2 columns
and 4 rows of arbitration cells. 3 of the 4 requesters are active, marked by
an "1" of the reduced matrix. The two small dots in Figure 4.5a denote
the availability and grant decision of the two channels of output direction 1,
respectively. In Figure 4.5a, the allocation starts from the top to the bottom,
so that requester r0 get channel 1, then requester r1 get channel 2.

However, in order to guarantee the fairness, we have to roll the allocation
start and the end row at each round. Thus, the structure of the allocation
logic is modi�ed into Figure 4.5b. The allocation start row i can be selected
by assert signal pi. If row i is selected as the start row, due to the looped
structure in Figure 4.5b, the end row becomes (i+ n− 1) mod n, where n is
the total number of rows.

From Figure 4.5b, it seems that the allocation logic needs a looped struc-
ture to roll the start row and end row. However, we proposed a technique to
make it loop-free, as illustrated in the left part of Figure 4.6. For an n-row
allocator, the loop-free structure needs 2n−1 rows. The general idea is that

4.2. AN ALLOCATOR FOR CHANNEL ALLOCATION 55

using the bottom n−1 rows replicates the top n−1 rows, from row 0 to row
n− 2. In this way, rolling of the start and end row is equivalent to selecting
an active area. For example, if an allocation starts in a looped structure
starts from row 1 and ends at row 0, it is equivalent to activate the area in
the loop-free structure from row 1 to row 5, since row 5 replicates row 0, as
illustrated in the left part of Figure 4.6. The right part of Figure 4.6 depicts
the detailed circuits of the loop-free structure. It is implemented entirely by
combinational logic gates, which means that the entire allocation behavior
takes no more than one clock cycle.

E
 (East)

Arbitration cell

N
(North)

S
(South)

W
(West)

p
(p

rio
rit

y)

C (Channel

status)

g (grant)

 11

g11

10

g10

 21

g21

20

 g20

 31

g31

30

g30

 01

g01

00

g00

 11

g11

10

g10

 21

g21

20

g20

 01

g01

00

g00

p0

p1

p2

p3

p0

p1

p2

r0

r1

r2

r3

r0

r1

r2

g

E

S

g

EW

S

Channel 1 Channel 20 0

P

C

N

W

P

N

W

p0

r0

r1

r2

p0

p1

p2

r0

r1

r2

r3

p1

p2

p3

r0

r1

r2

r3

=

Figure 4.6: The loop-free structure of the WTF allocator

Massive round-robin fairness policy

To guarantee the strong fairness, we proposed a Massive Round-Robin (MRR)
policy. Brie�y speaking, our MRR policy states that the last granted re-
quester of the current round will become the end row (has the lowest prior-
ity) in the next round. The start row is acquired by incrementing the end
row by 1. If no request is granted in the current round, the start row and
the end row remain unchanged in the next round.

56 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

The traditional round-robin policy [100, 101, 102] operates on the prin-
ciple that a request that was granted in the current round should have the
lowest priority in the next round. However, such a fairness policy only works
in the situation that no more than one requester granted in a round. In
comparison, our MRR policy extends the round-robin policy and makes it
suitable in the situation that multiple requesters can be granted in a round.

Suppose there are m available resources and n requesters (numbered from
0 to n-1). Given current grants gi, 0 ≤ i ≤ n− 1 for each requester (gi = 1
means granted), and the start row of round t is row k. Then the detailed
algorithm to �nd the start row k′ of round t+1 is depicted in Algorithm 1.

Algorithm 1 Priority updating of MRR policy in m→ n allocation
Require:

Exist unique k, that k ∈ {pk = 1, k ∈ [0, n)} in round t

Ensure:

Find unique k′, k ∈ [0, n) , that pk′ = 1 in round t+ 1
for b = n− 1; b ≥ 0; b = b− 1 do

if g(b+k mod n) = 1 then
k′ = (b+ k) mod n
return (k′+ 1) mod n

return k′ = k

We have implemented the MRR policy on hardware with a loop-free
architecture to control the selection of the start row and the end row of each
allocation round.

For more detailed description of the allocator's architecture, the proof
and evaluation of the fairness mechanism and the performance, please refer
to our Paper D.

4.3 Sub-networks and sub-channels

4.3.1 Problem description

We need to think about three questions when splitting a link into multiple
physical sub-links. (For convenience, in the following discussions, we use the
term sub-link and channel interchangeably.)

4.3. SUB-NETWORKS AND SUB-CHANNELS 57

1. What would be an optimal number of sub-links: as many as possible,
or there are certain limitations?

2. What is the optimal way of organizing the physical sub-links (channels)
of a router? One possible way is to use a crossbar to interconnect
all the channels. This method is called spatial division multiplexing
(SDM). Another possible way is assigning the channels to di�erent
sub-networks.

3. How to dynamically set up a connection which needs multiple sub-links
(channels) to satisfy its bandwidth requirement.

4.3.2 Circuit switched NoC with multiple channels and

multiple networks

Overview

We propose a multi-channel and multi-network circuit switched NoC (Mul-
tiCS). It combines spatial division multiplexing [78, 79], which we call sub-
channels, with sub-networks, as described in Figure 4.7. Sub-channels divide
the wires between two nodes that then can be allocated separately and in-
dependently. Sub-networks are independent parallel physical networks that
connect to the same nodes of a network [103, 104]. A connection between
two nodes can utilize one or several sub-channels, and span one or several
sub-networks.

In Figure 4.7, we use switch block diagrams [105] to reveal the di�er-
ences between sub-channel organization and sub-network organization. With
sub-channel organization, data from an input channel of a router can be
switched to any channel of the desired output direction. However, with the
sub-network organization, data from an input channel can only be switched
to the output channels of the sub-network that the input channel belongs
to. We can observe that organizing the same number of channels into sub-
channels o�ers better switching �exibility [105] than organizing them into
sub-networks, at the cost of a more complex crossbar and channel allocator.

Generally speaking, with the sub-channel organization, the critical timing
path increases as the number of channels grows up. More speci�cally, the
critical timing path for the control path scales up with O(n), where n is the
number of channels. The critical timing path of the data path scales up with

58 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

Resource

Layer 0

Layer
1

Sub-channel Sub-network

Resource

Resource

Figure 4.7: Channel organization methods

O(log(n)). Besides, the area of both control path and data path scales with
O(n2), due to the scale up of the allocator [106] and the crossbar [82, 78].

With sub-network organization, the critical timing path is irrelevant with
the number of channels, while the area increases linearly. Thus, compared
with the sub-channel organization, although the sub-network organization
is inferior in switching �exibility, it is superior in clock frequency and area
cost.

Dynamic connection Setup

We introduce the parallel probe based method Paper A for connection setup
in MultiCS. As a result, the dynamic connection setup no longer relies on

4.4. CIRCUIT SWITCHING VERSUS PACKET SWITCHING 59

an auxiliary packet switched NoC which was commonly used in [81, 87, 46,
72, 80].

However, the parallel probing algorithm proposed in Paper A utilizes
priority based arbitration method to do channel allocation. This allocation
method is not suitable for a router with multiple channels per direction, since
the circuit logic used for priority comparison becomes slow and cumbersome
as the number of channels increases. Thus, we utilize the allocator introduced
in Paper D for channel allocation purpose. Besides, for live-lock avoidance
purpose, since the priority preemption policy in Paper A can no longer be
used, we adopt a method which randomizes the retry interval for failed probes
as a replacement.

Set up connections with multiple channels

We proposed two schemes for setting up connections that have a width re-
quirement of more than one channel width. For example, suppose a connec-
tion has the width requirement of 4 bytes, while the width of each channel
is 2 bytes, then the connection should consist of 2 one-channel connections.

The �rst scheme is called Deterministic Channel Allocation (DCA). DCA
imposes a mandatory requirement on the connection width. For example,
if a connection has a width requirement of 4 bytes and the width of each
channel is 2 bytes, then the connections must consist of 2 one-channel con-
nections; if the width of each channel is 1 byte, the it should be composed
of 4 one-channel connections; any allocation below or above this �gure is
unacceptable.

The second scheme is called Adaptive Channel Allocation (ACA): ACA
scheme has no hard connection width requirement. During the setup phase,
a setup request tries to build as many one-connections as possible from the
source to the destination as possible. However, the �nal connection width
is determined by the number of successfully established one-channel connec-
tions, which depends on the run-time congestion situation of a network.

4.4 Circuit switching versus packet switching

4.4.1 Problem description

Traditionally, circuit switched NoC is considered as a method for o�ering
Quality of Service (QoS) guarantee for communication, e.g. guaranteed

60 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

throughput or guaranteed delay. However, circuit switched NoC can also
achieve high communication performance. Circuit switched NoC has, when
compared to packet switched NoC, a longer setup time, but lower HW com-
plexity and higher clock frequency [107, 108, 109, 110]. Thus, depending
on packet size and throughput requirements, it may exhibit better or worse
average performances.

4.4.2 Analysis and comparison of packet switched NoC and

circuit switched NoC

Intuitions on packet switched NoC

Large packets are detrimental to packet switched NoC. It will incur unbal-
anced usage of links. As illustrated by Figure 4.8, intuitively, when each
packet just contains one �it, the span of idle periods are just made up of
a few cycles and equally distributed between output �ow A and �ow B.
However, when packet size increases, the average span of idle periods grows
wider and wider. Within a short period and with large packets, we may
observe that output �ow A is quite busy, while output �ow B is almost idle.
Such unbalanced usage of links is undesirable, since it is not good for the
exploitation of the bandwidths of a network.

If the packet size is small, we can deal with the burstiness by increasing
the bu�er depth of a Virtual Channel (VC), and re-balance the tra�c �ows
by adding more VCs [111]. With the same injection rate, large packets
are detrimental to packet switched NoC since they increase the needs on
both sides. The longer the packets, the more VCs and bu�ers are required
to compensate the performance loss. Unfortunately, both VC and bu�er
are expensive, especially that adding virtual channels can lower the clock
frequency. Thus, we can imagine that, if packets are long enough, they are
almost impossible to be well handled by packet switched NoC with acceptable
cost.

Intuitions to circuited switched NoC

On the other hand, circuit switched NoC prefers large packets. As we know,
in order to deliver data with a circuit switched NoC, we need to have two
phases.

4.4. CIRCUIT SWITCHING VERSUS PACKET SWITCHING 61

A B A A B B A

A B B A A B B

A A A A A A

B B B B B B B

IN 1

IN 2

Output A

Output B

B B A A A A A

A AA A A B B

A A A A A A A

B B BB

IN 1

IN 2

Output A

Output B

Small packets

Large packets

Figure 4.8: Unbalanced tra�c caused by large packets in packeted switched
NoC using round-robin arbitration

• Connection setup phase. A connection setup attempt is not guaranteed
to succeed. To successfully set up a connection, it needs to retry failed
setup attempts.

• Data transfer phase. Data transfer can be launched only when the
connection has been established.

Setup
Data

transfer
t1 t0

succeeded (1-α)

fa
ile

d
 (

α
)

new transfer

Figure 4.9: Markov model for circuit switched NoC

We can use a Markov model to describe the connection setup and data
transfer phases of a circuit switched NoC, as shown in Figure 4.9. Suppose
for each setup attempt, the failure probability is α, and the average time
spent on each setup attempt is t1. Suppose further that the average data

62 CHAPTER 4. SPATIAL DIVISION MULTIPLEXING NOC

transfer takes time t0. Then, we have normalized throughput as

TH =
t0

t0 +
t1

1−α

As the packet size grows, data transfer time t0 increases accordingly.
Therefore, we can observe that the normalized throughput of circuit switched
NoC goes up as the packet size increases.

Thus, we may conjecture that, as the packet size increases, the per-
formance curve of circuit switched NoC and performance curve of packet
switched NoC may have a cross point, since one rises and the other falls.

Architectural analysis of packet switched NoC and circuit

switched NoC

We compare the structure of packet switched NoC with circuit switched NoC.
For a packet switched NoC, the critical timing path length tp depends on
the virtual channel (VC) allocator. Even with the most advanced allocator
design [112, 113], the latency of an allocator still scales up with O(log(mq)),
wherem is the number of output ports and q is the number of virtual channels
per port.

For a circuit switched NoC, assuming data path and control path can have
di�erent clocks (applying preferrable source synchronized data transfer). For
control path, its critical timing path length tc is made up of an m-port arbiter
(suppose no SDM channel sharing), plus some additional combination logic
circuit delay. For the critical timing path of data path td, it is mainly an
m-port crossbar delay, which is about O(log(m)).

Therefore, the control path length tc of a circuit switched NoC can be
close to, or shorter than the critical timing path length tp of a packet switched
NoC, while the data path td of a circuit switched NoC is much smaller than
tp.

Conclusions about the comparison

We study the performances of circuit switched NoC and packet switched
NoC by assigning practical values to tp, tc, td getting from example designs.
For packet switched NoC, we use a classical input-bu�ering virtual channel
(VC) wormhole router architecture with a SIF VC allocator. For circuit

4.5. FUTURE WORK 63

switched NoC, we use our circuit switched NoC with a dynamic connection
setup method.

The evaluation results obey our intuition and analysis. The general con-
clusion is that circuit switched NoC has better performance when the packet
size is large; whereas packet switched NoC favors small packets. For medium
size packets, packet switched NoC is better than circuit switched NoC only
when the overall tra�c load is high.

4.5 Future work

In this chapter, we have introduced our works related to multi-channel circuit
switched NoCs. The future work could be focused on the following aspects:

• In-depth optimization of the architecture of the water-fall allocator.
Currently, the critical timing path of the water-fall allocator scales up
with O(n), where n is the number of requesters. We will try to explore
techniques which can reduce it to O(log(n)).

• Research on the techniques that enhance the success probability of
multi-channel connection setup. We may apply a certain control mech-
anism based on feedback information to avoid the collision between
setup requests and thus enhance the success probability.

• Implementation and evaluation of mixed packet and circuit switched
NoCs. We have evaluated the pros and cons of circuit switched NoC
and packet switched NoC, respectively. We think that in real appli-
cations, combining them together may achieve an even better perfor-
mance. It will be an interesting topic on how to e�ciently design and
utilize packet switched and circuit switched NoCs together.

Chapter 5

Summary

This chapter summarizes the thesis and points out the future directions.

5.1 Thesis summary

Compared with packet switched NoC, circuit switched NoC has advantages
in QoS guarantee, separation of control path and data path, smaller cost
on bu�ers, and sometimes a high operating clock frequency. However, in
the past decade, circuit switched NoC is not studied as intensively as packet
switched NoC. In this thesis, we introduce our researches on circuit switched
NoCs. We have focused on dynamic connection setup, time division multi-
plexing, and spatial division multiplexing.

• Traditionally, distributed dynamic connection setup in circuit switched
NoC tries to use routing algorithms designed for packet switched NoC
to search paths for connections. However, this results in low setup
success probability, since the path diversity is failed to be explored.
We propose a parallel probing algorithm to explore the path diversity
and enhance the connection setup success rate. The merits of our
algorithm are that, on one hand, it tries to search as many as possible
paths in parallel. One the other hand, it tries to reduce the overhead
of a connection setup attempt by removing the redundant paths as
soon as possible. We have e�ciently implemented this algorithm in
hardware.

65

66 CHAPTER 5. SUMMARY

• TDM technique has been widely used in circuit switched NoCs for link
sharing. However, the usage of TDM technique makes the establish-
ment of connection di�cult and the link bandwidth utilization low.
We propose a double time-wheel technique to enable the utilization of
probe based setup method in dynamic TDM connection setup. With
this technique, the di�culties on TDM connection setup can be over-
come and the hardware cost can also be reduced. Besides, we proposed
a highway technique to enhance the link utilization of TDM NoCs.

• SDM is another popular link sharing method for circuit switched NoC.
To better support the dynamic connection setup in SDM NoCs, we
propose a single cycle allocator that guarantees both maximal matching
quality and strong fairness. We design a MultiCS NoC which supports
both SDM and sub-network to organize channels. A parallel probe
based connection setup method is implemented in this NoC. Based on
this NoC, we have investigated which is the optimal way of organizing
multiple channels. Moreover, we have made a comparison between
circuit switched NoC and packet switched NoC.

5.2 Future directions

Based on our current research results and according to our current consid-
erations, we can continue on the following directions.

• Extending the parallel probing algorithm. Currently, our parallel prob-
ing path search algorithm is designed for mesh topology. However, this
algorithm can be utilized for other topologies as well. As along as mul-
tiple minimal paths exist between two nodes on a certain topology,
our parallel probing algorithm bene�ts the path search and connection
setup.

• Exploring fault tolerance techniques in circuit switched NoC. First, we
can extend the parallel probing algorithm for fault tolerance purpose.
The parallel probing algorithm can tolerate a certain magnitude of path
failures, since it searches the entire possible minimal paths between
a source and a destination. It can �nd a fault-free path as long as
the path exists. Second, the double time-wheel technique can also be
utilized in error correction. For example, if a transient fault happens on

5.2. FUTURE DIRECTIONS 67

a connection and causes a �it error, when the destination node detects
the error, it can send a message through the backward path to notify
the source node about the error. Then, the source node can resend the
�it for error correction purpose.

• Providing multicast support in circuit switched NoC. Multicast com-
munication is required by many practical applications, e.g. shared
cache invalidation in a many-core system. In current stage, our work
mainly focuses on the setup of unicast connections. However, it is pos-
sible to build up multicast connections by extending our current work.
For example, with the parallel probing algorithm, a tree based multi-
cast structure can be readily established with a single setup endeavour.
However, in order to implement this feature, we need to solve tricky
issues like contentions of setup requests, �ow control on the multicast
tree and so on.

• Exploring TDM techniques for asynchronous routers. In practice, quite
often the NoCs are mesochronous, or even asynchronous. In this sit-
uation, keeping all the routers having a unanimous agreement on the
slot time is not an easy task. There are tricky issues in slot counter
resetting and updating [8, 114, 115, 116]. However, we might be able
to relax the requirement on slot time synchronization. For example,
instead of requiring a unanimous agreement on the global notion of
time, we might just demand all the neighboring routers updating their
slot time together. In such a way, we might be able to reduce the e�ort
on slot time synchronization.

• Enhancing the connection setup success probability. Intuitively, if we
spawn many setup requests at the same time or within a small pe-
riod, the success probability of each setup request decreases because
of the massive contentions between the setup requests. Therefore, if
every source node can be aware of the contention situation of the net-
work and schedule the setup requests to reduce contentions, the success
probability of each setup attempt can be enhanced, setup delay can be
reduced and throughput can be increased due to the reduction in the
time spent on retrying failed setup requests.

• Application of the proposed techniques. In this thesis, we have showed
our novel techniques such as parallel probing, double time-wheel, TDM-

68 CHAPTER 5. SUMMARY

highway, WTF allocator and so on. In the future, we will study which
kind of real applications can be bene�ted from our techniques, and how
to deploy our techniques in real applications.

Bibliography

[1] K. DeHaven, �Extensible processing platform ideal solution for a wide
range of embedded systems,� Extensible Processing Platform Overview
White Paper, 2010.

[2] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, �The
nostrum backbone-a communication protocol stack for networks on
chip,� in Proceedings of 17th International Conference on VLSI Design,
2004, pp. 693�696.

[3] S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan,
and L. Peh, �Approaching the theoretical limits of a mesh NoC
with a 16-node chip prototype in 45nm SOI,� in Proceedings of
ACM/EDAC/IEEE Design Automation Conference (DAC'12), 2012,
pp. 398 �405.

[4] P. Guerrier and A. Greiner, �A generic architecture for on-chip packet-
switched interconnections,� in Proceedings of Design, automation and
test in Europe conference Exhibition (DATE'00), 2000, pp. 250�256.

[5] F. Moraes, N. Calazans, A. Mello, L. MÃ¶ller, and L. Ost, �HERMES:
an infrastructure for low area overhead packet-switching networks on
chip,� Integration, the VLSI Journal, vol. 38, no. 1, pp. 69�93, 2004.

[6] P.-H. Pham, J. Park, P. Mau, and C. Kim, �Design and implementation
of backtracking wave-pipeline switch to support guaranteed through-
put in network-on-chip,� IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 20, no. 2, pp. 270 �283, 2012.

69

70 BIBLIOGRAPHY

[7] P. Wolkotte, G. Smit, N. Kavaldjiev, J. Becker, and J. Becker, �Energy
model of networks-on-chip and a bus,� in Proceedings of International
Symposium on System-on-Chip, 2005, pp. 82 �85.

[8] R. A. Stefan, A. Molnos, and K. Goossens, �dAElite: A TDM NoC
supporting QoS, multicast, and fast connection set-up,� IEEE Trans-
actions on Computers, vol. 63, no. 3, pp. 583�594, 2014.

[9] P.-H. Pham, P. Mau, J. Kim, and C. Kim, �An on-chip network fab-
ric supporting coarse-grained processor array,� IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1
�5, 2012.

[10] C. Hilton and B. Nelson, �A �exible circuit switched NOC for FPGA
based systems,� in Proceedings of International Conference onField
Programmable Logic and Applications, 2005, pp. 191 � 196.

[11] H. Zhang, �Service disciplines for guaranteed performance service in
packet-switching networks,� Proceedings of the IEEE, vol. 83, no. 10,
pp. 1374�1396, 1995.

[12] Y. Ben-Itzhak, I. Cidon, and A. Kolodny, �Delay analysis of worm-
hole based heterogeneous NoC,� in Proceedings of the �fth IEEE/ACM
International Symposium on Networks on Chip (NoCS'11), 2011, pp.
161�168.

[13] I. Nousias and T. Arslan, �Wormhole routing with virtual channels
using adaptive rate control for network-on-chip,� in Proceedings of
the First NASA/ESA Conference on Adaptive Hardware and Systems
(AHS'06), 2006, pp. 420�423.

[14] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, �Virtual channels in
networks on chip: implementation and evaluation on HERMES NoC,�
in Proceedings of the 18th annual symposium on Integrated circuits and
system design, 2005, pp. 178�183.

[15] A. Agarwal, C. Iskander, and R. Shankar, �Survey of network on chip
(NoC) architectures & contributions,� Journal of engineering, Com-
puting and Architecture, vol. 3, no. 1, pp. 21�27, 2009.

BIBLIOGRAPHY 71

[16] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, �QNoC: QoS archi-
tecture and design process for network on chip,� Journal of systems
architecture, vol. 50, no. 2, pp. 105�128, 2004.

[17] A. Jantsch et al., �The nostrum network-on-chip,� Royal Institute of
Technology, Stockholm, 2003.

[18] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, �A recon�g-
urable fault-tolerant de�ection routing algorithm based on reinforce-
ment learning for network-on-chip,� in Proceedings of the Third ACM
International Workshop on Network on Chip Architectures, 2010, pp.
11�16.

[19] M. Coenen, S. Murali, A. Ruadulescu, K. Goossens, and G. De Micheli,
�A bu�er-sizing algorithm for networks on chip using TDMA and
credit-based end-to-end �ow control,� in Proceedings of the 4th ACM
International conference on Hardware/software codesign and system
synthesis, 2006, pp. 130�135.

[20] C. Schuck, S. Lamparth, and J. Becker, �artNoC - a novel multi-
functional router architecture for organic computing,� in Proceedings
of International Conference on Field Programmable Logic and Appli-
cations(FPL'07), 2007, pp. 371�376.

[21] N. Kavaldjiev, G. J. Smit, P. G. Jansen, and P. T. Wolkotte, �A virtual
channel network-on-chip for GT and BE tra�c,� in IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and Ar-
chitectures, 2006, pp. 6�pp.

[22] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A. Radulescu,
and E. Rijpkema, �A design �ow for application-speci�c networks on
chip with guaranteed performance to accelerate SOC design and veri-
�cation,� in Proceedings of the conference on Design, Automation and
Test in Europe (DATE'05), 2005, pp. 1182�1187.

[23] K. Goossens, �Formal methods for networks on chips,� in Fifth Inter-
national Conference on Application of Concurrency to System Design
ACSD'05, 2005, pp. 188 � 189.

72 BIBLIOGRAPHY

[24] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens, �A TDM NoC
supporting QoS, multicast, and fast connection set-up,� in Proceed-
ings of the conference on Design, Automation and Test in Europe
(DATE'12), 2012, pp. 1283�1288.

[25] K. Goossens, J. Dielissen, and A. Radulescu, �Æthereal network on
chip: concepts, architectures, and implementations,� IEEE Design &
Test of Computers, vol. 22, no. 5, pp. 414�421, 2005.

[26] A. Hansson, M. Subburaman, and K. Goossens, �aelite: A �it-
synchronous network on chip with composable and predictable ser-
vices,� in Proceedings of the conference on design, automation and test
in Europe (DATE'03), 2009, pp. 250�255.

[27] J. Hu and R. Marculescu, �Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints,� in Proceedings of Design, Automation and Test in Europe
Conference and Exhibition (DATE'14), vol. 1, 2004, pp. 234�239.

[28] A. Hansson, K. Goossens, and A. Radulescu, �A uni�ed approach to
constrained mapping and routing on network-on-chip architectures,�
in Proceedings of the 3rd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, 2005, pp. 75�80.

[29] T. Marescaux, B. Bricke, P. Debacker, V. Nollet, and H. Corporaal,
�Dynamic time-slot allocation for QoS enabled networks on chip,� in
Proceedings of the 3rd IEEE Workshop on Embedded Systems for Real-
Time Multimedia, 2005, pp. 47�52.

[30] R. Stefan and K. Goossens, �A TDM slot allocation �ow based on mul-
tipath routing in NoCs,� Microprocessors and Microsystems, vol. 35,
no. 2, pp. 130�138, 2011.

[31] S. Stuijk, T. Basten, M. Geilen, A. H. Ghamarian, and B. Theelen,
�Resource-e�cient routing and scheduling of time-constrained network-
on-chip communication,� in Proceedings of the 9th EUROMICRO Con-
ference on Digital System Design: Architectures, Methods and Tools
(DSD'06), 2006, pp. 45�52.

BIBLIOGRAPHY 73

[32] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, �A statically
scheduled time-division-multiplexed network-on-chip for real-time sys-
tems,� in Proceedings of the Sixth IEEE/ACM International Sympo-
sium on Networks on Chip (NoCS'12), 2012, pp. 152 �160.

[33] R. Stefan and K. Goossens, �Multi-path routing in time-division-
multiplexed networks on chip,� in Proceedings of International Confer-
ence on Very Large Scale Integration (VLSI-SoC), 2009, pp. 109�114.

[34] L. Tong, Z. Lu, and H. Zhang, �Exploration of slot allocation for On-
Chip TDM virtual circuits,� in Proceedings of Euromicro Conference
on Digital System Design, Architectures, Methods and Tools (DSD'09),
2009, pp. 127�132.

[35] Z. Lu and A. Jantsch, �Slot allocation using logical networks for TDM
virtual-circuit con�guration for network-on-chip,� in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD'07), 2007, pp. 18�25.

[36] B. Akesson, A. Minaeva, P. Sucha, A. Nelson, and Z. Hanzalek, �An
e�cient con�guration methodology for time-division multiplexed single
resources,� in Proceedings of Real-Time and Embedded Technology and
Applications Symposium (RTAS'15), 2015, pp. 161�171.

[37] Z. Lu and A. Jantsch, �TDM virtual-circuit con�guration for network-
on-chip,� IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 8, pp. 1021 �1034, 2008.

[38] H. Schwarz, D. Marpe, and T. Wiegand, �Overview of the scalable
video coding extension of the H. 264/AVC standard,� IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.
1103�1120, 2007.

[39] R. Stefan, A. B. Nejad, and K. Goossens, �Online allocation for
contention-free-routing NoCs,� in Proceedings of ACM Interconnec-
tion Network Architecture: On-Chip, Multi-Chip Workshop (INA-
OCMC'12), 2012, pp. 13�16.

[40] R. Stefan, Resource Allocation in Time-Division-Multiplexed Networks
on Chip. Delft University of Technology, 2012.

74 BIBLIOGRAPHY

[41] O. Moreira, J. J.-D. Mol, and M. Bekooij, �Online resource manage-
ment in a multiprocessor with a network-on-chip,� in Proceedings of the
2007 ACM symposium on Applied computing, 2007, pp. 1557�1564.

[42] D. Wiklund and D. Liu, �SoCBUS: switched network on chip for hard
real time embedded systems,� in Proceedings of Parallel and Distributed
Processing Symposium, 2003, pp. 8�15.

[43] M. Winter and G. Fettweis, �Guaranteed service virtual channel allo-
cation in NoCs for run-time task scheduling,� in Proceedings of Design,
Automation Test in Europe Conference Exhibition (DATE'11), 2011,
pp. 1�6.

[44] ��, �A network-on-chip channel allocator for run-time task schedul-
ing in multi-processor system-on-chips,� in Proceedings of the 11th EU-
ROMICRO Conference on Digital System Design Architectures, Meth-
ods and Tools (DSD'08), 2008, pp. 133 �140.

[45] D. Liu, D. Wiklund, E. Svensson, O. Seger, and S. Sathe, �SoCBUS:
The solution of high communication bandwidth on chip and short
TTM,� in Proceedings of Real-Time and Embedded Computing Con-
ference, 2002.

[46] A. K. Lusala and J. Legat, �Combining SDM-based circuit switching
with packet switching in a NoC for real-time applications,� in Pro-
ceedings of IEEE International Symposium on Circuits and Systems
(ISCAS'11), 2011, pp. 2505�2508.

[47] J. Heisswolf, R. König, and J. Becker, �A scalable NoC router design
providing QoS support using weighted round robin scheduling,� in Par-
allel and Distributed Processing with Applications (ISPA), 2012 IEEE
10th International Symposium on, 2012, pp. 625�632.

[48] F. Pakdaman, A. Mazloumi, and M. Modarressi, �Integrated circuit-
packet switching NoC with e�cient circuit setup mechanism,� The
Journal of Supercomputing, pp. 1�21, 2014.

[49] P.-H. Pham, P. Mau, J. Kim, and C. Kim, �An on-chip network fab-
ric supporting coarse-grained processor array,� IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,, vol. 21, no. 1, pp. 178�
182, 2013.

BIBLIOGRAPHY 75

[50] A. M. Hinz, �Pascal's triangle and the tower of hanoi,� American Math-
ematical Monthly, pp. 538�544, 1992.

[51] P. E. Black, �Manhattan distance,� Dictionary of Algorithms and Data
Structures, vol. 18, p. 2012, 2006.

[52] A. K. Lusala and J. Legat, �Combining circuit and packet switching
with bus architecture in a NoC for real-time applications,� in Pro-
ceedings of IEEE International Symposium on Circuits and Systems
(ISCAS'10), 2010, pp. 2880�2883.

[53] A. K. Lusala and J.-D. Legat, �A SDM-TDM-based circuit-switched
router for on-chip networks,� ACM Transactions on Recon�gurable
Technology and Systems (TRETS), vol. 5, no. 3, p. 15, 2012.

[54] A. K. Lusala and J. Legat, �A hybrid router combining SDM-based
circuit swictching with packet switching for on-chip networks,� in Pro-
ceedings of International Conference on Recon�gurable Computing and
FPGAs (ReConFig'10), 2010, pp. 340�345.

[55] P.-H. Pham, J. Park, P. Mau, and C. Kim, �Design and implementation
of backtracking wave-pipeline switch to support guaranteed through-
put in network-on-chip,� IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 20, no. 2, pp. 270�283, 2012.

[56] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir,
and M. J. Irwin, �Fault tolerant algorithms for network-on-chip inter-
connect,� in Proceedings. IEEE Computer society Annual Symposium
on VLSI, 2004, pp. 46�51.

[57] V. Rantala, T. Lehtonen, and J. Plosila, Network on chip routing al-
gorithms. Citeseer, 2006.

[58] Y. Xu, J. Zhou, and S. Liu, �Research and analysis of routing algo-
rithms for NoC,� in Proceedings of the 3rd International Conference
on Computer Research and Development (ICCRD'11), vol. 2, 2011,
pp. 98�102.

[59] U. Y. Ogras, J. Hu, and R. Marculescu, �Key research prob-
lems in NoC design: a holistic perspective,� in Proceedings of the
3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, 2005, pp. 69�74.

76 BIBLIOGRAPHY

[60] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings,
�Fixed priority pre-emptive scheduling: An historical perspective,�
Real-Time Systems, vol. 8, no. 2-3, pp. 173�198, 1995.

[61] T. Bjerregaard and S. Mahadevan, �A survey of research and practices
of network-on-chip,� ACM Computing Surveys (CSUR), vol. 38, no. 1,
p. 1, 2006.

[62] J. Zhang and H. Gu, �A partially adaptive routing algorithm for Benes
network on chip,� in Proceedings of the 2nd IEEE International Confer-
ence on Computer Science and Information Technology (ICCSIT'09),
2009, pp. 614�618.

[63] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou,
L. Benini, and G. De Micheli, �NoC synthesis �ow for customized do-
main speci�c multiprocessor systems-on-chip,� IEEE Transactions on
Parallel and Distributed Systems, vol. 16, no. 2, pp. 113�129, 2005.

[64] F. Samman, T. Hollstein, and M. Glesner, �Adaptive and deadlock-free
tree-based multicast routing for networks-on-chip,� IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 7, pp.
1067�1080, 2010.

[65] W. Hu, Z. Lu, A. Jantsch, and H. Liu, �Power-e�cient tree-based
multicast support for networks-on-chip,� in Proceedings of the 16th
Asia and South Paci�c Design Automation Conference, 2011, pp. 363�
368.

[66] K. Goossens and A. Hansson, �The aethereal network on chip after
ten years: goals, evolution, lessons, and future,� in Proceedings of the
47th ACM/IEEE Design Automation Conference (DAC'10), 2010, pp.
306�311.

[67] K. Goossens, J. Dielissen, J. v. Meerbergen, P. Poplavko, A. R dulescu,
E. Rijpkema, E. Waterlander, and P. Wielage, �Guaranteeing the qual-
ity of services in networks on chip,� in Networks on Chip. Springer
US, 2004-01-01, pp. 61�82.

[68] T. Marescaux and H. Corporaal, �Introducing the SuperGT network-
on-chip; SuperGT QoS: more than just GT,� in Proceedings of the

BIBLIOGRAPHY 77

44th ACM/IEEE Design Automation Conference (DAC'07), 2007, pp.
116�121.

[69] Y. Wang, K. Zhou, Z. Lu, and H. Yang, �Dynamic TDM virtual circuit
implementation for NoC,� in Proceedings of IEEE Asia Paci�c Con-
ference on Circuits and Systems (APCCAS'08), 2008, pp. 1533�1536.

[70] J. Sparsø, E. Kasapaki, and M. Schoeberl, �An area-e�cient network
interface for a TDM-based Network-on-Chip,� in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE'13),
2013, pp. 1044�1047.

[71] N. Concer, A. Vesco, R. Scopigno, and L. P. Carloni, �A dynamic and
distributed TDM slot-scheduling protocol for QoS-oriented networks-
on-chip,� in Proceedings of IEEE 29th International Conference on
Computer Design (ICCD'11), 2011, pp. 31�38.

[72] J. Yin, P. Zhou, S. S. Sapatnekar, and A. Zhai, �Energy-e�cient time-
division multiplexed hybrid-switched NoC for heterogeneous multicore
systems,� in Proceedings of IEEE 28th International of Parallel and
Distributed Processing Symposium, 2014, pp. 293�303.

[73] U. M. Mirza, F. Gruian, and K. Kuchcinski, �Design space exploration
for streaming applications on multiprocessors with guaranteed service
NoC,� in Proceedings of ACM Sixth International Workshop on Net-
work on Chip Architectures, pp. 35�40.

[74] N. Ma, Z. Lu, and L. Zheng, �System design of full HD MVC decoding
on mesh-based multicore NoCs,� Microprocessors and Microsystems,
vol. 35, no. 2, pp. 217�229, 2011-03.

[75] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. Das,
�Exploring fault-tolerant network-on-chip architectures,� in Proceed-
ings of International Conference on Dependable Systems and Networks
(DSN'06), 2006, pp. 93 �104.

[76] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. De Micheli, �Analysis of error recovery schemes for networks on
chips,� IEEE Design & Test of Computers, vol. 22, no. 5, pp. 434�442,
2005.

78 BIBLIOGRAPHY

[77] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage,
�An e�cient on-chip network interface o�ering guaranteed services,
shared-memory abstraction, and �exible network con�guration,� in
Proccedings of Design, Automation and Test in Europe Conference and
Exhibition (DATE'04), vol. 2, 2004, pp. 878 � 883.

[78] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, and
D. Verkest, �Spatial division multiplexing: a novel approach for guaran-
teed throughput on NoCs,� in Proceedings of the 3rd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis (CODES+ISSS'05), 2005, pp. 81�86.

[79] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor, �Con-
cepts and implementation of spatial division multiplexing for guaran-
teed throughput in networks-on-chip,� IEEE Transactions on Comput-
ers, vol. 57, no. 9, pp. 1182 �1195, 2008.

[80] J. Lim, E. Hunt Siow, Y. Ha, and P. Meher, �Providing both guaran-
teed and best e�ort services using spatial division multiplexing NoC
with dynamic channel allocation and runtime recon�guration,� in Pro-
ceedings of International Conference on Microelectronics (ICM'08),
2008, pp. 329 �332.

[81] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, �A hybrid packet-
circuit switched on-chip network based on SDM,� in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE'09),
2009, pp. 566�569.

[82] C. Gomez, M. Gomez, P. Lopez, and J. Duato, �Exploiting wiring
resources on interconnection network: Increasing path diversity,� in
Proceedings of the 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP'08), 2008, pp. 20 �29.

[83] P. Ou, J. Zhang, H. Quan, Y. Li, M. He, Z. Yu, X. Yu, S. Cui,
J. Feng, S. Zhu et al., �A 65nm 39gops/w 24-core processor with
11tb/s/w packet-controlled circuit-switched double-layer network-on-
chip and heterogeneous execution array,� in Proceedings of IEEE In-
ternational Conference on Solid-State Circuits Conference Digest of
Technical Papers (ISSCC'13), 2013, pp. 56�57.

BIBLIOGRAPHY 79

[84] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta,
�Low-power, high-speed transceivers for network-on-chip communica-
tion,� IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 17, no. 1, pp. 12 �21, 2009.

[85] D. Walter, S. Hoppner, H. Eisenreich, G. Ellguth, S. Henker,
S. Hanzsche, R. Schu�ny, M. Winter, and G. Fettweis, �A source-
synchronous 90gb/s capacitively driven serial on-chip link over 6mm in
65nm CMOS,� in Proceedings of IEEE International Solid-State Cir-
cuits Conference (ISSCC'12), 2012, pp. 180 �182.

[86] A. Mandal, S. P. Khatri, and R. N. Mahapatra, �A fast, source-
synchronous ring-based network-on-chip design,� in Proceedings of
Design, Automation and Test in Europe Conference and Exhibition
(DATE'12), 2012, pp. 1489�1494.

[87] A. K. Lusala and J.-D. Legat, �Combining SDM-based circuit switching
with packet switching in a router for on-chip networks,� International
Journal of Recon�gurable Computing, vol. 2012, pp. 1�16, 2012.

[88] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003-12-18.

[89] D. U. Becker and W. J. Dally, �Allocator implementations for network-
on-chip routers,� in ACM Conference on High Performance Computing
Networking, Storage and Analysis (SC'09), 2009, pp. 52:1�52:12.

[90] G. Costa and C. Stirling, �Weak and strong fairness in CCS,� Infor-
mation and Computation, vol. 73, no. 3, pp. 207�244, 1987-06.

[91] R. J. van Glabbeek and P. Höfner, �CCS: It is not fair!� Acta Infor-
matica, vol. 52, no. 2-3, pp. 175�205, 2015.

[92] Y. Tamir and H.-C. Chi, �Symmetric crossbar arbiters for VLSI com-
munication switches,� IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 1, pp. 13 �27, 1993.

[93] J. G. Delgado-Frias and G. B. Ratanpal, �A VLSI wrapped wave front
arbiter for crossbar switches,� in Proceedings of the 11th Great Lakes
symposium on VLSI (GLSVLSI '01), 2001, pp. 85�88.

80 BIBLIOGRAPHY

[94] J. Delgado-Frias and G. Ratanpal, �A VLSI crossbar switch with
wrapped wave front arbitration,� IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol. 50, no. 1, pp.
135 � 141, 2003-01.

[95] W. Olesinski, H. Eberle, and N. Gura, �PWWFA: The parallel wrapped
wave front arbiter for large switches,� in Proceedings of workshop on
High Performance Switching and Routing (HPSR'07), 2007-06-30, pp.
1 �6.

[96] J. Hurt, A. May, X. Zhu, and B. Lin, �Design and implementation
of high-speed symmetric crossbar schedulers,� in Proceedings of IEEE
International Conference on Communications (ICC '99), vol. 3, 1999,
pp. 1478 �1483.

[97] S. S. Mukherjee, F. Silla, P. Bannon, J. Emer, S. Lang, and D. Webb,
�A comparative study of arbitration algorithms for the Alpha 21364
pipelined router,� in Proceedings of the 10th international conference
on Architectural support for programming languages and operating sys-
tems (ASPLOS'02), 2002, pp. 223�234.

[98] N. McKeown, �The iSLIP scheduling algorithm for input-queued
switches,� IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188 �201, 1999-04.

[99] S. S. Yeob, S. Y. Nam, and D. K. Sung, Desynchronized Two-
Dimensional Round-Robin Scheduler for Input Bu�ered, 2002.

[100] E. L. Hahne, �Round-robin scheduling for max-min fairness in data
networks,� IEEE JOURNAL ON SELECTED AREAS IN COMMU-
NICATIONS, vol. 9, pp. 1024�1039, 1991.

[101] M. A. Iannone, �Round robin schedules.� Mathematics Teacher, vol. 76,
no. 3, pp. 194�95, 1983.

[102] E. L. Hahne, �Round robin scheduling for fair �ow control in data
communication networks.� DTIC Document, Tech. Rep., 1986.

[103] Y. J. Yoon, N. Concer, M. Petracca, and L. Carloni, �Virtual channels
vs. multiple physical networks: a comparative analysis,� in Proceedings
of IEEE Design Automation Conference (DAC'10), 2010, pp. 162�165.

BIBLIOGRAPHY 81

[104] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, �Virtual chan-
nels and multiple physical networks: Two alternatives to improve NoC
performance,� IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 32, no. 12, pp. 1906�1919, 2013.

[105] J. Rose and S. Brown, �Flexibility of interconnection structures for
�eld-programmable gate arrays,� IEEE Journal of Solid-State Circuits,
vol. 26, no. 3, pp. 277 �282, 1991.

[106] S. Liu, A. Jantsch, and Z. Lu, �A fair and maximal allocator for single-
cycle on-chip homogeneous resource allocation,� IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp.
2229�2233, 2014.

[107] M. Angermann, �Di�erences in cost and bene�t of prefetching in
circuit-switched and packet-switched networks,� in Proceedings of In-
ternational Conference on Telecommunications (ICT'03), vol. 2, 2003,
pp. 1084�1090.

[108] K.-C. Chang, J.-S. Shen, and T.-F. Chen, �Evaluation and design
trade-o�s between circuit-switched and packet-switched NOCs for
application-speci�c SOCs,� in Proceedings of ACM/IEEE Design Au-
tomation Conference (DAC'06), 2006, pp. 143 �148.

[109] N. Chin-Ee and N. Soin, �Qualitative and quantitative evaluation of a
proposed circuit switched network-on-chip,� in Proceedings of IEEE In-
ternational Conference on Semiconductor Electronics (ICSE'10), 2010,
pp. 108�113.

[110] ��, �A study on circuit switching merits in the design of network-
on-chip,� in Proceedings of International Conference on Computer and
Communication Engineering (ICCCE'10), 2010, pp. 1�5.

[111] W. J. Dally and B. Towles, �Route packets, not wires: on-chip inter-
connection networks,� in Proceedings of Design Automation Conference
(DAC'01), 2001, pp. 684�689.

[112] H. J. Chao, C. H. Lam, and X. Guo, �Fast ping-pong arbitration for in-
putâ��output queued packet switches,� International Journal of Com-
munication Systems, vol. 14, no. 7, pp. 663�678, 2001.

82 BIBLIOGRAPHY

[113] J. M. JOU and Y. L. LEE, �An optimal round-robin arbiter design
for NoC,� Journal of information science and engineering, vol. 26, pp.
2047�2058, 2010.

[114] E. Kasapaki and J. Sparsø, �Argo: A time-elastic time-division-
multiplexed noc using asynchronous routers,� in Proceedings of IEEE
International Symposium on Asynchronous Circuits and Systems
(ASYNC'14), 2014, pp. 45�52.

[115] I. Kotleas, D. Humphreys, R. Sorensen, E. Kasapaki, F. Brandner,
and J. Sparsø, �A loosely synchronizing asynchronous router for tdm-
scheduled nocs,� in Proceedings of IEEE/ACM International Sympo-
sium on Networks-on-Chip (NoCS'14), 2014, pp. 151�158.

[116] Z. Lu, �Cross clock-domain TDM virtual circuits for networks on
chips,� in Proceedings of IEEE/ACM International Symposium on Net-
works on Chip (NoCS'11), 2011, pp. 209�216.

Paper A

Parallel Probing: Dynamic and

Constant Time Setup Procedure in

Circuit Switching NoC

Shaoteng Liu, Axel Jantsch and Zhonghai Lu

Presented at the Design, Automation Test in Europe Conference
Exhibition (DATE'12), Dresden, German, 2012. Included in the
proceedings, pages: 1289�1294.

83

978-3-9810801-8-6/DATE12/©2012 EDAA

Parallel Probing: Dynamic and Constant Time Setup

Procedure in Circuit Switching NoC
Shaoteng Liu, Axel Jantsch, Zhonghai Lu

KTH Royal Institute of Technology, Sweden
Abstract- We propose a circuit switching Network-on-chip

with a parallel probe searching setup method, which can search

the entire network in constant time, only dependent on the

network size but independent of the network load. Under a

specific search policy, the setup procedure is guaranteed to

terminate in time 3D+6 cycles, where D is the geometric distance

between source and destination. If a path can be found, the

method succeeds in 3D+6 cycles; if a path cannot be found, it fails

in maximum 3D+6 cycles. Compared to previous work, our

method can reduce the setup time and enhance the success rate of

setups. Our experiments show that compared with a sequential

probe searching method, this method can reduce the search time

by up to 20%. Compared with a centralized channel allocator

method, this method can enhance the success rate by up to 20%.

1. INTRODUCTION AND RELATED WORK

Several NoCs offer guaranteed services to meet the QoS

demand of applications [1][2][3][4][5]. For example, some of

them utilize packet switching mechanism with time division

multiplexing channels [2][4][5], while others utilize pure

circuit switching mechanism [1][3]. They all adopt the idea of

setting up a dedicated path before data can be transferred. A

main challenge is how to efficiently search a path and allocate

the communication resources for it.

Some methods try to solve this problem at compilation

time [6][7]. However, as mentioned in [8], they face the

difficulty that applications like H.264 [11] and the possibility

of several applications running in parallel do not allow an

efficient static policy with task mapping and channel

allocation. Thus, dynamic path searching methods are a

flexible alternative.

Winter and Fettweis [2][8] developed a centralized way to

realize dynamic path searching and channel allocation. They

designed a Network-on-chip Channel Allocator for the

Aetherial NoC [5]. One of the nodes is designated as the

“NoCmanager”. Inside this node, a special component called

Hardware Graph Array (HAGAR) is used. HAGAR stores all

channel usage information of the network. If other nodes try to

set up a guaranteed path, they must first send their requests to

the NoCmanager node via a best effort network, which is the

Aetherial packet switching network. Then the NoCmanager

node starts to deal with the request and uses HAGAR to

compute the path. After computation, the NoC manager will
send back the routing information in order to set-up the

guaranteed service path as requested. The NoC Channel

Allocator is a centralized solution for dynamic path

configuration. The advantage is that the NoCmanager node

can work very fast. The disadvantage is that it is not a scalable

solution. Also, since requests are sent via a best effort network

to the “NoCmanager”, the delay of setting up a path is neither

predictable nor guaranteed.

To overcome such a scalability issue, distributed path

searching method was developed. Pham et al. [1] designed a

Backtracking Wave-pipeline circuit switching NoC, which

supports sequential probe search. During the path searching

phase, a probe is sent out. As the probe travels from the source

node towards the destination, it reserves the channels it has

passed for future data transfer. When this probe encounters

congestions, it will backtrack one hop, cancel the last channel

it has booked, and try another way. When this probe finally

reaches the destination, a path is established and the data

transfer phase can be launched. If no path can be found,

eventually the probe will backtrack to the source node. This

distributed method with circuit switching mechanism has the

advantage of supporting many nodes searching their path in

parallel. But the disadvantage is that when the majority of

circuit links are already in use, the backtracking based search

may take a long time.

In this paper, we develop a parallel probe searching

approach. Our work has the following properties:

1) The parallel probing can be combined with several different

retry policies, that lead to different trade-offs and

properties.

2) Under no-retry policy, if a shortest path connection can be

found, it is guaranteed to be found in exactly 3*D +6

cycles; if the search fails, it fails in maximum 3*D+6

cycles.

3) Under retry-for-free-path policy, if a free path exists, it will

always be found in maximum cycles, with N being

the number of nodes.

4) On average our method has shorter setup latency than

previous methods.

5) The switch has a simple structure with an inexpensive and

efficient implementation.

We have simulated our design and compared it with above

mentioned work of [1] and [2]. The results show that our work

has advantages in delay, success rate and area.

2. DETAILS OF PARALLEL PROBING

2.1. Intuition

As shown in Fig. 1, node 1 tries to set-up a path to the

destination node 16. During the first cycle the source node

sends out two probes to the neighboring nodes 2 and 5. In the

second hop each probe splits into two probes and both

continue to travel towards the destination along all possible

minimum paths.

In the third hop node 6 receives two probes from the same

setup request. One of them is cancelled and all the channels it

has booked before are released. However, the channel between

node 1 and node 2 is not released, because it is still needed for

the probe that has travelled further to node 3. In this way a

wavefront of probes travel through the network and reach the

destination on a minimal path. The time is exactly 3D, where

D is the distance in terms of hops, and it takes 3 cycles to

traverse each hop. When a probe successfully reaches the

destination, an acknowledgement is sent back to the source

node.

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

a) In each node a probe may double. b) When two probes meet, one is

cancelled.
Fig. 1 An example of the parallel probe searching method.

Whenever two probes of the same request meet, one of

them is regarded as redundant and is canceled, as shown in

Fig. 1 b), and all channels used only by the canceled probe are

released. The cancellation process proceeds backwards hop by

hop. The switch does a cancellation based on the stored

connectivity information that binds an input port to an output

port. When a cancel signal appears on an output port from a

downstream switch, the corresponding input port is looked up,

the connection is canceled, and the cancel signal is forwarded

upstream to the input port. Applying this mechanism, if

several possible paths exist, one and only one of them can be

finally booked, just as desired.

2.2. Structure of the switch

Fig. 2 shows the interface of each switch to the

neighboring switches and to the local node. In a mesh

topology, every switch is connected to its four neighbors and

to the local resource node. Each link has a duplex data

channel. This data channel is used for carrying the probe

during setup and for transmitting data when a connection has

been established. Each probe is one “flit” length. Every data

channel is associated with an answer (ANS) signal consisting

of 2 bit, which goes in the opposite direction to data channel,

and 1 bit for a Request signal, which travels in the same

direction as data channel. When the request signal is logic „1‟,

a probe search is running or data transfer is active. When

request signal is „0‟, it denotes idle state, and an established

path will be released. The usage of ANS signal is listed in

TABLE 1, which will be introduced in the following section.
TABLE 1 THE USAGE OF ANS (2 BITS)

Value Usage

00 Path search continue/Destination is idle

01 Path cancel due to contention

10 Path cancel due to blockage

11 Path established/Busy destination

2.3. Operation flow

As shown in Fig. 3, our circuit switching network has six

operation phases. The details are explained in the following.

2.3.1. Probe sendout

In this phase probes are generated and sent out. The

request signal is set to „1‟. The probe format is shown in

TABLE 2, which contains source node address, destination

node address, high level priority and low level priority. As a

probe travels inside the network, it books the data channels

together with the associate ANS and request signal. The probe

itself is forwarded to the next node or nodes towards the

destination. When a probe can move forward, the ANS to its

previous node is set to “00”.

A
N

S

D
a

ta
 p

a
th

R
e

q
u

e
st A

N
S

D
a

ta
 p

a
th

R
e

q
u

e
st

ANS

Data path

Request

ANS

Data path

Request

AN
S

D
at

a
pa

th

R
eq

ue
st

AN
S

D
at

a
pa

th

R
eq

ue
st

ANS

Data path

Request

ANS

Data path

Request

A
N

S

D
a

ta
 p

a
th

R
e

q
u

e
st A

N
S

D
a

ta
 p

a
th

R
e

q
u

e
st

Arbitrator

Crossbar

Fig. 2 Signal connection of a 2*2 mesh

Probe

sendout

Channel

confirmed

Channel

temporally

booked

Path

established

Channel

cancelled

Preempted by other

probe

Path search

failed

Fail to book a channel

S
ucceed in booking

a channel

Channels receive

ANS = “11”

All p
robes fa

il t
o

fin
d a path

ANS = “11” comes

back to source node

Fig. 3 Phases of operation

TABLE 2 Probe format

Src.Addr Dest. Addr High Priority Low Priority

2.3.2. Channel temporally booked

A channel has 3 states, which are free, booked and

confirmed. When a probe enters into a node, after winning

arbitration, then

1) If the channels demanded by this probe are in free state,

these channels are booked and switched into booked state.

2) If the channel demanded by this probe has already been

booked by another probe, but this probe has a higher

priority, it can preemptively book this channel. In this case,

the path booked by the old probe will be cancelled.

If a probe succeeds in booking one channel, the ANS

signal will remain “00”.

2.3.3. Channel cancelled

Since a probe can have up to two desired channels in

different directions when it enters a node, if and only if the

probe is unable to book any channels, then we regard this

probe as “failed”. When a probe fails, the channel between the

previous node and the current node is cancelled. Several

factors can cause a probe to fail:

1) Its priority is lower than the probes which are demanding

the same channel. This situation is caused by either the

probe loosing arbitration, or the channel booked by this

probe is preempted by others.

2) Two probes carrying the same set-up request meet at the

same node. One of them succeeds and the other fails.

3) All desired channels are used up by other connections and

are in confirmed state.

If the failure is caused by the case 1), the ANS signal will

be set to “01”. If the failure is due to case 2) or 3), the ANS

signal will be set to “10”. Both “01” and “10” ANS will

inform the previous node to release the channel.

Since a probe may have two desired directions, it is

possible that a probe has case 1) failure in one direction, and

case 2) or 3) failure in the other. In this situation case 1)

always has higher priority.

2.3.4. Channel confirmed

When a probe reaches its destination, the ANS signal is set

to “11” and transferred back. Channels along this probe‟s path

will turn into “confirmed” state after receiving ANS “11”.

Confirmed channels can no longer be preempted.

2.3.5. Path established

Finally, when a source node receives a “11” ANS signal,

then a connection is established and data transfer can

commence.

2.3.6. Path search fail

When the source node receives a “01” or “10” ANS signal,

the path search request has failed, and the reasons are

distinguished as follows:

1) If the ANS is “01”, it means that one of its probes has once

contended with other active probes, and lost because of its

low priority.

2) If the ANS is “10”, it means that the probe has searched the

entire network, but no minimum path is currently available.

Using this distinction, different policies can be applied to

achieve different effects, e.g. see Fig. 11.

2.4. Detailed switch structure

According to the operation flow, the internal structure of a

switch is shown in Fig. 4. It is divided into two parts: control

path and data path. The data path transfers data through the

configured data path crossbar. The control path is used to set

up or tear-down a data path. The control path and data path

share the same input and output wires.

In the control path, there are two crossbars, internal probe

crossbar and control signal crossbar. Besides the crossbars,

there is one arbiter, 5 input and 5 output controllers.

The probe crossbar is used to transfer a probe from one

input to one output. The control signal crossbar is used to

transfer requests and the ANS signal to the corresponding

output.

The arbiter is used to solve contention between input

probes and probes that already book a channel. The arbiter

compares their priority and decides which probe wins.

Inside the input controller there is a channel monitor, a

failure type monitor and an FSM. The channel monitor records

the channels booked by the current probe. If the number of

channels booked by the current probe becomes zero, then the

probe is regarded as “failed”. Whether the ANS signal

transfers back a “01” or a “10” is decided by the failure type

monitor. The failure type monitor remembers the cause of a

failure, as described in section 2.3.3. The possible FSM states

are idle, prepare, booked, cancellation and fixed. Its state

transition graph is shown in Fig. 5 a). For example, when the

ANS signal “11” is received, the input controller changes its

state to “fixed” and transfers the “11” ANS signal to the

previous node.

The output controller monitors and changes the states of

the corresponding channel. An FSM is used inside the output

controller; its states are shown in Fig. 5 b).

A probe needs two clock cycles to travel through the entire

control path.

2.5. Priority strategy

As we mentioned above, contention between probes

carrying different requests is a key point in this parallel

probing method. Therefore, we have to wisely design our

priority policy to solve contention.

Data_West_in

Data_East_in

Data_Resource_in

Data_North_in

Data_South_in

Data_West_out

Data_East_out

Data_Resource_out

Data_North_out

Data_South_out

ANS

Request

failure1 failure

probe

ANS2
ANS1

failure2

Data Path Cross Bar

Control

Signal

Cross bar

Internal

probe

Cross bar

aribitor

select

select

North input controller

ANS

Request
FS

M

failure type

monitor

Channel

monitor

Probe

buffer

Booked

probe

North output controller

ANS

Request

FSM

East input controller

ANS

Request
FS

M

failure type

monitor

Channel

monitor

South input controller

ANS

Request FS

M

failure type

monitor

Channel

monitor

West input controller

ANS

Request FS

M

failure type

monitor

Channel

monitor

Resource input controller

ANS

Request FS

M

failure type

monitor

Channel

monitor

Probe

buffer

Booked

probe

East output controller

ANS

Request

FSM

Probe

buffer

Booked

probe

South output controller

ANS

Request

FSM

Probe

buffer

Booked

probe

West output controller

ANS

Request

FSM

Probe

buffer

Booked

probe

Resouce output controller

ANS

Request

FSM

Fig. 4 Internal structure of a switch

We propose the following priority strategy:

1) The older the “age”, the higher the priority. The “age” here

can be understood as the time (in number of clock cycles)

between current time and the first sent-out time of the

request. The two level priorities are used to represent age.

2) Probes with higher priority can preempt channels booked

by lower priority probes, if channels are in booked state.

This policy is used to avoid live lock cause by mutual

blockage. Consider four requests A:13, B: 42, C: 24,

D: 31 (Fig. 6). If these four requests are sent out at the same

time, then they will block each other. Request A booked

channel 14 and 12, then attempts to take channel 43

and 23. However, channel 43 has been booked by request

B, and 23 by request C. Thus A is blocked by requests C

and B. The situation is similar for requests B, C, and D.

Without preemption, none of these probes can proceed, and

retrying in a deterministic manner will not help. Thus, we use

preemption to ensure at least one of them can preempt the

channels booked by the others and proceed to its destination.

Fixed

Idle

cancel

Booke

d

R
equest ==0

Booked

channel != 0

B
o
o
ke

d
 c

h
a
n
n
e
l=

=
0

N
e
x
t
c
y
c
le

Ans ==11

prepar

e

Request == 1

L
o
o
s
e
 a

ll a
rb

itra
tio

n

Idle

Booked

Replace

&

configureFixed

H
ig

h p
rio

rit
y

pro
be

Ans == 11

Request=
=0

New probe

N
ex

t c
yc

le

R
e
q
u
e
s
t=

=
0

Fig. 5 a) FSM of input controller b) FSM of output controller

3) The source node id is used to avoid the stalemate when

two different probes have the same priority. Rather than

randomly selecting, the winner will be the one with the largest

node id. This determinism leads to a winner-gets-all

arbitration, which is required by retry-for-free-path policy

(introduced in next section). Winner-gets-all arbitration is

depicted in Fig. 6 b), suppose probe A and B with the same

priority are contending for both channels 1 and 2. In winner-

gets-all arbitration, one of them will win both channels,

avoiding the situation that A gets channel 1 and B gets channel

2 which may for instance happen under random selection.

Node 1

(A src)

Node 2

(C src)

Node 4

(B src)

Node 3

(D src)

A

B

B

A

C

D

D C

1

2

2

1

Probe A

Probe A

Probe A

Probe B

Probe B

Probe A

Probe A

Probe B

Not

winner

get all

winner

get all

Fig. 6 a) live lock of probes b) Winner-gets-all

2.6. Time consumed in parallel probe search.

For every switch, it takes two cycles for a probe to traverse

a switch, and it takes 1 cycle for the ANS signal to transfer

back. So, it takes at most 3*D+6 cycles for a probe to travel

from source to destination and send back the ANS signal (D is

the hop distance between source and destination). 6 cycles is

the overhead consumed in the source and destination nodes.

Therefore, in an n*n mesh the worst case for a single search

takes 3*(2*n-2)+6 cycles, no matter if the result is a success or

a fail. In other words, it means the time for every single search

is predictable and bounded, and has a complexity of O(n).

We have studied several policies.

1) No-retry. If a source node receives ANS “01” or “10”,

it will mark the request as “failed”, then pick new request

from the queue and send it out. Since every request just takes

one single search, the maximum set-up time for a request in a

n*n mesh is 3*(2*n-2)+6 cycles.

2) Retry-for-free-path. If the source node receives ANS

“01”, the probe failed due to contention with other active

probes. This means there might be a free path but the probe

failed to find it. After some delay, the source will retry the

request until the ANS becomes “10” or “11”, see Fig. 7Fig. 6.

In experiments the retry interval is fixed to 3*(2*n-2)+6

cycles.

First type

of fail

(ANS=01)

Second

type of fail

(ANS=10)

Succeed

(ANS=11)

Retry

Retry

R
e

tr
y

Fig. 7 Retry-for-free-path policy

The maximum number of retries required for a single

search using retry-for-free-path policy can be calculated. Since

the priority is increasing with the “age” of a probe, as the

number of retries increases, the priority will also increase.

Besides, one source node can only send out one request at a

time, thus during every retry interval, there must be a node

with the highest priority which never loses arbitration.

Suppose at time t, α*n
2
 nodes are sending out requests, where

α is the percentage of nodes which enabled to send out set-up

requests (called master percentage). So the max retry times

for a request to finish a retry-for-free-path search is α*n
2
,

because during previous α*n
2
 -1 retry intervals, α*n

2
-1 other

requests have finished their search, and this one has become

the “oldest” one with the highest priority. It will finish a retry-

for-free-path search without failure due to contention. In this

case the set-up time spent for a single search using this policy

is α*n
2
 *[3(2n-2)+6] cycles. And the time complexity is O(n

3
).

3) Retry-until-success. In this policy, the source node

keeps retrying a request until it successfully sets up a

connection. In this case the worst search time is unbounded,

because it is unknown when a free path becomes available.

3. EXPERIMENT AND SIMULATION RESULTS

3.1. Simulation method

As in Fig. 8, in each node a request generator generates

set-up requests according to certain probability and pushes

them into a queue. A FSM take a request out of the queue and

send it out when the previous request has been accomplished

or abandoned. After sending out a request, the FSM waits for

the ANS signal to decide what to do next. In our experiment,

we have studied the three kind of policies mentioned above.

C
rossbar

A
rbitrator

A
N
S

D
ata path

R
equest

A
N
S

D
ata pathR

equestA
N
S

D
at

a
pa

th

R
eq

ue
st

A
N

S

D
ata path

R
equestSetup

5

Setup

3

Request

out

Setup

request

Send out queue

ANS

Probability

2

Transfer data for a

number of cycles, then

tear down the path

Data_path

request

Setup

2
Setup

4

Fig. 8 experiment setup

3.2. Experiment result

In order to compare with the single probe searching

technique with backtracking, we simulated an 8*8 mesh

network. The simulation was performed under uniform

random traffic of requests. The duration of data transmission

(lifetime) was 400 probe cycles after the path had been

established. The inter-arrival times of requests obey a Poisson

distribution. We used the retry-until-success policy. Each

source sends out 3000 set-up requests, and first 300 and last

300 are discarded because of warm-up and tail phases. The

total delay includes the waiting time for a request in the queue

and the setup delay for a request, which extends from first

time sending until the final success.

The average total delay versus offered load is shown in

Fig. 9. The delay data for sequential probe is extracted from

[1]. Here offered load refers to the duration of a path times

injection rate. Suppose injection rate of requests is 1/2000

cycles, and the duration (lifetime) of a path is 400 cycles, then

the offered load is 400/2000=0.2.

As shown in Fig. 9, our parallel probing outperforms

sequential probe searching with backtracking. For example,

the turning point in our case is delayed until offered load is

0.25, and the delay at 0.2 load is 21% reduced.

In order to compare with the centralized HAGAR solution

[2], we use request success rate versus route rate. The request

success rate denotes the ratio between established and desired

paths and indicates how many of the requested paths could be

established. Route rate refers to the portion of clock cycles in

which a node is used for transferring data [2]. And master

percentage means the percentage of nodes which can send out

set-up requests. They are uniformly randomly distributed in

the system.

We simulated 5,000,000 cycles, of which the first

1,000,000 cycles were discarded as warm up.

However, the success rate should be related to the setup

delay to make it a useful metric. In [2][8] setup delay data is

not reported. In Fig. 10, we use the retry-for-free-path policy

to compare with HAGAR[2]. Our method has a better success

rate when route rate is between 0.1 and 0.8. In the range 0.1-

0.2 parallel probing has a 20% higher success rate.

We also compared a 6*6 network with 200 cycle lifetime.

In this case, parallel probing outperforms HAGAR at every

point. Our method has around 50% improvement over

HAGAR in terms of success rate at route rates 0.8-1.0. Also,

in a 16*16 network with 1000 cycles lifetime parallel probing

is superior by 50% for route rates 0.8-1.0. Due to page

limitation, figures are not listed here.

In addition, we compared the three mentioned policies of

our parallel probe searching method. Here we define send-out

success rate as the ratio between succeeded requests and the

requests sent out from the queue. It indicates the success

probability of a single request after sending it out. The

relationships between route rate and send-out success rate and

delay are shown in Fig. 11 and Fig. 12, respectively. Fig. 12

shows the delays only up to the saturation point. We find that,

1) retry-until-success policy has a 100% send-out success rate,

at the expense of long latency at high network loads. Even in a

saturated network every request eventually gets served, but the

delay is unbounded. 2) The send-out success rate of retry-for-

free-path policy stays around 0.54 when route rate is greater

than 0.3. This is because the maximum speed of sending out

requests becomes less than the speed of generating requests.

The average delay of a request waiting in the queue keeps

increasing. Although more requests are generated, a limitation

exits for the requests that can be sent out during a fixed time

interval. Therefore, the send-out success rate stabilizes even if

the route rate still grows. 3) No-retry policy has the worst

send-out success rate but the best delay performance. In our

experiments the requests generation rate never exceeds the

requests are sent out rate, even as route rate reaches 1.0.

Fig. 9 Path set-up latency performance (8*8 mesh, lifetime 400)

Fig. 10 Comparison of the different Path searching method, for lifetime 200

cycles at 16*16 mesh and master percentage 20% and %50

 Fig. 11 success rate of the 3 policies of parallel probe searching method for a

lifetime of 200 cycles with a 16*16 mesh and master percentage 50%

As mentioned, the total delay of a request is composed of

delay of waiting in the queue and the setup delay, which

extends from the first the time a request is sent out until the

time the request is completed.

For retry-until-success policy, all delay types increase with

the route rate without upper bounds. Some part of the average

total delay and worst total delay curve is not shown in Fig. 12

when the delay was unbounded at that point. The delay in the

queue keeps increasing and dominates at route rates above 0.2.

For the retry-for-free-path policy the average total delay

and worst total delay also goes up with the route rates, and

become unbounded above a route rate of 0.3. But the worst

0

500

1000

1500

2000

0
.1

3

0
.1

4

0
.1

7

0
.2

0

0
.2

5

0
.2

9

0
.3

3

0
.4

0

0
.5

0

0
.6

7

1
.0

0

parallel probe delay

single probe delay

Offered load

A
ve

ra
ge

 t
o

ta
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50% ma, Parrallel probe
50% ma, HAGAR
20% ma, Parallel probe
20% ma, HAGAR

route rate

re
q

u
es

t
 s

u
cc

es
s

ra
te

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

retry until success
retry for free path
no retry

route rate

se
n

d
-o

u
t

su
cc

es
s

ra
te

setup delay is bounded, which is α*n
2
*[3(2n-2)+6]=

 with N=n
2
 being the number of nodes. For a 16*16

mesh with (master percentage) %50, it is 12288 cycles. As

shown in Fig. 12, the worst setup delay observed in our

simulations is 2200 cycles. According to our experience, the

theoretical worst case has a very low probability to occur.

Fig. 12 Delay of the 3 policies of parallel probe searching method for lifetime

200 cycles at 16*16 mesh and master percentage 50%.

For the no-retry policy, the average total delay is around

36 cycles, and goes up slowly with the route rate. The worst

case setup delay is also bounded. In theory it is 3*(2*n-

2)+6=6n=96 cycles in a 16*16 mesh. In our simulations the

worst case observed is exactly 96 cycles.

3.3. Synthesis results

Our switch has been synthesized by using Synopsys

Design compiler with SMIC 90 nm library. The maximum

clock frequency (probe clock) for the control path is 570MHz,

the maximum clock frequency for data path is 1.8 GHz. This

dual-clocking scheme has been well described and

implemented in the work of Pham et al. [1]. It means that the

switch operates at most at 570MHz during probe search stage.

When the path has been established, it can use 1.8 GHz clock

frequency to transfer source synchronized data [1]. In

comparison, the sequential probe of [1] uses 0.18 um process

and can work at 345MHz control path frequency and 923

MHz data path frequency. HAGAR [2] has been synthesized

with FARADAY‟s 130nm UMC library and work at 200 MHz

in an 8*8 mesh and at 50 MHz in a 16*16 mesh.

The area consumption for each switch node is 18733

NAND gates for a data path width of 64bits. Of that the

control path consumes 10,364 NAND gates, and the data path

consumes 8369 NAND gates. Hence, the per-bit area is

18733/64=292 gates. In comparison the sequential probe

switch of [2] uses 12460/16=778 gates per bit.

Compared with the centralized solution with HAGAR,

which has a payload of 68bit (32bit for address, 32 bit for

data. 4bit for read/write/ mode), our solution is also better in

terms of area, see Fig. 13.

4. CONCLUSION

We have proposed a circuit switched NoC with parallel

probing, a parallel method for connection setup. Our

simulation results demonstrate improvements in terms of setup

delay, and success rate compared to previous work at

comparable or reduced area.

Fig. 13 Area consumption of all combined switches.

 The special property of our switch is that the path search

results can be acknowledged within a predictable, very low

time limit under certain policies like retry-for-free-path or no-

retry. In other words, worst case delay can be bounded in

those policies. This property is important for real-time based

applications. Hence, we have shown that parallel probing is an

efficient and cost effective set-up procedure for circuit

switched NoCs that can be used for dynamic circuit

configuration in real-time and high performance applications.

However, due to the relative long setup time and the high

resource usage during setup, it is only suitable for certain

applications. For example, when life time of a path is short, a

packet switching network will outperform our circuit

switching. In future, we will do a comparison to identify the

suitable application domain for circuit switched networks.

Furthermore, we plan to expand the flexibility of our

method. . Currently entire links are reserved for a connection

even if only a fraction of the link bandwidth is required. In

future work we will consider the support for multiple sub-

networks, which allows a connection to use only a fraction of

a link.

5. REFERENCE
[1] P.-H. Pham, J. Park, P. Mau, C. Kim."Design and Implementation of

Backtracking Wave-Pipeline Switch to Support Guaranteed Throughput
in Network-on-Chip.” IEEE Trans. VLSI, vol. 99, 2010.

[2] M. Winter and G.P. Fettweis "Guaranteed service virtual channel

allocation in NoCs for run-time task scheduling." Design, Automation &
Test in Europe Conference & Exhibition (DATE), Page 1-6, March

2011.

[3] D. Wiklund and L. Dake, “SoCBUS: Switched network on chip for hard
real time embedded systems.” In Proc. Int. Parallel Distrib.

Process.Symp., 2003, p. 8.

[4] M. Millberg et al. “Guaranteed Bandwidth using Looped Containers in
Temporally Disjoint Networks within the Nostrum Network on Chip.”

In Proc. of DATE, pages 890–895, February 2004.

[5] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on
chip: Concepts, architectures, and implementations.” IEEE Des. Test.

Comput., vol. 22, no. 5, pp. 414–421, 2005.

[6] A. Hansson, K. Goossens, and A. Radulescu. “A Unified Approach to
Constrained Mapping and Routing on Network-on-Chip Architectures”.

In Proc. of 3rd Int. Conf. on HW/SW Codesign and System Synthesis,

pages 75–80, 2005.
[7] J. Hu and R. Marculescu. “Energy-Aware Communication and Task

Scheduling for Network-on-Chip Architectures under Real-Time

Constraints.” In Proc. of DATE, pages 234–239, February 2004.
[8] M. Winter and G. Fettweis. “A Network-on-Chip Channel Allocator

for Run-Time Task Scheduling in Multi-Processor System-on-Chips.” In

Proc. of 11th Euromicro Conference on Digital System Design (DSD),
pages 133–140, September 2008.

[9] N. Ma, Z. Lu, L. Zheng "System design of full HD MVC decoding on

mesh-based multicore NoCs." Journal Microprocessors & Microsystems
Volume 35 Issue 2, March, 2011

1

10

100

1000

10000

100000

1000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
average total delay, retry until success
wrost total delay, retry until success
worst setup delay, retry until success
average total delay, retry for free path
wrost total delay, retry for free path
worst setup delay, retry for free path
average total delay,no retry
worst total delay, noretry
worst setup delay, no retry

D
el

ay
 in

 c
yc

le
s

route rate

0

2000

4000

6000

0 50 100 150 200 250

comb. HAGAR
parallel probe

K
N

A
N

D

Number of routers (nodes)

Paper B

Parallel probe based dynamic

connection setup in TDM NoCs

Shaoteng Liu, Axel Jantsch and Zhonghai Lu

Presented at the Design, Automation Test in Europe Conference
Exhibition (DATE'14), Dresden, German, 2014. Included in the
proceedings, pages: 239:1-239:6.

91

Parallel Probe Based
Dynamic Connection Setup in TDM NoCs
Shaoteng Liu (liu2@kth.se), Axel Jantsch (axel@kth.se) and Zhonghai Lu (zhonghai@kth.se)

KTH Royal Institute of Technology

Abstract—We propose a Time-Division Multiplexing (TDM) based
connection oriented NoC with a novel double time-wheel router ar-
chitecture combined with a run-time parallel probing setup method.
In comparison with traditional TDM connection setup methods, our
design has the following advantages: (1) it allocates paths and time
slots at run-time; (2) it is fast with predictable and bounded setup
latency; (3) it avoids additional resources (no auxiliary network or
central processor to find and manage connections); (4) it is fully
distributed and therefore it scales nicely with network size.

Compared to a packet based setup method, our probe based
design can reduce path setup delay by 81% and increase network
load by 110% in an 8x8 mesh, while avoiding the auxiliary network.
Compared to a centralized method, our solution can double the
success rate, while eliminating the central resource for path setup
and reducing the wire overhead. Synthesis results suggest that our
design is faster and smaller than all comparable solutions.

I. INTRODUCTION

Circuit switching (CS) is frequently adopted for guaranteed
data transfer, since it is a cost-effective technique in real-time
communication [1]. CS means that resources are allocated exclu-
sively to a particular connection for its entire lifetime. Since the
exclusive allocation of a link is very inflexible and potentially
blocks other communications, in the on-chip context two main
variants have been explored: (1) in Time-Division-Multiplexing
(TDM) based CS, resources are allocated exclusively only in
specific time slots, while the other time slots of a finite, repeating
time window can be used by other communications [2]; (2) in
Spatial-Division-Multiplexing (SDM), only part of a link with its
corresponding buffers are exclusively allocated to a connection,
while the remaining wires of the link can be used by other
communications [3]. Because SDM link sharing introduces large
crossbars with low clock frequency and high hardware costs,
TDM based CS is more popular and e.g. used in Æthereal [1],
dAElite [2], Nostrum [4], and so forth.

A main challenge for TDM based CS NoCs is to set up
a contention free path and to allocate the time slots. There
are two categories of techniques for path setup: one is static
scheduling [5]–[7], the other is dynamic (run-time) searching.
Static methods schedule connections at compile time, based on
the premise that all communication requirements are known
beforehand. Thus, they are not well fit for applications like H.264
with requirements for dynamic communication setups or dynamic
mixes of applications.

Thus, we concentrate on dynamic setup in TDM NoCs and
propose a probe based dynamic path searching method with
guaranteed setup delay. In particular, our contributions are:

• We propose a probe based setup method for TDM based CS
NoC. Our method does not resort to an auxiliary network
for connection configuration and imposes no limitation on
search algorithms.

• We present a double orientation time-wheel technique to
enable two-way communication in the probe based setup. A
slot-table is shared by both forward and backward messages.

• We implement a parallel probing search to find a free path.
This algorithm guarantees that, if a shortest path is available,
it is found within 2×D+K +6 time slots, where D is the
distance between source and destination, and K is the total
number of time slots in a slot table.

Taking all together, our design provides shorter critical timing
path, less wire overhead, shorter setup delay and higher success
rate at lower hardware cost than any previously known method.

II. BACKGROUND AND RELATED WORK

Dynamic path searching methods can be divided into central-
ized [2], [8] and distributed solutions [9], [10]. In centralized
solutions a special node is used to schedule all the connections
in the network. This coordinating node can be a processor or a
special hardware accelerator. Path scheduling algorithms running
on hardware accelerators such as HAGAR [8] are about 100-1000
times faster than running as software on a processor [11], [12].
However, centralized setup methods suffer from the lack of scal-
ability. As the network grows, the coordinator node becomes the
bottleneck [8], [12]. Also, since retrying of failed requests causes
the blockage of the following requests, failed setup requests
are usually dropped in centralized setup methods. Furthermore,
centralized solutions often depend on an additional network for
delivering the configuration information to the routers.

Traditionally, distributed solutions in TDM NoCs are imple-
mented with configuration packets [9]. Configuration packets such
as setup, tear-down and Ack/Nack, require a separate Best Effort
(BE) network during the connection establishment procedure.
This approach suffers from three major drawbacks. Firstly, us-
ing an additional BE network for the connection setup is an
unnecessary overhead. Secondly, the routing algorithms have to
be deterministic to ensure setup, tear-down and Ack/Nack packets
of a connection are on the same route so that the booked slots
inside the routers along the route can be read/removed correctly,
thus significantly restricting the path searching space. Thirdly,
compared with our probing search, tear-down and Ack/Nack
signals have to be sent in the form of packets. These packets
are often underutilized and contend with setup and other packets.
There is no delay guarantee for configuration packets, rendering
the setup delay unpredictable.

Another kind of distributed path searching method is probe
based searching, although it was only used in CS NoCs without
TDM or SDM link sharing. For NoCs, the concept of probing
was firstly proposed by Wiklund et al. [13]. Pham et al. [10]
developed a backtracking path searching algorithm, which has
better performance than Wiklund’s. Liu et al [14] developed a
parallel probing method for CS NoC. It can complete a search
over all possible shortest paths within O(D) time complexity
where D is the geometric distance between source and desti-
nation. They demonstrated superior performance of this parallel

978-3-9815370-2-4/DATE14/ c© 2014 EDAA

A
A

A

A

A

Ack/
Nack

Ack/
Nack

Ack/
Nack

Ack/
Nack

Data/Probe Data/Probe

D
ata/P

ro
b
e

Data/Probe

0 1
2

3

0

Fig. 1. The usage of double orientation time wheel

probing algorithm compared to Pham’s backtracking algorithm.
We adapt Liu’s parallel probing algorithm for TDM based NoCs.

Another track of work uses per-connection Virtual Channels
(VCs) and round-robin arbitration to share links and provide
communication guarantees (e.g. [15], [16]). VCs are expen-
sive resources, since they consist of buffers, multiplexers, de-
multiplexers and require separate flow control. The number of
VCs per router per direction suggested by the authors is limited
to 4, which limits the number of simultaneously supported con-
nections. In section IV-C and table V we compare the hardware
costs of artNoC [15] to our solution, showing better performance
at half the area.

III. MOTIVATION AND DESIGN OUTLINE

A number of previous solutions rely on a BE NoC to support
dynamic establishment of connections. For distributed dynamic
solutions [5], [9], the BE NoC is not only used for delivering
configuration packets, but also for path searching. Centralized
dynamic solutions also depend on a BE NoC [8] for delivery of
configuration information. Stefan et al. eliminate the BE NoC in
dAElite but then they add a tree shaped dedicated configuration
network instead [2]. In AElite certain time slots of a router are
still reserved for configuration message delivery [6]. In addition,
the configuration time of hundreds of cycles is very long.

An additional network for configuration is not cost-effective
[1]. The to-be-allocated resources of the CS network have to be
free at the time of path search and setup such that they can be
used for the very task of connection setup. Besides, delivering all
kinds of messages for connection establishment as BE packets is
also inefficient and limits the selection of routing algorithm, as
we mentioned in Section II.

To avoid these drawbacks, we propose a probe based solution
for TDM NoC, where the probe searches through the network
to find a free path, selects the time slots, and allocates the
network resources for the required slots as it moves forward.
When it arrives at the destination, the path is set up. As tear-
down, Ack/Nack messages are tightly combined with the probe,
our solution is not restricted to deterministic path searching
algorithms. We use the parallel probing algorithm in [14] but
apply it to TDM NoCs. The probe uses the same wires and buffers
as the data uses after the path is set up.

In the following description a channel denotes a simplex
link between two routers together with associated buffers in a
particular time slot; hence, the same link in different time slots
belong to different channels. A probe is sent out by a source
node and travels through free channels, moving from one router
to the next towards the destination. If a free channel is available,
the probe will reserve the channel for future data transfer and go
through the channel to the next router to continue the search. If

ANS

Data/probe path

Request
Backward
crossbar

Forward
crossbar

ANS

Data/probe path

Request

Slot table

Network

Interface

Resource

Route
func.

Arbitor

Control
logic

i1

o1

o0

i0

o3i3

o2

i2

i1o1

Fig. 2. Overview of the router

at some point no free channel is found, the path search fails.
Ack/Nack messages must be sent back to inform the source
node whether a search failed or succeeded. Besides, Nack signals
also tear down the reserved channels of a connection. To reduce
wire costs, backward Ack/Nack messages are 1-2 bits. In probe
based setup methods both forward (data/probe) and backward
(Ack/Nack) signals are needed.

Backward Ack/Nack messages constitute a design challenge,
since they associate to a connection, consist of only 1-2 bits,
contain no address information and share wires in TDM manner.
Thus, they must arrive at the right router in the right time slot and
rely on the slot table’s information of the router to move back
towards the source. In figure 1 a connection spans 5 routers. For
the forward data/probe path, the reserved time slots inside each
router follow the sequence 0 → 1 → 2 → 3 → 0. The slot table
of each router records the crossbar configuration information.
To ensure that backward Ack/Nack signals correctly read the
information inside each slot table for traversal, the backward
signals should be sent-out at slot 0 in router 5, then reach router
4 at slot 3, reach router 3 at slot 2, and so forth.

To address this challenge we introduce a double orientation
time wheel. Inside each router, there are two slot counters, of
which one is incremented and the other is decremented; both start
from slot 0. The incrementing slot counter uses the slot table to
configure the forward crossbar for data or probe; the decrementing
counter configures the backward crossbar for Ack/Nack. In this
way, if the Ack/Nack signal is sent out at the correct time slot,
it will be correctly routed back to the source hop by hop.

IV. ROUTER DESIGN AND IMPLEMENTATION

A. Control signals

The implementation uses a mesh topology with 5-port routers
where each port consists of two physical links in opposite direc-
tion. Each link contains a data path, which is used for delivering
the probe during the setup phase and for data transmission after a
connection has been established. Every data path is coupled with
4 control bits: a 2-bit Request signal in parallel to the data path,
and a 2-bit answer (ANS) signal in the opposite direction of the
data path. Their usages are listed in tables I and II, respectively.
Ack/Nack messages are carried by the ANS signal. In the data
transfer phase the same ANS signal can be used for end-to-end
flow control, as shown in table II.

TABLE I
THE USAGE OF REQUEST SIGNAL

Request Usage
00 Idle/data transfer
01 Unused
10 Probe comes in
11 tear-down established connections

TABLE II
THE USAGE OF ANS SIGNAL

ANS Usage in setup Usage in data transfer
00 Idle Ready to receive data
01 Unused Unused
10 Nack (Path search failed) Unused
11 Ack (Path established) Receiver buffer full

TABLE III
THE PROBE FORMAT

Lookahead routing (5 bits) Dest.addr (6 bits) Src.addr (6 bits)

Slot table

Forward Cross BarForward Cross Bar

Arbiter

Backward
Cross bar

Backward
Cross bar

REG

ANS

Data/probe

Request

ANS buffer

ANS

ANS

ANS

ANS

ANS

Decrement
slot counter

Increment
slot

counter

Write

Erase when Request = “11”

Control
unit

Decrement
slot

coutner

REG

ANS

ANS

Erase when ANS = “10”

Look ahead route
computation

Request

Data/probe

Update
probe

information

Look ahead routing
information

cancel

Decoder

Decoder

Fig. 3. Detailed router architecture

In total there are only 4 control wires for each channel, which,
we believe, is the minimum overhead for probing based setup.
The probe format is also compact. A probe just contains the
destination address and look-ahead routing information. In an
8 × 8 mesh, the minimum width of a probe is 11 bits. Since
the source node address is required by certain path searching
algorithms (e.g. our parallel probing in this paper), a probe can
become 17 bits in this case, as shown in table III.

B. Detailed router architecture

The slot-table structure is illustrated in figure 3. Rows in a slot-
table represent time slots, and columns denote output links. The
input channel id (In a 5 port router, it equals to dlog 25e = 3 bits)
is written into a vacant cell to book an output link for a certain
slot. Each router has 5 outputs and thus the slot table width is
15 bits. This slot-table information, accessed by the incrementing
slot counter, is used for forward crossbar configuration, while the
decrementing slot counter is in charge of the backward direction.
The cell content including its column number can be translated
into two sets of configuration bits for the configuration of the
forward crossbar and the backward crossbar, respectively. The
translation logic is a simple logic decoder.

Inside each router, all input signals are latched. Then, the
request signal is checked as follows:
”00” data: the data is directly forwarded according to the the

corresponding slot table cell;
”11” erase connection: This signal will be firstly delivered

through the crossbar according to the reserved slot table’s
information. Then, the corresponding slot table cell can be
cleared at the beginning of the next cycle.

”10” setup probe: Based on the look-ahead routing information
of the probe, arbitration for output channels commences.
If a probe fails, backward ANS is used to notify the
source node and cancel the reserved slot table cells hop
by hop. We will explain this complicated process later.
If a probe succeeds in acquiring one cell, it is delivered
through the crossbar to the next router immediately. The
slot table update is removed from the critical timing path
and scheduled at the very beginning of the next cycle.

z

ANS

Data/
Probe

Slot table Slot table

Data/
Probe

Slot table

1

10ANS

Increment
counter =1,

Decrement
counter =3,

Increment
counter =2,

Decrement
counter =2,

Increment
counter =3,

Decrement
counter =1,

ANS = 10

Data/
Probe

Decrement
counter

ANS = 10 will be
send back when

decrement counter
=3

2A B C

Fig. 4. ANS signal management
To reduce the critical timing path, look-ahead routing is used.

The lookahead information denotes the desired output directions
of the next router of a probe. This information is pre-computed
in parallel with the arbitration and cross-bar traversal process of
a probe. After the crossbar traversal, the probe will be updated
and carry the new information before it reaches the next router.

The proposed router takes one slot per hop for all messages:
request, probe/data as well as Ack/Nack. In our implementation,
by default each time slot is one cycle.

Several aspects of our router deserve to be noticed.
1) Backward ANS signal management: We have mentioned in

Section III that Ack/Nack signals must be sent out at the correct
time slot. In the following we explain how to realize this scheme.

As figure 4 illustrates, a probe arrives when router C at
incrementing slot counter is 3 and decrementing slot counter is
1. However, when it fails in router C, a signal ANS=”10” will be
sent back. The ANS should use slots 3→ 2→ 1 to pass routers
C, B, and A, respectively. To this end, ANS is buffered in router
C for 2 slots, until the decrementing slot counter becomes 3.

We designed an ANS table at each input port for such buffering
purpose. Each table cell is 2 bits wide. The rows represent time
slots. The writing position of the table is pointed at by the
incrementing slot counter; the reading position is pointed at by
the decrementing slot counter. After a cell is read and ANS is
sent back, it will be erased at the beginning of the next cycle.
The maximum buffering time is K cycles, where K is the total
slot number in the time window.

2) Predictable delay and setup polices: All kinds of message
delays in our NoC are predictable, which are proportional to the
distance between source and destination, with 1 cycle per hop (by
default a slot corresponds to 1 cycle).

Moreover, the delay of a single search is also predictable.
Suppose the distance between source and destination is D and
the total slot number in the time window is K. Assume minimal
routing. Then it takes at most 2D+K + 6 cycles for the source
to receive an Ack/Nack. D cycles are for sending the probe from
source to destination, D+K cycles for returning the ANS signal,
and 6 cycles are consumed in the source and destination nodes.

We study two connection setup polices (adopted from [14]):
Retry until success: In this policy, the source node keeps retrying
a request until it successfully sets up a connection. In this case
the worst delay for setup is unbounded, because it is unknown
when a free path becomes available.
Retry before deadline: In this policy, a deadline is attached to
each setup request, which denotes the time when the connection
has to be set up. The residual time (RT) is the deadline minus
the current time. Since it can take 2D+K+6 cycles to set up a
connection, a new connection is launched or an old is retried only
when RT > 2D +K + 6. Otherwise, the request is discarded.

3) Path searching algorithms: Unlike other distributed path
setup solutions [9], our probe based solution imposes no con-
straint on the routing algorithm. Hence, any probe searching

algorithm with reasonable hardware cost is applicable. However,
to achieve high performance we implemented the adaptive parallel
probing algorithm proposed by Liu et al. [14]. Parallel probing
searches all shortest paths between a given source and destination
in parallel. If at least one shortest path is free it will be found
and allocated in constant time. To achieve this, a probe is copied
from the input of a router to up to two outputs if there are two
productive directions towards the destination. In the process many
parallel paths may be allocated by the travelling probes, but all
of them except one will be de-allocated as quickly as possible.

However, we replaced Liu’s complicated priority comparison
arbitration mechanism with a smaller and faster round-robin
arbitration. Since each probe may have two productive output
directions and may book two slot cells, the corresponding 2-bits
ANS cell is used to record the number of booked slots. Hence,
the value of a cell will be decreased when a Nack signal from the
downstream router is sent back. Thus, it requires that a cell can
be written by both the incrementing and decrementing counter.
Fortunately, our router operating mechanism can guarantee that
there is no conflict. A Nack signal is only returned to its upstream
router when its own ANS cell value becomes zero.

4) Timing, synchronization and scalability considerations: Our
design minimizes the critical timing path. The critical path length
consists of an input probe checking logic (4 gate delays), a round-
robin arbiter (8 gate delays), a multiplexer (2 gate delays), a
crossbar (4 gate delays), and a look-ahead routing information
updating logic (2 gate delays). Thus, our router is very fast even
though it only contains 1 pipeline stage.

Our design can also be applied in a mesochronous or asyn-
chronous environment by adding synchronization tokens for slot
update handshaking, similar to the technique used in Æthereal [1].
Our double time-wheel design does not impose any additional
requirement on synchronization. If such synchronization efforts
are required, we need to add 1 pipeline stage in the router to
compensate the latency introduced by synchronization.

Considering hardware scalability, the main cost of adding a
time slot is the increase in buffers. For each router, this will raise
25-bit buffer space in total (15 bits for the slot table, 10 bits for
the 5 ANS tables in total). In our current design, we use registers
for storage.

C. Implementation costs and comparison
The router synthesis results with TSMC 90nm technology is

listed in table III. In our default settings, the effective link width
for data is 32 bits, and the total link width is 36 bits. The
additional wires are always 4 bits. This value does not increase
with network size or the number of slots1.

TABLE IV
THE ROUTER SYNTHESIS RESULTS WITH 90NM TECHNOLOGY
Slots in the

time window
Critical path
length (ns) Area (um2) Power (mW)

1 0.7 8730 5.8
4 0.7 12226 6.8

16 0.7 22608 9.7

As table IV suggests, the router area goes up linearly with the
slot number. One additional slot increases the area by 991 um2.

1Since the probe width is 17 bits, it requires that the forward data/probe path
is at least 17-bit wide. However, if the data width used in data transfer is smaller
than 17 bits, some wires of a link are inevitably wasted and thus regarded as
additional wires.

We compare our synthesis results with other works reported in
the literature. A conclusive comparison is difficult to perform be-
cause the different NoCs support different features. Nevertheless,
we try to present a fair comparison based on available data.

The synthesis results of our router with TSMC 65nm, 90nm and
130nm, with different effective data path width and different slot
numbers, are listed in table V and compared with others’ results
by assuming that all the routers are used for an 8 × 8 mesh.
Generally speaking, our work has the shortest critical timing
path2. Lusala’s work [9] has the same critical timing path length
but it is a mix of SDM channels and TDM channels. Its hardware
cost is 5 times higher but offers more routing flexibility3. The
area of our implementation is only slightly bigger than dAElite.
However, dAElite [2] does not include the hardware cost for the
scheduler. Finally, our work has the smallest additional wires per
link for control/configuration4.

TABLE V
COMPARISON WITH OTHER PUBLISHED DESIGNS BY USING THE SAME DATA

PATH WIDTH AND SILICON TECHNOLOGY
Critical

path
length (ns)

Area
Additional

wires
per link

Auxiliary
network

Data width 16 bits, 130 nm technology
artNoC [15] 2-flit

buffers, 4 VCs 2 0.06mm2 8 No

Our work 8-slot 1.3 0.03mm2 5 No
Data width 48 bits, 65 nm technology
Lusala [9] 3 SDM
lanes, 3 time slots 0.5 0.05mm2 20 Yes

Our work 9-slot 0.5 0.01mm2 4 No
Data width 64 bits, 90 nm technology
dAElite [2], 4 slots above 1.08 0.016mm2 10 Yes
Our work, 4-slot 0.7 0.017mm2 4 No
Data width 68 bits, 130 nm technology
HAGAR [8], 1 slot 2 20 kNand 5 Yes
Our work, 1-slot 1.3 5.5 kNand 4 No

V. PERFORMANCE EVALUATION

A. Experiment settings

Each resource node generates setup requests according to a
Poisson distribution and pushes them into a queue. Uniform
random, shuffle, and other traffic patterns are used for evaluation.
An FSM pops a request from the queue and sends it out when
an output slot is available. Then the FSM waits for a success
or failure notification, upon which it either retries the request,
discards it, or commences the data transfer. Any data point that is
shown in the figures comes from simulation of 10 million cycles,
of which the first 5% are discarded as a warm up period.

Several performance metrics are used:
• Metrics for retry until success policy:

total setup delay includes the waiting time for a request in
the queue and the setup delay for a request, which extends
from the first time sending the request until final success.

2The dAElite [2] [18] did not report its critical path for a 5-port router with
90 nm. However, the critical timing path of a 3 port router with 65nm is reported
as 1.08 ns. Thus it is safe to deduce that with 90 nm, it is more than 1.08ns.

3In SDM any of the 4 lanes of an input port can be forwarded to any of the
4 lanes of an output port. But in our TDM scheme, one TDM time-slot can be
forwarded only to the next time slot.

4From the implementation of HAGAR, we deduce that each link requires 2
bits to connect to the center node, 1 bit to distinguish the BE and GS packets, 1
bit to distinguish normal GS flits and link free signal, and 1 bit for stall/go flow
control, so the additional wires are 5 bits/link in total.

Av
er

ag
e

to
ta

l s
et

up
 d

el
ay

 in
 c

yc
le

s

50

100

150

200

250

50

100

150

200

250

Offered load
0.05 0.1 0.15 0.2 0.25 0.3

0.05 0.1 0.15 0.2 0.25 0.3

parallel-probing-1-slot
parallel-probing-16-slot
XY-1-slot
XY-16-slot
minimal-adaptive-1-slot
minimal-adaptive-16-slot

parallel-probing-1-slot
parallel-probing-16-slot
XY-1-slot
XY-16-slot
minimal-adaptive-1-slot
minimal-adaptive-16-slot

(a) Comparison of path searching algorithms.

Av
er

ag
e

to
ta

l s
et

up
 d

el
ay

 in
 c

yc
le

s

0

100

200

300

400

500

600

0

100

200

300

400

500

600

Offered load
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

probe-1-slot
probe-16-slots
packet-1-slot
packet-16-slots

probe-1-slot
probe-16-slots
packet-1-slot
packet-16-slots

(b) Comparison with packet based setup in
8× 8 mesh.

Av
er

ag
e

to
ta

l s
et

up
 d

el
ay

 in
 c

yc
le

s

0

50

100

150

200

250

300

0

50

100

150

200

250

300

Offered load
0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4

packet-6x6-1-slot
packet-6x6-16-slot
probe-6x6-1-slot
probe-6x6-16-slot
packet-16x16-1-slot
probe-16x16-1-slot
packet-16x16-16-slot
probe-16x16-16-slot

packet-6x6-1-slot
packet-6x6-16-slot
probe-6x6-1-slot
probe-6x6-16-slot
packet-16x16-1-slot
packet-16x16-16-slot
probe-16x16-1-slot
probe-16x16-16-slot

(c) Comparison with packet based setup in 6× 6
and 16× 16 meshes.

Fig. 5. Performance comparison under uniform traffic. Each connection delivers 100 flits.

offered load refers to the required data transfer per connec-
tion multiplied by the injection rate of setup requests. Sup-
pose the injection rate is 1/2000 cycles, and each connection
delivers 100 flits of data after setup, then the offered load is
100/2000=0.05 flits/cycle.

• Metrics for retry before deadline policy:
request success rate denotes the ratio between established
and desired paths and indicates the number of the requested
paths could be established.
master percentage denotes the percentage of nodes which
can send out setup requests. These nodes are uniformly
randomly distributed in the system.

B. Comparison of different path searching algorithms
Three path searching algorithms are implemented and com-

pared, which are X-Y, minimal adaptive and parallel probing. In
this experiment, the retry until success policy is applied. After a
connection is established, 100 flits of data are delivered before
the connection is released. E.g. when the window size (total slot
number in the time window) is 1 (no TDM link sharing), it takes
100 cycles for data delivery; when the window size is 16 slots,
it takes 1600 cycles. The actual time for data delivery equals to
the required data transfer time multiplied by window size.

The results under uniform random traffic are shown in fig-
ure 5a, suggesting that parallel probing is the best path searching
algorithm. E.g. at offered load 0.16 and when the window size
is 1, the average setup delay of parallel probing is only 80% of
minimal adaptive, and 50% of the X-Y algorithm. We also have
evaluated algorithms with different window sizes, e.g. 16 slots.
Their results suggest the same ranking. Consequently we choose
parallel probing as the default path searching algorithm for the
following experiments.

C. Comparison with distributed setup
We re-implement a packet based distributed path setup method

according to Lusala’s work [9] for comparison. Since with a BE
packet based setup method, the message delay is unpredictable,
we apply the retry until success policy.

The average total setup delay versus offered load in an 8 × 8
mesh under uniform random traffic is shown in figure 5b. We
observe that our parallel probing method has shorter average setup
delay than the packet setup method of [9]. E.g. when the window
size is 16, at load 0.26, the average total delay of our probing
method (refer to probe-16-slot) is 52 cycles, while the packet
based method needs 134 cycles. Also, the saturation point of the
network is 15-18% higher in our probe based solution, which
translates into a correspondingly higher network utilization.

We also observe that increasing the number of slots in a time
window can help to ameliorate both network utilization and setup
delay, although the time required for data delivery and hardware
costs increases.

Besides 8× 8 NoC, we made comparison in different network
sizes (6× 6 and 16× 16) and with different slot number (1 and
16), see figure 5c. We use solid, red lines to represent the setup
delay of our method and dashed, black lines for the packet based
method. The probe based setup has 30% to 80% lower delay and
a 10% to 40% higher saturation point in this comparison.

In addition to uniform random, we use other traffic patterns
for evaluation. As figure 6 shows, under shuffle traffic probe
based setup has 81% delay reduction and an up to 110% higher
saturation point. Under tornado traffic, we find upto 50% delay
reduction and a 55% higher saturation point (not shown in the
figure).

Thus, we conclude that our method offers better performance
than the packet based method and without any auxiliary network.
The drawbacks of the packet based method discussed in section
II accounts for its inferiority.

D. Comparison with centralized setup

In this section, we will compare with two different dynamic
centralized setup solutions.

1) Comparison with a centralized solution using hardware
accelerator for path scheduling: We compare with HAGAR [8]
by choosing the retry for deadline policy. We use request success
rate versus offered load5 as metric, since it has been reported in
[8]. However, in [8], setup delay data is not reported. Actually
the success rate should be related to the setup delay to make it a
useful metric. Moreover, the limitation of [8] is that the supported
window size is only 1.

We compare a 6 × 6 and a 16 × 16 network with 200 flits
of data for each connection. The deadline is 200 cycles (just for
setup not including data communication), which means the total
setup delay of a successful request should be smaller than 200
cycles. Otherwise the request fails.

Figure 7 shows that the success rate of our method is better
than HAGAR’s. For example, in a 6×6 NoC at master percentage
50% and at offered load between 0.6 and 1.0, with 1 slot window
size, our solution offers about 34% higher success rate; with 16
slots in total, this figure rises to 100%. In a 16 × 16 NoC, our
design has even more advantages. At an offered load between
0.6 and 1.0, our solution offers 170% higher success rate with

5The metric offered load in this paper is the same as route rate in [8].

A
ve

ra
g

e
 t

o
ta

l
se

tu
p

 d
e

la
y

in
 c

yc
le

s

0

50

100

150

0

50

100

150

Offered load
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

shuffle-packet-1-slot
tornado-packet-1-slot
shuffle-probe-1-slot
tornado-probe-1-slot
shuffle-packet-16-slot
tornado-packet-16-slot
shuffle-probe-16-slot
tornado-probe-16-slot

shuffle-packet-1-slot
shuffle-probe-1-slot
shuffle-packet-16-slot
shuffle-probe-16-slot

Fig. 6. Comparison with packet based setup in
8 × 8 mesh with shuffle traffic. Each connection
delivers 100 flits.

R
eq

ue
st

 s
uc

ce
ss

 r
at

e

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Offered load
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

50% ma, HAGAR, 6x6
50% ma, HAGAR, 16x16
50% ma, probe-16-slot, 6x6
50% ma, probe-1-slot, 6x6
50% ma, probe-1-slot, 16x16
50% ma, probe-16-slot, 16x16

Fig. 7. Comparison with HARGAR [8] in 6× 6
and 16×16 meshes. Each connection delivers 200
flits.

To
ta

l s
et

up
 d

el
ay

 in
 c

yc
le

s

0

50

100

150

200

Offered load
0.2 0.4 0.6 0.8 1

Avg. delay, probe-1-slot, 6x6
Worst delay, probe-1-slot, 6x6
Avg. delay, probe-16-slot, 6x6
Worst. delay, probe-16-slot, 6x6
Avg. delay, probe-1-slot, 16x16
Worst. delay, probe-1-slot, 16x16
Avg. delay, probe-16-slot, 16x16
Worst. delay, probe-16-slot, 16x16

Fig. 8. Worst case and average delay of probe
based setup with retry before deadline policy. Each
connection delivers 200 flits.

16 slots in total. Again, increasing the window size enhances the
setup performance.

The average and worst case total setup delay is reported in
figure 8. The worst case delay (dashed lines) is always bounded
and never exceeds 200 cycles, as required by the retry before
deadline policy.

2) Comparison with a centralized solution using software
based path scheduler: We compare with the software based
centralized scheduler proposed by Stefan et al. [12], which can
be used by dAElite [2]. Since the detailed delay analysis is not
provided in that paper, we approximately calculate the expected
delay figures based on the data given. The average time required
for scheduling a path grows linearly with the distance between
source and destination and for a distance of 4 hops it takes about
1200 cycles [12]. Thus, the sum of the request arrival rates of all
the nodes together should not exceed 1/1200 per cycle, otherwise
the scheduler is overloaded and requests have to be discarded.

Thus, let us ignore the path configuration and message commu-
nication delay and make an estimation. In a 6× 6 network, with
uniform random traffic, the average distance is 4 hops. Suppose
each connection delivers 200 flits, then at offered load 0.1 the
injection rate of requests per node per cycle is about 1/2000. At
master percentage 50%, the total injection rate of all the nodes
is 36/2000 ∗ 0.5 = 9/1000, which exceeds the capability of the
scheduler. Even if all served requests can successfully find a path,
the success rate is still less than 1/1200÷9/1000 ≈ 9.3%, much
less than in our work and HAGAR’s (both above 90%). If path
configuration and message communication delay is added, and
considering the fact that not all served requests can succeed in
finding a path, the success rate is even lower.

VI. CONCLUSION AND FUTURE WORK

We have proposed a TDM circuit switching NoC with a
parallel probing setup method by developing a double time-wheel
technique. Our simulation results demonstrate that our solution
is superior in terms of setup delay, network performance and
hardware cost to all previously reported comparable solutions.
The main reasons are due to

• that we use a distributed setup method that scales well with
network size;

• that we propose a double time-wheel router with a parallel
path search that searches effectively through all the possible
shortest paths in parallel;

• that we use the available network resources also for path
search, setup and configuration, thus incurring minimal extra
hardware cost.

Although in our experiments each connection uses only one
of the TDM slots of a time window, our design can support

connections with multiple slots. This can be realized by sending
out multiple requests for one connection, of which each request
will build a path with one slot. However, this is inelegant and
raises complications due to massive contentions. Therefore, we
will tackle this problem next by developing a sophisticated
technique for allocating multiple slots within a time window for
a connection.

REFERENCES

[1] K. Goossens and A. Hansson, “The Æthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in DAC, 2010

[2] R. Stefan, A. Molnos, and K. Goossens, “dAElite: a TDM NoC supporting
QoS, multicast, and fast connection set-up,” IEEE Transactions on Comput-
ers, vol. PP, no. 99, p. 1, 2012.

[3] A. Banerjee, P. Wolkotte, R. Mullins, S. Moore, and G. J. M. Smit, “An
energy and performance exploration of network-on-chip architectures,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 17, no. 3, pp.
319–329, 2009.

[4] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth
using looped containers in temporally disjoint networks within the Nostrum
network on chip,” in DATE, 2004.

[5] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip:
concepts, architectures, and implementations,” IEEE Design & Test of
Computers, vol. 22, no. 5, pp. 414–421, 2005.

[6] A. Hansson, M. Subburaman, and K. Goossens, “Aelite: A flit-synchronous
network on chip with composable and predictable services,” in DATE, 2009.

[7] J. W. Lee, M. C. Ng, and K. Asanovi, “Globally synchronized frames for
guaranteed quality-of-service in on-chip networks,” Journal of Parallel and
Distributed Computing, vol. 72, no. 11, pp. 1401–1411, 2012.

[8] M. Winter and G. Fettweis, “Guaranteed service virtual channel allocation
in NoCs for run-time task scheduling,” in DATE, 2011.

[9] A. K. Lusala and J.-D. Legat, “Combining SDM-Based circuit switching
with packet switching in a router for on-chip networks,” International
Journal of Reconfigurable Computing, vol. 2012, pp. 1–16, 2012.

[10] P.-H. Pham, P. Mau, J. Kim, and C. Kim, “An on-chip network fabric
supporting coarse-grained processor array,” IEEE Transactions on Very
Large Scale Integration Systems, vol. PP, no. 99, pp. 1 –5, 2012.

[11] T. Marescaux, B. Bricke, P. Debacker, V. Nollet, and H. Corporaal, “Dy-
namic time-slot allocation for QoS enabled networks on chip,” in 3rd
Workshop on Embedded Systems for Real-Time Multimedia, 2005.

[12] R. Stefan, A. B. Nejad, and K. Goossens, “Online allocation for
contention-free-routing NoCs,” in ACM Proceedings of Interconnection
Network Architecture: On-Chip, Multi-Chip Workshop, 2012.

[13] D. Wiklund and D. Liu, “SoCbus: switched network on chip for hard
real time embedded systems,” in IEEE Parallel and Distributed Processing
Symposium, 2003.

[14] S. Liu, A. Jantsch, and Z. Lu, “Parallel probing: Dynamic and constant time
setup procedure in circuit switching NoC,” in DATE,2012.

[15] C. Schuck, S. Lamparth, and J. Becker, “artNoC - a novel multi-functional
router architecture for organic computing,” in FPL, 2007.

[16] N. Kavaldjiev, G. J. Smit, P. G. Jansen, and P. T. Wolkotte, “A virtual channel
network-on-chip for GT and BE traffic,” in IEEE Computer Society Annual
Symposium on Emerging VLSI Technologies and Architectures, 2006.

[17] E. Mensink, D. Schinkel, E. A. Klumperink, E. van Tuijl, and B. Nauta,
“Power efficient gigabit communication over capacitively driven rc-limited
on-chip interconnects,” IEEE Journal of Solid-State Circuits, vol. 45, no. 2,
pp. 447–457, 2010.

[18] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens, “A TDM NoC
supporting QoS, multicast, and fast connection set-up,” in DATE, 2012.

Paper C

Highway in TDM NoC

Shaoteng Liu, Zhonghai Lu and Axel Jantsch

Presented at the ACM/IEEE International Symposium on
Network-on-Chip (NoCS'15), Vancouver, Canada, 2015. Won the best
paper award. Included in the proceedings, pages: 15:1-15:8.

99

Highway in TDM NoCs
Shaoteng Liu

liu2@kth.se
KTH Royal Institute of Technology

Zhonghai Lu
zhonghai@kth.se

KTH Royal Institute of Technology

Axel Jantsch
axel.jantsch@tuwien.ac.at

Vienna University of Technology, Austria

Abstract—TDM (Time Division Multiplexing) is a well-known
technique to provide QoS guarantees in NoCs. However, unused
time slots commonly exist in TDM NoCs. In the paper, we
propose a TDM highway technique which can enhance the slot
utilization of TDM NoCs. A TDM highway is an express TDM
connection composed of special buffer queues, called highway
channels (HWCs). It can enhance the throughput and reduce
data transfer delay of the connection, while keeping the quality
of service (QoS) guarantee on minimum bandwidth and in-order
packet delivery. We have developed a dynamic and repetitive
highway setup policy which has no dependency on particular
TDM NoC techniques and no overhead on traffic flows. As a
result, highways can be efficiently established and utilized in
various TDM NoCs.

According to our experiments, compared to a traditional TDM
NoC, adding one HWC with two buffers to every input port of
routers in an 8×8 mesh can reduce data delay by up to 80%
and increase the maximum throughput by up to 310%. More
improvements can be achieved by adding more HWCs per input
per router, or more buffers per HWC. We also use a set of MPSoC
application benchmarks to evaluate our highway technique. The
experiment results suggest that with highway, we can reduce
application run time up to 51%.

I. INTRODUCTION

Time Division Multiplexing (TDM) technique is frequently
used for guaranteed data transfer in NoCs [1]–[5]. TDM
NoC means that a physical link can be shared by different
connections, with each connection allocated one or several
specific time slots in a finite repeating time window. A
connection can span many links from source to destination,
by allocating slot(s) at each of the links in a consecutive
manner. As illustrated in Fig. 1, connection v1 passes link
1 and link 2. If slot 0 and slot 2 of link 1 is allocated to
v1, then slot 1 and slot 3 of link 2 must be allocated to v1.
Once a TDM connection is established, packet delivery on the
connection is free from contention. It can therefore provide
hard guarantees on delay, throughput and in-order delivery.
However, in TDM NoCs, quite often the TDM slot utilization
is low due to unused slots including both unallocated and idle
slots.

Firstly, unallocated slots commonly exist inside a TDM
NoC. TDM NoC requires that reserved slots on the links
of a connection must follow a consecutive sequence. Such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org. NOCS ’15, September 28 - 30, 2015,
Vancouver, BC, Canada 2015 ACM. ISBN 978-1-4503-3396-2/15/09$15.00
DOI: http://dx.doi.org/10.1145/2786572.2786577

Link 1 Link 2

Link 3

v1

node 1

v2

0 1 2 3 4 5 6 7

v1 v1 v1 v1

0 1 2 3 4 5 6 7

v1 v1 v1 v1
v2 v2

v2 v2

node 2

node 3

Time slot

Reserved time slot

v3

v2

v3

v3 v3

W=4 W=4 W=4 W=4

0 1 2 3 4 5 6 7

W=4 W=4

Fig. 1. Illustration of connections in TDM NoC

mandatory sequence makes it difficult to utilize all the slots
of links. For example, suppose there is a connection v4 wants
to use link 3 and link 2 in Fig. 1, although both link 3
and link 2 have unallocated slots, they cannot be allocated
to v4 since they are not consecutive. Also, when mapping
an application onto a TDM NoC, it is common that some
links have more bandwidth reservation requirements and some
links less. Such unbalanced bandwidth requirements inside a
network also cause slots of some links unallocated.

Secondly, idle slots are common for a connection with
dynamic fluctuation of network traffic. Idle TDM connections
withhold all the pre-reserved slots even if they have no data to
deliver. For example, as shown by Fig. 1, suppose connection
v2 becomes idle, it still occupies one slot on link 1 and link 2,
respectively. Also, busy TDM connections can just use their
pre-reserved slots for data transfer. For example, no matter
how many data flits are waiting on connection v1, connection
v1 can still just use the two reserved time slots in a time
window, even if there are free slots available along link 1 and
link 2.

In the paper, we develop a new technique called highway
which can enhance the performance of TDM NoCs by utilizing
free slots. With this technique, a TDM connection can dynam-
ically acquire both idle and unallocated time slots to enhance
its throughput, while keeping its QoS guarantee on minimum
bandwidth and packet order. In particular, our contributions
are:

• We develop the concept of highway to efficiently use time
slots, which is applicable to many kinds of TDM NoCs.

• We propose a distributed, run-time highway setup and
reclaim policy. Whenever the necessary resources for
building a highway become available, a TDM connection
can make use of it.

• We have made an efficient implementation of our pro-

posed technique. By taking advantage of the contention-
free property of TDM NoCs, we can set up a highway
with 2D + 2 cycles and without head flits, where D
is the distance between source and destination. Besides,
our HighWay Channel (HWC) allocation only needs a
very simple allocator, since our highway setup method
promises contention free. Thus, our hardware implemen-
tation has a relatively short critical timing path.

• We evaluated our highway technique using both synthetic
traffic and application benchmarks and suggest how to
efficiently use highways.

II. RELATED WORK

Goossens et al. [9]. tried to increase the slot utilization of
TDM NoC by introducing best effort (BE) traffic into a TDM
NoC (Æthereal), free slots can be utilized to deliver best effort
packets. However, the main issue with this mixed guaranteed
and BE traffic scheme is that it may cause disorder of arrival
packets, as observed in [6]. Eg., suppose a sender sends a
BE packet first and sends a guaranteed packet second. At the
receiver side, it is possible that the guaranteed packet arrives
before the BE packet. This is due to that the transfer delay
of a guaranteed packet is bounded, whereas a BE packet has
no QoS guarantee. Besides, this solution is not cost-effective,
as observed by Goossens et al. themselves [1]. The cost for
supporting BE traffic is relatively high due to virtual channels
and their allocation. But the service given to BE traffic is low.
Since TDM NoC has to prioritize guaranteed traffic, the BE
packets can be blocked for a very long time.

To solve the packet disorder problem as in Æthereal,
Marescaux et al. [6] proposed a source routing based TDM
NoC which provides a new QoS class called SuperGT to
increase the slot utilization while maintaining packet order.
However, this method suffers from several limitations. Firstly,
it is tightly coupled to a source routing based TDM NoC. It
forces the traffic flow of a connection to be divided into small
packets. The packet size is limited by the number of reserved
slots of the connection in a time window. Besides, each packet
must have a head flit, since the head flit’s information is
needed for source routing, virtual channel setup, connection
identification, and packet order maintenance. Secondly, it
requires that each TDM connection must have at least two
reserved TDM slots in a time window, and all reserved slots
must be adjacent. Otherwise, the superGT technique cannot
be utilized. Eg., connection v2 and v3 in Fig. 1 cannot use
superGT because they only reserve one slot per time window.
Connection v1 in Fig. 1 cannot use the superGT technique as
well, because its two reserved slots are not adjacent. Because
of these limitations, superGT can only be utilized in restrictive
situations. Moreover, this technique always wastes bandwidth
for head flit delivery, due to the limitation on packet size. As
an extreme case, suppose a connection has two reserved slots
in a time window, the packet size of this connection is limited
to 2 flits, which means 50% of the throughput has to be wasted
on the head flits.

Link 1 Link 2v1

Router 1

0 1 2 3 4 5 6 7

v1 v1 v1 v1

0 1 2 3 4 5 6 7

v1 v1 v1 v1
v2 v2

Router 2

V2

v1 v1 v1 v1 v1 v1HWC

HWC

W=4 W=4 W=4 W=4

Time slot

Reserved time slot

 Time slot acquired by using highway

Fig. 2. The function of highway

In contrast, our highway technique can make use of unused
TDM slots while keeping the packet order and minimum
throughput guarantee. It needs no head flits, has no limitation
on packet size, introduces no interference to normal TDM
traffic flows, puts no constraint on TDM slot allocation and
configuration method, and does not rely on particular routing
mechanism or router architecture. As a result, our technique
has no architecture dependency and thus can bring benefits to
many different kinds TDM NoCs.

III. HIGHWAY CONCEPT AND DESIGN CONSIDERATIONS

A. Additional Motivation

As we analysed in Section I, low utilization due to unused
TDM slots is a common problem in TDM NoCs. Besides,
this technique has to be leveraged in order to suit the needs of
dynamic and mixed traffic scenarios. Consider the following
practical situations: 1) Dynamic traffic: For streaming appli-
cations [7], [8], e.g., H.264 decoding, we just need the NoC’s
promise on the lower bound communication bandwidth. The
upper bound of a traffic flow can be dynamically and readily
adjusted by applying a flow control mechanism or adding flow
regulation components. 2) Mixed traffic: As demonstrated in
[6], consider a system with a guaranteed connection between a
L1 cache and L2 cache. Since cache misses are not completely
predictable, it is common practice to over-allocate bandwidth.
Thus we might want a mechanism which can keep the guar-
antee on minimum throughput and on the predictable traffic
flow, while offering additional non-guaranteed bandwidth to
enhance the overall system performance or absorb peaks of
less predictable traffic flows.

B. The Concept of Highway

Our proposed highway is an express path for a TDM
connection. Based on an established TDM connection, it can
speed up data transfer by using unused time slots along the
links of the connection. This is made possible because a
highway consists of one buffer queue at the input port per
router. Arbitration is performed to use the free time slots of
the output link of a router. We name these buffer queues as
highway channels (HWCs).

The function of a TDM highway is illustrated in Fig. 2. The
two connections, v1 and v2 share link 2 in such a way that
v1 reserves two slots (slot 1 and 3) of link2; v2 reserves one
slot (slot 2) of link 2. Then, v1 also builds up a highway path
by occupying one HWC in router 1 and one HWC in router
2. Thus, v1 can additionally use slots of link 1 and link 2
whenever they are free. For example, it can acquire slot 1 and
3 on link 1 and slot 0 on link 2. It can also acquire the slot
2 of link 2, if v2 does not use it. In contrast, connection v2

has no HWC and thus can only use the reserved one slot for
data delivery.

A HWC functions like an input queue: if the output link
of a router is occupied, incoming flits of a connection with a
highway will be buffered in the HWC. When the output link
becomes free, or a reserved slot of the connection is coming,
the output link can immediately serve the HWC.

C. Design Considerations

The idea of our highway technique sounds simple. How-
ever, the details are complicated, especially when we try to
make it commonly used for TDM NoCs. The principles and
considerations are listed as follows:

1) With or without a highway, a TDM connection is
promised to use its pre-reserved slots to offer a guaran-
teed service. Due to this principle, if a highway is used
for a TDM connection, whenever any of the pre-reserved
slots arrives, the queue of the corresponding HWC will
be served. For example, as Fig. 2 suggests, connection
v1 has an established highway. Therefore, at slot 1 or
3, its HWC in router 2 is guaranteed to be served. This
is in contrast to normal virtual channels which have no
service guarantee. Moreover, this principle also requires
that the dynamic highway setup/release process should
incur no additional traffic to the guaranteed traffic flow.

2) We must guarantee that reordering of a traffic flow never
happens in any situation. This rule sounds easy but it
is tricky to follow. In Section IV-D, we will show our
solution to keep flits ordered during the highway release
process.

3) A highway accelerates data transfer only if one HWC
per router is allocated along the path of a connection, all
the way from the source to the destination. This is due
to that individual HWCs cannot ameliorate performance.
For example, suppose connection v1 in Fig. 2 gets a
HWC in router 1 but fails to get a HWC in router 2,
then link 2 will be the throughput bottleneck, since still
only the two reserved slots of link 2 can be used. Thus,
during the highway setup process, our HWC allocation
follows a win all or nothing principle that, if we fail
in allocating one HWC in any of the routers along a
connection, all allocated HWCs are canceled as soon as
possible.

IV. HIGHWAY IN TDM NOCS

A. Design Overview
An overview of a TDM router with highway is depicted in

Fig. 3. Each input link has an input manager, which manages
all the incoming flits of that input. We can have one or several
HWCs per input manager. With more than one HWC, the
input manager needs additional logic for internal arbitration
between the HWCs. To support our highway technique, each
input /output link needs to have a flag signal and a credit
signal coupled with the data path. The flag signal is in parallel
to the data path. It is used for highway setup, transfer and
release. The credit signal goes in the opposite direction of

Crossbar

Arbitration

Data

Flag

HWC ID

Data

Flag

HWC ID

Data

HWC

Bypass
Data

Flag Flag

Control logic

Credit (out)

Registers

No HWC

Credit (in)

Input manager 1

HWC ID Next HWC ID

allocated
slots

next
HWC

ID

credit
counter

release
mark

HWC

Data

Read

Write

Empty

Full
FIFO

Control Logic

Credit
(out)

Credit
(in)

Registers

output
dir.

Input manager N
Data

Flag

HWC ID

Reserved
slots

0 1 0 1
allocated
slots Reg.

bit 0bit 3

NI

Bypass 0 1 2 3 4 5 6 7

v1 v1 v1 v1

W=4 W=4

Fig. 3. The micro-architecture of a TDM router with highway

the data path. It is used for flow control in the data transfer
phase and for Ack/Nack purpose in the highway setup phase.
As Tables I and II suggest, we use 3 bits for the flag signal
and 2 bits for the credit signal.

Because of the design considerations listed in Section III-C,
we do not use head flits in our highway technique. Instead, we
use the 3-bit flag signal for highway setup and release purpose.
Unlike the information bits of a flit, a flag associated to a flit
can be changed during the transfer process. It does not need
to be buffered together with the flit. Instead, it is regenerated
when a flit leaves a router, based on the router’s current status.

Inside each HWC, there is a set of registers. The ”next HWC
Id” register stores the id of the HWC in the next router1. The
”out dir.” register stores the output direction to reach the the
next router. The credit counter records the available queue
size of the downstream HWC. All of these 3 registers are
commonly used in virtual channel techniques. The ”release
mark” register is used in our highway release process. The
”allocated slot” register uses a vector of bits to mark which are
the reserved slots in a time window of a connection. The size
of the bit vector equals the time window size. For example, as
Fig. 3 describes, if the reserved slots for a connection are slot
0 and slot 2 inside a time window of size 4, the ”allocated
slot” register is configured as ”0101”.

In our design, HWCs are dynamically allocated and re-
claimed for connections. Note that, a HWC can only be
assigned to one connection at a time.

When a TDM connection has a certain amount of data
buffered in the network interface, it may set up a highway for
acceleration. The general operation for using a highway in a
TDM NoC consists three phases, namely, setup, data transfer,
and release.

1We do not need this register if each input manager only has one HWC.

TABLE I
USAGE OF THE FLAG SIGNAL

Flag message Usage
000 Idle –
001 Setup try to book a HWC

010 HWC-RS Incoming flit has a HWC and
sent/received at a reserved slot (RS)

011 HWC-NS Incoming flit has a HWC and
sent/received at a non-reserved slot (NS)

100 No HWC Incoming flit has no HWC
101 Release Release the allocated HWC

TABLE II
USAGE OF THE CREDIT SIGNAL

Credit Usage during highway setup Usage after highway is built
00 Idle –
01 – credit updating
10 Nack (highway setup failed) –
11 Ack (highway setup success) –

B. Highway Setup Phase

Fig. 4 illustrates the setup process for a 2-hop TDM
connection which has 2 reserved slots inside a time window
of 4. From the source node, when a reserved slot (slot 0) is
coming, a data flit is sent out with flag signal ”setup”. This
flit travels by using reserved slots of links, at a constant speed
of one slot per hop. If it can acquire a HWC when arriving at
a router during the traversal, its flag remains ”setup”. When
the destination node receives a flit with flag ”setup”, it will
send back an ”Ack” message by using the credit signal of the
allocated HWC in the destination node. Such a message will
be delivered backward to the source node hop by hop, through
the credit signal of each allocated HWC along the forward
path of the flit. When the source node receives ”Ack” , it can
begin to use the established highway for data transfer.

The following is worth mentioning.

1) The HWC allocation performs one hop in advance. For
example, as suggested by Fig. 2, router 1 is responsible
to allocate the HWCs at the input port of router 2. The
allocation decision is put into ”next HWC Id” reg. This
technique is inherited from the virtual channel allocation
technique [12].

2) If the flit with flag ”setup” fails to acquire a HWC
in a router, the highway setup process stops. The flit
continues its traversal with flag changed into ”No
HWC”. Meanwhile, a ”Nack” signal will be sent back
towards the source node hop by hop through the credit
signals of the allocated HWCs in routers. As the ”Nack”
signal travels, it will release the allocated HWCs.

3) Since ”setup” flits are delivered without contention by
pre-reserved slots of links, arbitration is not needed in
the setup phase. Thus, we can simplify the logic for the
HWC allocation inside each input manager. Moreover,
the highway setup time is predictable. It is 2D + 2
cycles (assuming each slot is one cycle), where D is
the distance between source and destination.

4) The whole setup process just utilizes flag and credit
signals, it generates no additional traffic flow overhead.

5) Our highway setup method is architecture independent.
We do not care about how flits of a connection are routed
or how connections are established. As long as a flit is

N
o

 H
W

C

H
W

C
-R

S

H
W

C
-R

S

N
o

 H
W

C

Flag=Setu
p

Flag=Steu
p

A
ck

A
ck

N
o

 H
W

C

H
W

C
-R

S
H

W
C

-N
S

H
W

C
-R

S
H

W
C

-N
S

H
W

C
-N

S

router 1
(source)

router 2

router 3
(destination)

0 1 2 3 4 5 6 7 8 9Time slot

Highway Setup succeeds

Arbitration
succeeds

H
W

C
-R

S

Arbitration
fails

a b c d e f

a b c d e f

a b c e fd

Sent on a RS slot

Sent on a NS slot

R
elease

R
elease

Highway Release

N
o

 H
W

C

W=4 W=4 W=4

Fig. 4. Highway setup, data transfer, and release process. With highway,
the RSs (reserved slots) on a link are still guaranteed to use, while a NS
(non-reserved slot) can be acquired by wining an arbitration.

delivered without contention to the destination with a
flag as ”setup”, a highway has been established 2.

The highway configuration process configures the registers
inside each allocated HWC. During the setup phase, the flit
with flag ”setup” configures the register ”next HWC Id” and
”out dir.” The ”allocated slots” register configuration takes
place in data transfer phase.

In the case of failed highway setup due to HWC unavail-
ability, we use a simple retry scheme until success.

C. Highway Data Transfer Phase
After a highway is established, flits sent at a reserved

slot have the flag ”HWC-RS”, whereas flits sent at non-
reserved slots have the flag ”HWC-NS”, as illustrated in Fig. 4.
Arbitration for a non-reserved slot is needed, if it is requested
by multiple input managers.

The ”allocated slots” register of a HWC is configured
by multiple ”HWC-RS” flits arrived after the highway setup
process, if the connection has multiple reserved slots. When
a flit with flag ”HWC-RS” arrives at a HWC, it will set
the corresponding bit of the HWC’s ”allocated slots” register
according to the ID of the current slot, if the bit is unset (”0”
means unset and ”1” set)3. For example, if a ”HWC-RS” flit
arrives at a HWC on slot 0, it will set the bit 0 of the register.

The function of a HWC in the data transfer phase is some-
how similar to input queue based virtual channel. Incoming
data flit of a HWC is pushed into a queue according to the flit’s
HWC ID. If the desired output channel is granted, one flit
will be popped from the queue and sent with a valid HWC ID
pointing to the HWC in the downstream.

One specialty is that, when a reserved slot of an HWC
comes, the queue of the HWC is guaranteed to be served.
Besides, the transfer of ”HWC” flits does not interfere with
”No HWC” flits, since our arbitration mechanism prioritizes
the data flit sent by using reserved slots.

2In source routing based TDM NoCs, we need to add a slot pointer inside
each router to obtain the ID of the current slot for the ”allocated slots” register
configuration.

3Due to slots are reserved consecutively along the links of a connection,
when an HWC receives a ”HWC-RS” flit from its upstream node, it means
its own reserved slot is met.

A FIFO is implemented in an HWC for flit buffering.
However, we also add a bypass way to the FIFO. If the FIFO
is empty and the desired output is ready, an incoming flit can
be directly forwarded, without being buffered in the FIFO.

The credit based flow control policy used in our HWCs
is similar to that in Chapter 13.3.1 of [11], except that
sending data flit at reserved slots neither consumes credits nor
generates credit updating signal to the upstream.

D. Highway Release Phase
If a connection no longer requires a highway, it should

release all the occupied HWCs.
To release a highway, the source node sends out a ”release”

flag. If a HWC is empty when a ”release” flag arrives, the
”release” flag will reset the HWC and get forwarded to the
downstream node. However, if a HWC still has buffered data,
the ”release” flag will set the ”release mark” register and halt
its forwarding until the HWC becomes empty.

As mentioned in Section III-C, it is tricky to maintain flit
order of a connection during its highway release process. Let’s
consider the following situation: Suppose the source node of a
connection has sent out a ”release” flag. After that, the source
node continues to send flits with the flag ”No HWC”. The
HWC release process is relatively slow, since the ”release” flag
may wait inside a HWC until it becomes empty. However, the
flit sent by the source node with the flag ”No HWC” travels
at a guaranteed speed of one slot per hop. Therefore, a ”No
HWC” flit of a connection may arrive at a router which still
has an unreleased HWC for that connection. In this situation,
this ”No HWC” flit should go into the unreleased HWC to
maintain the flit order. However, since all the upstream HWCs
have been released, this flit arrives without a valid HWC ID.
How can we find the HWC for this flit?

Unlike [6], we do not use a head flit for carrying the con-
nection ID. Instead, we use the reserved slot information for
connection identification. Let us also consider the following
facts:

1) ”No HWC” flits are delivered by using reserved consec-
utive slots of links.

2) ”allocated slots” register of a HWC can be used to claim
which slot is the reserved slots on a link of a connection.

Therefore, when a ”No HWC” flit arrives at an input manager
of a router, normally it will be directly forwarded to an output.
However, if a HWC at the same input manager also claims that
it meets a reserved slot and must be served, the incoming flit
and this HWC must belong to the same connection and thus
the incoming flit should go into the HWC. In this way, we can
identify whether or not a ”No HWC” flit has an unreleased
HWC.

E. Implementation Cost
Our highway TDM router is built on top of a base TDM

router (similar to [2]) used for mesh topology. The additional
components are 1) one input manager per input port, 2) an
external arbitrator for the arbitration between all the input
managers. Note the buffer size per HWC should be large
enough to cover the round-trip delay of credit updating (see

TABLE III
SYNTHESIS RESULTS WITH 45 nm TECHNOLOGY WITH FLIT WIDTH OF

128-BIT AND A BUFFER SIZE OF 2 FLITS

Component Comb. Non-
comb. Flip-flops Total

(um2)
Total

(gates)
HWC 298 1588 282 1886 2694

Other logic 457 28 5 485 693
Input manager total 755 1616 287 2371 3387

Chapter 13.3.1 of [11]). Thus, suppose that each slot is one
clock cycle, and the credit-updating signal is one cycle per
hop. Depending on the implementation details, the round-
trip delay is at least two cycles4. Thus, the minimum buffer
requirement is two flits. We evaluate the additional costs in
this section. The synthesis results are reported under 45 nm
technology.

The area costs of an input manager containing one HWC
with 2 buffers and with a data flit width of 128-bit and 16-slot
window size are listed in table III. In our implementation, each
slot represents one clock cycle. As Table III shows, the total
area cost of a HWC manager is 2371 um2, among which 1886
um2 is spent on the HWC. Inside a HWC, FIFO constitutes
about 92% of the area. In our implementation, FIFO is built
by using flit-flops. If we use SRAM cells, it can be a factor
of 3 or 4 less expensive. The cost of the external arbitrator is
only 161 um2. It does not scale up with the HWCs per input.

The critical timing path of a router consists of 3 compo-
nents: an input manager, the external arbiter and the crossbar.
The latter two components contribute a latency of 0.15 ns. The
latency of a input manger varies with the number of HWCs it
has. E.g., with one HWC, its latency is 0.36 ns; with 8 HWCs,
its latency is 0.54 ns.

Compared to the base TDM router, our highway TDM
router (adding 1 HWC with 2 buffers per inport) causes an
area overhead of 12016 um2. This is the cost of leveraging
the static inefficient QoS guarantees.

There are also additional costs on the network interface
(NI) when applying the highway technique. We need a state
machine to control the setup/release of highways, as well
as credit based flow control logic for data transfer. If a NI
uses more than one highway, arbitration logic is also needed.
However, since we do not need to increase the flit buffers
inside a NI, the additional costs in total are still relatively
small.

V. PERFORMANCE EXPERIMENTS AND RESULTS

We present experiments and results concerning the benefits
of using highways in different configurations, under different
test scenarios, and with different TDM NoC technologies. We
utilize a popular mesh topology in our evaluation. To facilitate
our evaluation, we assume that each slot is one clock cycle,
and each HWC should have more than 2 buffers to cover
the credit round-trip delay. The performance enhancements
brought about by our highway technique are evaluated with
both synthetic traffic patterns and application benchmarks.

4In this case, the credit updating signal needs to be sent out as soon as the
arbitration succeeds.

Av

er
ag

e
pa

ck
et

 d
el

ay
 in

 c
yc

le
s

200

400

600

800

1,000

1,200

200

400

600

800

1,000

1,200

Injection rate
0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.06 0.08 0.1 0.12 0.14 0.16 0.18

No HW packet-16
HWC1-buffer2 packet-16
No HW packet-32
HWC1-buffer2 packet-32
No HW packet-64
HWC1-buffer2 packet-64

No HW packet-16 HWC1-buffer2 packet-16
No HW packet-32 HWC1-buffer2 packet-32
No HW packet-64 HWC1-buffer2 packet-64

(a) Packet sizes

 A
ve

ra
ge

 p
ac

ke
t

de
la

y
in

 c
yc

le
s

200

400

600

800

1,000

200

400

600

800

1,000

Injection rate
0.06 0.08 0.1 0.12 0.14 0.16

0.06 0.08 0.1 0.12 0.14 0.16

HWC1-buffer2
HWC2-buffer2
HWC4-buffer2
No HW

No HW
HWC1-buffer2
HWC2-buffer2
HWC4-buffer2

(b) Increase HWCs

Av
er

ag
e

pa
ck

et
 d

el
ay

 in
 c

yc
le

s

100

200

300

400

500

100

150

200

250

300

350

400

450

500

Injection rate
0.06 0.08 0.1 0.12 0.14 0.16

0.06 0.08 0.1 0.12 0.14 0.16

HWC2-buffer2
HWC1-buffer4
HWC1-buffer8
HWC1-buffer2

HWC2-buffer2
HWC1-buffer4
HWC1-buffer8
HWC1-buffer2

(c) Increase buffers
Fig. 5. Performance evaluation under uniform traffic in an 8x8 mesh, with a window size of 16 slots. Each connection reserves 2 slots in a window. The
packet size is 32 flits for (b) and (c). Injection rate is in flit/connection/cycle (fcc)

0.06

0.12

0.24

0.15
0.17

0.26

0.16
0.18

0.26

0.17
0.18

0.27

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t

Slot per connection

No HW HWC1

HWC2 HWC4

(a) Uniform random

0.06

0.12

0.24

0.15

0.18

0.27

0.22

0.25

0.29

0.25
0.27

0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t

Slot per connection

No HW HWC1

HWC2 HWC4

(b) Tornado

0.06

0.12

0.24

0.19
0.21

0.250.24 0.24
0.26

0.24 0.24
0.26

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t

Slot per connection

No HW HWC1 HWC2 HWC4

(c) Shuffle
Fig. 6. Throughput evaluation under different traffic patterns and different connection width and a packet size of 32 flits

A. Performance Evaluation with Synthetic Traffic

We assume that the static TDM NoC has an architecture
similar to [2]. We designed a depth first searching algorithm
similar to [10] to do path searching and slot allocation for
connections. After all the connections are configured, we can
launch our NoC for data transfer by using these statically
reserved connections.

For a uniform random traffic pattern, we randomly gener-
ated 64 connections and scheduled them in an 8×8 mesh with
a window size of 16 slots. If a generated connection cannot be
scheduled, we will regenerate it until it can be scheduled. We
also use the Tornado and Shuffle traffic patterns for which
connections are generated according to the relationship of
source and destination nodes as described in the Chapter 3.2
of [11].

Packets generated for each connection obey a Poison dis-
tribution. Therefore, the traffic injection rate of a flow can be
controlled by adjusting the inter arrival time between packets,
while the burstiness of the traffic flow can be controlled by
varying the number of flits in a packet. We vary the packet size
from 16 to 64 flits, the reserved number of slots per connection
per time window from 1 to 4 slots, the HWC per input from
1 to 4 and buffer per HWC from 2 to 4.

In our evaluation, we define injection rate as average
flits/connection/cycle (fcc). The packet delay includes both the
waiting delay in the NI and the transfer delay of the network.
The throughput results are also given as flits/connection/cycle.

The results under uniform random traffic are shown in Fig.
5a. Our highway technique greatly reduces the average packet
delay. Eg. with a packet size of 16 flits, applying one HWC per
input with 2 buffer stages can achieve a delay reduction of 77%
at injection rate 0.1 fcc. As the packet size grows, the benefits

of using highways becomes more prominent. Eg. at packet size
of 32 flits, the delay reduction is 80% at injection rate 0.1 fcc,
while at packet size of 64 flits the reduction becomes 84%.
Besides, the maximum throughput improvement also increases
from 50% to 200%, when packet size increases from 16 to 64
flits. This is because when the packet size grows, the network
traffic becomes more and more bursty and thus unbalanced. As
a result, our highway technique gains more chances to utilize
free slots for busy connections.

We also observe that, increasing the number of HWCs per
input can further improve performance. As Fig. 5b shows,
increasing HWC from 1 to 2 can have a further 35% delay
reduction at injection rate 0.15. However, more HWCs do
not lead to apparent performance improvements, showing a
performance saturation phenomenon.

Compared with adding the buffers per HWC, increasing the
number of HWCs per input is more effective on performance.
As Fig. 5c suggests, two HWCs per input with 2 buffers in
each is far better than one HWC with 8 buffers.

Furthermore, we studied the effect of different number of
reserved slots per connection and different traffic patterns.
All of these results suggest that using our highway technique
can greatly reduce packet delay, which is similar to the delay
curves in Fig. 5a. For example, when each connection reserves
4 slots in a time window, we can still have 47% delay reduction
at injection rate 0.1 fcc and 70% delay reduction at 0.23 fcc
with uniform random traffic. We skip the delay results here
due to space limitation.

The effects on maximum throughput are shown in Fig. 6.
We find that the same HWC configuration under different
traffic pattern and with different reserved slots per connection
generates different throughput improvements, ranging from

320

347

397

98 101 106

0.05 0.06 0.07

0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 f
lit

 d
el

ay
 in

 c
yc

le
s

Injection rate

HWC1 (waiting) HWC1 (sending)

No HW (waiting) No HW (sending)

Fig. 7. Delay decomposition under uniform random traffic and a packet size
of 32 flits.

417% to 8%. We also observe that, as the reserved slots
per connection grows, the throughput improvements decreases.
This is due to that given a fixed number of connections, as
the reserved slot per connection increases, the unallocated slots
decrease.

Finally, in our experiments we separate the total delay
into: waiting delay and transfer delay. As shown in Fig. 7,
compared with the transfer delay, the waiting delay of a flit
is much bigger. For example, without a highway, the average
flit waiting delay is more than 300 cycles, which will also
increase dramatically when the injection rate increases, while
the transfer delay is always 6 cycles. The large waiting delay of
a flit is due to two reasons: (1) when a burst of flits arrives, the
FIFO order requires the flits waiting in a queue, if the service
rate of the output is not enough; (2)Without a highway, a TDM
connection mandates a flit to wait for one of the reserved slots.
The highway technique can reduce the waiting delay in both
scenarios, by increasing the service rate of a connection as
well as reducing the waiting time for a slot. As suggested by
Fig. 7, the waiting delay is reduced from above 300 cycles
to around 100 cycles, when applying 1 HWC with 2 buffers
per input. With HWC, the transfer delay of a flit may slightly
increased due to buffering delay in the HWCs, for example, at
injection rate 0.7 fcc, the average transfer delay with a highway
is 7 cycles, which is 1 cycle more than without highway.
However, when compared with the waiting delay reduction,
such increase can be neglected.

From these results, we find that adding 1 HWC per input
with two buffers can have up to 80% packet delay reduction
and up to 310% throughput enhancement. Increasing the
buffers per HWC does not have significant improvements,
whereas using more HWCs can further reduce the packet delay
from 10% to 40% and increase the throughput by 4% to 75%.
However, considering the doubled, even tripled area cost, as
well as the more than the 15% increase on the critical timing
path, we think it is not cost-effective to use more HWCs or
more buffers per HWC. Applying one or two HWC for each
input link, and 2 buffers in each HWC to cover the round-trip
delay seems to be a reasonable compromise.

B. Performance Evaluation with MPSoC Benchmarks

We experimented with the NoC benchmarks designed by
Pekkarinen et al [14] [15], to confirm the benefits of highways.
The NoC benchmark utilizes task communication graphs

TABLE IV
COMMUNICATION PROPERTIES OF THE APPLICATIONS

AV bench ERS UMTS OFDM
Connections 57 26 11 12

Avg. Burst size (flits) 531.60 12797.0 14.1 1.43
Total Request (MB/s) 6772 4488 94 196
Max Request (MB/s) 1168 512 246 80
Min Request (MB/s) 0.25 64 2 52

(TCGs) to model MPSoC applications. It contains a set of
processor and DSP models. Tasks can be mapped and running
on these processor and DSP models. [15] has already given
the task mappings. It mapped all the applications to either a
2×2 or a 4×4 mesh based MPSoC platform depending on the
size of the TCGs. Users of the NoC bench are required to use
their own NoC to connect all the processor/DSP cores to run
these applications for evaluation.

The NoC bench contains four applications which have
throughput requirements annotated on the edges of TCGs.
The details of the four applications have been described
in [14]. Their TCGs can also be found in [15]. Besides,
we list the communication properties of each application in
Table IV, in which Total Request means the total throughput
requirement of an application. Min/Max Request refers to the
minimum/maximum throughput requirement among all the
connections’ requirements of an application. Note that the
AV benchmark and Ericsson Radio System (ERS) are com-
munication intensive, their Total Request are 6772 MB/s and
4488 MB/s respectively, whereas the traffic flows generated
by the UMTS receiver and OFDM receiver are a magnitude
less, which are 96 MB/s and 196 MB/s respectively.

Before running an application on the statically scheduled
TDM NoC, we first establish TDM connections between
processor/DSP cores to satisfy all the communication needs
and throughput requirements described by the TCG of the
application. We use a depth-fist search algorithm to search
paths and allocate slots to connections. We can statically
optimize a TDM NoC for an application by tuning the NoC
clock frequency and the TDM window size, in order to avoid
too much bandwidth waste. For this reason, we gradually
increase the NoC clock frequency and the time window size
until reaching a condition where our search algorithm can
schedule all the connections of an application. The clock
frequency of the NoC ranges from 100 to 1000 MHz. The
time window size is between 2 to 32 slots.

As Fig. 8a shows, the highways significantly improve the
performance of AV benchmark and ERS. The average appli-
cation run time is reduced by 24% and 52%, respectively.
Meanwhile, as suggested by Fig. 8c, the throughput is en-
hanced by 6% in AV benchmark and 25% in ERS. Such
performance improvement is due to the highways in the TDM
NoC. For example, we see 14% (with one HWC per input
link) and 15% (with two HWCs per input link) average flit
delay reduction with AV bench. We also find about 20% (one
HWC per input link) and 52% (with two HWCs per input
link) delay reduction in the ERS application. For these two
applications, improvements on communication can also help
to enhance the overall system performance, which is reflected

1.00 1.00 1.00 1.00

0.76

0.48

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

AV benchmark ERS OFDM reciever UMTS reciever

No HW HWC1 HWC2
N

o
rm

a
liz

e
d

 r
u

n
 ti

m
e

(a) Application performance

67.7

217.00

28.90
11.90

58.40

172.00

21.8

57.8

104

1.00

51.00

101.00

151.00

201.00

AV benchmark ERS OFDM reciever UMTS reciever

No HW (sending) No HW (waiting) HWC1 (sending)

HWC1 (waiting) HWC2 (sending) HWC2 (waiting)

A
v

e
ra

g
e

fl
it

 d
e

la
y

 i
n

 c
y

c
le

s

(b) Average flit delay

0.94

0.75

1.00 1.001.00 1.00

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

AV benchmark ERS OFDM reciever UMTS reciever

No HW HWC1 HWC2

N
o

rm
a

liz
e

d
 th

ro
u

gh
p

u
t

(c) Normalized throughput
Fig. 8. Benchmark evaluation of our highway technique

by the shortening of application run time and the increase of
system throughput.

Applications like the OFDM receiver and UMTS receiver
have less communication needs and their performance mainly
depends on the processor speed. Therefore, from Fig. 8b,
we find that for the OFDM receiver, although our highway
technique can bring about 25% flit delay reduction, such
improvement on communication system does not help to
increase the application performance, as suggested by Fig. 8a
and Fig. 8c.

We further studied the network performance, as described
in Fig. 8b. We find when using highways, applications with
larger burst size tend to have more delay improvements. For
example, the biggest delay improvement happens with ERS,
since its traffic flows has an average burst size of 12797 flits. In
comparison, there is no improvement for the UMTS receiver,
since it has a low traffic generation rate and the average burst
size is only 1.43. In this situation, the highway setup process
is seldom initiated because of not enough flits waiting in the
network interface. Furthermore, we find that the transfer delay
of a flit is very small, ranging from 3 to 7 cycles on average.
However, the average waiting delay is relatively large, eg. it
can reach up to 213 cycles. Our highway technique can greatly
reduces the total delay by shortening the waiting delay, eg.
from 213 cycles to 104 cycles.

VI. CONCLUSIONS

We have proposed a TDM highway technique to utilize free
time slots in TDM NoCs. With the highway technique, the
upper bound throughput of a connection is adaptive to link
sharing situations, while it still offer QoS guarantees on the
lower bound throughput and flit order. The delay of packets
are greatly reduced. We can dynamically setup highways on
TDM connections. One prominent aspect of our highways is
that the dynamic setup method has no interference with the
normal TDM data transfer and no dependency on the TDM
NoC architecture. Thus, it can be utilized by TDM NoCs with
either a distributed or a centralized TDM connection setup
method, with either source routing or distributed routing by
using distributed slot tables.

We use both synthetic traffic pattern and application bench-
marks to evaluate our highway technique. With synthetic
traffic pattern we find a delay reduction up to 80% and a
throughput enhancement upto 417% in a statically scheduled
TDM NoC, as well as up to 80% delay reduction and 17%

throughput enhancement in a dynamically allocated TDM
NoC. Generally speaking, the more unused slots, the more
benefits; the larger the burst size, the more improvements.
Also, using more HWCs for a link and more buffers per
HWC can provide more performance enhancement. However,
the cost-performance study suggests that using one or two
HWCs per link and 2 buffers per HWC is most cost-effective
in our extensive experiments. With application benchmarks,
we confirm that highways can enhance the performance of a
TDM NoC. However, the enhancement on NoC can reduce
the run time of an application only if it is communication
intensive.

REFERENCES

[1] K. Goossens and A. Hansson, “The Æthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in DAC, 2010

[2] R. Stefan, A. Molnos, and K. Goossens, “dAElite: a TDM NoC sup-
porting QoS, multicast, and fast connection set-up,” IEEE Transactions
on Computers, vol. PP, no. 99, p. 1, 2012.

[3] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens, “A TDM NoC
supporting QoS, multicast, and fast connection set-up,” in DATE, 2012.

[4] A. Hansson, M. Subburaman, and K. Goossens, “Aelite: A flit-
synchronous network on chip with composable and predictable services,”
in DATE, 2009.

[5] Moreira, Orlando and Mol, Jacob Jan-David and Bekooij, Marco,“
Online resource management in a multiprocessor with a network-on-
chip” in ACM symposium on Applied computing, 2007.

[6] T. Marescaux, H. and Corporaal, “Introducing the SuperGT Network-
on-Chip; SuperGT QoS: more than just GT ” in DAC, 2007.

[7] Mirza, Usman Mazhar and Gruian, Flavius and Kuchcinski, Krzysztof,
“Design Space Exploration for Streaming Applications on Multiproces-
sors with Guaranteed Service NoC” in NocArc, 2013.

[8] Ma, Ning and Lu, Zhonghai and Zheng, Lirong, “System design of
full HD MVC decoding on mesh-based multicore NoCs” in Hournal of
Microprocessors and Microsystems, vol. 35, no. 2, pp.217–229, 2013.

[9] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on
chip: concepts, architectures, and implementations” in IEEE Design &
Test of Computers, vol. 22, no. 5, pp. 414–421, 2005.

[10] Zhonghai Lu and Axel Jantsch, “TDM virtual-circuit configuration for
network-on-chip” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems vol. 16, no. 28, pp. 1021–1034, 2008

[11] Dally, William James and Towles, Brian Patrick, “Principles and prac-
tices of interconnection networks” in Published by Elsevier pp. 245–246,
2004.

[12] D. Becker and W. Dally, “Allocator implementations for network-
on-chip routers,” in ACM Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. pp.52:1–
52:12, 2009.

[13] S. Liu, A. Jantsch, and Z. Lu, “Analysis and evaluation of circuit
switched NoC and packet switched NoC” in Euromicro Conference on
Digital System Design (DSD), 2013.

[14] E. Pekkarinen, L. Lehtonen, E . Salminen, et al. “A set of traffic models
for Network-on-Chip benchmarking ” in IEEE International Symposium
on System on Chip (SoC), 2011

[15] http://www.tkt.cs.tut.fi/research/nocbench/download.html

Paper D

A Fair and Maximal Allocator for

Single-Cycle On-Chip Homogeneous

Resource Allocation

Shaoteng Liu, Axel Jantsch and Zhonghai Lu

Included in IEEE Transactions on Very Large Scaled Integration systems
(TVLSI), vol 22, no. 10, pages: 2229�2233, 2014.

109

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014 2229

A Fair and Maximal Allocator for Single-Cycle On-Chip
Homogeneous Resource Allocation

Shaoteng Liu, Axel Jantsch, and Zhonghai Lu

Abstract— Traditional allocators for network-on-chip (NoC) routers
suffer from either poor-matching quality or limited fairness. We propose
a waterfall (WTF) allocator targeting homogeneous resource allocation,
which provides single-cycle maximal matching while guaranteeing strong
fairness based on the round-robin principle. It can be implemented
with a loop-free structure. In 90 nm technology, the allocator operates
at about 1 GHz clock frequency. We compare WTF with wave-front,
separable-input-first, and separable-output-first allocators and find that
it is at least 10% smaller, has 50% less delay under high load, and
uses 3% less power than any of these alternatives. Also, WTF is at
least as fair or clearly fairer. We also find that in a 4 × 4 circuit
switched NoC the use of WTF gives up to 20% higher network
performance.

Index Terms— Allocator, fairness, maximal matching, network-on-chip
(NoC), round-robin.

I. INTRODUCTION

An allocator performs a matching between multiple resources
and multiple requesters. A matching is an assignment of resources
to requesters satisfying the following three constraints [1]:
1) a resource is granted to a requester only if the corresponding
request exists; 2) each resource is granted to at most one requester;
3) a requester is at most granted once. A matching in which no
additional requests can be served without removing one of the
existing grants is called a maximal matching [2] and the one
containing the maximum number of grants is called a maximum
matching. Maximum matching is often too costly to be realized in
hardware. However, maximal matching is achievable. In addition to
matching quality, fairness is an important property for an allocator,
and we can distinguish between strong fairness and weak fairness [2].
Intuitively, strong fairness guarantees that all requesters are served
in proportion to their relative request rates. In practice, this means
that persistently active requesters are served in a periodic sequence
equally often within each reasonably short period. In contrast, weak
fairness only requires that every request is eventually granted, without
any guarantee at which rate or in which relative proportion different
requesters are served.

Allocators used in network-on-chip (NoC) routers have limitations.
Compared to large scale networks, the performance of NoCs is more
sensitive to the latency of each router. This mandates the use of single
cycle allocators in router design [2]. Consequently, conventional
allocators in NoCs do not take into account the maximal matching
quality and strong fairness at the same time. Strong fairness is usually
provided by using a variation of the round-robin principle, which
states that a request that was just served should have the lowest
priority in the next round [1]. On one hand, allocators which adopt
round-robin cannot ensure maximal matching. Separable-input-first
(SIF) and separable-output-first (SOF) allocators [2], [3] are classified
in this category. On the other hand, maximal matching allocators,

Manuscript received January 1, 2013; revised June 26, 2013; accepted
September 9, 2013. Date of publication October 22, 2013; date of current
version September 23, 2014.

The authors are with the Department of Electronic Systems, KTH Royal
Institute of Technology, Stockholm 16440, Sweden (e-mail: liu2@kth.se;
axel@kth.se; zhonghai@kth.se).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2284563

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Fig. 1. Illustration of homogeneous allocation in NoC.

such as wave-front (WVF) [4]–[6] or rectilinear-propagation-arbiter
and diagonal-propagation-arbiter [7], do not use the round-robin
principle and only provide week fairness. For general matching
problems, no ideal solution is known to design a NoC allocator
overcoming all these shortcomings.

However, in NoC design practice, we frequently encounter a kind
of special matching problem called homogeneous resources allocation
(HRA). Here, homogeneous resources refer to a class of resources
that have the same functionality and can be used interchangeably.
This kind of matching problem obeys two more constraints besides
the three constraints introduced above: 4) for each requester, all
resources it desires belong to the same class; and 5) any resource
of a class can be granted to the requester who have requests on this
class.

We use a router model to illustrate the HRA problem. The
router in Fig. 1 has five directions and each direction contains
k-duplexed channels. Channels in this model can either be regarded
as virtual channels (VCs) that share one physical channel in a time
division multiplexing way, or subphysical channels by splitting the
wires of a link in an spacial division multiplexing (SDM) way.
The output channels of each direction form one resource class.
The routing algorithm is deterministic, e.g., dimension-order-routing,
which assigns each arrival packet one and only one desired output
direction. For example, in Fig. 1, both packets from input channel
k of the west and input channel 1 of the resource desire an out-
put channel to the east. The right part of Fig. 1 is the bipartite
graph of this case with each line representing a request. Since
all requests of a packet are confined to output channels of the
east direction, constraint 4) holds, and because each packet asserts
requests on every output channel of the east direction, constraint
5) can be satisfied. Therefore, channel allocation inside such a router
is an HRA problem.

For HRA, we propose a single cycle allocator which guarantees
both maximal matching and strong fairness. We call it “water-fall”
(WTF) because it finds the matching in several consecutive steps.
For an n-requester allocator, it requires n steps. WTF is implemented
entirely as combinational logic, which means the allocation takes
one cycle. It can be implemented free of combinational loops that
are common in traditional maximal allocators, e.g., the wave-front
allocator in [4]. We develop a fairness policy which inherits the
principle of round-robin and name it as massive round-robin (MRR)
for HRA.

HRA is an abstraction of a class of allocation problems which
are frequently encountered in NoC designs. For example, either VC
allocation in wormhole-based packet switched NoC [3] or subchannel
allocation in circuited switched NoC using SDM [8] is an HRA
problem. However, aside from our examples, we believe that our
allocator can be further utilized by other kinds of on-chip applications
which have HRA problems, even beyond the scope of NoC usage.

2230 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

II. DESIGN OF THE ALLOCATOR

A. Basic Structure of the Allocator

Intuitively WTF reduces the request matrix (rows in this matrix
represent requesters and columns represent resources) by taking
advantage of homogeneous resources. As the matrix in Fig. 2
suggests, input channels 0, 1, 3 each request a channel from output
direction 1. Input channel 2 requests a channel from output direc-
tion 2. Each input packet just has one desirable output direction, thus
constraints 4) and 5) hold and it is an HRA problem. For an HRA
problem, first, the big matrix can be split into submatrices according
to resource classes (output directions). Secondly, we can merge the
requests of a submatrix. As described in Fig. 2, the 4 × 4 matrix is
split up into two separate 4 × 1 matrices representing requests for
output direction 1 and 2, respectively.

Continuing the example, we apply two separate homogeneous
resource allocators to solve the two reduced matrices. We use a
ripple carry arbitration scheme to design such an allocator. Taking
the allocation in output direction 1 as an example, as described in
Fig. 3(a), since it has two resources and four requesters (marked
as 2 → 4), the allocator is made up of two columns and four
rows of arbitration cells accordingly. The three active requesters are
indicated by “1” in the reduced matrix. Two tokens are used to
denote the availability and grant decisions of the two output channels
(resources), respectively. In the current round, the arbitration for
tokens starts from the row 2, moves counter-clock wise, and ends at
row 1. Thus, the 4 requesters are served in this order: (r2, r3, r0, r1).
r3 will be the first to catch a token and r0 the second. This means
channel 1 is granted to r3 and channel 2 is granted to r0.

Considering fairness, we need to roll the start row. Our MRR
fairness policy is illustrated in Fig. 3(a) and (b). The principle
is that the end row in the next round is the last successful
requester of the previous round. And the start row is acquired by
incrementing the end row by 1, then modulo n. If no requester
is granted, the start row remains the same as in the previous
round. Applying this policy, active requesters r0, r1, r3 in Fig. 3
(assuming they are persistently active) are granted in the periodic
sequence: {(r3, r0)round0, (r1, r3)round1, (r0, r1)round2, (r3, r0) . . .}.
The start row i is selected by asserting pi = 1, 0 ≤ i ≤ n − 1,
where n is the number of requesters.

In general, we derive the function of the MRR policy as follows.
Given current grants gi , 0 ≤ i ≤ n − 1 for each requester (gi = 1
means granted), and suppose G is the set of granted requesters of the
current round with G = {x|0 ≤ x ≤ n − 1, gx = 1} and b denotes
any granted requester that b ∈ G, and the current start row is k(t)
and the end row is f . Compute the start row of the next round k(t+1)
as follows:

(if ∃ f that)
{

(f + n − k(t))modn = max {(b + n − k(t))modn}
f ∈ G

(then k(t+1) = (f + 1)modn, otherwise k(t+1) = k(t)).

Although in WTF there is no actual logic feedback, we also need to
avoid combinational circuits with loops which are undesirable due to
issues in verification and testing [7]. In Fig. 3(c), we propose a loop-
free structure by adding redundant logic. For an n-requester allocator,
our loop-free structure contains 2n − 1 rows. The bottom n − 1 rows
replicate the top n − 1 rows. In this way, rolling of the start row is
equivalent to selecting an active area. Fig. 3(c) shows how to convert
a loop structure into a loop-free structure. For example, suppose all
requesters are served in the order (r1, r2, r3, r0) in the current round.
Mapping into the loop-free structure, the area from row 1 to row 5

Fig. 2. Reduction of request matrix.

Fig. 3. Allocation mechanism, fairness policy and loop-free structure (circles
represent arbitration cells, dots represent tokens. (a) Allocation in output
direction 1. (b) Start row rotation. (c) Loop-free structure).

is activated, as the rectangular box in Fig. 3(c) suggests. Since row 5
replicates row 0, the allocation is also in the order (r1, r2, r3, r0).
In this way, the functions of the loop and loop-free structures are
equivalent.

B. Implementation

A WTF allocator consists of two parts: allocation logic and
priority updating logic. The allocation logic is used to generate
grants of the current round. The priority updating logic is used to
guarantee the fairness.

1) Implementation of the Allocation Logic: A loop-free design is
described in Fig. 4(a). An n-requester m-resource allocator (m → n)
has 2n − 1 rows and m columns. The top n rows are made up of
white cells, whereas the bottom n − 1 rows are composed of dark
cells. The right part of Fig. 4(a) depicts the internal logic of the
two arbitration cells. A white cell plays a role as “token” starter
when its priority p is asserted. It directly accepts the channel status
as tokens. When p is de-asserted, its role is a “token” passer and
it can receive a token passed by the upper cell from its north input.
A request is injected from the W(west) input of a cell. When an
arbitration cell receives a token and if it has one request asserted, it
consumes the token and grants the request with gi j = 1. Otherwise,
it passes the token on from its south output. The role of a black cell
is a token passer when p is de-asserted. When p is asserted, the
black cell’s function is that of a token terminator. In this situation,
all its outputs are set to “0.” Token passing ends at this cell.

Suppose pi , 0 ≤ i ≤ n − 1, is set as “1,” then the effective tokens
are injected from row i and passed downward. Meanwhile, row i +n
in the dark region also gets its priority line pi asserted and thus stops
tokens passing. In such a way, the active region starts from row i and
ends at row i + n − 1.

2) Implementation of the Priority Updating Logic: The key point
of the priority updating algorithm is to find the end row for the
new round. This is a 1 → n allocation problem. The n-bit grant
vector generated by the allocation logic denotes requesters. The
requester which gets the token will turn into the end row, as shown
in Fig. 4(b). This time the token passing is clock-wise, which is

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014 2231

Fig. 4. Hardware implementation of the WTF allocator. (a) Allocation logic.
(b) Priority updating logic.

opposite to the allocation logic. The start row is the same start row
used by allocation logic for the current round. For example, in a
(2 → 4) allocator, suppose p2 is asserted and thus the grant vector
generated is 1001. For the priority updating logic, the token is also
injected from row 2 but passed in clock-wise order. As a result,
row 0 (g0) catches the token. Then row 1 will be the start row in
the next round (incrementing the end row by 1, then modulo n).
The whole priority updating logic is implemented as illustrated in
the right part of Fig. 4(b).

III. EVALUATION AND ANALYSIS

It is known that fairness and performance are two key metrics for
an allocator. We evaluate and analyze both aspects. The router model
described in Fig. 1 is simulated. The arrival packets at each input
channel are queued up. When an output channel is granted to an
input channel, one packet leaves the queue. Each packet just needs
1 cycle to be delivered. The arrival time of packets obey a Poison
process or an on-off process. The arrival packets are uniformly and
randomly distributed among all input channels.

In our setting, each direction of the router contains four duplex-
channels. Thus the channel allocation inside this router forms a
20 → 20 allocation problem. However, considering HRA, the
20 → 20 matrix can be split into five 4 → 16 submatrices, each
of which represents the channel allocation of one output direction.
Accordingly, we can assign each output direction an allocator. Since
our purpose is to evaluate the fairness and performance of an
allocator, in order to avoid influences such as head of line blocking,
we assign every arrival packet the same target output direction.

In addition to the WTF allocator, we modeled several other
allocators for comparison, including SIF allocator, SOF allocator,
and WVF allocator. They are reported as representative allocators
in NoC design in [2]. Both the two separable allocators adopt two
stages of round-robin arbitration. The wave-front allocator adopts
rotating policy [1], [9] by incrementing the priority each round. All
allocators are tested under the same packet injection test bench for
each utilization. Here utilization equals the duration of an output
channel occupied by a packet (1 cycle in this case) multiplied by
the sum of injection rates of all inputs and divided by the number
of resources (4 in this case). We simulated 40 000 cycles at each
utilization for each allocator.

A. Performance

Performance is affected by matching quality of an allocator.
Fig. 5(a) shows the average delay in terms of cycles versus the

Fig. 5. Performance comparison between allocators [the waiting delay of
a packet is the time that the packet waits in the input queue. The total
delay (response time) of a packet equals the waiting delay plus one cycle].
(a) Average waiting delay in cycles (The curves of WVF and WTF are almost
identical.) (b) Random case fairness. (The curves of WTF, SIF, and SOF are
almost identical.)

TABLE I
SYNTHESIS RESULTS OF DIFFERENT ALLOCATORS

utilization. It suggests that WTF exhibits the same average waiting
delay in cycles as WVF. This is because both WVF and WTF are
maximal allocators, they generate the same number of grants every
cycle, thus the average packet delay is the same. The performances of
the two separable allocators are worse than WTF and WVF because
no maximal allocation guarantee is provided. At utilization 0.9, the
waiting delay of WTF and WVF are both 1.2 cycles. And it is
3.1 cycles for SIF and 13.3 cycles for SOF. For separable allocators,
in some cases, resources are left unassigned even in the presence of
requests waiting for resources, and thus performances are degraded.
Although the delay in cycles of WTF and WVF are very close, when
the differences in clock frequency are considered, WTF has 50% of
the actual delay in ns of WVF (WTF is about as twice fast as WVF,
as Table I suggests.)

B. Fairness

In addition to lower performance, WVF is also less fair.
1) Example Study: Continuing our previous example shown in

Fig. 3(a), for an 2 → 4 allocator, suppose r0, r1, r3 is continuously
asserted. For WTF, three active requesters are served in a periodic
sequence (r3, r0), (r1, r3), (r0, r1), (r3, r0) Each period has three
allocation rounds. Inside a period, every requester is served twice. The
normalized throughputs are (0.66, 0.66, 0.66), respectively. However,
for WVF with priority rotating policy, the periodic sequence is
(r0, r3), (r1, r0), (r3, r1), (r3, r0), (r0, r3) Each period has four
allocation rounds. Inside a period, r0 and r3 are served three times,
but r1 is only served two times. The throughputs are (0.75, 0.75, 0.5),
respectively.

2) Worst Case Analysis: In general, we assume an allocator has
n inputs and m resources (m ≤ n). Suppose during a time interval
(t1, t2), p requesters (m ≤ p ≤ n), numbering r1, r2, . . . , r p , are
constantly active. Each requester will occupy the resource for L
cycles when it is granted. Let Vi (t1, t2) denote the amount of service
received by requester i in (t1, t2).

Applying our MRR policy, we can ensure that between any two
service opportunities given to requester ri , requester r j must have
had an opportunity. Thus, suppose during (t1, t2), requester i gets

2232 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

z service opportunities and requester j gets z′, then | z − z′ | ≤ 1.
Therefore

|Vi (t1, t2) − Vj (t1, t2)| = |zL − z′L | ≤ |z − z′|L = L . (1)

As interval (t1, t2) → ∞, the difference in amount of services of
any two requesters is always bounded by L .

For the WVF, the p requesters are served in a periodic sequence
and each period contains n allocation rounds. Thus, each period is nL
cycles long. During every period, in the worst case, the most favorite
requester ri can have m +n − p service opportunities, while the least
served requester r j just has m service opportunities. Suppose there
are q periods during interval (t1, t2) that q = �t2 − t1/nL�, then

(m + n− p)(q−1)L ≤ Vi (t1, t2)≤(m + n− p)(q + 1)L (2)

m(q − 1)L ≤ Vj (t1, t2) ≤ m(q + 1)L (3)

|Vi (t1, t2) − Vj (t1, t2)| ≤ (n − p)qL + (2m + n − p)L . (4)

As interval (t1, t2) → ∞ and q → ∞, there is no worst case
bound for WVF.

3) Random Case Study: The simulation model used for perfor-
mance is used to study the stochastic fairness behavior.

Under certain traffic patterns, an unfair allocator may generate
significant biased allocations. For example, as long as frequently
active requesters are not evenly spaced among all requesters, the
allocation may be unfair with WVF. We will take one of such traffic
pattern for a study. The traffic pattern is set as follows: the packets
are injected from only 12 of the total 16 inputs: from input 0, 1, . . .
to input 12. The packets injection process is an on-off process. This
two-state Markov modulated process has probability α to switch from
off to on, and a probability to β switch from on to off. In the on
state, each input has the same probability r1 of injecting a packet.
While in the off state, no packets can be injected. Thus, the average
injection rate of each input is αr1/(α + β).

Under a certain utilization, the average packet waiting time of input
queue i is marked as Di , 0 ≤ i ≤ 12. We use standard deviation of
Di , 0 ≤ i ≤ 12 [denoted as σ(D)] as a metric of fairness. As we
can imagine, unfair allocators will result in significant variance of
these Di values. Therefore, its σ(D) should be higher than that of
fair allocators.

Fig. 5(b) suggests the σ(D) values of several allocators under
different utilizations. Generally speaking, under every utilization, the
value of WVF is much higher than the others. For example, at
utilization 0.78, the σ(D) of WVF is 17.2, while that of WTF is
only 1.0, SIF is 0.90 and SOF is 1.1. This means that WVF does
not treat every input queue fairly. In other words, certain inputs are
served more often than the others.

C. Synthesis Results

We synthesize the allocators used in the router model with TSMC
90 nm technology with Synopsys Design Compiler. The results are
listed in Table I. The power numbers are obtained by assuming
50% switching activity of each input signal. Note that the WVF
used for synthesis also has a loop-free implementation by replicating
the array for each possible priority diagonal and selecting the grant
matrix generated by the currently active one. For details of this WVF
allocator implementation, refer to [2].

We find that our WTF allocator is slightly slower than SIF and
SOF, but it consumes less area and power. It is much faster than
WVF. This is because WVF has to be square. In this case, it is more
efficient to be implemented as one 20 → 20 allocator rather than five
4 → 16 allocators. As a result, its critical path is longer than WTF.
Besides, since the WVF avoids combinational loops by replicating

Fig. 6. Performance comparison in circuit switched NoC in cycles.
(a) Average delay in cycles. (b) Percentile delay in cycles.

the entire 20 × 20 array for each priority, it consumes much more
area than other allocators.

IV. APPLICATION STUDY

Our allocator is used in a circuit switched NoC design. The
circuit switched NoC consists of 4 × 4 routers and adopts a mesh
topology. Inside each router, every direction has four-duplexed SDM
subchannels. A parallel probing method [10] is used for path set-
up. Probes are used to set-up a minimal path for data transfer. At
the beginning, one probe carrying a set-up request is sent out by
the source node. At each hop, when a probe enters into a router,
it can split into multiple probes if it has multiple preferable output
directions. As probes travel, they will reserve the output channels
which they have been allocated inside each router for future data
transfer. Whenever two probes carrying the same request meet, one
of them is regarded as redundant and is cancelled and all channels
used only by the cancelled probe are released. Each probe takes two
cycles for a hop. For detailed description of this router architecture
and set-up method, refer to [10].

Since each probe is assigned only one target direction, allocating
output channels to probes is an HRA problem. For evaluation,
uniform random traffic is applied. When a path is established, a packet
with eight flits is delivered. After data transfer the path is released.

The results are shown in Fig. 6. Fig. 6(a) gives the average packet
delay in cycles versus offered load, by assuming that routers with
different allocators are working at the same clock frequency. Offered
load refers to the time used for data transfer of a path (8 cycles in
this case) multiplied by per node set-up request injection rate. In this
case, WTF has the best performance, e.g., at offered load 0.95, the
average packet delay by using WTF is 56 cycles. By using WVF, it is
59 cycles. For SIF and SOF, they are 76 and 79 cycles, respectively.
Although WTF and WVF are both maximal allocators, the unfairness
of WVF might cause unbalanced congestion of channels. In this
situation, some channels become saturated earlier than others. Thus,
we observe that the performance of WVF is slightly inferior to WTF.
This difference will be enlarged at high load, e.g., at load 0.96, the
average delay of WTF is 107 cycles while it is 152 cycles for WVF.

We also compared their worst packet delay by using a statis-
tical method. We use percentile as a measurement. For example,
Percentile(n) is the minimum delay of the (1 − n)% packets that
experience longest delays in our simulation.1 In Fig. 6(b), the per-
centile(99) delay of WTF is always smaller than WVF. For example,

1We choose this metric because it is less susceptible to statistical abnormal-
ities [6]. Each percentile value is taken from a large amount of samples that
come from 2 million simulation cycles. Thus, the upper and lower bound of
the confidence interval of a percentile value are believed to be very close. For
example, at load 0.95, for WTF, we ran several simulations with different
random seeds and total simulation cycles, ranging from 250 thousand to
5 million cycles. The percentile(99) values of each simulation were all around
307, with less than 1% difference.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014 2233

Fig. 7. Performance comparison in circuit switched NoC in ns. (a) Average
delay in ns. (b) Percentile delay in ns.

at load 0.95, percentile(99) delay of WTF is 307 cycles, and it is
335 cycles for WVF. At load 0.96, the WTF is 406 cycles, and it
is 476 cycles for WVF. This result also support that WTF is fairer
than WVF. We also notice that the percentile(99) delay curves of SIF
and SOF are worse than WVF and WTF, because their performances
cannot catch up with maximal allocators such as WVF and WTF.

In Fig. 7, we evaluate the influences of using different allocators
on the critical timing path, which mainly consists of one allocator
latency plus one crossbar latency. In this case, a router with a WTF
allocator can work at 510 MHz clock frequency. A router with SOF
or SIF can work at 526 MHz. And a router with WVF operates at
345 MHz. As a result, we can measure average packet delay in ns.
In Fig. 7(a) we find that the WTF has the best performance and
WVF the worst. At load 0.94, the average packet delay is 92 ns
for WTF. And it is 117 and 116 ns for SIF and SOF, respectively.
For WVF, it is 141 ns. We also measure percentile(99) of the worst
case delay in ns, as shown in Fig. 7(b). For example, at load 0.93,
for WTF, it is 366 ns. For SIF and SOF, it is 469 and 473, respec-
tively. It is 569 ns for WVF. Hence, WTF is superior to the three
alternatives.

V. CONCLUSION

Matching quality and fairness are two important concerns for
designing an allocator. While achieving one or the other, traditional
allocators for NoCs fail to succeed in both aspects. In this brief,
we propose an allocator called WTF for homogeneous resource
allocation. This allocator guarantees both maximal matching quality
and strong fairness. Furthermore, our allocator can be implemented in
hardware without combinational loops. The abilities in performance
and fairness of our allocator are analyzed and demonstrated in
simulation. We also use WTF in a 4 × 4 circuit switched NoC design.
Experiment results suggest that WTF offers better performance and
lower area than traditional allocators while achieving strong fairness.

REFERENCES

[1] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks (The Morgan Kaufmann Series in Computer Architecture
and Design). San Mateo, CA, USA: Morgan Kaufmann, Dec. 2003,
pp. 351–375.

[2] D. Becker and W. Dally, “Allocator implementations for network-on-chip
routers,” in Proc. Conf. High Perform. Comput. Netw., Storage Anal.,
2009, pp. 1–12.

[3] S. Park, T. Krishna, C. Chen, B. Daya, A. Chandrakasan, and L. Peh,
“Approaching the theoretical limits of a mesh NoC with a 16-node chip
prototype in 45 nm SOI,” in Proc. 49th Annu. DAC, 2012, pp. 398–405.

[4] J. Delgado-Frias and G. Ratanpal, “A VLSI crossbar switch with
wrapped wave front arbitration,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 50, no. 1, pp. 135–141, Jan. 2003.

[5] W. Olesinski, H. Eberle, and N. Gura, “PWWFA: The parallel wrapped
wave front arbiter for large switches,” in Proc. Workshop HPSR, Jun.
2007, pp. 1–6.

[6] Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 1,
pp. 13–27, Jan. 1993.

[7] J. Hurt, A. May, X. Zhu, and B. Lin, “Design and implementation of
high-speed symmetric crossbar schedulers,” in Proc. IEEE ICC. vol. 3.
Jun. 1999, pp. 1478–1483.

[8] A. Lusala and J.-D. Legat, “Combining sdm-based circuit switching with
packet switching in a NoC for real-time applications,” in Proc. IEEE
ISCAS, May 2011, pp. 2505–2508.

[9] H. Chi and Y. Tamir, “Decomposed arbiters for large crossbars with
multi-queue input buffers,” in Proc. IEEE ICCD VLSI Comput. Proces-
sors, Oct. 1991, pp. 233–238.

[10] S. Liu, A. Jantsch, and Z. Lu, “Parallel probing: Dynamic and constant
time setup procedure in circuit switching NoC,” in Proc. IEEE DATE,
Mar. 2012, pp. 1289–1294.

High-Speed Dynamic Asynchronous Pipeline:
Self-Precharging Style

C.K. Midhun, Jephy Joy, and R.K. Kavitha

Abstract— This brief proposes a new type of high throughput asyn-
chronous pipeline structure called self-precharging (SP) pipeline. The
proposed SP pipeline targets dynamic linear datapaths for fine grain
and gate level pipelining. The novel SP protocol and modified structure
enables SP pipeline to deliver multi gigahertz throughput without
degrading the per-stage forward latency of the pipeline. An asymmetric
C (aC) element is used to combine the two control signals, which are
used to evaluate and precharge a stage. Because of the aC element, the
pipeline is able to remove one of the important timing constraints present
in lookahead pipelines (LP). Since the SP signal is coming from the same
stage without altering the functionality of the signal, the wiring load of
handshaking signals between two stages is maintained minimum. The
pipeline is implemented in 90 nm UMC technology and it offers (2.227
giga data items/s) more than twice the throughput of Williams’ PS0 and
more than 20% improvement over the best lookahead dual rail pipeline
(LP2/1). The area and power consumption of the proposed pipeline are
comparable with the state-of-the-art asynchronous pipeline topologies.

Index Terms— Asynchronous pipeline, dual-rail logic, dynamic logic,
fine-grain pipelining.

I. INTRODUCTION

The speed of VLSI circuits increases as the feature size of tran-
sistor decreases. To satisfy the ever growing industrial requirements,
pipelining can be further employed to enhance the speed. Pipelining
can be either synchronous or asynchronous. In synchronous circuit
design, a globally distributed clock controls and updates all the
memory elements such as flip-flops [1] and latches at the same time.
The period of the clock is designed by considering the combinational
logic delay, setup time of the memory elements, and the process,
voltage, and temperature variations.

Synchronous circuit designs are less complex when
compared with asynchronous circuit designs [2]. But the distribution
of global clock with controlled clock skew and latency is an

Manuscript received January 25, 2013; revised July 10, 2013; accepted
August 28, 2013. Date of publication October 22, 2013; date of current version
September 23, 2014.

The authors are with the Department of Electronics and Commu-
nication Engineering, National Institute of Technology, Tiruchirappalli
620015, India (e-mail: midhu.nambiar@gmail.com; jephyjoy@gmail.com;
rkkavitha@nitt.edu).

Digital Object Identifier 10.1109/TVLSI.2013.2282834

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Paper E

MultiCS: Circuit Switched NoC with

Multiple Sub-Networks and

Sub-Channels

Shaoteng Liu, Axel Jantsch and Zhonghai Lu

Included in Journal of System Architecture (JSA), vol 61, issue. 9, pages:
423�434, 2015.

117

MultiCS: Circuit switched NoC with multiple sub-networks and
sub-channels

Shaoteng Liu a,⇑, Axel Jantsch b, Zhonghai Lu a

a KTH Royal Institute of Technology, Sweden
b TU Wien, Vienna, Austria

a r t i c l e i n f o

Article history:
Received 26 August 2014
Received in revised form 9 June 2015
Accepted 27 July 2015
Available online 13 August 2015

Keywords:
NoC
Circuit switched
Multi-channel
SDM

a b s t r a c t

We propose a multi-channel and multi-network circuit switched NoC (MultiCS) with a probe searching
setup method to explore different channel partitioning and configuration policies. Our design has a vari-
able number of channels which can be configured either as sub-channels (spatial division multiplexing
channels) or sub-networks. Packets can be delivered on an established connection with one or multiple
channels. An adaptive channel allocation scheme, which determines a connection width according to the
dynamic use of channels, can greatly reduce the delay, compared to a deterministic allocation scheme.
However, the latter can offer exact connection width as requested. The benefits and burden of using dif-
ferent number of channels and configurations are studied by analysis and experiments. Our experimental
results show that sub-network configurations are superior to sub-channel configurations in delay and
throughput, when working at the highest clock frequency of each configuration. Under reasonable chan-
nel partitioning, sub-networks with narrow channels can generally achieve higher throughput than the
network using single wide channels.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Compared to packet switched (PS) NoCs with TDM channels,
circuit switched (CS) NoCs are preferable under certain require-
ments. For example, the advantages of using CS NoC with spatial
division multiplexing (SDM) channels on streaming applications
like 3D graphics have been demonstrated in [1].

With the increasing number of wires available on-chip, the
number of possibilities to organize, use and allocate them grows
combinatorially. We have more freedom to choose the number of
channels and allocate wires for them, instead of giving all wires
to only one channel. Thus, how to allocate wire resources and orga-
nize multiple channels becomes an interesting research question.

We propose a CS network with multiple channels and multiple
networks (MultiCS) to explore the effects of different channel par-
titioning and configuration polices. We offer the following
contributions:

� The proposed CS NoC combines spatial division multiplexing
[1], which we call sub-channels, with sub-networks.
Sub-channels divide the wires between two switches which

then can be allocated separately and independently.
Sub-networks are independent networks that connect to the
same nodes. A connection between two nodes can utilize one
or several sub-channels and one or several sub-networks
(Section 3).
� We extend the parallel probing setup method described in [2] to

allow a single communication to utilize several sub-networks or
sub-channels to meet its bandwidth requirements. This setup
method uses a minimal number of extra wires. If a connection,
possibly spanning across multiple sub-channels and
sub-networks, with sufficient bandwidth is available, it will be
found in 3 ⁄ D + 4 cycles, where D is the distance between
source and destination (Section 3).
� We propose two schemes for building connections with multi-

ple channels. One is called deterministic channel allocation
(DCA), which imposes an exact width requirement on a connec-
tion. The other is called adaptive channel allocation (ACA), with
which the width of a connection is allocated according to
run-time channel usage of the network. ACA avoids the channel
fragments and superfluous connections problems associated
with DCA. However, it guarantees only a minimum connection
width (Section 4).

http://dx.doi.org/10.1016/j.sysarc.2015.07.013
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +46 722935320.
E-mail addresses: liu2@kth.se (S. Liu), axel.jantsch@tuwien.ac.at (A. Jantsch),

zhonghai@kth.se (Z. Lu).

Journal of Systems Architecture 61 (2015) 423–434

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

� We discuss the implementation cost of MultiCS. We also
develop an analytical performance model to explain how the
maximum throughput is related to packet size and the number
of channels (Section 5).
� We evaluate five configurations of MultiCS under the two

schemes. The five configurations vary the number of
sub-networks and sub-channels. The experiment results com-
ply with our previous model and analysis (Section 6).

2. Motivation

CS NoC has a fundamental limitation. When a channel between
two switches is allocated to one connection, it cannot be used by
any other connection. This inherent inflexibility limits the useful-
ness of CS. A solution is to partition the channel into multiple nar-
row channels and allocate only one or a few narrow channels to a
given connection. An obvious question is, what would be the
trade-off of number of narrow channels: as many as possible, or
is there any limitation?

The second question is: what are pros and cons of different
ways of organizing multiple channels? Generally speaking, there
are two methods to configure channels of a node: by
sub-channels or by sub-networks, as illustrated in Fig. 1. The term
sub-network refers to several separate circuit switched networks
working in parallel. A network interface has access to all available
sub-networks, but once data has entered one particular
sub-network, it cannot change to another sub-network. In contrast,
sub-channels are parallel links between switches. Those
sub-channels are organized as SDM inside a switch. Data can use
different sub-channels for different hops in the network.

The third question is how to establish a connection with multi-
ple channels. Traditionally, even if there are multiple channels, still
each packet flow is delivered by building a connection with only
one channel [3,4] per hop. However, multiple channels have
offered us the possibility of building a wide connection by combin-
ing several channels together for data transfer. Thus, we need new
schemes and guidelines for connection set-up.

In the following we answer these three questions by comparing
alternatives with the same total wire resources and with the same
path search and setup algorithm. We construct our platform by
combining features and merits from earlier work [2,5,6], and mod-
ify them to support multiple sub-channels and multiple
sub-networks. We use a mesh topology but arguable many of our
main conclusions are also valid for other topologies.

3. Architecture of MultiCS using parallel probing setup

Our MultiCS NoC can have any number of sub-channels,
sub-networks, or a combination of them. The term ‘‘sub’’ denotes
the number of sub-networks used, and the term ‘‘ch’’ denotes the
number of sub-channels used. Suppose k is the number of
sub-channels of a switch and m is number of sub-networks
(subm chk), and given that the total number of wires of a switch
is a constant.

3.1. Overview of a switch

As shown in Fig. 2, in a mesh topology every switch has five
directions which are used for connecting to four neighbors and
one local resource. Each direction may have multiple duplex chan-
nels. Each channel contains a data path, which is used for carrying
the probe during the setup phase and for transmitting data when a
connection has been established. Every data path is also associated
with 3 bits control signals: an answer (ANS) signal consisting of 2
bits, which goes in the opposite direction to the data channel, and 1

bit for a request signal, which travels in the same direction as the
data channel. When the request signal is ‘1’, a probe search is run-
ning or data transfer is active. When request signal is ‘0’, it denotes
the idle state, and an established connection will be released. The
usage of the ANS signal is listed in Table 1.

The messages required for connection configuration are simpli-
fied by using these control signals: tear-down message is carried
by the request signal, and Ack/Nack messages are delivered by
ANS signal. They are free of contention.

In this switch architecture, the overhead of each channel is just
the 3-bit control signals. We believed this is the minimum require-
ment for supporting probing based setup. Although it may be
argued that the 1 bit request signal can be omitted, this would
increase the logic inside a switch.

The probe format is also compact. It contains source address,
destination address and the channel id of the network interface
of the source (Table 2). In an 8 � 8 mesh with 4
sub-channels/sub-networks, the minimum width of a probe is 14
bits. Each probe is one flit in length. Thus the width of a data path
is ranged from 14 bits to any bits.

3.2. Path searching algorithm

Generally speaking, our platform is not bound to a particular
path searching algorithm, meaning that any algorithm can be

Fig. 1. Splitting wide channel into sub-channels or sub-networks.

Fig. 2. Overview of a switch.

424 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434

applied. The performance comparison results of different path
searching algorithms are shown in Section 6.2.1.

The parallel probing algorithm [2] is chosen as our default path
searching algorithm in this paper because of its high performance.

Parallel probing is an adaptive path searching algorithm. The
fundamental idea was proposed by us in [2]. We illustrate this idea
in Fig. 3. Suppose node 1 want to set-up a path to the destination
node 9. In the beginning, a setup probe carrying information such
as source address, destinations address and channel id is generated
by the network interface and enters into node 1. Then, node 1
sends out two probes to the neighboring nodes 2 and 4. In the sec-
ond hop each probe splits into two, and all the probes continue to
move towards the destination along all the possible minimum
paths.

Whenever two probes containing the same setup request meet,
one of them is regarded as redundant and is canceled, and all chan-
nels used only by the canceled probe are released. For example,
when node 5 receives two probes which are the same, one of them
is canceled and all the channels it has booked before are released,
(we have marked the released channel with a cross marker) as
shown in Fig. 3b). Note that, the channel between node 1 and node
2 is not released, because it is still needed for the probe that has
traveled further to node 3.

The release process proceeds backwards hop by hop. The switch
does a release based on the registered connectivity information
that connects an input port to an output port. When a release sig-
nal (ANS = 10, ‘‘probe failed’’) arrives at an output port from a
downstream switch, the corresponding input port is looked up,
the connection is canceled, and the release signal is forwarded
upstream to the input port. Applying this mechanism, if several
possible paths exist, one and only one of them can be finally
booked, just as desired.

In this way, a wavefront of probes travel through the network
and reach the destination on a minimal path. The time is exactly
2D, where D is the distance in terms of hops, and it takes 2 cycles
to traverse each hop. When a probe successfully reaches the desti-
nation, an acknowledgment is sent back to the source node, which
takes 1 cycle per hop.

However, in our previous work [2], this algorithm is designed
for circuit switched NoC with one wide link per direction. It applied
a complicated priority based arbitration mechanism which is not
applicable for multiple sub-channel usage. It requires a sorting
component when applied in a multi-sub-channel switch, which
is too costly to implement in hardware. Instead we use a
round-robin based allocation. The set-up clock frequency is
increased from 570 MHz [2] to 1.1 GHz (using SMIC 90 nm Tech).

3.3. Operation flow

Our circuit switched network has six operations which are
explained in Fig. 4. In stage 1, a probe carrying setup information
is sent out from source node and moving towards the destination

according to the following algorithm. At each hop, if there are free
channels, the probe will book one channel and move forward
(stage 2). Otherwise, the probe is failed and it will use ANS signal
(Nack) to clear all the channels it has already been booked (stage
3). When the source node gets notice that all the sent out probes
have failed (stage 4), it will retry again. If a probe successfully
reaches its destination, the Ack signal will be sent back, which
means the connection has been established and data transfer can
be launched (stage 5). After data transfer finished (stage 6), con-
nection will be torn-down. It will then go back to stage 1 to wait
and serve new setup request.

3.4. Detailed switch architecture

The internal structure of a switch is shown in Fig. 5. It is divided
into two parts: control path and data path. The data path transfers
data through the configured data crossbar. The control path is used
to set up or tear-down a data path. The control path and data path
share the same input and output wires.

We designed an allocator to do channel allocation for the probes
arriving simultaneously at a switch. The principle of our single
cycle maximal allocator with round-robin fairness is similar to a
wave-front allocator [7], but it is smaller, fairer, faster and free of
combinational loops. Detailed description of this allocator is
described in our work [8].

It should be noted that the area of this allocator increase
with O(n2), the critical path length scales O(n), with n being
the number of channels per direction. For example, in a
1-channel-per-direction switch, the allocator in charge of each
output direction consists of only 4 tiles, while in a

Table 1
Usage of ANS signal.

ANS Usage

00 Idle
01 Probe search continue
10 Probe failed
11 Path established

Table 2
Probe format.

6-Bit src. addr 6-Bit dest. addr 2-Bit channel id

(a) In each node a probe may double. (b) When two probes meet,
one is cancelled.

Fig. 3. The overview of the parallel probing algorithm.

Fig. 4. Operation flow of parallel probing method.

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 425

4-channel-per-direction switch, the allocator per direction con-
tains 64 tiles.

3.4.1. Source synchronized data transfer
The control path and data path can work at different clock fre-

quencies and share the same wires without interference. This clock
scheme takes advantage of the property of circuit switched NoC
that the setup phase never overlaps with the data transfer phase.
During the connection setup phase, the data path should have no
active clock signal, thus it is idle. And the cross-bar of the data path
can be configured under the control path clock (probe clock). Dur-
ing the data transfer phase, the control path ignores data variations
on the shared wire links. It just listens to the request and ANS
signals.

Therefore, we can utilize either source synchronous data trans-
fer [9–11] or clock gating to realize this separation of data and con-
trol path clock schemes, so that the data transfer can benefit from a
higher clock frequency. In this paper, we chose the former source
synchronous data transfer. The usage of this technique on CS NoC
has been justified by Pham et al. [11,6].

3.4.2. Predictable delay
One of the benefits of the probing set-up approach is pre-

dictable latency. In our design, each probe takes 2 clock cycles
per hop, and the ANS signal takes 1 cycle per hop. So, it takes at
most 3 ⁄ D + 4 cycles for a probe to travel from source to destina-
tion and back the ANS signal (D is the hop distance between source
and destination). 4 cycles is the overhead consumed in the source
and destination nodes. Therefore, in an n ⁄ n mesh the worst case
for a single search takes 3 ⁄ (2 ⁄ n � 2) + 6 cycles, no matter if the
result is a success or a failure. There is no such bound for the packet
configuration approach such as [12]. It is reported that it takes 76
cycles on average for 6 hop distances [12], while it is fixed to 22
cycles by using our probing approach.

For data transfer, the head flit takes two cycles per hop, and the
following flits are pipelined.

3.4.3. Configurable sub-channels and sub-networks
Even though the total number of wires between switches is the

same in different configurations, their costs and performances are
different. Fig. 6 depicts configurations sub1_ch2 and sub2_ch1.
Their intra-switch connection relationship of channels is unveiled
by using a switch block diagram, in which a line denotes a
bi-directional connection between two duplex channels. For exam-
ple, in the multi-sub-channel sub1_ch2 case, an output channel
can be connected to all input channels except to the ones of the
same direction. Since each output channel needs to select from 8
input channels, which means an 8-to-1 multiplexer is required
by each output channel, and thus the switching logic in total has
ten 8-to-1 multiplexers. However, in the multi-sub-network
sub2_ch1, a channel is restricted to connect to the channels of
the same sub-network. Thus, each output channel just needs a
4-to-1 multiplexer and the entire switching logic is just made up
of ten 4-to-1 multiplexer. As a result, for a given number of wires,
although sub-channel configuration offers more switching flexibil-
ity [13] than sub-network, its switching logic is much more
complicated.

4. Connection building schemes in MultiCS

Since a network interface has access to all available
sub-networks and sub-channels (Fig. 6), we have the flexibility to
build a wide connection with one or more channels per hop to deli-
ver a packet, rather than only one-channel-per-hop. For example,
in a sub2_ch2 network, each resource node is connected to 4
input–output channel pairs, so at most it can use all its 4 output
channels for one connection. In order to set up a connection with
4-channel width, the resource node has to send 4 setup probes

Fig. 5. Internal structure of a switch.

426 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434

out through its 4 output channels. Each probe will try to set up a
narrow connection of 1-channel width to the destination. After
the success of all 4 probes, a 4-channel connection is established.

We propose two schemes to explore the opportunities and chal-
lenges of building connections with multiple channels. We name
the two schemes as deterministic channel allocation (DCA) and
adaptive channel allocation (ACA), respectively.

� DCA: DCA imposes mandatory requirement on the connection
width. For example, if a packet has a connection width require-
ment of 4 bytes, it is restricted to use two 2-bytes channels per
hop, or four 1-byte channels per hop to build up a connection;
any allocation below or above this figure is unacceptable.
� ACA: ACA scheme has no hard connection width requirement.

During the setup phase, a setup request tries to utilize as many
channels as possible to build a connection. However, the final

connection width is determined by the number of successful
setup probes, which depends on the run-time congestion situa-
tion of the network.

The DCA scheme is intended to provide desired and predefined
throughput and flit width for data transfer. It imposes strict
requirement on the setup phase. DCA scheme is useful in the cir-
cumstances when an end-to-end transfer has exact predefined
throughput or flit width requirement.

The ACA scheme is designed to achieve better performance, at
the expense of only minimum throughput and flit width
(1-channel width) guarantee. Depending on channel use, ACA
adaptively sets up a connection, of which the width of a connection
can vary from 1 to k channel-width, where k is the total number of
output channels per direction. As a result, at low load connections
are likely to be wide and thus data transfer time can be shortened;
at high load connection width tends to be narrower because of
contention. Thus, more requests can be served and high through-
put can be reached.

The traditional one-channel-per-connection (OCPC) scheme is a
special case of DCA scheme (DCA with 1-channel width require-
ment). In OCPC scheme, the width of every connection is restricted
to 1-channel width.

The implementation of DCA may introduce additional steps
during setup. For example, if a packet in a sub4_ch1 or sub1_ch4

Fig. 6. Switch block diagram of sub1_ch2 and sub2_ch1.

SRC 01

10 DST

C

D

SRC 01

10 DST

00

(a) sub1_ch1 (b) sub2_ch1 or sub1_ch2
Fig. 7. Illustration for channel fragments.

SRC 01

10 DST

Fig. 8. Illustration for a superfluous connection.
Fig. 9. Evaluation of path searching algorithm by using sub1_ch4 in ACA-FPS
(packet size 5120 bytes).

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 427

configuration has a DCA requirement of 8-byte width, and each
channel is 2-byte wide, the resource node has to wait until four
2-byte output channels of the network interface are available,
and then four probes are sent out simultaneously. Only if all of
the probes succeed, the data transfer can commence. Otherwise,
the one-channel connections (superfluous connections) established
will be released and all four probes will be re-sent again until all
four succeed. The release of superfluous connections is adopted
to avoid deadlock.

The implementation of ACA takes advantage of the predictable
set-up delay of MultiCS. For each setup request, a resource sends
out probes through all free output channels of the network inter-
face, and each probe tries to build up a one-channel connection.
After one probe succeeds, the sender will wait a short period
(<(3 ⁄ D + 4) cycles) for all outstanding probes to return their
results, then combine all the established one-channel connections
together to form a wide connection for transfer.

5. Cost and performance analysis

5.1. Implementation cost

Suppose k is the number of sub-channels of a switch and m is
number of sub-networks (subm chk), and given that the total num-
ber of wires of a switch is a constant.

The critical latency of the data path of a switch is chiefly
decided by the crossbar latency, which scales with Oðlog kÞ, and
it is independent of m.

The area of a data cross-bar scales Oðk2Þ with sub-channels, and
it is again independent of m. The registers inside the data path take
a large part of area, but their number is independent of k and m.

To the latency of the control path, the allocator contributes OðkÞ
latency and the cross-bar contributes Oðlog kÞ. Combining both we
see that latency scales OðkÞwith sub-channels. Again, the latency is
independent of the number of sub-networks m.

The area of control path scales OðmÞ with sub-networks and

Oðk2Þ with sub-channels. This is because using sub-networks
causes a linear increase of certain components, e.g. FSMs. However,
using sub-channels will cause certain components, e.g. allocator,

have a k2 increase.
The synthesis results of a few configurations are listed in Table 3

with SMIC 90 nm library. The number of wires per-direction of
each configuration is the same, i.e. 8 bytes. The total power and
area per node is reported by Design Compiler and calculated at
each one’s maximum clock frequency.

Generally speaking, synthesis results are in accordance with our
expectation. For example, sub1_ch1 has the smallest area and
power consumption, and can work at the fastest clock frequency.
Sub4_ch1 has the same frequency as sub1_ch1, while sub1_ch4

consumes the largest area because it has an Oðk2Þ increase in area,
and works at the slowest clock frequency due to its OðkÞ latency
scale factor.

5.2. An analytical performance model

We propose a model for per-node maximum throughput analy-
sis. We assume that every node inside a network has the same
behavior and the network achieves the maximum throughput
when a node is always busy in requesting connection setup or
transferring data. This means that there is no idle time.

Suppose t0 is the time used for data transfer when a connection
has been established, t1 is the time consumed for a single search (it
has a bounded value in our approach), a is the failure rate (1� a is
the success rate). Suppose further that the intensity (average num-

ber of certain events per time unit) of successful transfers of a node
is kðAÞ, the intensity of a single search is kðBÞ. Based on the conclu-
sions of Palm Calculus [14], we have

kðAÞ
kðBÞ ¼ 1� a ð1Þ

The average time between two single searches is 1=kðBÞ, which
is equal to

1
kðBÞ ¼ ð1� aÞðt0 þ t1Þ þ at1 ð2Þ

As there is always either a search or a data transfer going on,
kðAÞt0 þ kðBÞt1 ¼ 1.

The average time between two successful searches is 1=kðAÞ,
and, combining (1) and (2), we obtain

1
kðAÞ ¼ t0 þ

t1

1� a
ð3Þ

According to (3), maximum normalized throughput (bandwidth
utilization rate) is

THN ¼ t0

t0 þ t1
1�a

ð4Þ

Suppose B is the bandwidth of a resource node, then the maxi-
mum throughput of each resource is

TH ¼ THN � B ¼ Bt0

t0 þ t1
1�a

ð5Þ

This simple model can explain the following intuitions:

I. As the packet size increases, t0 goes up and thus TH goes up,
i.e. CS NoC becomes more efficient with larger packets.

II. Assume a fixed packet size of M (bytes) and a total band-
width B of a resource node. If each node just has one chan-
nel, then the required time for data transfer is t0 ¼ M=B,
and from (4) we obtain the normalized throughput THN.
However, if we allocate the total bandwidth into two chan-
nels, with each one B=2 the bandwidth, then the data trans-
fer time for a packet become t00 ¼ 2t0, and the normalized
throughput becomes

THN0 ¼ kðAÞ�t00 ¼
2t0

2t0 þ t1
1�a

ð6Þ

Thus, splitting a wide channel into narrow channels increases
the maximum throughput. This conclusion is less expected but
can intuitively be explained by the fact, that if the channel band-
width is smaller, the penalty of not using this bandwidth during
setup is also smaller.

This model is a simplification. For example, in reality, a in for-
mula (4) is not a constant. It depends on a number of factors such
as t0, topology, sub-network/sub-channel configuration, connec-
tion build-up schemes and so forth. Although the model is fairly
simple we will see in the subsequent simulation results, that the
main conclusions are confirmed.

5.3. Analysis of connection building schemes

The behavior of ACA in general follows our previous intuitions,
as we will see in Section 6, e.g. Fig. 10.

For DCA, however, contrary to our intuition II, under certain cir-
cumstances, the throughput of multiple narrower channels is infe-
rior to a single wide channel. Two phenomena degrade the
performance of DCA.

428 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434

5.3.1. Channel fragments
As Fig. 7 illustrates, in multiple channel configurations such as

sub2_ch1 or sub1_ch2, a DCA requirement demands a 2-channel
connection and such a connection is possibly built by using chan-
nels from two distinct routes1 (Fig. 7b)). This kind of channel alloca-
tion will generate channel fragments. Although there is a free
channel between nodes SRC and 01, it cannot be utilized by node
00 to build a connection with 2-channel requirement to node 01.
In comparison, single channel configuration sub1_ch1 has the double
channel width of sub2_ch1 or sub1_ch2. Thus, it can build a
one-channel connection to satisfy the same DCA requirement. There
is no fragment in sub1_ch1 under such a DCA requirement. Channel
fragments are the result of increased flexibility when given a higher
number of narrower channels. But for certain traffic scenarios this
increased flexibility is doing more harm than good, as we will see
in Fig. 15.

5.3.2. Superfluous connections
Connections that are setup but cannot be used, are superfluous.

Suppose we have a CS NoC as sub2_ch1, and each channel is 2-byte
wide. For example, as Fig. 8 suggests, a connection with 4 bytes
width requirement needs to send out 2 probes and set up two
one-channel connections simultaneously with DCA scheme. How-
ever, since some of the channels have already been occupied, only
one one-channel connection can be established. As a result, since
the DCA requirement cannot be satisfied, data transfer cannot be
launched and thus the established one-channel connection
becomes superfluous. The superfluous connection will be released
and then a new setup is attempted. However, the reserve and
release of these superfluous connections inside a CS NoC puts a
heavy burden on the network and degrades performance.

6. Experiments and evaluations

In this section, we will check whether experiment results are in
accordance with our design goals, intuitions and analysis. All
experiments are based on 8 � 8 mesh topology. Uniform random
traffic with Poisson arrival time distribution is used for evaluation
purpose.

In addition to the four configurations in Table. 3, configuration
sub2_ch1 is also used in our experiments. This configuration has

two sub-networks, each of which has a channel width of 4 bytes,
so that the total channel width per-direction is also 8 bytes. The
clock frequencies of sub2_ch1 are the same as sub4_ch1.

We use two scenarios which use ACA and DCA, respectively, to
compare the performance of different number of sub-channels and
sub-networks, as well as the path searching algorithms. In both
scenarios we include several test cases, such as fixed packet size
case (FPS) (all packets have the same size), variable packet size
case (VPS) (all packets have random packet sizes). However, since
FPS and VPS have similar results, we just show the results of FPS.

When nothing else is specified, we use the parallel probing
algorithm by default.

6.1. Simulation method and metrics

Inside each resource node a generator generates setup requests
according to a probability and pushes them into a queue. An FSM
pops a request from the queue and sends it out when sufficient
output channels are available. Then the FSM waits for a success
or failure notification. Then it either retries the request or com-
mences the data transfer.

We have implemented an HDL model for synthesis and for area
and power evaluation. We have also built a cycle accurate SystemC
simulator which can run 10–30 times faster than the HDL model.
Any data point that is shown in the figures comes from simulation
of 250 million cycles, of which the first 250 thousand cycles are
discarded as warm up period.

Suppose b is the packet generation probability and M is the
packet size (in bytes), and clkfreq is the data path clock frequency
of a configuration, B is the bandwidth of a resource node, then
the injection rate per node (IR) is defined as

IR ¼ b �M � clkfreq

Besides throughput and delay, we use bandwidth utilization effi-
ciency (Eb), also called normalized throughput, as one of the metrics.
It is defined as

Eb ¼ Throughput ðper nodeÞ
Bandwidth ðper nodeÞ

In our simulations each configuration operates at its maximum
frequency.

6.2. ACA (adaptive channel allocation) evaluation

6.2.1. Evaluation of path searching algorithms
Three path searching algorithms are compared, which are x–y

[15], minimal adaptive [15] and parallel probing [2]. The results
in Fig. 9 suggest that parallel probing is the best path searching
algorithm for ACA scheme. E.g. at offered load 0.35, the average
packet delay of parallel probing is only 83% of minimal adaptive,
and 57% of x–y algorithm. We also have evaluated algorithms in
different channel number and configurations. Their results suggest
the same ranking of algorithms. Consequently, we choose parallel
probing as our default path searching algorithm.

6.2.2. Influences of packet size on maximum throughputs
The influence of packet size on maximum normalized through-

put is shown in Fig. 10, which suggests that as packet size
increases, the maximum normalized throughput for each configu-
ration also goes up. This result complies with intuition 1 from our
model. Thus, we may safely conclude that CS NoC is suitable for
delivering large packets. This is the reason why throughout this
paper we prefer large packets for evaluations. This conclusion
implies that applications that generate large bulk of data for com-
munication, like task allocation and migration on MPSoC, or page

Fig. 10. Influences of packet size on maximum throughputs.

1 In this situation, each flit will be split into two phits at the source, with each route
simultaneously delivering only one phit. At the receiver side, it will restore a flit by
combining the two phit together.

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 429

based virtual memory management, benefit from CS NoCs, while
applications with mostly short messages may prefer PS NoCs, as
concluded in [16].

6.2.3. Evaluation of different number of channels
The experiment results of splitting a wide channel into narrow

sub-channels is shown in Figs. 11 and 12. The packet size is fixed to
5120 bytes in this evaluation.

As shown in Fig. 12, sub4_ch1 provides higher throughput than
sub2_ch1, which in turn is better than sub1_ch1. E.g. the maximum
throughput of sub4_ch1 is about 17% higher than sub1_ch1. The
increase in maximum throughput complies with our intuition II.
We can imagine that some packets in the sub4_ch1 configuration
use only 1, 2, or 3 of the subnetworks. However, e.g. using 1 sub-
network with 1=4 the channel width compared to the sub1_ch1 con-
figuration means that the packet consists of 4 � the number of flits.
As we studied in the last section, larger packet sizes lead to higher
maximum throughput in CS NoC. Thus, using narrow sub-links will
achieve higher maximum throughput because the average packet
size counted in flits is also larger.

Regarding delay, as Fig. 11 suggests, sub1_ch1 has better packet
delay results only when the injection rate is low. This is due to the
connection setup delay contributes little to the total packet delay
because of low contention probability. In this situation, data trans-
fer delay dominates the total packet delay. Sub1_ch1 has shorter
data transfer delay due to its wider channel. However, at high
injection rate, sub4_ch1 outperforms sub1_ch1. For example, at
injection rate 3500 MB/s, the average packet delay of sub4_ch1 is
20% less than sub1_ch1.

If throughput is our main concern, the number of channels
should be maximized. However, in our design, the minimum chan-
nel width is decided by probe format, which is about 14 bits. Nar-
rower than this value complicate the probe delivering process.

6.2.4. Evaluation of different configurations (Fig. 13)
Although sub1_ch4 has more switching flexibility than sub4_-

ch1, this advantage is compensated by its slower clock frequency.
As a result, sub-network configuration (sub4_ch1) outperforms
sub-channel configurations (sub2_ch2 and sub1_ch4) in delay
and throughput. Sub1_ch1 has lower maximum throughput than
the other multi-channel configurations. However, it presents bet-
ter latency at low load for the same reasons explained above.

Bandwidth utilization efficiency discounts the difference in fre-
quency and gives a performance comparison under the assumption
that the networks operate at the same frequency. Sub1_ch4 has the
best bandwidth utilization efficiency under ACA scheme. For exam-
ple, we observed 30% higher efficiency than sub1_ch1 in ACA
scheme. Sub2_ch2 and sub4_ch1 fall in between.

Bandwidth utilization efficiency may also be useful because in
certain situations the maximum clock frequency differences of
configurations are not sharp. For example, as reported in [25],
when implemented in FPGA, a CS NoC with SDM channels roughly
has the same maximum clock frequency no mater if 1 or 4

sub-channels are used. In situations like this, sub1_ch4 could offer
better performance than other configurations.

We also tested under ACA scenarios with variable size of pack-
ets. The comparison among different configurations basically
shows consistent results and is thus omitted here.

6.2.5. Comparison between ACA scheme and one-channel-per-
connection (OCPC) scheme

OCPC is compared with ACA by using configuration sub4_ch1,
as Fig. 14 suggests, at low load ACA offers much better average
packet delay. E.g. at load 0.02, average packet delay with ACA is
170 probe clock cycles, while it is 490 cycles with OCPC. At very
high load, OCPC represents slightly higher bandwidth utilization
efficiency, and its maximum bandwidth utilization efficiency is
0.283, while for ACA it is 0.271.

The comparison result obeys our design goals of ACA in Sec-
tion 4. At low load when data transfer delay dominates, ACA can
significantly shorten the delay since the majority of packets are
delivered by wide connections. At high load, due to contention,
the probability of building a connection containing multiple chan-
nels is low and the majority of connections contain one channel
only. Thus, the average packet length in flits by using ACA at high
load is just slightly smaller than using one-channel-per-connection

Table 3
Per-node synthesis results of different CS NoCs with 8 bytes of wires per-direction.

Configuration Sub1_ch4 Sub2_ch2 Sub4_ch1 Sub1_ch1

Channel width 2 Bytes 2 Bytes 2 Bytes 8 Bytes
Num. sub-network 1 (Sub1) 2 (Sub2) 4 (Sub4) 1 (Sub1)
Num. sub-channel 4 (Ch4) 2 (Ch2) 1 (Ch1) 1 (Ch1)
Max. probe freq. (MHz) 556 740 1111 1111
Max. data freq. (GHz) 1.116 1.397 1.786 1.786
Total area (um2) 150214.5 86777.5 57599.5 30874.9
Probe path area 85791.8 53161.3 35632.8 8908.2
Data path area 64422.7 33616.2 21966.7 20133.7
Power@max. freqs. (mW) 50.1 45.0 49.5 26.8

Fig. 11. Delay influence of dividing a wide channel into narrow sub-channels
(packet size 5120 bytes).

Fig. 12. Throughout influence of dividing a wide channel into narrow sub-channels
(packet size 5120 bytes).

430 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434

scheme. As suggested by intuition II, the maximum bandwidth uti-
lization of ACA drops slightly (smaller than 5% in this experiment).

6.3. DCA (deterministic channel allocation) evaluation

As mentioned before, ACA puts more emphasis on performance,
while DCA focuses on desired throughput and flit width.

6.3.1. Evaluation of different number of channels
Previously, we showed that ACA benefits from the usage of mul-

tiple channels. However, the following example with DCA tells a
different story.

Fig. 15 shows the result of a simulation with the exact connec-
tion width requirement of 8 bytes and a fixed packet size of 5120
bytes. In this case, as the latency curves suggest, more channels
lead to higher delay.

This observation complies with our analysis in Section 5.3.
Sub4_ch1 and sub2_ch1 perform worse than sub1_ch1, since
sub1_ch1 generates neither channel fragments nor superfluous
connections. Sub4_ch1 performs worse than sub2_ch1 because it
generates more superfluous connections.

In addition, it is worth noting that, if less than half of the band-
width can be utilized, splitting the wide channel into sub-links
seems to be beneficial, even without special care on channel frag-
ments and superfluous channels. In Fig. 16, the exact throughput
requirement is 4 bytes/cycle. Because only half of the channel
width in sub1_ch1 can be utilized for data transfer, sub1_ch1 is
inferior to the other multi-channel configurations. This result also

suggests that, according to the connection width requirement,
proper channel partitioning could still be beneficial.

6.3.2. Evaluation of different configurations
For delay and throughput, both Figs. 16 and 17 demonstrate

that sub-network configuration sub4_ch1 outperforms
sub-channel configurations sub2_ch2 and sub1_ch4. These results
are similar to those under ACA. However, in Fig. 17, the channel
utilization efficiency of sub1_ch4 is worse than sub2_ch2, which
is worse than sub4_ch1. This observation opposes the result with
ACA and is not quite expected. It seems that switching flexibility
becomes a handicap in this DCA case.

The reason for this phenomenon is that sub1_ch4 and sub2_ch2
are more likely to generate superfluous connections. Due to the
increased switching flexibility, sub1_ch4 and sub2_ch2 have
higher chances to set up a one-channel connection, which leads
to a higher burden on the network due to set up and release of
superfluous connections.

Generally speaking, as the comparison of Figs. 16 and 17 with
Fig. 13 suggests, we may conclude that ACA offers better perfor-
mance than DCA scheme. However, as mentioned before, DCA
offers exactly predefined connection width and throughput.

We also tested DCA scenarios with variable size of packets. The
comparison among different configurations basically shows consis-
tent results and is thus omitted here.

7. Related work

The usage of sub-network and sub-channel in PS NoC has been
studied during the past. For example, the cost and effect of intro-

Fig. 13. Performance results of scenario ACA–FPS (packet size 5120 bytes).

Fig. 14. Comparison between ACA scheme with traditional OCPC scheme (packet
size 1280 bytes).

Fig. 15. Influence of dividing a wide channel into narrow sub-links for DCA transfer
(packet size 5120 bytes).

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 431

ducing sub-networks into PS NoC has been studied by Yoon et al. in
[17,18]. The pros and cons of using sub-channels in PS NoC has also
been investigated in [3]. Besides, work [19,20] intend to increase
the switching flexibility between virtual channels and the output
ports of PS NoCs. In [19], several separate cross-bars are used
inside one router, so that each virtual channel (VC) can choose
between multiple crossbars to reach an output. In [20], a new
switching layer is introduced at each input port, so that multiple
VCs of an input port can be connected to different outputs at the
same time.

However, compared with PS NoC, the usage of sub-network and
sub-channel in CS NoC is not fully exploited and evaluated. Actu-
ally, in the past, the CS NoC architecture assumed in many papers
(e.g. [2,11,21]) has just one duplex-channel between every two
neighboring nodes. They did not consider the situation when a
CS NoC can have multiple physical channels between two nodes.

Although some works [4,22] design CS NoCs with multiple
channels and organize them in a sub-channel (SDM) way, the con-
sequences of applying multiple channels in CS NoCs are still not
well studied. For example, although [4,22] have multiple channels,
packets are still delivered by following connections with only
1-channel width.

Another import aspect about CS NoC is connection setup, since a
CS NoC requires a connection should be established before data
transfer begins. According to the connection search and setup
method, CS NoCs can be classified into two categories: dynamic
setup or static setup. Static setup methods schedule connections
at compilation time. As a result, they [23,24] may not well support
applications like H.264 [25] with requirements for dynamic com-
munication setups. Therefore, in this paper, we only focus on
dynamic methods which search and setup connections at run time.

Dynamic methods can be further classified into centralized or
distributed methods. Generally speaking, centralized set-up like

[21,26] has two disadvantages. Firstly, the central schedule node
needs to receive setup/release requests and distribute allocation
decisions from/to the entire network. Such multiple-to-one and
one-to-multiple traffic pattern is likely to become the system bot-
tleneck which the number of nodes inside a NoC grows [27]. Sec-
ondly, since retrying of failed requests causes the blockage of the
following requests, failed setup requests are usually dropped in
centralized setup methods. Thus, we focus on decentralized setup.

Distributed setup can be implemented by sending configuration
packets [4,28,29] or by a probing search approach [1,11,6,5].

Sending configuration packets requires a separate PS (packet
switched) NoC to deliver configuration messages like set-up,
tear-down and Ack/Nack during a connection setup procedure. In
our view, this approach suffers from four major drawbacks. Firstly,
using an additional PS NoC for connection set-up is an unnecessary
overhead. Secondly, set-up, tear down and Ack/Nack packets of a
connection must be routed by pre-determined routing algorithm
to ensure them on the same connection. For example, [4,29] use
deterministic routing algorithm, and in [28], source based routing
information has to be carried by each configuration packet. How-
ever, such pre-determined routing algorithm is a sub-optimal
choice among routing algorithms. Thirdly, compared with probing
search, tear-down and Ack/Nack signals have to be sent in the form
of packets. These packets will contend with set-up packets inside
the PS NoC. There is typically no delay guarantee for configuration
packets in the PS network, rendering the connection set-up proce-
dure unpredictable. Fourthly, this approach does not scale well.
The auxiliary PS NoC has fixed throughput, since each output port
of a switch just allows to deliver one setup packet at a time. How-
ever, if there are many sub-channels in a CS NoC, and since each
sub-channel requires a separate setup packet for connection con-
figuration, this will significantly increase the number of setup
packets as observed in [4].

Fig. 16. Performance results of scenario DCA-FPS (packet size 2560 bytes, connection width requirement is 4 bytes).

Fig. 17. Performance results of scenario DCA-FPS (packet size 5120 bytes, connection width requirement is 8 bytes).

432 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434

Compared with above mentioned shortcomings of a packet con-
figuration approach, probing search is the superior choice because
of its efficiency in wire usage and connection setup procedure. The
concept of the probing search was first proposed in [5]. Pham et al.
[11,6] developed a backtracking path searching algorithm, which
reportedly has better performance than [5]. Another contribution
of [11,6] is that a source synchronized data transfer mechanism
is introduced into CS NoCs, so that separate clocks can be applied
to connection set-up and data transfer. [2] developed a parallel
probing method for CS NoC. It can complete a search over all pos-
sible paths within O(n) time complexity where n is the geometric
distance between source and destination. They demonstrated
superior performance of this parallel probing algorithm compared
to Pham’s backtracking algorithm [11] by experiments. But their
channel allocation mechanism [2] is too complicated for
multi-sub-channel usage.

The probing search approaches in all aforementioned works
[1,11,6,5] are only implemented on CS NoC with a single channel
between two neighboring nodes.

In this paper, we extend the parallel probing search method [2]
to multiple sub-channels and sub-networks and study cost and
performance of several configurations with sub-channels and
sub-networks among 1 and 4.

8. Conclusion and future work

We have implemented MultiCS, a CS with multiple
sub-channels and sub-networks with a parallel probing setup algo-
rithm to study the consequences of splitting a wide channel into
narrow channels. The design space of multi-channel CS NoC is
explored from two angles: the channel number, and channel con-
figurations. We have reached the following main conclusions:

A. Given a number of wire resources for each node inside a CS
NoC, with ACA scheme, the thinner the channel width with
more channels, the higher the throughput. However, the
latency for data transfer also increases by using thinner
channels. Sub-channels (SDM channels) consume much
more resources than sub-networks. When splitting a wide
channel into n narrow channels, organizing those channels
into sub-networks gives an OðnÞ increase in area, and the
critical latency is unchanged. However, organizing those
channels in sub-channels increases the area by Oðn2Þ, and
the delay by OðnÞ. Furthermore, our experiments suggest
that sub-networks offer better performance than
sub-channels. Although sub-channels can achieve better
channel efficiency due to higher switching flexibility, this
is only useful in special situations. Thus, in general
sub-networks are more efficient than sub-channels.

B. We can build a connection consisting of multiple channels
with different schemes. The DCA offers desired and prede-
fined throughput and flit width, but channel fragments and
superfluous connections are two obstacles for DCA. Because
of this, under certain width requirements, the performance
of using multiple channels is even worse than using one sin-
gle wide channel. ACA generally offers better performance
than DCA. However, although ACA provides minimum con-
nection width guarantee (one channel width), the actual
width of a connection by applying ACA cannot be known
beforehand. The connection width is decided by the success
probability of setup probes, which depends on the dynamic
channel use.

Our future work will study techniques to avoid channel frag-
ments and superfluous connections, in depth evaluation of

multi-channel CS NoC, and implementation and evaluation of
mixed packet and circuit switched NoCs.

References

[1] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, D. Verkest, Spatial
division multiplexing: a novel approach for guaranteed throughput on NoCs,
in: Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/
Software Codesign and System Synthesis, 2005, pp. 81–86.

[2] S. Liu, A. Jantsch, Z. Lu, Parallel probing: dynamic and constant time setup
procedure in circuit switching NoC, in: proceedings of Design, Automation Test
in Europe Conference Exhibition (DATE’12), 2012, pp. 1289–1294.

[3] C. Gomez, M. E. Gomez, P. Lopez, J. Duato, Exploiting wiring resources on
interconnection network: increasing path diversity, in: Proceedings of
Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP’08), 2008, pp. 20–29.

[4] A.K. Lusala, J.-D. Legat, Combining SDM-based circuit switching with packet
switching in a router for on-chip networks, Int. J. Reconfigurable Comput. 2012
(2012) 1–16.

[5] D. Wiklund, D. Liu, SoCBUS: switched network on chip for hard real time
embedded systems, in: Proceedings of Parallel and Distributed Processing
Symposium, 2003, p. 8.

[6] P.-H. Pham, P. Mau, J. Kim, C. Kim, An on-chip network fabric supporting
coarse-grained processor array, IEEE Trans. Very Large Scale Integr. VLSI Syst.
21 (99) (2013) 178–182.

[7] D.U. Becker, W.J. Dally, Allocator implementations for network-on-chip
routers, in: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 52:1–52:12.

[8] S. Liu, A. Jantsch, Z. Lu, A fair and maximal allocator for single-cycle on-chip
homogeneous resource allocation, IEEE Trans. Very Large Scale Integr. VLSI
Syst. 22 (10) (2014) 2229–2233.

[9] D. Walter, S. Hoppner, H. Eisenreich, G. Ellguth, S. Henker, S. Hanzsche, R.
Schuffny, M. Winter, G. Fettweis, A source-synchronous 90 Gb/s capacitively
driven serial on-chip link over 6 mm in 65 nm CMOS, in: proceedings of Solid-
State Circuits Conference Digest of Technical Papers (ISSCC’12), 2012, pp. 180–
182.

[10] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, B. Nauta, Low-power, high-
speed transceivers for network-on-chip communication, IEEE Trans. Very
Large Scale Integr. VLSI Syst. 17 (1) (2009) 12–21.

[11] P.-H. Pham, J. Park, P. Mau, C. Kim, Design and implementation of backtracking
wave-pipeline switch to support guaranteed throughput in network-on-chip,
IEEE Trans. Very Large Scale Integr. VLSI Syst. 20 (2) (2012) 270–283.

[12] A.K. Lusala, J.-D. Legat, A SDM-TDM-based circuit-switched router for on-chip
networks, ACM Trans. Reconfigurable Technol. Syst. 5 (3) (2012) 15:1–15:22.

[13] J. Rose, S. Brown, Flexibility of interconnection structures for field-
programmable gate arrays, IEEE J. Solid-State Circuits 26 (3) (1991) 277–282.

[14] J.Y. Le Boudec, Performance Evaluation of Computer and Communication
Systems, Epfl Press, 2011.

[15] W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks,
Morgan Kaufmann, 2003.

[16] S. Liu, A. Jantsch, Z. Lu, Analysis and evaluation of circuit switched NoC and
packet switched NoC, in: Proceedings of Euromicro Conference on Digital
System Design (DSD’13), 2013, pp. 21–28.

[17] Y. J. Yoon, N. Concer, M. Petracca, L. Carloni, Virtual channels vs. multiple
physical networks: a comparative analysis, in: Proceedings of IEEE Design
Automation Conference (DAC’10), 2010, pp. 162–165.

[18] Y.J. Yoon, N. Concer, M. Petracca, L.P. Carloni, Virtual channels and multiple
physical networks: two alternatives to improve NoC performance, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 32 (12) (2013) 1906–1919.

[19] S. Noh, V.-D. Ngo, H. Jao, H.-W. Choi, Multiplane virtual channel router for
network-on-chip design, in: Proceedings of First International Conference on
Communications and Electronics (ICCE’06), 2006, pp. 348–351.

[20] F. Gilabert, M.E. Gómez, S. Medardoni, D. Bertozzi, Improved utilization of NoC
channel bandwidth by switch replication for cost-effective multi-processor
systems-on-chip, in: Proceedings of the ACM/IEEE International Symposium
on Networks-on-Chip (NOCS’10), 2010, pp. 165–172.

[21] M. Winter, G.P. Fettweis, Guaranteed service virtual channel allocation in NoCs
for run-time task scheduling, in: Proceedings of Design, Automation Test in
Europe Conference Exhibition (DATE’11), 2011, pp. 1–6.

[22] A. Leroy, D. Milojevic, D. Verkest, F. Robert, F. Catthoor, Concepts and
implementation of spatial division multiplexing for guaranteed throughput
in networks-on-chip, IEEE Trans. Comput. 57 (9) (2008) 1182–1195.

[23] R. Stefan, A. Molnos, K. Goossens, dAElite: a TDM NoC supporting QoS,
multicast, and fast connection set-up, IEEE Trans. Comput. PP (99) (2012) 1.

[24] K. Goossens, J. Dielissen, A. Radulescu, AEthereal network on chip: concepts,
architectures, and implementations, IEEE Des. Test Comput. 22 (5) (2005)
414–421.

[25] N. Ma, Z. Lu, L. Zheng, System design of full HD MVC decoding on mesh-based
multicore NoCs, Microprocess. Microsyst. 35 (2) (2011) 217–229.

[26] M. Winter, G.P. Fettweis, A network-on-chip channel allocator for run-time
task scheduling in multi-processor system-on-chips, in: Proceedings of
EUROMICRO Conference on Digital System Design Architectures, Methods
and Tools (DSD’08), 2008, pp. 133–140.

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 433

[27] S. Liu, A. Jantsch, Z. Lu, Parallel probe based dynamic connection setup in TDM
NoCs, in: Proceedings of the Conference on Design, Automation & Test in
Europe (DATE’14), 2014, pp. 239:1–239:6.

[28] J. Lim, E. Hunt Siow, Y. Ha, P.K. Meher, Providing both guaranteed and best
effort services using spatial division multiplexing NoC with dynamic channel
allocation and runtime reconfiguration, in: Proceedings of International
Conference on Microelectronics (ICM’2008), 2008, pp. 329–332.

[29] A.K. Lusala, J.-D. Legat, Combining sdm-based circuit switching with packet
switching in a NoC for real-time applications, in: Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS’11), 2011, pp.
2505–2508.

Shaoteng Liu received the B.Sc. degree from Fudan
University, Shanghai, China, in 2006. He received his
M.Sc. degree from Royal Institute of Technology (KTH),
Stockholm in 2010. He is currently a PHD student at
KTH. His current research interests include system
modeling, performance analysis, embedded operating
system, reconfigurable computing, network-on-chip
and software defined network.

Axel Jantsch received the Dipl.Ing. and Dr.Tech. degrees
from the Technical University of Vienna, Vienna, Aus-
tria, in 1988 and 1992, respectively. He was a professor
of electronic system design with the Royal Institute of
Technology, Stockholm, Sweden, from December 2002
to September 2014. He is currently a professor in sys-
tem on chip with TU Wien, Vienna, Austria. His current
research interests include VLSI design and synthesis,
system-level specification, modeling and validation,
HW/SW co-design and co-syntheses, reconfigurable
computing, and networks-on-chip.

Zhonghai Lu received the B.Sc. degree from Beijing
Normal University, Beijing, China, in 1989, and the M.Sc.
and Ph.D. degrees from KTH Royal Institute of Tech-
nology, Stockholm, Sweden, in 2002 and 2007, respec-
tively. He is currently an Associate Professor with KTH.
His research interests include Network-on-Chip,
Embedded Systems, Computer Architecture, and
Internet-of-Things. He has published over 130
peer-reviewed papers in transactions, journals and
international conferences in these areas.

434 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434

Paper F

Analysis and evaluation of circuit

switched NoC and Packet Switched

NoC

Shaoteng Liu, Axel Jantsch and Zhonghai Lu

Presented at IEEE Euromicro Conference on Digital System Design
(DSD'13), Santander, Spain, 2013. Included in the proceedings, pages:
21-28.

131

Analysis and evaluation of circuit switched NoC
and packet switched NoC

Shaoteng Liu
Royal institute of technology

liu2@kth.se

Axel Jantsch
Royal institute of technology

axel@kth.se

Zhonghai Lu
Royal institute of technology

zhonghai@kth.se

Abstract-Circuit switched NoC has, compared to
packet switching, a longer setup time, guaranteed
throughput and latency, higher clock frequency, lower
HW complexity, and higher energy efficiency.
Depending on packet size and throughput requirements
they exhibit better or worse performance. In this paper
we designed a circuit switched NoC and compared that
with packet switched NoC. By speculation and analysis,
we propose that, as packet size increases, performance
decreases for packet switched NoC, while it increases
for circuit switched NoC. By close examination on the
router architecture, we suggest that circuit switched
NoC can operate at a higher clock frequency than
packet switched NoC, and thus at zero load above a
certain packet size circuit switched NoC could be better
than packet switched NoC in packet delay. Experiment
results support our intuitions and analysis. We find the
cross-over point, above which circuit switching has
lower latency, is around 30 flits/packet under low load
and 60-70 flits/packet under high network load.

I.INTRODUCTION

Packet switched (PS) NoCs (Network on Chip) have
been studied more extensively and thoroughly. However,
circuit switched NoC (CS) NoC could be preferable under
certain traffic patterns and requirements[1]. Thus, it
requires an analysis and comparison on PS and CS NoC to
reveal their properties and limitations, and offer intuitions
for people to make design decisions.

In order to commence such a study, on one hand, for PS
NoC, we use an input-buffered virtual channel (VC)
wormhole routed PS NoC for comparison. This kind of PS
NoC is widely utilized in practice, eg. TILE64[2]. On the
other hand, since no classical design exists for CS NoC, we
build our own platform by inheriting and integrating the
merits from state-of-art works. In addition, mesh topology
is used for both NoCs because it is the most popular NoC
topology, and it is scalable, easy to layout, and offers path
diversity.

In this paper we will show the respective strengths and
weaknesses of circuit and packet switched NoCs.
Particularly, our work offers following contributions:
� We reveal the detailed mechanisms which make PS

NoC not fit for large packets (Section III).
� We suggest that CS NoC with proper design should

work at a higher clock frequency than PS NoC
(Section VI).

� By analysis on zero load packet delay, we find that
above a certain packet size, CS NoC delivers faster
than PS NoC (Section VI).

� By experiments and evaluations, we represent the
respective favorite working areas of PS NoC and CS
NoC. We reveal that if packet size is very large, even
with more VCs and buffers, PS NoC still suffers a
performance loss (section VIII)

II.RELATED WORK

There are only a few papers on the analysis and
comparison of CS NoCs and PS NoCs. In [3][4] some
comparisons on area and power consumption are presented.
Although [5][6] concern about the performance of PS and
CS NoC in a ring topology, the influence of packet size on
delay and throughput is not evaluated and compared. The
pros and cons of a certain kind of NoCs are still poorly
understood. In addition, even though some other works have
been done on combining PS and CS NoC [7][8][9][10], but
none of them provides a serious analysis and evaluation on
their respective characteristics.

PS NoC has been intensively studied by researchers.
There are several kinds of PS NoC [11][12][13][14].
Generally speaking, input-buffered virtual channel
wormhole routed NoC is well accepted and utilized[2][15].
Dally’s book [16] has covered almost every aspect of such a
PS NoC. Moreover, many works have focused on
optimizations on this kind of PS NoC [12]. Therefore, we
will also choose input-buffered virtual channel wormhole
routed PS NoC in our paper.

However, there is no well-accepted CS NoC architecture.
According to the path search and setup methods, CS NoCs
can be classified into two categories: dynamic setup
methods [10][9][19][20][21] or static setup methods [22][23].
Static setup methods schedule paths at compilation time. As
a result, they may not well support applications like H.264
[24] with requirements for dynamic communication setups.
Therefore, we only focus on dynamic methods which search
and setup paths at run time.

Dynamic methods can be further classified into
centralized [10][9] or distributed methods [1][25][19][20]
[21][7][9][8][26][27]. Generally speaking, centralized setup
has two disadvantages: One is scalability and the other is
dropping of failed setup requests [17][18]. Since retrying of
failed requests causes the blockage of the following requests,
failed setup requests are usually dropped in centralized
setup methods[17], [18]. We focus on distributed setup.

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.13

21

Distributed setup can be implemented by packet
configuration [21][1][9][8][27] or by a probing search
approach [25][19][20][26].

Packet configuration requires an additional separate PS
(packet switched) NoC to deliver configuration messages
like set-up, tear-down and Ack/Nack during a path setup
procedure. In our view, this approach suffers from four
major drawbacks. Firstly, the adding of an additional PS
NoC is a unnecessary overhead. Secondly, since set-up, tear
down and Ack/Nack packets of a path must be routed by
deterministic routing algorithm to ensure them on the same
path. However, deterministic routing algorithm is a sub-
optimal choice among routing algorithms. Thirdly,
compared with probing search, tear-down and Ack/Nack
signals have to be sent in the form of packets. These packets
will contend with set-up packets inside the PS NoC. Besides,
there is typically no delay guarantee for packets in the PS
network, rendering the path set-up procedure unpredictable.
Fourthly, this approach does not scale well. In PS NoC,
each output port of a switch just allows to deliver one packet
every time slot. However, if there are several sub-channels
in the CS NoC each sub-channel requires a separate setup
packet for path configuration, thus significantly increasing
the number of setup packets [21].

Compared with above mentioned shortcomings of a
packet configuration approach, probing search is the
superior choice because of its efficiency in wire resource
utilization and path setup procedure. The concept of the
probing search was firstly proposed by [26]. In [19][20],
Pham et al. developed a backtracking routing algorithm,
which reportedly has better performance than [26]. Another
contribution of [19][20] is that a source synchronized data
transfer mechanism is introduced into CS NoCs, so that
separate clocks can be applied to path setup and data
transfer. [28] developed a parallel probing method for CS
NoC. It can complete a search over all possible paths within
O(n) time complexity where n is the geometric distance
between source and destination. They demonstrated superior
performance of this parallel probing algorithm compared to
Pham’s backtracking algorithm [19] by experiments.

III.INTUITIONS AND CONJECTURES

According to our considerations, large packets are
detrimental to PS NoC in two ways:

Firstly, large packets will cause burst injection of flits.
Bursty traffic may cause massive contentions in a short
period, and thus prolongs the average flits delivering delay.

Secondly, large packets will incur unbalanced usage of
channels. As illustrated in Fig. 1, we consider the traffics
inside an input buffered virtual channel wormhole router by
assuming that there is only two virtual channel queues
(FIFO queues) and two output directions. Each packet
desires either output A or output B for delivering. We
suppose that packets with different desires are uniform
randomly distributed. However, flits belong to one packet
must have the same desired output direction and queued by

the same VC. Round-robin allocator is used for allocation.
Since it is possible that at a certain cycle both flits from
VC1 and VC2 want the same output channel, leaving the
other output channel an idle cycle.

As Fig. 1 suggests, when each packet just contains one
flit, the span of idle periods are just made up of a few cycles
and equally distributed between output flow A and B.
However, when packet size increases, the average span of
idle periods grows wider and wider.

Although from statistical view, in a very long term,
output flow A and B should have the same number of idle
cycles; no matter what the packet size is, the total idle
cycles should be equal. However, within a short period, we
observe that with large packets, output flow A is quite busy,
while output flow B is almost idle. Such unbalanced usage
of physical channels is destructive to throughput.

In PS NoC, we deal with the burstiness by increasing the
buffer depth of a VC, and balance the traffics by adding
more VCs. Long packets are detrimental to PS NoC since
they increase the needs on both sides. The longer the
packets, the more VCs and buffers are required to
compensate the performance loss. Unfortunately, both VC
and buffer are expensive, especially that adding virtual
channels will lower down the clock frequency. Thus, we can
imagine that, if packets are long enough, they are almost
impossible to be well handled by PS NoC with acceptable
cost.

Nevertheless, CS NoCs favor large packets. In CS NoC,
after a path has been established, data transfer will be
launched. So that the channel utilization ratio for CS NoC is
=

������

����	
�������
 .

A B A A B B A

A B B A A B B

A A A A A A

B B B B B B B

VC 1

VC 2

Output A

Output B

B B A A A A A

A AA A A B B

A A A A A A A

B B BB

VC 1

VC 2

Output A

Output B

Single flit packets

Large packets

Fig. 1 Unbalance traffic in PS NoC caused by large packets

As packet size increases, ����� goes up, so the channel
utilization ratio � increase. The per-node throughput, which
equals to channel utilization ratio multiplies bandwidth,
increases as well.

We may conjecture that, as the packet size increases, the
performance curve of CS NoC and performance curve of PS
NoC might have a cross point, since one rises and the other
falls. However, we need practical parameters such as clock

22

frequency, as well as experiment results, to justify the
existence of such a point.

IV.ARCHITECTURE OF OUR CS NOC

A. Overview of a switch

In this paper, our CS NoC design adopted probing
approach with parallel probing routing algorithm [28].

ANS

Data path

Request

Arbitrator

Crossbar

ANS

Data path

Request

Control
logic

ANS Usage
00 Idle
01 probe search continue
10 probe failed
11 Path established

Fig. 2 Overview of a switch

As shown in Fig. 2, in a mesh topology every switch has
five directions which are used for connecting to four
neighbors and one local resource. Each direction may has
one duplex channel. The data path of a channel is used for
carrying the probe during setup and for transmitting data
when a connection has been established. Each probe is one
flit in length. Every data path is associated with an answer
(ANS) signal consisting of 2 bits, which goes in the
opposite direction to the data channel, and 1 bit for a
Request signal, which travels in the same direction as the
data channel. When the request signal is ‘1’, a probe search
is running or data transfer is active. When request signal is
‘0’, it denotes the idle state, and an established path will be
released. The usage of the ANS signal is listed in the table
of Fig. 2.

B. Detailed switch architecture

The internal structure of a switch is shown in Fig. 3. It is
divided into two parts: control path and data path. The data
path transfers data through the configured data crossbar. The
control path is used to set up or tear-down a data path. The
control path and data path share the same input and output
wires.

There are five allocators, each of which is responsible
for the channel allocation of one output direction. The
principle of our single cycle maximal strong fairness
allocator is similar to a wave-front allocator [13][14].
Detailed discussion of our allocator is beyond the scope of
this paper.

Besides, every input or output channel has a controller
that controls the value of the backward ANS signal and the
forward probe. The FSMs of the input and output controllers
are shown in Fig. 4.

C. Properties of our CS NoC

1) Source synchronized data transfer

Similar to Pham’s work [19] and as in [28], the control
path and data path can work at different clock frequencies
but share the same wires without interference. This clock
scheme takes advantage of the property of CS NoC that the
setup phase never overlaps with the data transfer phase.
During the path setup phase, the data path should have no
active clock signal, thus it is idle. And the cross bar of the
data path can be configured under the control path clock
(probe clock). During the data transfer phase, the control
path ignores data variations on the shared wire links. It just
listens to the request and ANS signals.

Ch
an

ne
l n

 p
ro

be

Data Cross BarData Cross Bar

Internal probe
Cross bar

Internal probe
Cross bar

Config.

Data_outData_In

Allocators

Cofig.

Control
Signal

Cross bar

Control
Signal

Cross bar

Config.

ANS

Request

FSM

eeeee ANS2
ANS1REG

Routing
function

Request

Ch
an

ne
l n

pr

ob
e

Ch
an

ne
l 1

pr

ob
e

Ch
an

ne
l 1

pr

ob
e

ANS
FSM

ANS2
ANS1REG

Routing
function

Output controller

ANS

Request

FSM

probe

ANS

Request

REG

Output controller

ANS

queRRRRequ

FSM

probe

ANS

Request

REG

Input controller

Input controller

nnn rrroooaaa ppp

Control path

taa

Data path

Fig. 3 Internal structure of a switch

Fixed

Idle

cancel

Booked

Bo
ok

ed
 ch

an
ne

l==
0

Ne
xt

 c
yc

le
x Ans ==11=

Fail to get any output channel

Acquire output channel Idle

Booked

Fixed

Ans == 11

Request=
=0

New probe

Re
qu

es
t=

=0

Input controller FSM. b) Output controller FSM
Fig. 4 FSM of input controller and output controller

Therefore, we can utilize either source synchronous data
transfer [29][30][19] or clock gating to realize this
separation of data and control path clock schemes, so that
the data transfer can be benefit from a higher clock
frequency. In this paper, we chose the former source
synchronous data transfer. The usage of this technique on
CS NoC has been justified by Pham et al. [19][20].

We want to emphasize that source synchronized data
transfer is a unique property of CS NoC. PS NoC cannot
take advantage of such technique because its TDM channel
sharing nature.

23

2) Predictable latency

One of the benefits of the probing set-up approach is
predictable latency. In our design, each setup probe takes 2
clock cycles per hop, and the ANS signal takes 1 cycle per
hop. So, it takes at most 3*D+6 cycles for a probe to travel
from source to destination and back the ANS signal (D is
the hop distance between source and destination). 4 cycles is
the overhead consumed in the source and destination nodes.
Therefore, in an n*n mesh the worst case for a single search
takes 3*(2*n-2)+6 cycles, no matter if the result is a success
or a failure.

For data transfer, the head flit takes 2 cycles per hop,
and the following flits are pipelined with 2cycles per hop.

V.PS NOC USED FOR COMPARISON

The PS NoC for comparison adopts a classical input-
buffering virtual channel (VC) wormhole router architecture
with the dimension order routing algorithm. The router’s
architecture is shown in Fig. 5. A router has 3 pipeline
stages: (1) VC Allocation and speculative Switch Allocation
Switch Traversal (ST) and Next Route Computation (NRC).
(3) Link traversal1.

The PS NoC adopts some advance techniques like
speculative allocation and look-ahead route computation
[16][31]. Speculative allocation enables head flits to bypass
the VC allocation stage in the router pipeline by allowing
them to bid for crossbar access at the same time they request
an output VC. Look-ahead route computation, or next route
computation, computes the route for the next router before a
head flit is actually delivered to the next router. These two
techniques can reduce the pipeline stages of a PS router.

VC 1

VC2

...

VC K

Next route
computation

(NRC)

VC allocation
(VA)

Switch
allocation

(SA)

Pipeline stage 1 Pipeline stage 3

Switch traversal
(ST)

Pipeline stage 2

Link traversal (LT)

Fig. 5 Architecture of the PS NoC for comparison

1 The link traversal stage is used to compensate wire
delay.

Fig. 6 Pipeline stages of the PS NoC

As suggested by Fig. 6, head flits and body flits
experience 3 pipelines. Both virtual channel allocations and
switch allocations are realized by simple separable-input-
first round-robin allocator to reduce the critical path latency.

The PS NoC in this paper can have different number of
virtual channels and buffer depths.

VI.ANALYSIS ON PS NOC AND CS NOC

A. Critical path latency analysis

Let us consider a CS NoC. For data path, the critical
path latency is basically a 4-by-4 cross-bar latency. Using
standard library, the critical path of the cross-bar is just a 4-
to-1 multiplexer, which consists of 4 level and/or gates
latency. Full custom design can further reduce such latency
to one gate level. For control path, the critical path consists
of a 4-channel allocator latency plus a 4-by-4 crossbar
latency.

For PS NoC, the critical path latency comes from VC-
allocator. A separable allocator with round-robin fairness
consists of two consecutive steps of round-robin arbitration.
Even each input direction just has one VC, still the latency
of such 4-channel allocator is much larger than the 4-by-4
cross-bar latency inside CS NoC. With the most advanced
design [32], the latency of a round-robin allocator scales up
with �(����), where � is the number of virtual channels.
Empirically, each input directions needs 4 or more VCs to
reduce head-of-line blockings, so the VC allocator in
practice is at least a 16-channel allocator.

Comparing CS NoC with PS NoC which has 4 VCs per
input, we may deduct that the critical data path latency �� of
CS NoC should be much smaller than the critical path
latency �� of PS NoC. The critical control path latency �� of
CS NoC should be close to, or smaller than �� . This is
because �� consists of one 4-channel allocator latency plus
one 4-by-4 crossbar latency, while �� is basically the
latency of a 16-channel allocator, which may double the
latency of a 4-channel allocator.

B. Zero load analysis of CS vs. PS

Zero load analysis is useful, since in practice, compared
to actual requirements, a NoC is usually over-designed. This
means that in a lot of chances, an on-chip network is
operating under very low traffic load.

Suppose a packet contains k flits, the clock period is tp
for PS NoC, and tc for the probe path of CS NoC and td for
data path. The average hops of a packet is D. Suppose

cycle 1 2 3 4 5
VA NRC
SA ST

LT

SA LT

LTSA

head flit

body flit 1

body flit 2

ST

ST

24

further that it takes hp cycles-per-hop for the head flits and 1
cycle per hop for the following flits in the PS NoC, and in
the CS NoC it takes hc for the setup probes (including the
travelling back of acknowledgement signal) and hd for the
data. For simplicity, overheads in sender, receiver and
network interface are neglected. Then, at zero load, the
approximate average time of packet delivery is, PS NoC and
CS NoC, respectively:

��� = [� ∗ ℎ� + �] ∗ �� (1)
��� = � ∗ ℎ� ∗ �� + � ∗ ℎ� ∗ �� + (� − 1) ∗ �� (2)

Fig. 7 Packet size k for break even points between PS and CS NoC

Fig. 8 Mesh size n for break even points between PS and CS NoC

To make a simple comparison, we assume that tp=tc,
hd=hc=hp=2 cycles per hop. Then the breakeven point is
defined by

��� − ��� = � ∗ �� − (� − 1) ∗ �� − D ∗ 2 ∗ �� (3)

! = ��/�� expresses how much faster the circuit
switching logic can be compared to packet switching.
! = 1 means both run at the same frequency. However,
according to our previous analysis, ! < 1 . When ! < 1 ,
circuit switching exhibits lower packet delay for packets
above a certain size k. This value of k is plotted in Fig. 7 as
a function of ! and for (D=6).

Does the critical packet size k depend on the size of the
network? We consider this by using uniform random traffic
in an nxn mesh, so that D =

"

#
$. For ρ = 0.5 , we vary n

between 4...64, and find the break even k grows from 5 to
85, as shown in Fig. 8. Thus, with larger networks the
packet size has to be larger as well for CS NoC to become
faster than PS NoC.

Mathematical analysis of network contention under load
is complex and has to be based on many assumptions.
Therefore, we study the networks under various loads by
simulation where we also have more realistic values for tc,
td, tp, hc, hd, and hp.

VII.EXPERIMENT SETTINGS

In section 3, we have made our conjecture on the
performance curves of CS NoC and PS NoC. Now, we will
check whether experiment results are in accordance with our
conjecture. All experiments are based on PS NoCs and CS
NoCs with 8x8 mesh topology. Uniform random traffic with
Poisson arrival time distribution is used in our experiments
for evaluation purpose.

A. Simulation method

As in Fig. 9, inside each resource node a request
generator generates set-up requests according to a certain
probability distribution and pushes them into a queue. An
FSM (Finite State Machine) pops a request out of the queue
and sends it out when the output channel is available. Then
the FSM waits for the ANS signals to decide what to do
next.

We have implemented an HDL model for synthesis and
for evaluation. Any data point that is shown in the figures
comes from a simulation of 250 million cycles, of which the
first 250000 cycles are discarded as warm up period.

Since PS NoC and CS NoC are operating at different
clock frequencies, performances in the unit of clock cycles
are not persuasive. Thus we evaluate the delay in the unit of
nano-second, and the throughput and injection rate in MB/s.

Setup5
Setup3

Request out

Setup
request

Send out queue

Probability

Transfer data for a number of cycles, then

tear down the path

Setup2

Setup4

Arbitra
tor

Crossbar Control
logic

ANS

Data path

Request

Arbitrator

Crossbar

ANS

Data path

Request

Control
logic

Fig. 9 Experiment setup

VIII.EVALUATION AND COMPARISON

A. Evaluations on baseline candidates

The baseline candidates of the PS and CS NoC are listed
in Tab. 1, both of which are synthesized by Synopsys

25

Design Compiler (DC) with SMIC 90 nm library. Both
candidates have the same channel width (8 bytes).The
power and area per switch reported by DC is calculated at
each one’s maximum clock frequency.

The synthesize results obey our previous analysis. The
data path of CS NoC is more than twice faster than PS NoC.
The control path of CS NoC is also about 1.3 times faster
than PS NoC.

The header flits in PS NoC take 3 cycles per hop. And
for CS NoC, the probes take 2 cycles per hop and 1 cycle
for backward ANS signal, under the control of probe clock.
The data transfer takes 2 cycles per hop, under the control of
the data clock.

 Therefore, in our experiments, according to Tab. 1,
tp=1.2 ns, tc=0.9 ns, td=0.56 ns, hp=3, hc=2, hd=2, D =
"

#
$ = 5.3.

Tab. 1 Parameters and synthesis results of PS NoC and CS NoC (Per
switch)

The channel bandwidth and the clock frequency of PS

and CS NoC can be found in Tab. 1. The influence of
delivering packets of variable size (from 4 flits to 160 flits)
in both PS NoC and CS NoC is evaluated and shown in Fig.
10 and Fig. 11. The trends in these two plots are opposite to
each other. PS NoC (Fig. 10) decreases in performance
under load as the packet size gets larger, while CS NoC (Fig.
11) improves in performance with larger packets. To better
illustrate this phenomenon we take snapshots at injection
rates 2000 MB/s and 1142 MB/s, and plot packet size
against average packet delay (Fig. 12.).

For a given injection rate CS NoC improves
performance as packets get larger, while the performance of
PS NoC deteriorates. Consequently, there are cross-points
between the circuit-switching and the PS NoC curves in Fig.
12. At injection rate 2000 MB/s, the cross-point is 62 (496
bytes) flits and at injection rate of 1142 MB/s the cross
point is 40 flits. In general, the cross point shifts towards
larger packets as the injection rate increases.

This observation can be explained by three phenomena:
� For medium packets (20-60 flits in this case) and large

packets (above 60 flits in this case) at low load, CS
NoC performs better than PS NoC. This is in
agreement with our zero load analysis.

� PS NoC handles small (below 20 in uniform traffic
case) and medium packets at high load better than CS
NoC. A given number of VCs and buffers can handle

burstiness and unbalance below a certain level well. If
in a PS NoC small packets compete for a resource, the
only cost is the waiting time of one packet for a few
cycles. If contention occurs in a CS NoC during the
setup phase, one probe has to go back, tear down all
allocated resources and start over again. Thus, the
penalty is more sever because the delay due to
contention is higher and many resources are allocated
unnecessarily.

� As packet size increases, the contention overhead
increases for PS and it is constant (decreases in relative
terms) for CS NoC. In PS the delay incurred by
contention is proportional to packet size. Thus, the
larger the packets the higher the penalty of contention.
For CS the cost of contention is relatively independent
of packet size and is thus better amortized over large
packets at high load.

Fig. 10 Delay for PS NoC with different packet size in flits

Fig. 11 Delay for CS NoC with different packet size in flits

We also studied the influence of packet size on
maximum throughput, as suggested by Fig. 13. As the
packet size increases, the maximum throughput decreases in
PS NoC, while CS NoC has a contrary trend. For example,
for PS NoC with packets of 4 flits (32 bytes), the maximum
throughput reaches 2614 MB/s. However, when packet size
grows up to 640 flits (5120 bytes), the maximum throughput
is 1950 MB/s. For CS NoC, the maximum throughput is
279 MB/s with 4-flit packets. However, as the packet size
grows to 640 flits, the throughput goes up to 3479 MB/s.
Again, there is a cross over point which lies around 62
flits/packet.

Packet Swiched NoC Circuit Switched NoC
Virtual channels: 4 (v4) Channel per direction: 1
Buffer size: 4 (b4)
Flit width : 8 bytes Channel width : 8 bytes
Max. Freq. : 833 MHz Max. Data Freq.: 1.786GHz

Max. Probe Freq.: 1.11GHz
Area: 144572 um2 Area: 30874. um2

Power: 21.7 mW @ 833MHz Power: 26.8 mW @1.786/1.11GHZ

26

Thus, when packets are large enough, CS NoC is
superior to PS NoC in both latency and throughput.

Fig. 12 Latency snapshot of injection rate 2000 MB/s and 1142 MB/s

Fig. 13 Maximum throughput comparison.

B. Comparisons between more candidates

In this section, we compared more configurations of PS
NoC. Throughput comparison results are shown in Fig.
14 The packet size is in the unit of byte.

Fig. 14 Maximum throughput comparison between PS NoC and

different configurations of CS NoC

For PS NoC, as we expected, we can see that
ps_v16_b16 (16 virtual channels and each contains 16
buffers) can enhance the maximum throughput when
packets are not very large.

However, for large packet size, eg. each packet contains
640 flits (5120 bytes), 16 VCs with 16 stages of buffers are
still not enough. The maximum throughput of ps_v16_b16
at such a packet size is reduced to that of ps_v4_b4. Since
large packet weakens the effects of VCs and buffers, we can
conjecture that if packets are large enough, the maximum
throughput of configurations which contain more VCs and
buffers will shrink to that of the baseline candidate
ps_v4_b4.

IX.CONCLUSIONS

Our general conclusions are shown in Tab. 2, detailed
conclusions are listed as followings:

Tab. 2 The favorite working areas of CS and PS NoC

� At very low injection rate, CS NoC is better than PS

NoC above a certain packet size (see equation (3)).
The critical packet size, above which CS NoC
outperforms PS NoC, grows linear with the size of the
network.

� For small packet size, PS NoC handles congestion
better than CS NoC. Hence, when increasing injection
rate, PS NoC shows better performance. This explains
why for smaller size of packets (below 62 flits), PS
NoC outperforms CS NoC at high injection rate.

� Growing packet size increases the congestion penalty
for PS NoC, while it is relatively packet size
independent for CS NoC. This means for a given
injection rate, CS NoC performs better and better with
growing packet size, while PS NoC is getting worse.

� Increasing virtual channels and buffers of PS NoC can
enhance throughput for small packets. But this has
little influence on very large packets.

REFERENCES

[1] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor,
“Concepts and Implementation of Spatial Division Multiplexing for
Guaranteed Throughput in Networks-on-Chip,” IEEE Transactions
on Computers, vol. 57, no. 9, pp. 1182 –1195, Sep. 2008.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J.
MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C.
Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D.
Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Processor:
A 64-Core SoC with Mesh Interconnect,” in Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE
International, 2008, pp. 88–598.

[3] K.-C. Chang, J.-S. Shen, and T.-F. Chen, “Evaluation and design
trade-offs between circuit-switched and packet-switched NOCs for
application-specific SOCs,” in 2006 43rd ACM/IEEE Design
Automation Conference, 2006, pp. 143 –148.

[4] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit, “An
Energy-Efficient Reconfigurable Circuit-Switched Network-on-Chip,”
in Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, 2005, p. 155a.

[5] N. Chin-Ee and N. Soin, “Qualitative and quantitative evaluation of a
proposed circuit switched network-on-chip,” in 2010 IEEE

small packets medium packets large packets

Low load PS is better CS is better CS is better

High load PS is better PS is better CS is better

27

International Conference on Semiconductor Electronics (ICSE), 2010,
pp. 108–113.

[6] N. Chin-Ee and N. Soin, “A study on circuit switching merits in the
design of network-on-chip,” in 2010 International Conference on
Computer and Communication Engineering (ICCCE), 2010, pp. 1–5.

[7] J. Lim, E. Hunt Siow, Y. Ha, and P. K. Meher, “Providing both
guaranteed and best effort services using Spatial Division
Multiplexing NoC with dynamic channel allocation and runtime
reconfiguration,” in Microelectronics, 2008. ICM 2008. International
Conference on, 2008, pp. 329 –332.

[8] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, “A hybrid
packet-circuit switched on-chip network based on SDM,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, 3001 Leuven, Belgium, Belgium, 2009, pp. 566–569.

[9] A. K. Lusala and J.-D. Legat, “Combining sdm-based circuit
switching with packet switching in a NoC for real-time applications,”
in Circuits and Systems (ISCAS), 2011 IEEE International
Symposium on, 2011, pp. 2505 –2508.

[10] A. K. Lusala and J.-D. Legat, “Combining SDM-Based Circuit
Switching with Packet Switching in a Router for On-Chip Networks,”
International Journal of Reconfigurable Computing, vol. 2012, pp.
1–16, 2012.

[11] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, “The
Nostrum backbone-a communication protocol stack for Networks on
Chip,” in 17th International Conference on VLSI Design, 2004.
Proceedings, 2004, pp. 693–696.

[12] S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan, and L.
Peh, “Approaching the theoretical limits of a mesh NoC with a 16-
node chip prototype in 45nm SOI,” in 2012 49th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2012, pp. 398 –405.

[13] P. Guerrier and A. Greiner, “A generic architecture for on-chip
packet-switched interconnections,” in Proceedings of the conference
on Design, automation and test in Europe , 2000, pp. 250–256.

[14] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES:
an infrastructure for low area overhead packet-switching networks on
chip,” the VLSI Journal, vol. 38, no. 1, pp. 69–93, Oct. 2004.

[15] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,” in
IEEE International Symposium on Performance Analysis of Systems
and Software, 2009. ISPASS 2009, 2009, pp. 33–42.

[16] W. J. Dally and B. Towles, Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2003.

[17] M. Winter and G. P. Fettweis, “A Network-on-Chip Channel
Allocator for Run-Time Task Scheduling in Multi-Processor System-
on-Chips,” in 11th EUROMICRO Conference on Digital System
Design Architectures, Methods and Tools, 2008. DSD ’08, 2008, pp.
133 –140.

[18] M. Winter and G. P. Fettweis, “Guaranteed service virtual channel
allocation in NoCs for run-time task scheduling,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2011,
2011, pp. 1 –6.

[19] P.-H. Pham, J. Park, P. Mau, and C. Kim, “Design and
Implementation of Backtracking Wave-Pipeline Switch to Support
Guaranteed Throughput in Network-on-Chip,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 20, no. 2, pp. 270
–283, Feb. 2012.

[20] P.-H. Pham, P. Mau, J. Kim, and C. Kim, “An On-Chip Network
Fabric Supporting Coarse-Grained Processor Array,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. PP, no.
99, pp. 1 –5, 2012.

[21] A. K. Lusala and J.-D. Legat, “Combining SDM-Based Circuit
Switching with Packet Switching in a Router for On-Chip Networks,”
International Journal of Reconfigurable Computing, vol. 2012, pp.
1–16, 2012.

[22] R. Stefan, A. Molnos, and K. Goossens, “dAElite: A TDM NoC
Supporting QoS, Multicast, and Fast Connection Set-up,” IEEE
Transactions on Computers, vol. PP, no. 99, p. 1, 2012.

[23] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on
chip: concepts, architectures, and implementations,” IEEE Design
Test of Computers, vol. 22, no. 5, pp. 414 – 421, Oct. 2005.

[24] N. Ma, Z. Lu, and L. Zheng, “System design of full HD MVC
decoding on mesh-based multicore NoCs,” Microprocess. Microsyst.,
vol. 35, no. 2, pp. 217–229, Mar. 2011.

[25] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, and D.
Verkest, “Spatial division multiplexing: a novel approach for
guaranteed throughput on NoCs,” in Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, New York, NY, USA, 2005, pp. 81–
86.

[26] D. Wiklund and D. Liu, “SoCBUS: switched network on chip for
hard real time embedded systems,” in Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, 2003, p.
8–pp.

[27] C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched NoC for
FPGA-based systems,” IEE Proceedings of Computers and Digital
Techniques, vol. 153, no. 3, pp. 181–188, 2006.

[28] S. Liu, A. Jantsch, and Z. Lu, “Parallel probing: Dynamic and
constant time setup procedure in circuit switching NoC,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2012,
2012, pp. 1289 –1294.

[29] D. Walter, S. Hoppner, H. Eisenreich, G. Ellguth, S. Henker, S.
Hanzsche, R. Schuffny, M. Winter, and G. Fettweis, “A source-
synchronous 90Gb/s capacitively driven serial on-chip link over 6mm
in 65nm CMOS,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2012 IEEE International, 2012, pp. 180 –
182.

[30] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta,
“Low-Power, High-Speed Transceivers for Network-on-Chip
Communication,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 1, pp. 12 –21, Jan. 2009.

[31] D. U. Becker and W. J. Dally, “Allocator implementations for
network-on-chip routers,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, New
York, NY, USA, 2009, pp. 52:1–52:12.

[32] H. J. Chao, C. H. Lam, and X. Guo, “Fast ping-pong arbitration for
input–output queued packet switches,” International Journal of
Communication Systems, vol. 14, no. 7, pp. 663–678, 2001.

28

