
Analysis and Management of Communication in
On-Chip Networks

FAHIMEH JAFARI

Doctoral Thesis in Electronics and Embedded Systems
KTH Royal Institute of Technology

Stockholm, Sweden 2015

TRITA-ICT/ECS AVH 15:01
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-15/01-SE
ISBN x-xxxx-xxx-x

KTH School of Information and
Communication Technology

Department of Electronic Systems
SE-164 40 Kista SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatesexamen i datalogi
Torsdag den 19 February 2015 klockan 13:00 i sal E i Forum IT-Universitetet, Kungl
Tekniskahögskolan, Isajordsgatan 39, Kista.

© Fahimeh Jafari, February 19, 2015

Tryck: Universitetsservice US AB

iii

Abstract

Regarding the needs of low-power, high-performance embedded systems
and the growing computation-intensive applications, the number of comput-
ing resources in a single chip has enormously increased. The current VLSI
technology is able to support such an integration of transistors and add many
computing resources such as CPU, DSP, specific IPs, etc to build a System-
on-Chip (SoC). However, interconnection between resources becomes another
challenging issue which can be raised by using an on-chip interconnection
network or Network-on-Chip (NoC). NoC based communication which allows
pipelined concurrent transmissions of transactions is becoming a dominate
infrastructure for many core computing platforms.

This thesis analyzes and manages both Best Effort (BE) and Guaranteed
Service (GS) communications using analytical performance approaches. As
the first step, the present thesis focuses on the flow control for BE traffic in
NoC. It models BE source rates as the solution to a utility-based optimization
problem which is constrained with link capacities while preserving GS traffic
services requirements at the desired level. Towards this, several utility func-
tions including proportionally-fair, rate-sum, and max-min fair scenarios are
investigated. Moreover, it is worth looking into a scenario in which BE source
rates are determined in favor of minimizing the delay of such traffics. The
presented flow control algorithms solve the proposed optimization problems
determining injection rate in each BE source node.

In the next step, real-time systems with guaranteed service are considered.
Real-time applications require performance guarantees even under worst-case
conditions, i.e. Quality of Service (QoS). Using network calculus, we present
and prove the required propositions for deriving performance metrics and
then apply them to propose formal approaches for the worst-case performance
analysis. The proposed analytical model is used to minimize total cost in the
networks in terms of buffer and delay. To this end, we address several opti-
mization problems and solve them to consider the impact of various objective
functions. We also develop a tool which derives performance metrics for a
given NoC, formulates and solves the considerable optimization problems to
provide an invaluable insight for NoC designers.

Dedicated to my lovely parents, Mehri and Mohammad Reza,

who I am always indebted to

to my love, Abbas, and my little angel, Tina,

who have given me more than they will ever know.

vii

Acknowledgements

First and foremost I would like to express the deepest appreciation to my former
supervisor (current co-supervisor), Prof. Axel Jantsch, for his invaluable support
both in my research and life during all years of my work in ICT school, even after he
moved from KTH to the University of Vienna. I have been extremely fortunate to
work under his supervision and I deeply appreciate his time, patience, and support
throughout my Ph.D. career. His assistance, constructive comments, and technical
insights have always been most helpful in addressing my research issues. I would
also like to thank Prof. Ahmed Hemani for the support and advice he has provided
as my supervisor after moving Prof. Axel Jantsch from KTH.

I would like to express my special thanks to my former co-supervisor, Assoc.
Prof. Zhonghai Lu, for giving me generous amount of time whenever I needed
some help. At many stages in the course of my research, I benefited from his
advice, suggestions, and meticulous comments particularly so when exploring new
ideas. His positive outlook and confidence in my research inspired me and gave
me confidence. Also, I am particularly grateful to Assoc. Prof. Ingo Sander for
reviewing my thesis.

I owe my deepest gratitude to all of my family members, especially my parents
who have done everything for me, including sacrificing the joys of their own lives
so that I could be happy and successful in my life. Thanks for being with me on
each and every step of my life. It is their unconditional love that motivates me to
set higher targets.

My heartfelt appreciation goes to my beloved husband, Abbas Eslami Kiasari,
who experienced all of the ups and downs of my career during the last twelve years.
Without his love, continued support and warm encouragement, I could not pursue
my study and also this thesis would not have been possible. Last, but not least, I
would also like to thank my lovely friends who have contributed immensely to my
personal and professional time in Sweden.

Contents

Contents ix

List of Figures xiii

List of Tables xvii

List of Publications xix

I Introduction 1

1 Introduction 3
1.1 On-Chip Interconnection Networks 3
1.2 QoS-aware Communication Management: A Major Research Chal-

lenge in NoC . 6
1.3 Contributions . 7
1.4 Thesis Organization . 8

2 Background and Related Works 9
2.1 Quality-of-Service (QoS) . 9
2.2 Flow Control . 11

2.2.1 Switch-to-switch flow control mechanisms 11
2.2.2 End-to-end flow control mechanisms 12

2.3 NoC Performance Evaluation . 13
2.3.1 NoC Workloads . 13
2.3.2 Simulation-based Models . 15
2.3.3 Analytical Models . 16

2.4 Network Calculus Theory . 19
2.4.1 Basic Concepts of Network Calculus 19
2.4.2 Network-calculus-based Models for Deriving Upper Delay Bounds 22

2.5 Optimization Problems . 23

3 Contributions 31

ix

x CONTENTS

3.1 Communication management for BE traffic flows 32
3.1.1 Utility-Maximization Problem [Paper 1] 33
3.1.2 Delay-Minimization Problem [Paper 4] 35
3.1.3 Implementation Aspects . 35
3.1.4 Where does the underlying idea come from? 36

3.2 Communication management for real-time systems with guaranteed
service . 37
3.2.1 Flow regulation and Performance analysis regardless of VC

effects (Papers 8 and 12) . 37
3.2.2 Performance analysis of flows regarding VC effects in network

based on aggregate scheduling (Papers 9, 10, and 13) 38
3.2.3 Design optimization based on analytical performance models

(Paper 14) . 39

4 Summary and Outlook 43
4.1 Summary . 43
4.2 Outlook . 44

Bibliography 47

II Included Papers 57

1 MASCOTS Paper 59

2 ICCSA Paper 67

3 IPDPS’8 Paper 81

4 ISPAN Paper 91

5 ICCS Paper 99

6 IST Paper 111

7 IPDPS’9 Paper 119

8 DATE2010 Paper 129

9 ICCD Paper 135

10 DATE2012 Paper 139

11 IJPEDS Paper 145

12 TCAD Paper 167

CONTENTS xi

13 TODAES Paper 183

14 TCAD Paper 225

List of Figures

Part I: Introduction 3

1.1 Bus-based and point-to-point architectures 4
1.2 NoC architecture . 4

2.1 Bit-reversal distribution . 14
2.2 Arrival curve . 15
2.3 TSPEC arrival curve . 20
2.4 Bounds for TSPEC flow served by a latency-rate server 21
2.5 An example of convex function . 25
2.6 An example of nonconvex function 26
2.7 The feasible region in a a) convex and b) nonconvex optimization

problem . 26
2.8 The ice cream cone . 27

3.1 The structure of implementation . 36

Part II: Included Papers 59

1.1 Source rates for (a) γ = 3
1+t and (b) γ = 1

1+t 66
1.2 Average of relative error with respect to optimal solution for the

two cases. 66

2.1 Source rates for (a) γ = 1
1+t and (b) γ = 0.5

1+t (c) γ = 0.01 77
2.2 Average of relative error with respect to optimal solution for the

three cases. 78

3.1 Network Topology and Routing Policy 89
3.2 Source rates convergence with symmetric weight factors for (a) γ =

1.05 and (b) γ = 0.2 . 89
3.3 Average Relative Error . 90

xiii

xiv List of Figures

4.1 Source rates for γ = 3
1+k . 98

4.2 Average Error with respect to optimal solution for γ = 3
1+k 98

4.3 Delay-Sum Comparison between proposed rate allocation and uni-
form rate allocation . 98

5.1 Network Topology . 107
5.2 Rate allocation using CVX results 108
5.3 Rate allocation using Algorithm 1 108
5.4 Rate allocation using Rate-Sum Maximization 109

6.1 Source Rates vs. Iteration Steps for Max-Min 116
6.2 Source Rates vs. Iterations for Weighted Max-Min with w1 116
6.3 Comparison of Max-Min, Weighted Max-Min with w1 and Weighted

Max-Min with w2 . 116
6.4 Comparison between Rate-Sum and Max-Min 116
6.5 Different parameters for Different scenarios 117
6.6 Least source rate for Different scenarios 117
6.7 Rate region for x7 and x10 . 117
6.8 Rate region for x8 and x5 . 117

7.1 Source Rates vs. Iteration Steps for Rate Sum 125
7.2 Source Rates vs. Iteration Steps for Max-Min 126
7.3 Comparison between Rate-Sum and Max-Min 126
7.4 Source Rates vs. Iteration Steps for Weighted Rate-Sum with w1 . 126
7.5 Source Rates vs. Iteration Steps for Weighted Rate-Sum with w2 . 126
7.6 Source Rates vs. Iteration Steps for Weighted Max-Min with w1 . . 127
7.7 Source Rates vs. Iteration Steps for Weighted Max-Min with w2 . . 127
7.8 Different Parameters for Different Scenarios 127

8.1 Flow regulation . 132
8.2 An example of required buffers for two flows 132
8.3 Shared channel . 132
8.4 Modeling each network element as a latency-rate server 132
8.5 Ericsson radio systems application 134
8.6 Maximum buffer requirements for each flow 134
8.7 Maximum delay for each flow . 134

9.1 Arrival curve and service curve . 138

10.1 Computation of delay bound for one VBR flow served by a pseu-
doaffine curve . 142

10.2 Computation of ESC for flow N + 1 in a rate-latency node 143
10.3 End-to-end delay bound analysis flow 143
10.4 An example . 144

List of Figures xv

11.1 Shared resource without congestion controlled BE 150
11.2 Shared resource with congestion controlled BE 151
11.3 Network topology and routing policy 161
11.4 Source rates convergence for γ = 1.05 161
11.5 Source rates convergence for γ = 0.2 162
11.6 Average relative error . 162
11.7 Source rate convergence in a time-varying scheme 163
11.8 Source rate convergence for asymmetric weight factors 163

12.1 IP integration in SoCs . 170
12.2 Flow served by a latency-rate server with and without regulation . 171
12.3 Flow regulation . 171
12.4 Mechanisms of flow regulation . 171
12.5 (σ, ρ)-based regulation mechanism 172
12.6 Example of required buffers for two flows 172
12.7 (a) Channel sharing (b) Channel service model 172
12.8 Modeling each network element as a latency-rate server 173
12.9 Modeling all network elements as a latency-rate server 173
12.10 Ericsson radio systems application 177
12.11 Peak rate of flows . 178
12.12 Traffic burstiness of flows . 178
12.13 Maximum required buffers for every flow 178
12.14 Maximum worst-case delay for every flow 178
12.15 Maximum required buffers for the ejection channels in switches . . . 179
12.16 Maximum required buffers for the southern channels in switches . . 179
12.17 Maximum required buffers for the northern channels in switches . . 179
12.18 Maximum required buffers for the eastern channels in switches . . . 179
12.19 Maximum required buffers for the western channels in switches . . . 179
12.20 Maximum required buffers for every flow under hotspot traffic . . . 181
12.21 Maximum worst-case delay for every flow under hotspot traffic . . . 181
12.22 Maximum required buffers for every flow under Bit-complement . . 181
12.23 Maximum worst-case delay for every flow under Bit-complement . . 181

13.1 Arrival curve of flow fj with TSPEC (Lj , pj , σj , ρj) 189
13.2 An example of an NoC along with the structure of a single node . . 190
13.3 Computation of equivalent service curve for flow K + 1 in a rate-

latency node . 193
13.4 An example of channel&buffer sharing 194
13.5 An example of a channel sharing three flows 195
13.6 An example of a buffer sharing two flows 196
13.7 An example of a buffer sharing three flows 196
13.8 Analysis for the first type of nested flows 198
13.9 Analysis for the second type of nested flows 199
13.10 Analysis for the third type of nested flows 199

xvi List of Figures

13.11 Analysis for the fourth type of nested flows 199
13.12 Analysis for crossed flows . 200
13.13 End-to-end ESC analysis flow . 201
13.14 The example of joining point . 201
13.15 An example of end-to-end ESC computation 203
13.16 A synthetic example . 205
13.17 Analysis steps for the example in Figure 15 206
13.18 Comparing ¯DV BR and ¯DCBR with the same equivalent service curve 209
13.19 VOPD Application . 210
13.20 Comparison of delay bounds for VOPD application 210
13.21 Comparing ¯DV BR and ¯DCBR for VOPD application 211
13.22 Improvement percentage of ¯DV BR than ¯DCBR for VOPD application211
13.23 Comparison of delay bounds under the transpose traffic pattern . . 212
13.24 Comparing ¯DV BR and ¯DCBR under the transpose traffic pattern . . 213
13.25 Improvement percentage of ¯DV BR than ¯DCBR under the transpose

traffic pattern . 213
13.26 Computation of delay bound for one VBR flow served by a pseudo

affine curve . 218

14.1 The structure of a single node in NoC architecture 229
14.2 An example of an NoC with 16 nodes and 4 flows 230
14.3 An example of channel&buffer sharing 231
14.4 An example of a channel sharing three flows 231
14.5 An example of buffer sharing . 232
14.6 An example of end-to-end ESC computation 233
14.7 The final stage of end-to-end ESC computation 234
14.8 An example of decoding and linear mapping 237
14.9 The flow chart of the developed tool 237
14.10 An example of crossover . 237
14.11 An example of mutation . 237
14.12 VOPD Application . 238
14.13 Maximum worst-case delay for every flow 239

List of Tables

Part I: Introduction 3

2.1 The list of some open-source NoC simulators 17
2.2 Categories on optimization problems 29

3.1 The thesis author’s contributions . 40

Part II: Included Papers 59

5.1 Quantitative comparison between different rate allocation schemes . . . 109

8.1 Comparison of the required buffer between different schemes 133
8.2 Comparison of the maximum delay between different schemes 134

10.1 End-to-end delay comparison for f3 under different service rates 144

12.1 Comparison of the Required Buffer Between Different Schemes 178
12.2 Comparison of the Maximum Delay Between Different Schemes 178
12.3 Comparison Between Different Scenarios 178
12.4 Comparison of the Maximum Delay Between Different Scenarios 179
12.5 Comparison Between Different Scenarios Under Hotspot Traffic 180
12.6 Comparison Between Different Scenarios Under Bit-Complement Traffic 180

13.1 The list of notations . 192
13.2 Buffer size thresholds in the case study with synthetic traffic pattern . . 208
13.3 End-to-end delay comparison for tagged flow f1 under different service

rates . 208
13.4 End-to-end delay comparison for tagged flow f1 under different process-

ing delay . 209
13.5 Buffer size thresholds for VOPD application 211
13.6 The list of flows . 212

xvii

xviii List of Tables

14.1 The list of notations . 230
14.2 How good are optimized weights? . 238
14.3 How good is multiobjective optimization? 239
14.4 Comparison of the run time between different methods 239

List of Publications

• Thesis Publications

◦ Conference Proceedings
1. M. S. Talebi, F. Jafari, and A. Khonsari, "A Novel Flow Control Scheme

for Best Effort Traffic in NoC Based on Source Rate Utility Maximiza-
tion". In the Proceedings of the Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 381-386,
Istanbul, Turkey, October 2007.

2. M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee, "A Novel Con-
gestion Control Scheme for Elastic Flows in Network-on-Chip Based on
Sum-Rate Optimization". In the Proceedings of the International Confer-
ence on Computational Science and its Applications (ICCSA), pp. 398-
409, Kuala Lumpur, Malaysia, August 2007.

3. M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee, "Proportionally-
Fair Best Effort Flow Control in Network-on-Chip Architectures", In
the Proceedings of the International Workshop on Performance Modeling,
Evaluation, and Optimization of Ubiquitous Computing and Networked
Systems (PMEO UCNS), in conjunction with the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Miami, Florida,
USA, April 2008.

4. F. Jafari, M. S. Talebi, A. Khonsari, and M. H. Yaghmaee, "A Novel
Congestion Control Scheme in Network-on-Chip Based on Best Effort
Delay-Sum Optimization", In the Proceedings of the International Sym-
posium on Parallel Architectures, Algorithms and Networks (ISPAN), pp.
191-196, Sydney, NSW, Australia, May 2008.

5. F. Jafari, M. H. Yaghmaee, M. S. Talebi, and A. Khonsari, "Max-Min-
Fair Best Effort Flow Control in Network-on-Chip Architectures", In the
Proceedings of the International Conference on Computational Science
(ICCS), Part I, LNCS 5101, pp. 436-445, Krakow, Poland, June 2008.

6. F. Jafari and M. H. Yaghmaee, "A Novel Flow Control Scheme for Best Ef-
fort Traffics in Network-on-Chip Based on Weighted Max-Min-Fairness",

xix

xx LIST OF PUBLICATIONS

In the Proceedings of International Symposium on Telecommunications
(IST), pp. 458-463, Tehran, Iran, August 2008.

7. F. Jafari, M. S. Talebi, M. H. Yaghmaee, and A. Khonsari, "Throughput-
fairness tradeoff in Best Effort flow control for on-chip architectures", In
the Proceedings of the International Workshop on Performance Modeling,
Evaluation, and Optimization of Ubiquitous Computing and Networked
Systems (PMEO UCNS), in conjunction with the IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), Rome, Italy, May
2009.

8. F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, "Optimal Regulation
of Traffic Flows in Network-on-Chip", In the Proceedings of the Design
Automation & Test in Europe (DATE), pp. 1621- 1624, Dresden, Ger-
many, March 2010.

9. F. Jafari, A. Jantsch, and Z. Lu, "Output Process of Variable Bit-Rate
Flows in On-Chip Networks Based on Aggregate Scheduling", In the Pro-
ceedings of the International Conference on Computer Design (ICCD),
pp. 445-446, Amherst, USA, October 2011.

10. F. Jafari, A. Jantsch, and Z. Lu, "Worst-Case Delay Analysis of Vari-
able Bit-Rate Flows in Network-on-Chip with Aggregate Scheduling", In
the Proceedings of the Design Automation & Test in Europe (DATE), pp.
538-541, Dresden, Germany, March 2012.

◦ Journal Papers
Accepted
11. M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee, "Pro-

portionally Fair Flow Control Mechanism for Best Effort Traffic in
Network-on-Chip Architectures", International Journal of Parallel,
Emergent, and Distributed Systems (IJPEDS), Vol. 25, No. 4, pp
345-362 Jul. 2010.

12. F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, "Buffer Optimiza-
tion in network-on-Chip through Flow Regulation", IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), Vol. 29, No. 12, pp 1973-1986, Dec. 2010.

Submitted
13. F. Jafari, Z. Lu, and A. Jantsch, "Least Upper Delay Bound for VBR

Flows in Networks-on- Chip with Virtual Channels", Submitted to
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES).

xxi

14. F. Jafari, A. Jantsch, and Z. Lu, "Weighted Round Robin Configura-
tion for Worst-Case Delay Optimization in Network-on-Chip", Sub-
mitted to IEEE Transactions on Computer- Aided Design of Inte-
grated Circuits and Systems (TCAD).

• Other Publications

15. F. Jafari, S. Li, and A. Hemani, "Optimal Selection of Function Implementa-
tion in a Hierarchical Configware Synthesis Method for a Coarse Grain Re-
configurable Architecture", In the Proceedings of the Euromicro Conference on
Digital System Design (DSD), pp. 73-80, Oulu, Finland, August 2011.

16. S. Li, F. Jafari, A. Hemani, and S. Kumar, "Layered Spiral Algorithm for
Memory-Aware Mapping and Scheduling on Network-on-Chip", In the Pro-
ceedings of the NORCHIP conference, pp. 1-6, Tampere, Finland, November
2010.

Part I

Introduction

1

Chapter 1

Introduction

The scope and direction of this thesis are indicated in this chapter. At first, an
introduction of NoC structure is considered and communication management

is mentioned as a research challenge. Then, the contributions are presented and
finally the organization of the rest of the thesis is given.

1.1 On-Chip Interconnection Networks

Progresses in deep sub-micron technology have led to integrate hundreds of IP
cores running multiple concurrent processes on a single chip. Although the speed
of elements in such systems becomes faster, the International Technology Roadmap
for Semiconductors (ITRS) illustrates that the wiring delay is growing exponentially
because of the increased capacitance caused by narrow channel width and increased
crosstalk. Therefore, the wiring and consequently communication between cores is
one of the main limiting factors to be concerned.

As shown in Figure 1.1, bus-based architectures and point-to-point communi-
cation methodologies are some prevailing mechanisms for communication between
several cores in System-on-Chip (SoC). However, these architectures have funda-
mentally some limitations in bandwidth, i.e. while the number of components
attached to them is increased, physical capacitance on the wires grows and as a
result its wiring delay grows even further. Therefore, as the number of cores keeps
increasing, neither traditional bus-based nor point-to-point architectures, shown
in Figure 1.1, can provide scalable solutions and satisfy the tight power and per-
formance requirements posed by on-chip communication requirements. This issue
makes significant changes in microprocessor architectures and, consequently, the
current design methodology needs to change from computation-based design to
communication-based design. The concept of Network-on-Chip (NoC) architec-
ture [1] has been proposed as a promising alternative to exceed such a limitation
of communication and overcome such an enormous wiring delay in the complex
on-chip communications.

3

4 CHAPTER 1. INTRODUCTION

System bus

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
blockSystem bus

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block

IP
block IP

block
IP

block

a) Shared bus b) point-to-point

Figure 1.1: Bus-based and point-to-point architectures

IPIP IPIP IPIP IPIP

IPIP IPIP IPIP IPIP Crossbar
Switch

VC1

VC2

VCn
Input buffers

VC1

VC2

Input 1

Input k

Output 1

Output k
IP IP IP IP

IPIP IPIP IPIP IPIP

IPIP IPIP IPIP IPIP

Switch Allocator

b)

VC Allocator

Crossbar
SwitchVC2

VCn
Input buffers

Routing
Logic

a)

Input k Output k

Figure 1.2: NoC architecture

The basic concept of NoC comes from the modern computer network evolution
since communications are applied like a network and routers are inserted in between
them as depicted in Figure 1.2 a). In fact, an NoC based multicore consists of mul-
tiple point-to-point links connected via routers. Messages can be relayed from any
source node to any destination node over several links, by making routing decisions
at the routers. In this respect, the switch-based interconnection mechanism shorten
the required wiring, provides a lot of scalability and freedom from the limitation
of complex wiring. The NoC approach can provide large bandwidth with moderate
area overhead, compared to the traditional solutions. Besides scalability, the NoC
approach offers increased reusability of the design.

Network topology in NoCs determines how switches and nodes are connected.
For instance, the topology of network shown in Figure 1.2 a) is a two-dimensional
mesh. Figure 1.2 b) depicts the microarchitecture of a typical router. The router
in a two-dimensional mesh network has five input and output ports corresponding
to the four neighboring directions and the local processing element (PE) port. The
major router components include the buffers, routing logic, VC allocator, switch

1.1. ON-CHIP INTERCONNECTION NETWORKS 5

allocators, and the crossbar switch. Most routers in on-chip network are input-
buffered which means that they store packets in buffers only at the input ports.
The following stages constitute the functionality of an on-chip network router:

• Buffer Write (BW): A head flit is first decoded and buffered to its input VC
on arriving at an input port.

• Route Computation (RC): The routing logic performs RC to determine the
output port for the packet. To this end, the head flit indicates the VC that
it belongs to, the VC state is updated, and the next output port is computed
based on routing algorithms.

• Virtual-channel Allocation (VA): the head flit arbitrates for the available VC
on its output port.

• Switch Allocation (SA): the header flit arbitrates for access to its output port.

• Switch Traversal (ST): the flit traverses the crossbar and is transmitted on
the output port.

• Link Traversal (LT): The flit is passed to the next node.

These stages are also known as router pipeline stages because they commonly
implemented and performed based on pipeline techniques to improve overall latency
and throughput in the network.

Routing algorithms select a route among possible paths from source to desti-
nation and are categorized into deterministic/oblivious and adaptive ones. There
has been always a tradeoff between the degree of adaptivity and ease of design
in routing algorithms. For example, the deterministic routing algorithms have no
adaptivity which means they select a fixed route without considering the state of
the network which results in simple design complexity. On the contrary, adaptive
routing algorithms use dynamic information about the network and can make bet-
ter decision in terms of the performance of the network. For instance, channel load
information helps these algorithms to balance load in the network and thus improve
the performance. As the degree of adaptivity in these algorithms is increased, the
flexibility in routing paths and the design complexity are increased.

Switching mechanism in NoCs determines when and how network resources,
such as links and buffers, are allocated and de-allocated to messages as they travel
through the network. There are different types of switching techniques such as
circuit switching, packet switching, and wormhole switching. The switching tech-
nique used in the network affects different performance metrics. For example, circuit
switching reserves network bandwidth for the entire duration of the delivered data
while it ties resources and may cause unnecessary delays. Packet switching needs
large-sized buffers as it stores entire packets in a switch. By contrast, wormhole
switching requires smaller buffer size while it reduces the ability of interleaving
distinct messages over a physical channel which leads to less channel utilization.

6 CHAPTER 1. INTRODUCTION

Flow control mechanism determines how to handle the situation in which a
message traversing the network needs to compete with other messages to acquire
network resources. The implementation of the routing, switching, flow control, and
router pipeline will exert influence on the efficiency at which buffers and links are
used and thus overall network latency and throughput [2].

Regarding minimizing the implementation cost in on-chip networks, it is impor-
tant to reduce area overhead. As buffers take a significant portion of the silicon
area in NoCs [3, 4] buffer size in routers should be carefully minimized. On the
other hand, the reduction of the buffer space in routers may cause the poor perfor-
mance of the network. Moreover, the uniform distribution of buffer spaces is widely
used by designers due to its simplicity. However, it may result in using unnecessary
buffer space (silicon area) and low performance in the network. The present thesis
addresses some of the issues in this subject.

1.2 QoS-aware Communication Management: A Major
Research Challenge in NoC

Although the benefits of on-chip networks are considerable, numerous research chal-
lenges are presented to reach their full potential. As understood of [5], one of the
major research problems in NoC design is QoS-aware communication management
led to performance modeling and optimization in the network. To address this chal-
lenge, it is important to have a good analysis of the traffic communications, system
requirements, and network metrics. This has also a huge impact on design costs,
power, and performance. At this point, communication bandwidth and network
latency are the key performance metrics, while area, power, and reliability are the
key cost metrics.

Communications can be managed as offline by making optimal design decisions
such as finding a sufficient configuration of buffers, optimal arbitration policy, op-
timal network topology, and appropriate traffic shaping through static flow regula-
tion/control or as online decision making by flow control mechanisms and dynamic
regulation with online feedback information in the case of run-time communication
management.

While sharing resources results in increased overall performance and scalability,
it also leads to unpredictable delays per individual flow. This nondeterminism can
substantially degrade the overall performance in applications with real-time dead-
lines. Therefore, a daunting challenge faced by NoC designers is how to efficiently
use the shared resources such as links and routers to encounter requirements of
various applications and how to analyze deterministic bounds for communication
delay and throughput. Providing QoS is considered to be a critical problem for
applications executing on embedded multicore systems [6]. Contention in shared
resources affects performance and QoS significantly. While this subject has been
studied recently in Chip Multi-Processor (CMP) architectures, the same subject

1.3. CONTRIBUTIONS 7

exists in SoC architectures, which is even more severe due to the interference of
shared resources between programmable cores and fixed-function IP blocks.

1.3 Contributions

The focus of the present thesis is on the resource constrained communication man-
agement, with the aim of minimizing the network cost or maximizing network
utilization while preserving the required QoS. The author has studied performance
analysis and optimization of NoC communications and proposed techniques to sup-
port QoS, for both BE and GS traffic flows. Contributions in this thesis are divided
into the following categories:

1. Communication management for BE traffic flows

Flow control based on different optimization scenarios
• Contribution: A framework to provide QoS with the following ob-

jective functions:
– Maximizing throughput
– Providing fairness
– Minimizing total BE traffic delays

2. Communication management for real-time systems with guaranteed services

a) Flow regulation and performance analysis without Virtual Channel (VC)
sharing

• Contribution: Propose flow regulation and define regulation spec-
trum as a means to control delay and backlog bounds. Also, an-
alytical models to derive worst-case delay and backlog bounds are
defined.

b) Performance analysis of flows with VC sharing in network based on ag-
gregate scheduling.

• Contribution: Propose analytical models for different resource shar-
ing scenarios, classify and analyze flow interference patterns, propose
and prove required theorems and finally derive per-flow worst-case
delay bounds.

c) Design optimization based on analytical performance models
• Contribution: Define and solve optimization problems based on ana-

lytical models with the aim of minimizing the network delay bounds.

More features and discussions concerning problems and contributions are de-
scribed in Chapter 3.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Organization

The present thesis consists of two main parts: a general introduction and discussion
in Part I and a collection of papers in Part II. The remainder of Part I is organized
as follows. Chapter 2 reviews the most significant related works and backgrounds.
The contributions are elaborated in Chapter 3. Chapter 4 gives the conclusions
and highlight directions for future work.

The collection of papers in Part II includes 10 conference proceedings, 2 journal
papers and 2 submitted journal papers.

Chapter 2

Background and Related Works

The context of this chapter includes five sections. The first section considers
the importance of quality of service and the possible approaches for providing

it. Flow control as one of these approaches is described in the nest section. The
third section is devoted to the NoC performance evaluation. The next section
introduces the basics of network calculus and reviews some related works using
network calculus theory. The final section introduces most significant optimization
concepts and represents different categories of optimization problems.

2.1 Quality-of-Service (QoS)

QoS is particularly very important for communications with special requirements,
such as communications for audio conversations or even for applications with stricter
service demands.

The on-chip networks provide scalability and support for parallel transactions.
The computational power of these architectures enables the simultaneous execution
of several applications, with different time constraints. Therefore, it is expected that
various applications such as real-time and multimedia, and computation-intensive
algorithms such as video encoding and decoding algorithms, speech recognition, and
3D gaming, will be supported on a NoC environment. In this respect, NoC should be
able to provide various levels of support for these applications. It must be also able
to guarantee a timely exchange of data packets for a real-time application. On the
other hand, as the number of applications executing simultaneously increases, the
performance of such applications may be affected due to resources sharing. In this
respect, applications can experience large latency fluctuations for packet delivery
because of network congestion. Such variability and non-determinacy result in
degradation of overall application performance which is not obviously acceptable
for applications with real-time deadlines.

To ensure applications requirements are met, mechanisms are necessary for en-
suring proper isolation. As the NoC is one of the main shared components in

9

10 CHAPTER 2. BACKGROUND AND RELATED WORKS

NoC-based MPSoCs, meeting communication requirements of applications is a cru-
cial aspect of QoS mechanisms in these systems. QoS metrics includes delay, delay
variation (jitter), throughput, error rate, and the rate of packet loss etc [7]. In fact,
QoS specification can be expressed by performance metrics and can be categorized
by worst-case bounds, average values, and percentiles etc.

A significant number of existing studies in this subject have developed mecha-
nisms to provide delay and throughput guarantees. In [8], authors propose Time-
division-multiplexing (TDM) circuit-switching to guarantee bandwidth and latency.
Nostrum NoC [9] creates virtual circuits and defines containers to provide band-
width guarantee. In SonicsMX [10], authors insert interval markers for acquiring
bandwidth and providing soft guarantees on minimum bandwidth and maximum
delay. Authors in [11] and [12] offer efficient throughput guarantees. In [13], authors
investigate end-to-end delay and packet loss as QoS metrics to quantify buffering
requirements and packet switching techniques in NoC nodes. A QoS-aware routing
algorithm proposed in [14] partially adapts with the traffic congestion for meeting
different QoS requirements such as average delay and jitter. Authors in [15] inte-
grate the QoS and error control schemes considering latency, jitter, error rate etc.
The present thesis particularly investigates throughput and delay as QoS parame-
ters.

Since over half of research studies are devoted to timing aspects [16], there is
a need for research into NoCs to provide deterministic bounds for communication
delay and throughput. In NoCs, QoS mechanisms concerning timing guarantees
are commonly handled by following approaches:

• One possible solution to this problem is to add some redundant links, nodes
and buffers to over-dimension the network. The network employs these links
when congested.

• Another possible solution is reserving resources like VCs with a mechanism of
resource allocation between different traffic flows [17], [18], [19], [20], [9]. For
instance, some links can be reserved for real-time applications to guarantee a
timely delivery of data packets from source node to destination node.

Both solutions are able to raise the latency problem but increase the cost and power
consumption in the network.

• A cost-efficient solution is to provide multiple priority levels to the data traf-
fic, which can be supported within the network such that the urgent traffic
can have a higher priority than the regular traffic [21], [22], [23], [24]. To
transmit the data packet for a real-time application in time, either some links
are reserved for real-time data or priority-based scheduling is implemented.
However, without appropriate scheduling algorithms in such systems, a data
packet belonging to a lower priority application may be starved. Methods to
safeguard global fairness to network hot spots have been proposed in [11].

2.2. FLOW CONTROL 11

• Finally, QoS-aware communication management is another solution for pro-
viding QoS in NoCs. This provides a QoS framework for managing traf-
fic communications by allocating a certain amount of resources to each flow
and/or shaping traffic flows. The framework may be modeled statically by
making optimal design decisions such as finding optimal arbitration policy
and static flow regulation or dynamically by flow control mechanisms and
dynamic flow regulation with online feedback information.
QoS-aware flow control algorithms have been proposed to avoid the spikes in
delay by regulating traffic at the NI and to ensure fairness [25], [26], [27], [28].

2.2 Flow Control

Flow control determines how to handle the situation in which a traffic flow travers-
ing the network needs to compete with other flows to acquire network resources,
such as channel bandwidth and buffer capacity. Such control mechanisms try to
avoid resource starvation and congestion in the network by regulating traffic flows
which compete for shared resources. The majority of flow control presented in the
NoC domain relies on switch-to-switch or end-to-end mechanisms.

2.2.1 Switch-to-switch flow control mechanisms
Switch-to-switch flow control mechanisms exchange control signals between the
neighboring routers to regulate the traffic flow locally [29], [30], [31], [32] [33], [34].
The switch-to-switch flow control can be categorized into credit based, on-off, ACK-
/NAK, and handshaking signal based mechanisms

• Credit based flow control: In this mechanism, the count of data transfers is
kept by an upstream node, and therefore the available free slots are termed
as credits. A credit is sent back when the transmitted data packet is either
consumed or further transmitted. Authors in [35] and [36] use credit based
flow control in QNoC.

• On-off based flow control: Credit based flow control requires upstream signal-
ing for every flit, while on- off based flow control decreases upstream signaling.
Off signal is sent when the number of free buffers falls below threshold Foff

and On signal is sent when the number of free buffers rises above threshold
Fon.

• ACK/NACK protocol: This technique keeps a copy of a data flit in a buffer.
Once an ACK signal is received, the flit is deleted from the buffer and if a
NACK signal is asserted then the flit is scheduled for retransmission. Authors
in [37], [38], and [39], use this mechanism in XPIPES implementation.

• Handshaking signal based flow control: This mechanism sends a VALID signal
whenever a sender transmits any flit. The receiver consumes the data flit

12 CHAPTER 2. BACKGROUND AND RELATED WORKS

and then acknowledges by asserting a VALID signal. In [40], authors use
handshaking signals in their SoCIN NoC implementation.

Since switch-to-switch approaches do not need explicit communication of control
information between source and destination, they have a small communication over-
head. However, they do not regulate the actual packet injection rate directly at the
traffic source level. Indeed, these approaches rely on a backpressure mechanism in
which the availability of the buffers in the downstream routers is propagated to the
traffic sources. Consequently, before the traffic sources get congestion information,
the packets generated in the meantime can seriously congest the network.

Several works have been presented to overcome this issue. In [41], a predictive
flow control algorithm for on-chip networks is proposed in which each router predicts
the buffer occupancy to sense congestion. This scheme controls the packet injection
rate and regulates the number of packets in the network. This works tries to reach
the simplicity of the switch-to-switch algorithms, while controlling the source nodes
similar to the end-to-end algorithms. In [42], link utilization is used as a congestion
measure and a prediction-based controller determines the source rates. Dyad [3]
controls the congestion by switching from deterministic to adaptive routing when
the NoC faces congestion. However, the method cannot guarantee that congestion
is resolved since the alternative paths may also be congested.

2.2.2 End-to-end flow control mechanisms

End-to-end flow control mechanisms regulate the packet injection rate at the source
nodes in order to conserve the number of packets in the network. Flow control is
well studied for data networks [43]- [46]. A wide variety of flow control mechanisms
in data network belongs to the class of end-to-end control schemes which is mainly
based on the window-based scheme like TCP/IP. In window-based mechanisms, a
source node can only send a limited number of packets before the previously sent
packets are removed from the network. In this respect, routers and intermediate
nodes avoid the network from congestion by dropping packets deterministically (as
in DropTail) or randomly (as in RED). Therefore, sent packets are subject to loss
and the network must aim to providing an acknowledgement mechanism. One
limitation of end-to-end control mechanisms is the large overhead incurred when
sending the feedback information [46]. Moreover, the unpredictable delay in the
feedback loop can cause unstable behavior as the link capacities increase [47].

Compared to off-chip networks, on-chip networks pose different challenges. The
reliability of on-chip wires and more effective link-level flow-control allows NoCs to
be lossless. Therefore, there is no need to utilize an acknowledgment mechanism like
what exists in off-chip networks and researchers face to a slightly different concept
of flow control. The work presented in [48] employs the end-to-end flow control
for guaranteed service along with the basic link-level control in on-chip networks.
Authors in [49] present a comparison of the overhead of flow control algorithms.

2.3. NOC PERFORMANCE EVALUATION 13

2.3 NoC Performance Evaluation

The NoC designers should be aware of performance requirements and cost con-
straints to have enough for the choice of design parameters. They must also be
able to provide a framework for dynamic and static resource allocations in order to
meet the QoS requirements of different applications. Therefore, they need to derive
an accurate and fast performance evaluation regarding different configurations ex-
ploring the design space. As network performance evaluations are highly dependent
on the traffic patterns variation, a first step towards understanding and unraveling
network performance related issues is how to model traffic flows in the network.
Workloads are usually simulated and there are different ways to do that such as
reading traces from files; generating synthetic traffic on the fly; running applica-
tion programs in a system simulator; etc. Section 2.3.1 categorizes and discusses
different workloads.

2.3.1 NoC Workloads
To evaluate an NoC design it is necessary to investigate workload models that can
have significant impact on network performance. Several types of traffic patterns
are discussed as follows:

• Execution-driven workload:
Traffic patterns are generated by running the intended applications on the
platform. Consequently, both the processor cores and the NoC infrastructure
are modeled in the traffic pattern. As execution-driven workload emulates the
processors in addition to the NoC itself, it is the most accurate and appro-
priate traffic pattern to use. However, requires a full-system implementation
and suffers from long evaluation time.

• Trace-driven workload:
In this kind of workload, only the network model are evaluated and processor
core are considered as a "black-box" that only generates packets according to
the collected trace. This workload can be an efficient alternative to execution-
driven workload under realistic applications.
The major drawback of these two kinds of workload is that the achievement
of a complete coverage of all the expected traffic is very difficult and complex
because the number of benchmarks is limited. Moreover, the simulation time
is long such that it cannot be used in the optimization loop [50] [51].

• Synthetic workloads
Due to complexity of developing and controlling of trace-driven workloads,
synthetic workloads are used frequently in NoCs simulation. Besides of sim-
plicity to design and manipulate, synthetic workloads can help analyze and
characterize NoC applications. They can also be used to generate new traffic

14 CHAPTER 2. BACKGROUND AND RELATED WORKS

1100 111111101101

1000 101110101001

0100 011101100101

0000 001100100001

Figure 2.1: Bit-reversal distribution

traces with features that are not covered by existing applications. Among
different types of synthetic models, statistical and arrival curve-constrained
traffic models are described as follows.

– Statistical Traffic Models
Due to high versatility of statistical traffic models, they can be used to
carefully design synthetic workloads employing statistical approaches.
There are two major parameters generated by this type of traffic models
including packet length distributions and temporal distribution. The
temporal distribution refers to the distribution of inter-arrival time of
packets; such as Periodic process and Poisson process. In a Periodic
process, the packets inter-arrival times are fixed and known while Poisson
process incorporates fluctuations in the inter-arrival times based on the
exponential distribution.
Other parameters, such as spatial distribution, routes, etc., are of less
importance. The spatial distribution represents the distribution of the
destination of packets in the network. Several common examples of spa-
tial distributions used in NoC are uniform, transpose, bit-reversal, and
shuffle traffic patterns [51]. Figure 2.1 shows a bit-reversal distribution
in the 8× 8 mesh topology as an example.
NoC performance evaluations are predominantly based on the Poisson
traffic characteristics [52], namely, the packet inter-arrival times and the
packet service time at each router are exponentially distributed. Al-
though recent researches have demonstrated these assumptions may not
hold for some NoC applications [53–55] and Poisson model is not able to
model all significant features in this network, it is still one of the most
widely used traffic model in NoCs.

– Arrival Curve-constrained Traffic Models
To speed up time-to-market, computation and communication are devel-
oped separately and concurrently. Therefore, the communication plat-

2.3. NOC PERFORMANCE EVALUATION 15

m
e

da
ta

 v
ol

um

R(t)

d

t
0

0

s
R(s)

Figure 2.2: Arrival curve

form is developed without sufficient traffic knowledge. In this respect,
it is very important to be able to analyze and evaluate network commu-
nication performance with various traffic patterns extensively so as to
make the right design decisions.
Network Calculus is a generic theory conceived to derive upper bounds on
network traversal times. This theory is able to model all traffic patterns
with bounds defined by arrival curves. In this respect, designers can
capture some dynamic features of the network based on shapes of the
traffic flows [56]. The concept of arrival curve is defined as below.
Definition 1. Arrival Curve [57]: Given a wide-sense increasing func-
tion α defined for t ≥ 0 , we say that a flow R is constrained by α if and
only if for all s ≤ t : R(t)−R(s) ≤ α(t− s).
We say that R has α as an arrival curve, or also that R is α-smooth.
Note that the condition is over a set of overlapping intervals, as Figure
2.2 illustrates.
In this respect, network calculus-based analytical models employ arrival
curves constraining traffic workloads to compute upper bounds.

NoC performance models are categorized into analytical-based and simulation-
based models.

2.3.2 Simulation-based Models
SoC designs are becoming increasingly complex with time and have tight constraints
in terms of performance, cost, energy consumption, dependability, flexibility, secu-
rity, etc. In order to be sure that design of such a complex SoC device is truly
correct, it is logical to early simulate the design beforehand implementation be-
cause the implementation of the billion transistors early and then discovering out
a design problem would be very disastrous. A simulation tool should be able to
explore the architectural design space quickly, evaluate a design of the network ar-
chitecture with a variety of regular traffic models and application-oriented traffic,

16 CHAPTER 2. BACKGROUND AND RELATED WORKS

and estimate design quality in terms of performance, cost, power and reliability etc.
Overall, simulators are applicable for following purposes:

• Evaluation of various hardware designs without implementing costly hardware
systems.

• Making opportunities for evaluating non-existing components or systems.

• Estimating design metrics including performance parameters. Simulators are
able to generate a large set of performance data by a single execution.

• Debugging before implementing the system. Once an error is detected in
a real system, it typically needs re-booting and re-running the code or the
design to re-produce the problems while some simulators are able to run code
backward by a controlled environment to debug the design.

Currently a few public simulation tool exists to aid NoC designers to make the
decision. Table 2.1 briefly introduces some of existing open-source (code available)
NoC simulators.

The present thesis particularly employs Booksim to validate the proposed ana-
lytical models.

2.3.3 Analytical Models
Simulation tools are commonly used to explore the design space for the estimation
of performance metrics. Although simulators are flexible and provide highly accu-
rate estimations, due to complexity of modern SoCs, it is a very time consuming
process that can hardly be used during the iterative exploration phase of the design.
The non-linear behaviour of system performance makes the process even harder es-
pecially for estimation of worst-case performance metrics. Moreover, simulators are
not scalable with the network size since they increase the computational complexity
of performance metrics estimation in larger systems.

For these reasons, analytical models are proposed as an alternative approach
for efficient and reasonably accurate performance evaluations. Analytical models
promise a fast evaluation of performance metrics that allows for a larger design
space to be explored. They can provide a clear relationship between inputs and
outputs and other design parameters in the network. They can make it possible
to understand the effects of these parameters on the performance of a system.
Analytical models provide a perfectly general insight of a system, but some small
details may be not well represented because they often use simplifications which
their impact should be considered carefully. When the analytical techniques are
too abstract and distant from reality or too complex to find a solution, simulation
results are used to evaluate performance in the system.

Regarding application requirements, analytical techniques for both the average
[69] and the worst-case [70, 71] performance metrics are needed to be employed.

2.3. NOC PERFORMANCE EVALUATION 17

Table 2.1: The list of some open-source NoC simulators

Simulator Framework Characteristics
Booksim [58],
Stanford University C++ Topo: 2D mesh, torus, trees, etc.;

Traffic: uniform, transpose, etc.;

NoCsim [59],
Texas A&M University SystemC

Topo: k-ary n-cube & arbitrary
topological extensions; Routing:
source-based, dynamic & multicast;
Flow control: dynamic & static;
Switching mechanism: packet
switched

Nostrum NoC Simulation
Environment (NNSE) [60], KTH
Royal Institute of Technology

SystemC
Topo: 2D mesh, torus; Flow control:
wormhole routing and reflection
routing; No parallelism;

Noxim [61],
University of Catania SystemC Topo: 2D mesh; Traffic: random,

transpose, etc.;

Worm_Sim [62],
Carnegie Mellon University C++

Topo: different topologies such as 2D
mesh & torus; Routing: different
routing algorithms; Traffic: built-in;
Power: Ebit, Orion 1; No multiple
VCs support;

gpNoCsim [63], Bangladesh
University of Engineering
and Technology (BUET)

Java Topo: All; No parallelism;

Xmulator [64], IPM School
of Computer Science &
Sharif University of Technology

C#

Nirgam [65],
University of Southampton SystemC

Topo: 2D mesh, torus; Routing: XY,
adaptive OE, source routing; No
parallelism; Switching mechanism:
wormhole;

DARSIM [66] C++ Topo: All; Support parallelism;
SICOSYS [67],
University of Cantabria, Spain C++ Topo: limited; No parallelism;

TOPAZ [68],
University of Cantabria, Spain C++ Derived from SICOSYS; 50K lines

of code; Support parallelism;

2.3.3.1 Average-case performance models (Best Effort
Communications)

For applications with Best Effort (BE) communications, designers aim in providing
the highest performance at a given cost, which is maximizing the average-case
performance metrics under the design constraints. These applications may have
soft real-time requirements, non-time-critical requirements, which must normally
be satisfied, but can sporadically be disregarded at cost of a small decrease in
quality of the output, like audible or visual artifacts in an audio or video stream.

18 CHAPTER 2. BACKGROUND AND RELATED WORKS

To design a more efficient system, the average execution time of the application is
concerned in performance analysis. A variety of mathematical approaches are used
for modeling the average-case performance in NoC such as the queuing-theory-based
models [69, 72, 73]. Queuing approaches often use probability distributions like
Poisson to model traffic in the network while Poisson distribution used in queuing
model is not appropriate for characterizing traffic patterns in NoC applications
because it is not able to model all significant features in this network. Queuing
theory generally evaluate average quantities of metrics in an equilibrium state and
characterizing their transient behavior is a very difficult problem for this approach.

2.3.3.2 Worst-case performance models (Guaranteed Service
Communications)

Many NoC applications have real-time constraints on traffic flows, which means
they have strict requirements on communication latency and bandwidth and need
guaranteed QoS to delivery packets. In real-time systems with Guaranteed Service
(GS) communications, the design goal is to provide a minimum level of perfor-
mance at the lowest possible cost. In such systems, it is very important to evaluate
worst-case delay bounds and guarantee that tasks will always be finished before the
predetermined deadline. Different analytical approaches proposed for deriving the
delay bounds in NoCs include dataflow analysis, schedulability analysis, Real-Time
Bound (RTB) formulation, and network calculus.

Dataflow analysis is a deterministic approach based on graph theory in which
the pattern of communication among cores and switches are deterministic and pre-
defined [74]. To capture dynamic behavior, it must be used with restricted models
such as DDF. In fact, the expressiveness is typically traded off against analyzability
and implementation efficiency in this analytical approach.

Schedulability analysis is a mathematical formalism for analyzing the timing
properties in real-time systems. In this respect, a set of tasks, their worst-case exe-
cution time, and a scheduling policy are given as inputs and the model determines
whether these tasks can be scheduled such that deadline misses never occur [69].
Compared to the other mathematical formalisms, this approach uses simpler event
models and consequently the performance model is easily extracted with less accu-
racy.

Real-Time Bound (RTB) formulation [70] is inspired by schedulability analysis
and derives delay bounds when all the intermediate buffers along the path of the
target flow are full, and the target flow loses arbitration at all routers against the
contention flows [75, 76].

Network calculus is a mathematical framework for deriving worst-case bounds on
maximum latency, backlog, and minimum throughput in network-based systems. It
is a promising method for analyzing performance guarantees and considering quality
of service in the network. This theory can characterize all traffic patterns and some
dynamic features of the network based on defined arrival curves and shapes of the
traffic flows [77]. It is also able to abstract many scheduling algorithms and arrival

2.4. NETWORK CALCULUS THEORY 19

classes as multiplexed arrival flows at a single queue by service curves. The service
curves through a network can be convolved as a single service curve. Hence a
multi-node network analysis can be simplified to a single-node analysis. Regarding
these two features, network calculus can analyze many scheduling algorithms and
arrival classes over a multi-node network in a uniform framework while most of other
analytical methods separately model different combination of them [78]. This thesis
applies network calculus to present formal approaches for QoS analysis in network-
based SoC communication.

In [79], authors have surveyed four popular mathematical formalisms -dataflow
analysis, schedulability analysis, queueing theory, and network calculus- along with
their applications in NoCs. They have also reviewed strengths and weaknesses of
each technique and its suitability for a specific purpose.

2.4 Network Calculus Theory

Since the thesis applies network calculus theory to propose worst-case analytical
models, this section recapitulates the concepts from network calculus [57] which
are relevant for this thesis and looks into some related works based on this theory.

2.4.1 Basic Concepts of Network Calculus

Network calculus [57] is a theory dealing with queueing type problems encountered
in computer networks, with particular focus on quality of service guarantee analysis.
It gives a theoretical framework for worst-case performance analysis in deterministic
queueing systems and is able to express and analyze constraints imposed by the
network components such as link capacity, traffic shapers (e.g. leaky buckets),
congestion control, and background traffic.

Assuming a system consists of an input, a transfer function and an output, the
input is an abstraction of the traffic flow and the transfer function is an abstrac-
tion of the scheduling. The input and transfer function are referred to as arrival
curve and service curve, respectively. Network calculus can also be used to express
departure function as well as arrival and service curves.

A key difference of network calculus to conventional system theory is using the
min-plus algebra in which addition and multiplication are replaced by minimum
and addition, respectively. The reason to switch to min-plus algebra is that it is
able to preserve linearity by transforming complex non-linear queueing systems into
analytically tractable linear systems.

In min-plus algebra, ∧ denotes the infimum or, when it exists, the minimum,
f ∧ g = min(f, g); ∨ denotes the supremum or, when it exists, the maximum,
f ∨ g = max(f, g); + is the "multiplication" operation. It can be verified that min-
plus algebra has similar properties as the conventional algebra such as the closure
property, associativity, commutativity, and distributivity.

20 CHAPTER 2. BACKGROUND AND RELATED WORKS

t D
at

a
vo

lu
m

e

L

p










L pt



L

time

D
at

a
vo

lu
m

e

Figure 2.3: TSPEC arrival curve

As in conventional system theory, a key operation in network calculus is the
min-plus convolution. The min-plus convolution, denoted by ⊗, and the min-plus
deconvolution denoted by �, are respectively defined as:

(f ⊗ g)(t) = inf0≤s≤t {f(t− s) + g(s)}
(f � g)(t) = sups≥0 {f(t+ s)− g(s)}

where f, g ∈ F and F is the set of wide-sense increasing functions.
Arrival curve and service curve are the most significant concepts in network

calculus. As defined in Section 2.3.1, an arrival curve denotes the largest amount
of traffic allowed to be sent in a given time interval.

Since the arrival curve defines a bound on the arrival traffic, it can be considered
as an abstraction of the traffic regulation algorithm. Leaky Bucket (Token Bucket)
[80] is the most common regulation algorithm which its arrival curve is defined
as α(t) = σ + ρt for t > 0; where σ and ρ are the burstiness and average rate,
respectively. Thus, the long-term rate is ρ and at most σ data units can be sent at
once. This arrival curve only considers the average behavior of traffic and no peak
behavior is modeled.

To model both the average and peak behavior of flows, the present thesis em-
ploys Traffic SPECification (TSPEC). With TSPEC, a traffic flow is characterized
as α(t) = min(L + pt, σ + ρt); where L is the maximum transfer size, p the peak
rate (p ≥ ρ), σ the burstiness (σ ≥ L), and ρ the average rate. As shown in Fig.
2.3, α(t) = L+pt if t ≤ θ; α(t) = σ+ρt, otherwise. This arrival curve is an abstract
of a Dual Leaky Bucket.

A service curve defines a bound on the service provided by network elements
such as links, routers, and regulators in order to present an abstract model for their
behavior.

Definition 2. Service Curve [57]: Consider a system S and a flow through S with
input and output functions R and R∗, respectively. We say that S offers to the

2.4. NETWORK CALCULUS THEORY 21

t 

D
at

a
vo

lu
m

e

T

L
()R t T

L pt

 delay

ba
ck

lo
g

D
at

a
vo

lu
m

e

time

Figure 2.4: Bounds for TSPEC flow served by a latency-rate server

flow a service curve β if and only if β ∈ F and R∗ ≥ R⊗ β.

A prominent service model is the rate-latency function βR,T = R[t−T]+, which
means that βR,T = R(t − T) if t > T ;βR,T = 0, otherwise. In this definition, R is
the minimum service rate and T the maximum processing delay.

We then introduce the backlog and delay bounds which are two basic bounds of
network calculus.

Theorem 1. (Backlog Bound [57]). Assume a flow, constrained by arrival curve
α, traverses a system that offers a service curve of β, the backlog R(t)−R∗(t) for
all t satisfies: R(t)−R∗(t) ≤ sups≥0α(s)− β(s).

Proof. The proof can be found in [57].

The theorem says that the backlog is bounded by the vertical deviation between
the arrival and service curves.

Theorem 2. (Delay Bound [57]). Assume a flow, constrained by arrival curve α,
traverses a system that offers a service curve of β, the delay d(t) for all t satisfies:
d(t) ≤ h (α, β).
where h(α, β) is the supremum of all values of δ(s) and δ(s) = inf{τ ≥ 0 : α(s) ≤
β(s+ τ)}.

Proof. The proof can be found in [57].

The theorem says that the delay is bounded by h(α, β) which is the horizontal
deviation between the arrival and service curves. Figure 2.4 shows bounds for
TSPEC flow served by a latency-rate server.

22 CHAPTER 2. BACKGROUND AND RELATED WORKS

2.4.2 Network-calculus-based Models for Deriving Upper Delay
Bounds

In [81], authors evaluate performance and cost metrics, such as latency, energy con-
sumption, and area requirements by using a proposed analytical approach based on
network calculus. They apply their proposed model for different topologies includ-
ing 2D mesh, spidergon, and WK-recursive and show that WK-recursive outper-
forms two other topologies in all considered metrics. Although this model considers
trade-offs between different metrics, it is very simple and is not accurate since it
does not analyze virtual channel effects and cannot model all interferences between
flows sharing a resource in the network.

There are different works which evaluate performance metrics in networks em-
ploying aggregate scheduling and are able to model virtual channel impacts and
analyze more accurate models for different resource sharing scenarios. Such an-
alytical models are particularly challenging because of their complexity as there
has been always a scalable tradeoff between accuracy and ease of analysis in NC-
based models. Aggregate scheduling arises for various network infrastructures such
as internet and NoC. The Differentiated Services (DiffServ) [82] is an example of
an aggregate scheduling-based architecture in the Internet. The authors in [83]
present a survey on this subject. The analytical method proposed in [84] obtains a
closed-form delay bound for a generic network configuration under the fluid model
assumption. To look into the influence of packetization, the method is extended
in [85]. Although these models can derive sufficient bounds in a generic network
configuration, they only work for small utilization factors.

Authors in [86] compare network calculus and the trajectory approaches on a
real avionics AFDX configuration and shows that the trajectory approach computes
tighter upper bounds compared to network calculus. However, delay bounds derived
from network calculus are calculated by the summation of per-node delay bounds,
expectedly resulting in a loose total delay bound.

There are different works which compute delay bound through network calculus
in feed-forward networks under arbitrary multiplexing [87–89]. Authors in [89] aim
to derive the worst-case end-to-end delay bound for a target flow in any feed-forward
network under blind multiplexing, with concave arrival curves and convex service
curves. They present a first algorithm for this problem. However, since it is a
difficult (NP-hard) problem, the paper shows some cases, such as tandem networks
with cross-traffic interfering along intervals of servers, in which the complexity
becomes polynomial. [90] improves the proposed method in [89] to consider networks
with a fixed priority service policy. Authors in this work try to take into account the
pay multiplexing only once (PMOO) phenomenon. These works consider networks
with arbitrary or blind multiplexing in which there is no assumption about service
policy while an explicit assumption on multiplexing scheme, like FIFO, results in
tighter bounds.

A related stream of works is concerned to the proposed methodology in [91–
93]. Authors in these works calculate delay bounds in tandem networks of rate-

2.5. OPTIMIZATION PROBLEMS 23

latency nodes traversed by leaky bucket shaped flows in the FIFO order. They
also implement algorithms employed in their methodology and present them as a
tool called DEBORAH. These works deal with networks only in tandem or sink
trees and are not able to compute end-to-end delay in a generic topology. All
aforementioned works compute delay bound considering only average behavior of
flows and not peak behavior, which arrives at less accurate bounds.

In [94], it is assumed that each server is shared by two flows and the authors
try to model shaping for an end-to-end delay under such a system. They shape
an applicative token bucket γr,b by the bit-rate of the link λR, which lead to a
two-slopes affine arrival curve. This arrival curve is similar to one models double
leaky bucket and considers traffic peak behavior. However, the paper investigates
a simple type of nested contention in a simple topology consists of a sequence of
rate-latency servers shared by two flows with a FIFO policy. Moreover, as stated
in their paper, the proposed model is incomplete since they model only the shaping
on the considering flow, not on the interfering ones when computing the worst-case
traversal time of a flow. That is why they entitled their own paper as "half-modeling
of shaping".

All reviewed works in the subject of aggregate scheduling propose a methodology
for deriving delay bounds in off-chip networks of different nature but not on-chip
networks. The analytical models are very close to the reality of the system in on-
chip networks. As an example, a router in on-chip networks can be modeled in pure
hardware which means the micro-architecture is feasible for analysis. Therefore,
network calculus can analyze more accurate models in on-chip networks. Authors
in [95] propose a network-calculus based approach for modeling flow control and
resource sharing and analyzing per-flow communication delay bounds in wormhole
networks. They then extend their analytical models under strict priority queueing
in [96] and compare it with weighted round robin scheduling in terms of the service
behavior. Like most of reviewed works, [95] and [96] do not deal with peak behavior
of flows, which results in less accurate bounds. Besides analysis of deterministic
performance bounds, authors in [97] analyze "soft" performance bounds in NoCs
using stochastic network calculus.

2.5 Optimization Problems

Optimization problems are common in many disciplines and various domains. From
the communication management perspective, there exists a huge search space to
explore at the network, resulting from the high number of nodes in current and
future systems. Thus, designers need to investigate topology, switching, routing
and flow control schemes. They should be also able to support QoS requirements
by optimizing resource allocation and flow characterizations. Moreover, they need
to examine the impact of flow control schemes on performance metrics. Each of
the design parameters also has a number of options to consider. Thus, to design
an efficient on-chip network, besides performance analysis, developing optimization

24 CHAPTER 2. BACKGROUND AND RELATED WORKS

problems and making appropriate decisions are of significant importance.
Design decisions are grouped into two categories: architecture-level decisions

such as topology, switching, and routing algorithm; application-level decisions such
as task-to-node mapping, task scheduling, traffic reshaping. Optimization problems
allow designers to investigate the impact of design parameters and performance-
cost tradeoffs among these parameters. Obviously, more accurate tradeoffs can be
made based on more complex decision models.

Commonly, inputs for optimization problems in this subject include both the
architecture specifications As such as the bandwidth of channels, buffer space, rout-
ing policy, and topology, and application parameters Ap such as communications
bandwidth, latency requirements, and traffic specifications. The optimization goals
and constraints reflect different metrics belonging to performance and cost param-
eters. Performance metrics include average/maximum packet latency, bisection
bandwidth, and network throughput; and cost metrics include average/peak ener-
gy/power consumption, network area overhead, total area, average/peak tempera-
ture.

These metrics can be employed as objective functions or constraints defined
as a function of the architecture and application parameters as O(As, Ap) and
C(As, Ap), respectively. The general problem is defined as below:

General Problem Description:
Given Architecture specifications As and application parameters AP ;
Find A set of decision variables;
Such that the objective function O(As, Ap) is optimized,
subject to the constraints specified by C(As, Ap).

In this formulation, decision variables can include finding an efficient application
mapping to processing cores, statistical traffic parameters (e.g. mean, peak, and
variance), a routing algorithm, a resource allocation strategy (e.g., size of buffers,
bandwidth of channels, etc.), packet injection rates in the network and buffer size
for each channel at each router. O(As, Ap) and C(As, Ap) can be subsets of the
performance and cost metrics. For instance, decision variables can be finding packet
injection rates in each source node and the objective can be minimizing the com-
munication latency, such that the bandwidth constraints for each link are satisfied,
as defined later in Section 3.1. Depending on the cost, constraints, and flexibil-
ity allowed in the design, the optimization problem may have different forms and
solution complexities.

There are so many research studies in various subjects considering optimization
problems to obtain different goals like minimizing power consumption/ packet la-
tency or maximizing throughput under the corresponding constraints. For example,
the authors in [98] present a mapping algorithm to minimize the communication
energy subject to bandwidth and latency constraints. A multi-objective mapping
algorithm for mesh based NoC architectures is presented in [99]. In [100], a genetic
algorithm is proposed to produce a thermally balanced design while minimizing

2.5. OPTIMIZATION PROBLEMS 25

f(X) f()f(X) f(y)

X

‐2π ‐π π 2π

X y

Figure 2.5: An example of convex function

the communication cost via placement. The proposed algorithm in [101] minimizes
the overall energy consumption of the system, while guaranteeing the hard dead-
lines imposed on tasks. There are some works which minimize the average distance
traveled by packets in the network, with a constraint on the maximum distance
between any pair of nodes [102–104]. Authors in [105–107] focus on designing a
router to minimize the latency through it while meeting different constraints such
as bandwidth requirements.

As there may exist different solution methods for a specific optimization prob-
lem, it is highly important to find appropriate solution approaches. Depending on
the types of optimization problems, the solution methods or algorithms that can
be used for optimization may find one global optimal solution or near-optimal so-
lutions. Mathematical relationships between the objective and constraints and the
decision variables determine the difficulty of an optimization problem that is going
to be solved. A key issue for solving optimization problems is whether the problem
functions are convex or non-convex. To briefly describe what convexity is, it needs
to introduce basic concepts as follows.

Definition 3. Convex Function [108]: Algebraically, f is convex if, for any x and
y, and any t between 0 and 1, f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). Geometrically,
a function is convex if a line segment drawn from any point (x, f(x)) to another
point (y, f(y)), which is called the chord from x to y, lies on or above the graph of
f , as in Figure 2.5.

Definition 4. Concave Function [108]: A function is concave if −f is convex,
namely, if the chord from x to y lies on or below the graph of f .

It is obvious that linear functions are both convex and concave.

Definition 5. Non-convex Function [108]: A non-convex function is neither convex
nor concave.

A common example is the sine function as depicted in Figure 2.6:
It is very important to note that the bounds on the variables may restrict the

domain of the objective and constraints to a specific region. For instance, the sine
function is convex from −π to 0, and concave from 0 to +π. If the domain of the

26 CHAPTER 2. BACKGROUND AND RELATED WORKS

f(X) f()f(X) f(y)

X

‐2π ‐π π 2π

X y

Figure 2.6: An example of nonconvex function

b)a)

Figure 2.7: The feasible region in a a) convex and b) nonconvex optimization
problem

objective and constraints is restricted to a region where the functions are convex,
then the overall problem is convex.

Definition 6. Feasible region [108]: In mathematical optimization, a feasible region
of an optimization problem is the intersection of constraint functions, namely, the
set of all possible points that satisfy the constraints.

Definition 7. Convex optimization problem [108]: A convex optimization prob-
lem is a problem in which all constraints are convex functions and the objective
is a convex function if minimizing, or a concave function if maximizing. Linear
programming problems are an example of convex problems.

The feasible region in a convex optimization problem is a convex region, as shown
in Figure 2.7a).

When both objective and feasible region are convex, there is either only one
global optimal solution or no feasible solution to the problem. Convex problems
can be solved efficiently up to very large size. Several methods such as Interior
Point methods can solve convex problems.

Definition 8. Non-convex optimization problem [108]: A non-convex optimization
problem is a problem in which the objective or any of the constraints are non-convex,
as shown in Figure 2.7b).

Non-convex optimization problems may have multiple feasible regions and mul-
tiple locally optimal points within each region. Solution methods for such problems
often find near-optimal solutions since it can take time exponential in the number of

2.5. OPTIMIZATION PROBLEMS 27

f(X) f()f(X) f(y)

X

‐2π ‐π π 2π

X y

Figure 2.8: The ice cream cone

variables and constraints to determine a global optimal solution across all feasible
regions.

Optimization problems can be grouped into five categories as follows, arranged
in order of increasing difficulty for the solution methods.

• Linear and Quadratic Programming Problems [108]

In a linear programming (LP) problem the objective and all constraints are
linear functions of the variables. Since all linear functions are convex, LP
problems are also convex.

A quadratic programming (QP) problem is one in which the objective is
quadratic function (may be convex or non-convex) and all of the constraints
are linear functions. It is notable that the convexity of the objective function
makes the QP problem easier to solve. QP problems, like LP problems,
have only one feasible region with "flat faces" on its surface due to the linear
constraints, but the optimal solution may be found anywhere within the region
or on its surface.

• Quadratic Constraints and Conic Optimization Problems [108]

Conic optimization problems are a class of convex nonlinear optimization
problems which can be written as an LP plus one or more cone constraints.
A cone constraint specifies that the vector formed by a set of decision variables
is constrained to lie within a closed convex pointed cone. A simple type of
closed convex pointed cone is the second order cone (SOC) or "ice cream cone"
which looks like Figure 2.8.

A convex quadratic constraint can be converted to an SOC constraint by
several steps of linear algebra. Consequently, convex quadratic programming
(QP) and quadratically constrained programming (QCP) problems can be
formulated as conic optimization problems.

• Mixed-Integer and Constraint Programming Problems [109] [110]

In a mixed-integer programming (MIP) problem some of the decision variables
are constrained to be integer values at the optimal solution. Since integer
variables make an optimization problem non-convex, it becomes more difficult
to solve it such that solution time may rise exponentially.

28 CHAPTER 2. BACKGROUND AND RELATED WORKS

Constraint programming defines "higher-level" constraints that apply to inte-
ger variables. The alldifferent constraint is one of the most common higher-
level constraints in which, for a set of n decision variables, non-repeating
orderings of integers from 1 to n are considered. The traveling salesman
problem is an example of a constraint programming problem. Constraint pro-
gramming problems not only, like mixed-integer programming problems, are
non-convex but also have the extra requirements such as "alldifferent" which
make them even harder to solve.

• Smooth Nonlinear Optimization Problems [111]
In a smooth nonlinear programming (NLP), the objective or at least one of
the constraints is a smooth nonlinear function of the decision variables. A
nonlinear function is smooth where its gradients that are its derivatives with
respect to each decision variable are continuous.
Nonlinear functions may involve variables raised to a power or multiplied or
divided by other variables, or may use transcendental functions such as log,
exp, sine and cosine.
When the objective and all constraints in an NLP problem are convex func-
tions, the problem can be solved efficiently by interior point methods to find
global optimality. In the other hand, if the objective or any constraints are
non-convex, the solution methods can find near-optimal solutions as the prob-
lem may have multiple feasible regions and multiple locally optimal points.

• Non-smooth Optimization Problems [111]
Non-smooth optimization problems (NSP) are the most difficult type of opti-
mization problem to solve. These problems are non-convex and have multiple
feasible regions and multiple locally optimal points. On the other hand, hav-
ing one possible solution in such problems gives very little information about
finding a better solution because some of the functions are non-smooth and
gradient information cannot be used to determine the increasing or decreasing
direction of the function.

Table 2.2 summarizes different categories of optimization problems. This thesis
formulates and solves optimization problems in these categories as stated in the
last column of the table.

2.5. OPTIMIZATION PROBLEMS 29

Table 2.2: Categories on optimization problems

Problem Type Convex or
non-convex?

Notable solution
methods

How optimal is the
solution?

Paper

Linear and Convex
Quadratic
Programming
Problems

LP: convex;
QP: may be
convex or
non-convex

Simplex method,
Interior Point
method,
Newton-Barrier
method, Subgradient
method, Projected
Gradient method

Global optimal
solution

Paper
2,4

Quadratic
Constraints and
Conic
Optimization
Problems

Convex Specialized Interior
Point methods,
Projected Gradient
method, Newton’s
method

Global optimal
solution

Paper
1,3,11

Mixed-Integer and
Constraint
Programming
Problems

Non-convex Branch and Bound,
Genetic and
Evolutionary
algorithms

Depends on the
problem size and
solution method,
may have global
optimal or local
optimal solutions

Paper
15,16

Smooth Nonlinear
Optimization
Problems

May be
convex or
non-convex

No single method is
best for all problems.
The most widely
used methods, are
Interior Point
methods and
active-set methods
including the
Generalized Reduced
Gradient (GRG) and
Sequential Quadratic
Programming (SQP)
methods

Depends on the
convexity of the
problem, may have
global optimal or
local optimal
solutions.

Paper
8,12

Non-smooth
Optimization
Problems

Non-convex Genetic or
Evolutionary
Algorithms

Good solutions Paper
14

Chapter 3

Contributions

The Contributions in the present thesis are summarized in this chapter which
are in the subject of communication management with respect to QoS and

resource constraints for both BE and GS traffic flows in on-chip networks.
Communication management as a critical means of providing QoS in traditional

data networks is a widely studied issue. However, it is still a challenge in on-chip
networks. It is natural to think of NoC’s nodes as competing for available resources.
In this respect, managing communications to satisfy such limited resources to be
in accordance to a specified notion of fairness will be of great concern.

The papers and contributions in this thesis are divided into two main categories
as belows:

• Communication management for BE traffic flows (Papers 1-7 and 11)

• Communication management for real-time systems with guaranteed service
(Papers 8-10 and 12-14)

The present thesis analyzes BE traffic flows based on average-case performance
metrics while GS connections are modeled based on the worst-case performance
analysis. The author of the thesis is the main contributor to some papers in the
first category and the main contributor to all papers of the second one. Here is a
short list of publications and submissions.

Accepted:

1. M. S. Talebi, F. Jafari, and A. Khonsari, A Novel Flow Control Scheme
for Best Effort Traffic in NoC Based on Source Rate Utility Maximization,
MASCOTS 2007.

2. M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee, A Novel Conges-
tion Control Scheme for Elastic Flows in Network-on-Chip Based on Sum-Rate
Optimization, ICCSA 2007.

3. M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee, Proportionally-
Fair Best Effort Flow Control in Network-on-Chip Architectures, PMEO 2008.

31

32 CHAPTER 3. CONTRIBUTIONS

4. F. Jafari, M. S. Talebi, A. Khonsari, and M. H. Yaghmaee,A Novel Con-
gestion Control Scheme in Network-on-Chip Based on Best Effort Delay-Sum
Optimization, ISPAN 2008.

5. F. Jafari, M. H. Yaghmaee, M. S. Talebi, and A. Khonsari, Max-Min-Fair
Best Effort Flow Control in Network-on-Chip Architectures, ICCS 2008.

6. F. Jafari and M. H. Yaghmaee, A Novel Flow Control Scheme for Best Effort
Traffics in Network-on-Chip Based on Weighted Max-Min-Fairness, IST 2008.

7. F. Jafari, M. S. Talebi, M. H. Yaghmaee, and A. Khonsari, Throughput-
fairness tradeoff in Best Effort flow control for on-chip architectures, PMEO
2009.

8. F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, Optimal Regulation of
Traffic Flows in Network-on-Chip, DATE 2010.

9. F. Jafari, A. Jantsch, and Z. Lu, Output Process of Variable Bit-Rate Flows
in On-Chip Networks Based on Aggregate Scheduling, ICCD 2011.

10. F. Jafari, A. Jantsch, and Z. Lu, Worst-Case Delay Analysis of Variable
Bit-Rate Flows in Network-on-Chip with Aggregate Scheduling, DATE 2012.

11. M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee, Proportionally
Fair Flow Control Mechanism for Best Effort Traffic in Network-on-Chip Ar-
chitectures, International Journal of Parallel, Emergent, and Distributed Sys-
tems (IJPEDS), 2010.

12. F. Jafari, Z. Lu, and A. Jantsch, Buffer Optimization in network-on-Chip
through Flow Regulation, IEEE Transactions on CAD, 2010.

Submitted:

13. F. Jafari, Z. Lu, and A. Jantsch, Least Upper Delay Bound for VBR Flows
in Networks-on-Chip with Virtual Channels, ACM Transactions on Design
Automation of Electronic Systems (TODAES).

14. F. Jafari, A. Jantsch, and Z. Lu, Weighted Round Robin Configuration for
Worst-Case Delay Optimization in Network-on-Chip, IEEE Transactions on
CAD.

3.1 Communication management for BE traffic flows

The first part focuses on the flow control for the NoCs with best-effort service as
the solution to optimization problems. In on-chip networks, flow control provides
a smooth traffic flow by avoiding packet drop and buffer overflow. The flow control
can also restrict the packet injection to the network to regulate the packet pop-
ulation in the network [28]. This is precisely the main objective of the first part
of the thesis. The present thesis quantitatively measure QoS by consideration of
throughput and delay. The general QoS and congestion control problem defined in
this thesis formulated as below:

Problem Definition
Given a NoC architecture and an application graph
Find packet injection rates in the network;

3.1. COMMUNICATION MANAGEMENT FOR BE TRAFFIC FLOWS 33

Such that network utility is maximized or the network cost is minimized
and QoS/resource constraints are satisfied. For example, the aggregate BE
source rates passing thorough each link l cannot exceed link capacity cl. This
threshold can be further specified as a function of different service classes like
c(l,GS) and c(l,BE), where c(l,BE) represents the portion of the link capacity
which has not been allocated to GS sources.

The emphasis of this part of thesis is on understanding and structuring differ-
ent flow control schemes and considering their specific effects on the network via
definition, description, and proposed solutions of various optimization scenarios.
The present thesis proposes iterative algorithms as the solution to the optimization
problems which have the benefit of low complexity and fast convergence. In order
to have a better insight about the behavior of proposed algorithms, the relative
error with respect to optimal source rates, which is averaged over all active sources,
is calculated. Optimal values are obtained using CVX which is MATLAB toolbox
for solving disciplined convex optimization problems. A synthetic case study in
Paper 11 exhibits less than 10% average relative error just after running about 13
iteration steps of the proposed iterative flow control algorithm and less than 5%
after 20 steps, which confirms the fast convergence of the algorithm.

3.1.1 Utility-Maximization Problem [Paper 1]
In the case of maximizing a network utility, the abovementioned general problem
is called a utility-maximization problem as referred in the economics literature.
There are many options for utility functions with various features and specific
behavior. However, in Paper 1, the general utility function is considered with no
restriction on a specific form. The paper transforms the constrained optimization
problem into an unconstrained one according to the Duality Theory, to reduce the
computational complexity. Then, the dual of the problem is solved using simple
iterative algorithms. In what follows, the effect of other utility functions on the BE
rates and fairness provision is investigated.

• Identity Function [Paper 2]:
The simplest form of the utility function is the Identity Function in which the
utility function is equal to decision variables. Therefore, the objective function
of the optimization problem turns into a sum-rate maximization problem.
Since the constraints of this problem are coupled across the network, it has
to be solved using centralized methods like interior point methods. As such
methods may pose a great overhead on the system; the subgradient method
for constrained optimization problems is used to present an iterative algorithm
with simpler operations. The convergence analysis of the algorithm reveals
that square-summable but not summable stepsizes can lead to lower relative
error compared to constant stepsizes. The experimental results confirm that

34 CHAPTER 3. CONTRIBUTIONS

the proposed algorithm converges very fast and the computational overhead
of the congestion control algorithm is small.

• Proportional Fairness [Papers 3 and 11]:
One of the famous forms of utility functions is weighted logarithmic which
satisfies proportional fairness in which resources are shared in proportion
to the resource usage of each source. The weight assigned to each source
indicates the priority of that source in resource sharing. The problem is
indirectly solved through its dual using Newton’s method which is led to a
flow control algorithm obtaining optimal BE source rates. The performance
of the proposed algorithm is evaluated in several aspects:

– Investigating the convergence behavior of the algorithm indicates the
significant role of a stepsize on the convergence speed.

– The convergence analysis of the algorithm in a dynamic scenario shows
that the proposed algorithm needs just as few as 20 iteration steps to
move towards the new optimal source rates in a synthetic case study.

– Regarding the effect of weights, experimental results confirm that using
larger weight factors lead to larger rates for corresponding sources while
reduce the rate of some other nodes passing through the same channel.
Moreover, such an asymmetric case adversely influences the speed of
convergence.

• Max-Min Fairness [Papers 5 and 6]:
In networks with Max-Min fairness, resources are mainly shared in favor of
weak users. The contribution here is to present a flow control algorithm
which satisfies Max-Min fairness criterion. To solve the proposed optimiza-
tion problem with max-min objective function, it should be converted to a
form of disciplined optimization problems and solved by a simple and famous
algorithm, known as "progressive filling". The effect of max-min fairness on
BE rate allocation is considered by comparing several parameters including
least source rate, sum of source rates, variance of source rates with respect
to mean value, Jain’s fairness index, and min-max ratio in both sum-rate
maximization and max-min fair flow control schemes.
Moreover, the author of the thesis formulates weighted max-min problem
through the analysis of mathematical model and simulation in Paper 6 for
the NoC architecture. To have better insight about the impact of weights,
the experimental results with various weights are obtained and the rate region
for the weighting scheme is introduced and analyzed.

• Throughput-Fairness Tradeoff [Paper 7]:
Here, two proposed flow control schemes rate-sum maximization and max-
min fairness are compared and analyzed in terms of tradeoff between conflict-
ing metrics. With a slight abuse in the definition of throughput in lossless

3.1. COMMUNICATION MANAGEMENT FOR BE TRAFFIC FLOWS 35

scenarios, sum-rate maximization scheme is construed as one with the aim
of maximizing throughput in the network and max-min scheme guarantees
max-min fairness among source rates.
Since there is no rate allocation that can satisfy optimal allocation in terms
of both of fairness and throughput, a mechanism for providing a tradeoff be-
tween throughput and fairness metrics is of significant importance. To this
end, the author of the thesis takes into account weight factors in the underly-
ing optimization problems to define tradeoff between conflicting metrics. The
weight assigned to each source determines its priority of rate allocation than
other sources. Paper 7 compares underlying flow control schemes and ana-
lyze the influence of weight factors on both schemes by the same parameters
defined in Paper 6.

3.1.2 Delay-Minimization Problem [Paper 4]
In the case of minimizing the network cost, the defined general problem is converted
into a flow control problem which allocates BE source rates so that to minimize the
sum of delays of all BE traffic flows while maintaining the required QoS. In addition
to satisfying link capacity constraints, the sum of BE source rates must be greater
than a specified threshold which is construed as minimum expected throughput in
the network. The optimization problem is solved using Projected Gradient Method
for constrained problems and analyzed in terms of convergence behavior.

3.1.3 Implementation Aspects
The proposed algorithms can be implemented as a centralized flow control mech-
anism by a centralized controller shown in Figure 3.1. The controller can be set
up as a separate hardware module or a part of the operating system and must be
able to carry out simple mathematical and logical operations needed for running
the algorithms. To communicate the algorithm’s output (source rate information)
to BE sources without delay and loss, a control bus is designed by GS links in
conjunction with all sources with light traffic load.

The proposed algorithms have capability of tracking the dynamic conditions.
If the network traffic is dynamic in the sense that flows may be dynamically cre-
ated or deleted, or cores may dynamically join or leave communication tasks, the
corresponding source node sends control information to the controller through the
control bus and then the algorithm obtains new optimal rates because the addition
or subtraction of a flow from the existing set of flows requires re-computation of
the rates for all involved flows. Then, the controller sends new optimal rates to
corresponding source nodes, if the new value of the rate differs from the previous
one. The proposed iterative algorithms do not need to be rerun from the initial
phase because they are able to track such a dynamic changes and move towards the
new optimal source rates by a few more iteration steps from the previous optimal
point. For instance, Paper 11 looks into the behavior of the proposed flow control

36 CHAPTER 3. CONTRIBUTIONS

 IP IP IP IP IP IP IP IP

R R NI IP

NI

RR

NININI

NIIP RR RR NI IP

NI

RRRR

NININI

NIIP

IP R R NI

NI IP

Controller

R R

R

R

R

R

NI

NIIP

IP RR RR NI

NI IP

Controller

RR RR

RR

RR

RR

RR

NI

NIIP

NI IP R RRR

NINININI

NIIP NI IP RR RRRRRR

NINININI

NIIP

IP IP IP IP IP IP IP IP

Figure 3.1: The structure of implementation

algorithm in a dynamic condition through a synthetic case study. It is assumed
that a source node is activated and starts sending data at the iteration step 140 of
the algorithm. The results exhibit that the algorithm can reach the new optimal
source rates just after 20 iteration steps, without restarting from its initial points.
In this respect, the proposed algorithms are well enough in a time-varying environ-
ment with real-time changes. Control packets are responsible for sending control
information to the controller and rates to source nodes. They are considered as GS
traffic with higher priority than GS data packets to be first served in each node.

3.1.4 Where does the underlying idea come from?

It is worth mentioning that the idea of proposing the flow control algorithms as so-
lutions of optimization problems is inspired by window-based flow control schemes
employed in data networks such as flow control in TCP. In this method, each source
node maintains a window of packets transmitted but not acknowledged. Since pack-
ets in data networks may be lost, destination node should acknowledge the ordered
receipt of them in the current window. After receiving the acknowledgment, the
source node modifies the window size due to the acknowledgment and thereby avoids
the network congestion. Since the source rate during each round trip from source
to destination node is the ratio of the window size to the duration of that trip
(Round Trip Time), window size can be updated by updating the corresponding
rate. Although the proposed flow control algorithms in this section are very similar
to rate update in TCP scheme, they have not devised any window-based trans-
mission and acknowledgment mechanism because the NoC architecture is lossless
and all packets will be delivered successfully in the correct order and therefore no
acknowledgement is needed. To the best of our knowledge, this is the first study
which deals with the flow control problem in NoCs using optimization approaches
and considers policies to maintain fairness among sources.

3.2. COMMUNICATION MANAGEMENT FOR REAL-TIME SYSTEMS
WITH GUARANTEED SERVICE 37

3.2 Communication management for real-time systems
with guaranteed service

This part of thesis proposes formal approaches to analyze and guarantee QoS for
real-time systems with guaranteed service, which can be efficiently utilized to rea-
son about delay and backlog bounds of traffic flows. The proposed approaches
apply network calculus to construct an analysis framework. Based on this frame-
work, a contract-based flow regulation is introduced which shapes incoming traffic
according to a contract between a client and the network. This contract defines
traffic specifications which are the maximum transfer size, peak rate, burstiness and
average rate. It also can be used to optimize architectural design decisions such as
buffer sizes, arbitration policies etc.

3.2.1 Flow regulation and Performance analysis regardless of
VC effects (Papers 8 and 12)

The author of the present thesis uses flow regulation to optimize buffers because
buffers are a major source of cost and power consumption [112]. To this end, it is
necessary to first derive per-flow bounds on delay and backlog in order to formulate
optimization problems.

Applying network calculus, it is possible to derive per-flow delay bound and
buffer requirements at each router. Deriving a per-flow delay bound needs an
Equivalent Service Curve (ESC) per entire route while deriving a backlog bound
requires an ESC per router. The total required number of buffers for a flow can be
obtained by summing up the required numbers of buffers at all routers passed by
that flow. Then, three timing-constrained buffer optimization problems are defined
which called as buffer size minimization, buffer variance minimization, and multi-
objective optimization which has both buffer size and variance as minimization
objectives. Minimizing buffer variance is formulated to can reuse IP modules and
design similar switches as far as possible.

The optimization problems are solved by the interior point method. A realistic
case study from Ericsson Radio Systems shows 62.8% reduction of total buffers,
84.3% reduction of total latency, and 94.4% reduction on the sum of variances of
buffers. The experimental results also obtain similar improvements for a synthetic
traffic pattern. The optimization algorithm is enabling of quick exploration in large
design space because of its low run-time complexity.

There are different buffer-dimensioning cases counting on if buffers are finite
or infinite (large enough), and if they are shared or not. The underlying system
model assumes that the number of VCs in each PC is the same as the number of
flows passing through that channel, which means that at most one flow can traverse
through each VC. In other words, there is no buffer sharing in the network which
is a limitation of this work.

38 CHAPTER 3. CONTRIBUTIONS

3.2.2 Performance analysis of flows regarding VC effects in
network based on aggregate scheduling (Papers 9, 10, and
13)

The previously presented analysis has assumed one virtual channel per flow. This
limitation is lifted to address routers in which multiple flows can share a VC and
investigate VC effects in the analytical models. To this end, the worst-case per-
formance per flow is analyzed in a FIFO multiplexing and aggregate scheduling
network.

To calculate a tight delay bound per flow, it is necessary to obtain the end-to-end
ESC which the tandem of routers provides to the flow. As required propositions for
calculating performance metrics of traffic characterized with TSPEC and transmit-
ted in the FIFO order and scheduled as aggregate have not been so far represented,
papers 9 and 10 apply network calculus to present and prove the required propo-
sitions under the mentioned system model. Applying these propositions, Paper 13
proposes a formal approach to calculate end-to-end ESC and then delay bound for
a tagged flow in the underlying system. The approach defines two steps which are
intra-router ESC and inter-router ESC and employs the results from these steps to
calculate the end-to-end ESC. Analysis steps are listed as follows:

1. Different resource sharing scenarios, namely, channel sharing, buffer shar-
ing, and channel&buffer sharing, are defined and the corresponding analysis
models are built.

2. Based on these models, the intra-router ESC for an individual flow is derived.

3. Regarding the intra-router ESCs extracted in each router, a mathematical
method based on the algebra of sets is presented to classify and analyze flow
contention patterns which a flow may experience along its routing path.

4. A formal method applies these analytical models to derive inter-router ESC
and in turn end-to-end ESC.

5. Finally, delay bound for the tagged is computed according to the correspond-
ing proposed proposition in paper 10 and the end-to-end ESC calculated for
the tagged flow.

The recursive algorithm presented in paper 13 follows steps described for cal-
culating end-to-end ESC. The thesis author has developed algorithms to automate
the analysis flow.

To validate the approach, the per-flow delay bounds from the analysis are de-
rived for VOPD, as a real-time application, and compared with per-flow observed
maximum delay from detailed simulations. The experimental results exhibit that
the maximum relative error with respect to simulation result is about 12.1% which
verify the accuracy of the proposed approach. It also provides quick per-flow delay
bounds in comparison with detailed simulations. Moreover, compared to previous

models with two parameters, the proposed method improves the accuracy of the
delay bounds up to 46.9% and more than 37% on average over all flows. In the case
of synthetic traffic patterns, the experimental results show similar improvements.

It is worth mentioning that all previously related works in this subject, as re-
viewed in Section 2.4.2, compute delay bounds only for average behavior of flows
without investigating peak behavior, expectedly resulting in a less tight delay
bound. Although the proposed formal method has a good degree of accuracy,
it is limited to networks with buffers being larger than the thresholds determined
in Paper 13.

3.2.3 Design optimization based on analytical performance
models (Paper 14)

In the previous step, the thesis author presumes the routers employ round robin
scheduling to share the link bandwidth. Scheduling policy is a critical aspect to
ensure sufficient bandwidth and avoid starvation. In order to consider the effect of
different scheduling policies, the analysis approach is extended to support weighted
round robin policy in the routers. As different values of weights result in different
per-flow delay bounds, selecting an appropriate set of values plays an important
role in control of the delay bounds in the network.

Since real-time systems need to immediately send data packets, the weights in
WRR policy are optimized such that minimize different functions of delay bounds
subject to performance constraints. Based on extended analytical models, the thesis
defines and formulates two optimization problems, namely, Minimize-Delay and
Multi-objective optimization. Multi-objective optimization minimizes both total
delay bounds and their variances as an objective function. The proposed problems
are solved using genetic algorithm. The thesis author particularly investigates and
compares the optimal solutions from four different methods including Pure Random
Search, Markov Monotonous Search, Adaptive Search, and Genetic Algorithm. A
realistic case study shows 15.4% reduction of total worst-case delays and 40.3%
reduction on the sum of variances of delays when compared with round robin policy.

Table 3.1: The thesis author’s contributions

Topic My
role

Paper Problem My contribution Main limitation(s)

C
om

m
unication

m
anagem

ent
for

B
E

traffi
c
flow

s

Secondary
contributor

Paper
1

Flow control to
maximize a
general function
of network
utility

Design and develop the
flow control algorithm
from the proposed
mathematical solution
method

The approach does not
deal with all dynamic
changes in the network

Paper
2

Flow control in
terms of
sum-rate
maximization

Design and develop the
flow control algorithm
from the proposed
mathematical solution
method

The approach does not
deal with all dynamic
changes in the network

Paper
3, 11

Flow control to
address
proportional
fairness in the
network

Cooperate in solving the
optimization problem
and develop the
corresponding control
algorithm

The approach does not
deal with all dynamic
changes in the network

M
ain

contributor

Paper
4

Flow control as
a solution of
delay
optimization

Formulate and solve the
optimization problem
and propose the flow
control algorithm

The approach does not
deal with all dynamic
changes in the network

Paper
5

Flow control in
terms of
max-min
fairness in the
network

Formulate the problem
and propose the flow
control algorithm to
address max-min
fairness in the network

The approach does not
deal with all dynamic
changes in the network

Paper
6

Flow control in
terms of
weighted
max-min
fairness in the
network

Extend the algorithm
proposed in Paper 5 to
support weighted
max-min fairness in the
network

The approach does not
deal with all dynamic
changes in the network

Paper
7

Consideration
of throughput-
fairness
tradeoffs

Comparison between
rate-sum and max-min
flow control to study
throughput-fairness
tradeoffs

The approach does not
deal with all dynamic
changes in the network

Continued from previous page

Topic My
role

Paper Problem My contribution Main limitation(s)

C
om

m
unication

m
anagem

ent
for

real-tim
e
system

s
w
ith

guaranteed
service

M
ain

contributor

Paper
8

Optimal traffic
regulation
based on buffer
minimization

Derive per-flow latency
and backlog bounds and
find the optimized
regulator parameters to
minimize buffer
requirements.

The approach is limited
to static regulation and
each flow has its own
VC without sharing
with other flows.

Paper
12

Buffer
optimizations
through the
traffic
regulation

Extend paper 8 to
consider more buffer
optimizations as a
multi-objective problem

The approach is limited
to static regulation and
each flow has its own
VC without sharing
with other flows.

Paper
9

Output process
analysis of VBR
flows in NoCs
with aggregate
scheduling

Propose and prove a
theorem for analyzing
output process analysis

——

Paper
10

Worst-case
delay analysis
of VBR flows in
NoC with
aggregate
scheduling

Propose and prove the
required theorems for
worst-case delay
analysis

——

Paper
13

Evaluate least
upper delay
bounds for
VBR flows in
NoCs aggregate
scheduling

Propose an analytical
model to derive per-flow
least upper delay
bounds

The model does not
consider back-pressure
in the network.

Paper
14

Worst-case
delay
optimization
through weight
regulation

Extend the analytical
model in Paper 13 to
support weighted round
robin policy and find
the optimized weights
for delay minimization.

The model does not
consider back-pressure
in the network and the
approach is limited to
static regulation.

Chapter 4

Summary and Outlook

The findings in the present thesis are briefly concluded in this chapter. The
chapter also suggests related future works.

4.1 Summary

Future MPSoCs have to cope with increasingly QoS demands on NoCs including
nanometer-scale internal components which compete for available communication
resources. Therefore, one of the important questions which should be answered is
how communications can be managed to satisfy QoS requirements. This thesis pre-
sented novel communication management methodologies for both GS and BE traffic
while proposing analytical models for performance evaluation and optimization of
on-chip networks.

The following lists the summary of findings in the present thesis:

• The thesis addressed the problem of flow control for BE traffic as solutions
to optimization problems with different objectives and QoS constraints. The
proposed problems have been solved through mathematical approaches led
to iterative flow control algorithms. The experimental results exhibited the
behavior of the proposed algorithms in static and dynamic conditions and
confirmed their fast convergence. The thesis also looked into the effect of
different objective functions on the BE rates in terms of different features like
fairness and throughput.

• As it is necessary to ensure QoS under worst-case conditions for real-time
systems with guarantee services, this thesis proposed formal approaches for
worst-case performance analysis applying network calculus.

– The author of the thesis derived the analysis procedure of per-flow delay
and backlog bounds to reason about the optimal buffer size under traffic
regulation.

43

– The author expanded the analytical approach for a FIFO multiplexing
network with aggregate scheduling taking into account VC sharing in
routers. To this end, we proposed and proved network calculus-based
theorems and then applied them to present analytical models.

– Further extension on the proposed analytical models presented to sup-
port weighted round robin scheduling policy. This makes it possible
to investigate the effect of weights on an efficient resource allocation in
terms of minimizing objective functions of delay bounds.

– The author also automated the analysis steps of the proposed approaches
to be used as a performance evaluation and optimization tool.

4.2 Outlook

• Further extensions on analytical models
The proposed analytical approach has the potential to be extended to more
features like other arbitration policies and routing algorithms. In the case of
arbitration policy, the thesis has focused on the fair arbitration policies while
unfair policies such as priority-based scheduling policies are also important
since application traffic may be classified into different priority classes. The
thesis looks into only deterministic routing algorithm; it is worth developing
the analytical models for adaptive and partially adaptive routings.

• Further optimization opportunities for flow regulation
Future works on the present thesis can be continued to consider further opti-
mization opportunities offered by flow regulation such as optimal arbitration
policy or routing selections. Optimizations for multiple objectives can be in-
vestigated for analyzing tradeoffs and preferences between different network
metrics.

• Mixing of real-time and best-effort traffic
The present thesis considers the management of shared communication fabric
for real time and best-effort traffic, separately. Each of these services has its
own requirements and differs somewhat in purpose. One direction for future
work would be integrating analytical approaches to explicate mixed real-time
and best-effort traffic. As best-effort traffic and non-critical real-time flows
may desire stochastic guarantees, a stochastic regulation with stochastic pa-
rameters gives the ability of better dealing with networks with mixed real-
time and best-effort traffic. Stochastic guarantees can give better utilization
of resources in the network without putting performance at risk.

• Dynamic regulation
The present thesis has considered a static flow regulator for traffic flows with
guaranteed services. The static regulation may not employ network resources

efficiently. Moreover, it is not sufficient to support traffic dynamism like
when a flow is dynamically created or deleted, or a core may dynamically join
or leave NoC; because these changes cause different bounds for all involved
flows. Thus, another direction for future work would be focusing on dynamic
regulation mechanism with online feedback information.

• QoS framework with the analysis of multiple resources sharing
Most existing approaches in the subject of QoS management work well on one
or two individual resources. For example, the works that focus on cache man-
agement ignore contentions in the communication management. Since future
MPSoC is expected to have architectures with tens of heterogeneous agents
sharing cache, bandwidth and memory simultaneously, a guarantee of one in-
dividual resource is not sufficient to support the overall performance. Thus,
it becomes important to find a QoS framework analyzing multiple resources
sharing and coordinating the management of them.

• Large-scale interconnection networks
The thesis has concentrated on small-scale NoCs of a few IP blocks. An in-
teresting idea on this research is providing a general analysis framework for
large-scale interconnection networks with both off-chip and on-chip environ-
ment, each with its own design constraints. Development of a general tool in
this subject can be employed for different kinds of interconnection networks
such as GALS SoCs, data centers, clusters, and supercomputers.

Bibliography

[1] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, And D.
Lindqvist, "Network on a Chip: An architecture for billion transistor era", Proceedings
of the Norchip Conference.

[2] Li-Shiuan Peh, Stephen W. Keckler, Sriram Vangal, "On-Chip Networks for Multicore
Systems", Multicore Processors and Systems Integrated Circuits and Systems 2009, pp
35-71.

[3] Hu. Jingcao and R. Marculescu, DyAD-smart routing for networks-on-chip, Automa-
tion Conference (2004), pp. 260-263.

[4] I. Saastamoinen and J. N. M. Alho, "Buffer implementation for proteo networks-on-
chip", in Proc. Int. Symp. Circuits and Syst., May 2003, pp. 113-116.

[5] R. Marculescu, U. Y. Ogras, L. Peh, N. E. Jerger, and Y. Hoskote, "Outstanding
Research Problems in NoC Design: System, Microarchitecture, and Circuit Perspec-
tives", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems archive (TCAD), Vol. 28, no. 1, pp. 3-21, 2009.

[6] R. Dick, "Embedded System Synthesis Benchmarks (E3S),"
http://www.ece.northwestern. edu/ dickrp/e3s, 2007.

[7] G. De Micheli, L. Benini, Networks on Chips: Technology and Tools, Morgan Kauf-
mann, 1st edition, 2006.

[8] K. Goossens, J. Dielissen, and A. Radulescu, "Æthereal network on chip: concepts,
architectures, and implementations," IEEE Trans. Design and Test, vol. 22, no. 5, pp.
414-421, 2005.

[9] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, "Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum network on chip", in
Proc. Des., Autom. Test Eur. Conf., Feb. 2004, pp. 890-895.

[10] W.-D. Weber, J. Chou, I. Swarbrick, and D. Wingard, "A quality-of-service mech-
anism for interconnection networks in system-on-chips," in Proc. of Conference on
Design, Automation and Test in Europe, 2005, pp. 1232-1237.

[11] J. W. Lee, M. C. Ng, and K. Asanovic, "Globally-synchronized frames for guaran-
teed quality-of-service in on-chip networks," in Proc. Int. Symp.Comput. Architecture,
2008, pp. 89-100.

47

[12] B. Grot, S. W. Keckler, and O. Mutlu, "Preemptive virtual clock: a flexible, effi-
cient, and cost-effective QoS scheme for networks-on-chip," in Proc. of International
Symposium on Microarchitecture, 2009, pp. 268-279.

[13] S. Nasri, "New Approach of QoS Metric Modeling on Network on Chip", Int. J.
Communications, Network and System Sciences (IJCNS), 4, pp. 351-355, 2011.

[14] N. Rameshan, M. Ahmed, M.S. Gaur, V. Laxmi, and A. Biyani, "QoS Aware Min-
imally Adaptive XY routing for NoC", In Proc. of 17th International Conference on
Advanced Computing and Communication (ADCOM), Bangalore, India (2009)

[15] P. Vellanki, N. Banerjee and K. S. Chatha, "Quality-of-Service and Error Control
Techniques for Network-on-Chip Architectures", In Proc. of the 14th ACM Great
Lakes symposium on VLSI (GLSVLSI), pp. 45-50, 2004.

[16] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, "Evaluation of current QoS mech-
anisms in network on chip", in Intl. Symposium on Soc, Nov. 2006, pp. 115-118.

[17] T. Bjerregaard and J. Sparso, "A router architecture for connectionoriented service
guarantees in the MANGO clockless network-on-chip", in Proc. Des., Autom. Test
Eur. Conf., Mar. 2005, pp. 1226-1231.

[18] K. Goossens et al., "A design flow for application-specific networks on chip with
guaranteed performance to accelerate SoC design and verification", in Proc. Des.,
Autom. Test Eur. Conf., Mar. 2005, pp. 1182-1187.

[19] L. F. Leung and C. Y. Tsui, "Optimal link scheduling on improving best-effort and
guaranteed services performance in network-on-chip systems", in Proc. Des. Autom.
Conf., Jul. 2006, pp. 833-838.

[20] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, "An architecture and compiler for
scalable on-chip communication", IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 12, no. 7, pp. 711-726, Jul. 2004.

[21] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, "An asynchronous
NOC architecture providing low latency service and its multi-level design framework",
in Proc. Int. Symp. Asynchronous Circuits Syst., May 2005, pp. 54-63.

[22] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC: QoS architecture and
design process for network on chip", J. Syst. Architecture: EUROMICRO J., vol. 50,
no. 2/3, pp. 105-128, Feb. 2004.

[23] M. Harmanci, N. Escudero, Y. Leblebici, and P. Ienne, "Quantitative modeling and
comparison of communication schemes to guarantee quality-of-service in networks-on-
chip," in Proc. Int. Symp. Circuits Syst., May 2005, pp. 1782-1785.

[24] T. Marescaux and H. Corporaal, "Introducing the superGT network-onchip", in Proc.
Des. Autom. Conf., Jun. 2007, pp. 116-121.

[25] J. W. van den Brand, C. Ciordas, K. Goossens, and T. Basten, "Congestion-controlled
best-effort communication for networks-onchip," in Proc. Des., Autom. Test Eur.
Conf., Apr. 2007, pp. 948-953.

[26] J. Duato et al., "A new scalable and cost-effective congestion management strategy for
lossless multistage interconnection networks," in Proc. Int. Symp. High-Performance
Comput. Architecture, Feb. 2005, pp. 108-119.

[27] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch, "Load distribution with the prox-
imity congestion awareness in a network on chip," in Proc. Des., Autom. Test Eur.
Conf., Mar. 2003, pp. 1126-1127.

[28] U. Y. Ogras and R. Marculescu, "Analysis and optimization of prediction-based flow
control in networks-on-chip," ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 1,
pp. 1-28, Jan. 2008.

[29] W. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks.
In Proc. DAC, June 2001.

[30] A. Jalabert, et al. XpipesCompiler: A tool for instantiating application specific net-
works on chip. In Proc. DATE, March 2004.

[31] J. Hu and R. Marculescu, Energy- and performance-aware mapping for regular NoC
architectures, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol.24, No.4, April 2005.

[32] E. Nilsson et. al. Load distribution with the proximity congestion awareness in a
network on chip. In Proc. DATE, March 2003.

[33] A. Radulescu et. al. An efficient on-chip ni offering guaranteed services, shared-
memory abstraction, and flexible network configuration, IEEE Trans. on CAD of ICs
and Systems, 24(1) 2005.

[34] C. A. Zeferino et. al. Paris: a parameterizable interconnect switch for networks-on-
chip, In Proc. Symp. on IC and Systems Design, 2004.

[35] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC: QoS architecture and
design process for network on chip", Journal of Systems Architecture, Volume 50,
Issue 2-3 (Special Issue on Network on Chip), pp. 105-128, February 2004.

[36] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "Cost considerations in Network on
Chip", Integration: The VLSI Journal, no. 38, 2004, pp. 19-42.

[37] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip architecture for gigascale
systems-on-chip", IEEE Circuits and Systems Magazine, vol. 4, Issue 2, pp. 18-31,
2004.

[38] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De
Micheli, "NoC synthesis flow for customized domain specific multiprocessor systems-
on-chip", IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 2, pp.
113-129, 2005.

[39] M. Dall’Ossa, G. Biccari, L. Giovannini, L. D. Bertozzi, and L. Benini, "XPIPES:
A latency insensitive parameterized network-on-chip architecture for multiprocessor
SoCs", Proc. 21st International IEEE Conference on Computer Design, pp. 536-539,
2003.

[40] C. A. Zeferino and A. A. Susin, "SoCIN: A parametric and scalable network-on-chip",
Proc. 16th Symposium on Integrated Circuits and Systems Design, pp. 169-175, 2003.

[41] U.Y. Ogras and R. Marculescu, Prediction-based flow control for network-on-chip
Design Automation Conference (2006), pp. 839-844.

[42] J.W. van den Brand, C. Ciordas, K. Goossens, and T. Basten, Congestion-controlled
best-effort communication for networks-on-chip, Design, Automation and Test in Eu-
rope Conference (2007), pp. 948-953.

[43] Y. Gu, H.O. Wang, and Y. Hong, A predictive congestion control algorithm for high
speed communication networks, Am. Control Conf. 5 (2001), pp. 3779-3780.

[44] F.P. Kelly, A. Maulloo, and D.K.H. Tan, Rate control for communication networks:
Shadow prices, proportional fairness, and stability, Oper. Res. Soc. 49(3) (1998), pp.
237-252.

[45] S. Mascolo, Classical control theory for congestion avoidance in high-speed internet,
Conf. Decis. Control 3 (1999), pp. 2709-2714.

[46] C. Yang and A.V.S. Reddy, A taxonomy for congestion control algorithms in packet
switching networks, IEEE Netw. 9(4) (1995), pp. 34-45.

[47] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1992.

[48] A. Radulescu et. al. An efficient on-chip ni offering guaranteed services, shared-
memory abstraction, and flexible network configuration, IEEE Trans. on CAD of ICs
and Systems, 24(1) 2005.

[49] A. Pullini et. al. Fault tolerance overhead in network-on-chip flow control schemes.
In Proc. Symp. on IC and System Design, September 2005.

[50] Z. Qian, D. Juan, P. Bogdan, C. Tsui, D. Marculescu, and R. Marculescu, "Svr-noc:
A performance analysis tool for network-on-chips using learning-based support vector
regression model," in ACM/IEEE Design Automation and Test in Europe (DATE),
2013.

[51] P. Gratz and S. W. Keclker, "Realistic Workload Characterization and Analysis for
Networks-on-Chip Design," in The 4th Workshop on Chip Multiprocessor Memory
Systems and Interconnects (CMP-MSI), 2010.

[52] Y. Ben-Itzhak, I. Cidon, and A. Kolodny, "Delay analysis of wormhole based het-
erogeneous noc," in Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International
Symposium on, 2011, pp. 161-168.

[53] G. Varatkar and R. Marculescu, "On-chip traffic modeling and synthesis for mpeg-2
video applications," Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 12, no. 1, pp. 108-119, 2004.

[54] P. Bogdan and R. Marculescu, "Non-stationary traffic analysis and its implications
on multicore platform design," Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 30, no. 4, pp. 508-519, 2011.

[55] P. Bogdan, R. Marculescu, "Statistical physics approaches for network-on-chip traffic
characterization," in Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis (CODES+ISSS), 2009, pp. 461-470.

[56] BAKHOUYA, M., SUBOH, S., GABER, J.,EL-GHAZAWI, T., AND NIAR, S. 2011.
Performance evaluation and design tradeoffs of on-chip interconnect architectures.
Simulation Modelling Practice and Theory, Elsevier. 19, 6, 1496-1505.

[57] LE BOUDEC, J. Y. AND THIRAN, P. 2004. Network Calculus: A Theory of De-
terministic Queuing Systems for the Internet. (LNCS, vol. 2050). Berlin, Germany:
Springer-Verlag.

[58] Nan Jiang, Daniel U. Becker, George Michelogiannakis, James Balfour, Brian Towles,
John Kim and William J. Dally. A Detailed and Flexible Cycle-Accurate Network-on-
Chip Simulator. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 86-96.

[59] http://research.cs.tamu.edu/codesign/nocsim/

[60] Z. Lu, R. Thid, M. Millberg, E. Nilsson, and A. Jantsch. NNSE: Nostrum network-
on-chip simulation environment. In Swedish System-on-Chip Conference (SSoCC’03),
pages 1-4. Citeseer, 2005.

[61] F. Fazzino, M. Palesi, and D. Patti. Noxim: Network-on-chip simulator, 2008.

[62] Worm_Sim: a cycle accurate simulator for networks-on-chip.
http://www.ece.cmu.edu/ sld/software/worm_sim.php

[63] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Islam, and M. Akbar. Gpnocsim-A General
Purpose Simulator for Network-On-Chip. In Information and Communication Tech-
nology, 2007. ICICT’07. International Conference on, pages 254-257. IEEE, 2007.

[64] A. Nayebi, S. Meraji, A. Shamaei, H. Sarbazi-Azad, "XMulator: A Listener-Based
Integrated Simulation Platform for Interconnection Networks", in Proceedings of First
Asia International Conference on Modelling & Simulation (AMS ’07), pp. 128-132,
2007.

[65] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan. NIRGAM: a simulator
for NoC interconnect routing and application modeling. In Workshop on Diagnostic
Services in Network-on-Chips, Design, Automation and Test in Europe Conference
(DATE’07), pages 16-20, 2007.

[66] M. Lis, K. Shim, M. Cho, P. Ren, O. Khan, and S. Devadas. DARSIM: a parallel
cycle-level NoC simulator. In 6th Annual Workshop on Modeling, Benchmarking and
Simulation. Citeseer, 2010.

[67] V. Puente, J. Gregorio, and R. Beivide. SICOSYS: an integrated framework for study-
ing interconnection network performance in multiprocessor systems. In Parallel, Dis-
tributed and Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop
on, pages 15-22. IEEE, 2002.

[68] P. Abad, P. Prieto, L. Menezo, A. Colaso, V. Puente, J.A. Gregorio, "TOPAZ: An
Open-Source Interconnection Network Simulator for Chip Multiprocessors and Super-
computers", in Proceedings of IEEE/ACM International Symposium on Networks on
Chip (NOCS), pp. 99-106, 2012.

[69] A. E. Kiasari, Z. Lu, and A. Jantsch, "An analytical latency model for networks-on-
chip," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 1, pp. 113-123, Jan. 2013.

[70] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. De Micheli, and H. Sarbazi-Azad,
"Method for calculating hard qos guarantees for networks-on-chip," in Computer-Aided
Design - Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International
Conference on, 2009, pp. 579-586.

[71] Yue Qian, Zhonghai Lu and Wenhua Dou, "Analysis of Worst-Case Delay Bounds for
On-Chip Packet-Switching Networks", IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 29 no. 5, pp. 802-815, 2010.

[72] U. Ogras, P. Bogdan, and R. Marculescu, "An analytical approach for network-on-chip
performance analysis," Computer-Aided Design of IntegratedCircuits and Systems,
IEEE Transactions on, vol. 29,no. 12, pp. 2001-2013, 2010.

[73] G. Min and M. Ould-Khaoua, "A performance model for wormhole-switched inter-
connection networks under self-similar traffic," Computers, IEEE Transactions on, vol.
53, no. 5, pp. 601-613, 2004.

[74] Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Applying dataflow
analysis to dimension buffers for guaranteed performance in networks on chip. NOCS
Proc., pages 211-212, 2008.

[75] Rahmati, D., Murali, S., Benini, L., Angiolini, F., Demicheli, G., and Sarbazi-Azad,
H. A method for calculating hard QoS guarantees for Networks-on-Chip. In Proceed-
ings of the IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD’09). pp. 579-586.

[76] Rahmati, D., Murali, S., Benini, L., Angiolini, F., Demicheli, G., and Sarbazi-Azad,
H. Computing Accurate Performance Bounds for Best Effort Networks-on-Chip. IEEE
Transactions on Computers (IEEE-TC). Vol. 62,No. 3, pp. 452-467

[77] M. Bakhouya, S. Suboh, J. Gaber, T. El-Ghazawi, and S. Niar. Performance evalua-
tion and design tradeoffs of on-chip interconnect architectures. Simulation Modelling
Practice and Theory, Elsevier, 19(6):1496-1505, 2011.

[78] F. Ciucu and J. Schmitt, Perspectives on Network Calculus - No Free Lunch but Still
Good Value, ACM Sigcomm 2012.

[79] Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu. Mathematical formalisms for
performance evaluation of networks-on-chip. ACM Computing Surveys, 45(3), 6 2013.

[80] J. Turner. New Directions in Communications (or Which Way to the Information
Age?), IEEE Communications Magazine, vol. 24 no. 10, pp. 8-15, Oct 1986.

[81] M. Bakhouya, S. Suboh, J. Gaber, T. ElGhazawi, and S. Niar. Performance evalua-
tion and design tradeoffs of on-chip interconnect architectures. Simulation Modelling
Practice and Theory, Elsevier, 19(6):1496-1505, 2011.

[82] Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, "An architecture for
differentiated services", IETF RFC 2475, 1998.

[83] J.C.R. Bennett, K. Benson, A. Charny, W.F. Courtney, J.-Y. Le Boudec, "Delay
jitter bounds and packet scale rate guarantee for expedited forwarding", IEEE/ACM
Transactions on Networking vol. 10, no. 4, pp. 529-540, 2002.

[84] A. Charny, J.-Y. Le Boudec, Delay bounds in a network with aggregate scheduling,
in Proceedings of QoFIS’00, 25-26 September 2000, Berlin, Germany, in: LNCS, vol.
1922, Springer-Verlag, 2000, pp. 1-13.

[85] Y. Jiang, "Delay bounds for a network of guaranteed rate servers with FIFO aggre-
gation", Computer Networks, vol. 40, no. 6, pp. 683-694, 2002.

[86] Bauer H., Scharbarg J.-L., Fraboul C., "Improving the Worst-Case Delay Analysis of
an AFDX Network Using an Optimized Trajectory Approach", IEEE Transactions on
Industrial Informatics 6(4), Nov. 2010, pp. 521-533

[87] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay bounds under arbitrary multi-
plexing: When network calculus leaves you in the lurch ... In Proceedings of INFO-
COM’2008, 2008.

[88] Kiefer A., Gollan N., Schmitt J.B., "Searching for Tight Performance Bounds in
Feed-Forward Networks", in Proc. of MMB/DFT 2010: 227-241.

[89] A. Bouillard, L. Jouhet, and E. Thierry. Tight performance bounds in the worst-case
analysis of feed-forward networks. In Proceedings of Infocom’2010, 2010.

[90] A. Bouillard and A. Junier. Worst-case delay bounds with fixed priorities using net-
work calculus,. In Proceedings of Valuetools’11, 2011.

[91] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, "Tight end-to-end per-flow delay
bounds in fifo multiplexing sink-tree networks", Performance Evaluation, vol. 63, no.
9, pp. 956-987, 2006.

[92] L. Lenzini, E. Mingozzi, G. Stea, "A Methodology for Computing End-to-end Delay
Bounds in FIFO-multiplexing Tandems" Elsevier Performance Evaluation, 65 (2008)
922-943.

[93] L. Bisti, L. Lenzini, E. Mingozzi, G. Stea, "DEBORAH: A Tool for Worst-case Anal-
ysis of FIFO Tandems", ISoLA 2010, Special Track on Worst-case Traversal Time,
Crete, GR, October 18, 2010

[94] M. Boyer, "Half-modelling of shaping in FIFO net with network calculus", RTNS
2010

[95] Y. Qian, Z. Lu, W. Dou, "Analysis of Worst-case Delay Bounds for Best-effort Com-
munication in Wormhole Networks on Chip", Proceedings of the 3rd ACM/IEEE In-
ternational Symposium on Networks-on-Chip (NOCS), pp. 44-53, 2009.

[96] Y. Qian, Z. Lu, and Q. Dou, "QoS Scheduling for NoCs: Strict Priority Queueing
versus Weighted Round Robin", In Proceedings of the 28th International Conference
on Computer Design (ICCD’10), pp. 52-59, Amerstedam, the Netherlands, 2010.

[97] Z. Lu, Y. Yao, and Y. Jiang, "Towards Stochastic Delay Bound Analysis for Network-
on-Chip", In Proceedings of the Eighth ACM/IEEE International Symposium on
Networks-on-Chip (NoCS’2014), Ferrara, Italy, September 2014.

[98] K. Srinivasan and K. S. Chatha, "A technique for low energy mapping and routing in
network-on-chip architectures," in Proc. Int. Symp. Low Power Electron. Des., Aug.
2005, pp. 387-392.

[99] G. Ascia, V. Catania, and M. Palesi, "Multi-objective mapping for mesh-based NoC
architectures," in Proc. Int. Conf. Hardware-Softw. Codesign Syst. Synthesis, Sep.
2004, pp. 182-187.

[100] W. Hung et al., "Thermal-aware IP virtualization and placement for networks-on-
chip architecture," in Proc. Int. Conf. Comput. Des., 2004, pp. 430-437.

[101] J. Hu and R. Marculescu, "Communication and task scheduling of application-
specific networks-on-chip," Proc. Inst. Elect. Eng.-Comput. Digit. Tech., vol. 152, no.
5, pp. 643-651, Sep. 2005.

[102] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch, "Load distribution with the
proximity congestion awareness in a network on chip," in Proc. Des., Autom. Test
Eur. Conf., Mar. 2003, pp. 1126-1127.

[103] J. Hu and R. Marculescu, "Energy- and performance-aware mapping for regular NoC
architectures," IEEE Trans. Comput.-Aided Design Integr.Circuits Syst., vol. 24, no.
4, pp. 551-562, Apr. 2005.

[104] S. Murali and G. De Micheli, "Bandwidth-constrained mapping of cores onto NoC
architectures," in Proc. Des., Autom. Test Eur. Conf.,Feb. 2004, pp. 896-901.

[105] L. Peh and W. J. Dally, "Flit-reservation flow control," in Proc. Int. Symp. High-
Performance Comput. Architecture, Jan. 2000, pp. 73-84.

[106] R. Mullins, A. West, and S. Moore, "Low-latency virtual-channel routers for on-chip
networks," in Proc. Int. Symp. Comput. Architecture, Jun. 2004, pp. 188-197.

[107] L. Peh and W. J. Dally, "A delay model and speculative architecture for pipelined
routers," in Proc. Int. Symp. High-Performance Comput. Architecture, Jan. 2001, pp.
255-266.

[108] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press.

[109] I. E. Grossmann and Z. Kravanja, "Mixed-integer nonlinear programming: A survey
of algorithms and applications", In Biegler, Coleman, Conn, Santosa (Eds.), The IMA
volumes in mathematics and its applications: Large-scale optimization with applica-
tions, Vol. 93, Part II, Optimal design and control, pp. 73-100, Berlin: Springer-Verlag,
1997.

[110] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[111] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.

[112] Erik Jan Marinissen, B. Prince, D. Keitel-Schulz, and Y. Zorian, "Challenges in
Embedded Memory Design and Test", In Proceeding of the conference on Design,
Automation and Test in Europe (DATE), pp. 722-727, March 2005.

Part II

Included Papers

57

Paper 1

A Novel Flow Control Scheme for
Best Effort Traffic in NoC Based
on Source Rate Utility
Maximization

M. S. Talebi
F. Jafari
A.Khonsari

In the Proceedings of the Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MAS-
COTS), pp. 381-386, Istanbul, Turkey, October 2007.

59

A Novel Flow Control Scheme for Best
Effort Traffic in NoC Based on Source

Rate Utility Maximization
 Mohammad S. Talebi Fahimeh Jafari

 School of Computer Science, IPM School of Computer Science, IPM
mstalebi@ipm.ir Ferdowsi University of Mashhad

jafari@ipm.ir
Ahmad Khonsari

School of Computer Science, IPM
ECE Department, University of Tehran

ak@ipm.ir

Abstract—Advances in semiconductor technology, has enabled
designers to put complex, massively parallel multiprocessor
systems on a single chip. Network on Chip (NoC) that supports
high degree of reusability and scalablity, is a new paradigm for
designing core based System-on-Chip. NoCs provide efficient
communication services to IPs: communication services with
guarantees on throughput and latency (GS) and communication
services with no guarantees on them (BE). However, the run-time
management of communication in NoC, especially congestion
control mechanism is a challenging task. This paper considers a
congestion control scenario which models flow control as a utility-
based optimization problem. Since BE traffic is prone to
congestion, we assume that GS traffic requirements are being
preserved at the desired level and regulate BE source rates with the
solution of the optimization problem. We propose an iterative
algorithm to solve the optimization problem based on Newton’s
method. The proposed algorithm can be implemented by a
centralized controller with low computation and communication
overhead.

Keywords-congestion control; Network-on-Chip; utility-
based optimization; iterative algorithm

I. INTRODUCTION

Network on Chip (NoC) is a new paradigm structure for
designing future System on Chips (SoCs) [1,2], where various
IP resource nodes are connected to the router based square
network of switches using Resource Network Interfaces, and
network is used for packet switched on-chip communication
among cores [3]. A typical NoC architecture will provide a
scalable communication infrastructure for interconnecting
cores. Since the communication infrastructure as well as the
cores from one design can be easily reused for a new product,
NoC provides maximum possibility for reusability. NoC-based
system will be much easily used for design, test and
production. NoCs are efficient communication architectures.
However the run-time management of their communication,
especially congestion avoidance is a challenging task.
Congestion control has been already the subject of research in
the field of NoC. Furthermore, minimizing the network cost
(or maximizing network utility) while maintaining the
required Quality of Service (QoS) is one of the considerable
factors in NoC architecture design.

NoCs provide two types of communication services to IPs:
Guaranteed Service (GS) and Best-Effort (BE) [4].
Guaranteed Service requires reservation of resources so as to
insure data integrity, lossless and ordered data delivery, while
Best-Effort service does not require any reservation of
resources and no assurance are meant to be given. BE services
are easy to use, while GS services require careful
programming to reserve the required resources in the network

During the past two decades, several strategies for
congestion control have been proposed for data networks [5-
8]. However, this issue for Network-on-Chip systems is still
novel and only a few works exist. [9] has proposed a a flow
control strategy for on-chip networks based on prediction of
future congestion problems by routers. In [10], a controller has
been proposed to determine the appropriate loads for the
Sources with Best Effort traffic. Dyad [11] control the
congestion by employing adaptive routing during congestion
phase.

The aforementioned works in this issue for NoC ([9]-[11])
mainly used prediction-based method to control the flow of
sources which are prone to congestion. In contrast, we have
applied a different approach. In this paper, we model the flow
control as a utility-based maximization problem which is
constrained by link capacities. We assume GS services are
being preserved at the desired level and rate allocation of BE
sources is the main role of the optimization problem. We
mainly adopt the framework provided by [8] for data
networks.

The rest of the paper is organized as follows: in the next
section we present the system model and flow control
problem. In section III, we obtain the dual of the optimization
problem that motivates our approach. In Section IV, we solve
the dual problem using Newton's Method present the resultant
congestion control algorithm. The simulation results are given
in section V and finally, section VI concludes the paper.

II. SYSTEM MODEL

Our NoC architecture is based on a two dimensional mesh
topology and wormhole routing. In wormhole networks, each
packet is divided into a sequence of flits which are transmitted
over physical links one by one in pipeline fashion. A hop-to-
hop credit mechanism assures that a flit is transmitted only
when the receiving port has free space in its input buffer. Our

381

61

NoC architecture is lossless, and packets traverse the network
on a shortest path using a deadlock free XY routing [3].

High performance wormhole based interconnect systems
often include virtual channels (VCs) which increase NoC
throughput. Furthermore, virtual channels must be included
when links have different capacities to allow the multiplexing
of several slow streams over a high bandwidth link. Flits of
different VCs that contend for the same link bandwidth are
time-multiplexed according to some arbitration policy. Our
architecture employs a simple policy in which flits of the
active outgoing VCs are transmitted in a round-robin manner
over the physical link.

We model the congestion control problem in NoC as the
solution to an optimization problem. To have more
convenience, we turn the aforementioned NoC architecture
into a mathematical model as in [8]. In this respect, we
consider NoC as a network with a set of links L and a set of
sources S . A source consists of Processing Elements (PEs)
and Input/Output ports. Each link l L� is a set of wires,
busses and channels that are responsible for connecting
different parts of the NoC and has a fixed capacity of lc
packets/sec. We also denote the set of sources that share link l
by ()S l . Similarly, the set of links that source s passes
through, is denoted by ()L s .

As previously stated, there are two types of traffic in a
NoC: Guaranteed service (GS) and Best Effort (BE) traffic.
For notational convenience, we divide the set of sources, S ,
into two parts, each one representing sources with the same
traffic. In this respect, we denote the set of sources with BE
and GS traffic by BES and GSS , respectively. Each link l is
shared between the two aforementioned traffics. GS sources
will obtain the required amount of the capacity of links and the
remainder should be allocated to BE sources.

Our objective is to choose source rates, sx , of BE traffics
so that to maximize the sum of utilities of all BE traffics.
Hence the maximization problem can be formulated as [8]:

max ()
s

BE

s sx
s S

U x
�
� (1)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
� �

� � � �� � (2)

0 s BEx s S� � � (3)

where sU is a positive, concave and strictly increasing
function of source rate. Optimization variables are BE source
rates, i.e. (,)BEx s Ss � . sU is monotonic and we also assume
that the curvatures of sU satisfy the following condition:

'' 1
() >0 s s BE

s

U x s S
�

� 	 � � (4)

The constraint (2) states that the sum of BE source rates
passing through link l cannot exceed its free capacity, i.e. the
portion of lc which hasn’t been allocated to GS traffic.

sU in the economics literature is referred to as utility
function, hence problem (1) is called a utility-maximization
problem. There are many choices for utility function with
specific features and behavior. The simplest form of the utility
function is the Identity Function, i.e. ()s s sU x x
 , for which
the problem (1) turns into a sum-rate maximization. One of the
popular forms of utility functions is logarithmic one, which
satisfy Proportional Fairness [15]. In this paper, we will
consider a general utility function and will not restrict
ourselves to a specific form. The investigation of the features
of popular utility functions on the rates chosen is one of the
directions of our future work.

With the above assumptions, problem (1) is a convex
optimization problem with linear constraints. Hence it admits
a unique maximizer [12][13], i.e. there exists an optimal
source rate vector, * *(,)s BEx x s S
 � so that to maximize the
sum of utilities in problem (1) while satisfying capacity
constraints.

Although problem (1) is separable among sources, its
constraints will remain coupled across the network. The
coupled natured of such constrained problems, necessitate
usage of centralized methods like interior point methods
which pose great computational overhead onto the system
[12][13].

One way to reduce the computational complexity is to
transform the constrained optimization problem into an
unconstrained one, for which several methods can be used.
According to the Duality Theory [12][13], each convex
optimization problem has a dual whose optimal solution can
lead to the optimal solution of the main problem. In this
respect, the main problem retroactively called Primal
Problem. As the dual problem can be defined in such a way to
be unconstrained, solving the dual is much simpler than the
primal. In the sequel, we will obtain the dual of problem (1)
and solve it using simple iterative algorithms.

For notational convenience, we define:

()

ˆ
GS

l l s
s S l

c c x
�

 � � (5)

Using the standard optimization methods [12], the
Lagrangian of the problem (1) can be written as:

1 ()

ˆ()
BE BE

L

s s l s l
s S l s S l

L U x x c�
�
 �

� �
�
�
 � �
�

�� �
� � � (6)

where 0l� � is the Lagrange Multiplier associated with
constraint (2) for link l . Usually, l� is called shadow price
[15] for the economic interpretation of its role in solving the
primal problem through dual.

382

62

Regarding the Lagrangian of problem (1), the dual
function is defined as [12]:

() max (,)
sx

g L x� �
 (7)

where � is the vector of positive Lagrange multipliers. Thus
the dual function is given by:

1 ()

() 1

ˆ() max ()

ˆ = max ()

s
BE BE

s
BE

L

s s l s lx
s S l s S l

L

s s s l l lx
s S l L s l

g U x x c

U x x c

� �

� �

�
 �

� �

� �
�
�
 � �
�

�� �
� �
�
� � �
�

�� �

� � �

� � �
 (8)

By Karush-Kuhn-Tucker (KKT) Theorem [12][13], we can
obtain optimal source rates, i.e. * *(,)s BEx x s S
 � . In doing
so, we should find the roots of (,) 0xL x ��
 . By taking the
derivative of (6) with respect to sx , we have

()

()s s
l

l L ss s

U xL
x x

�
�

��

 �

� � � (9)

Duality theory states that the optimal source rate vector,
*x , corresponds to the optimal Lagrange multiplier vector, *�

[12][13]. In other words, if x is a feasible point of the primal
problem and x is primal-optimal, the corresponding � will be
dual-optimal and vice versa. Therefore, at optimality we have

* *(,)
(,)x x
L x

�
��
 0 (10)

where 0 is a vector with all zero. From (9), we have

* *

*
*

*(,)
()

()
s

s s
lx

l L ss s

U xL
x x�

�
�

��

 �

� � �

Hence, the optimal source rate is given by

* *

()
s l

l L s

x f �
�

� �
�
�

�

�� �
� (11)

where f is the inverse function of '
sU whose existence is

guaranteed by monotonicity of sU in strict sense.
Substituting *

sx into (8) yields

* *

() 1

ˆ() ()
L

s s s l l l
s l L s l

g U x x c� � �
�

� �
�
�
 � �
�

�� �
� � � (12)

where *
sx is given by (11).

The dual problem is defined as [13]:

0
min ()g
�

�
	

 (13)

The dual problem is always convex regardless of
convexity or non-convexity of the primal problem. Moreover,
the dual problem can be defined to be unconstrained or
constrained with simple constraints. Thus, the primal problem
has been transformed into an unconstrained convex
optimization problem.

Convexity of the primal problem (1) guarantees strong
duality. Thereby the duality gap is zero and solving the dual
problem leads to optimal point of the primal [12]. Since dual
problem is convex, it admits a unique optimum, i.e. a unique
minimizer, which can be obtained using optimization
algorithms. As the dual problem is unconstrained; solving (13)
using search methods is much simpler than the primal.

There exist several methods to search the optimal point of
an unconstrained optimization problem iteratively [12]. One
famous and simple ones is Gradient Projection Method [12]
which uses simple mathematical operations. Another famous
one is Newton Method that has better convergence behavior at
the expense of higher computational complexity [12]. Due to
need for faster convergence, in this paper we use the Newton’s
Method to solve problem (13).

For notational convenience in solving the problem using
the Newton’s Method, in the rest of the paper we may use
matrix notation. To this end, we define Routing matrix, i.e.

[]ls L SR R �
 , as following:

1 if ()

0 otherwise

BE

ls

s S l
R

� ����
 �����
 (14)

We also define the source rate vector (for BE traffic) and
link capacity vector as (,)s BEx x s S
 � and ˆ ˆ(,)lc c l L
 � ,
respectively.

III. FLOW CONTROL FOR BEST EFFORT SOURCES

In this section, we will solve the dual problem using
Newton’s Method [12] and present a congestion control
mechanism to be run for BE traffic by a controller in NoC
systems.

The Newton’s Method adjusts shadow prices, i.e.
Lagrange multiplier vector, in opposite direction to the scaled
version of gradient of the dual function as follows [12]:

2 1(1) () ()[(())] (())t t t g t g t� � � � �
��� ��
 � � �� � (15)

where � �(1) (1), lt t l L� ��
 � � , () 0t� � is a stepsize,
[] max{ , 0}x x� � and 2 (())g t�� is the Hessian of ()g � .
Since sU is strictly concave, ()g � is continuously
differentiable [13], hence ()g �� exists. Using (14), the l -th
element of the gradient vector is given by:

383

63

* *

()

()
ˆ()s s s l l

s l L sl l

g
U x x c

�
�

� � �

� �� �
�
�
 � �
�

�� � � �
� � (16)

Regarding the system model, we have

* *

() ()BE

s l l s
s l L s l s S l

x x� �
� �

� � � � (18)

Therefore,

*

()

()
ˆ

BE

l s
s S ll

g
c x

�
� �

�

 �

� � (17)

or equivalently in the matrix form

ˆ()g c Rx��
 � (18)

 To obtain the Hessian of ()g � , we have

2 ()g R x���
� � (19)

or equivalently,

2
*()

ks s
sk l k

g
R x

�
� � �
� �

 �
� � � � (20)

Substituting (11) into above equation, yields

2
*()

ks s
sk l k

g
R x

�
� � �
� �

 �
� � � �

*

()

 ks l
s l L sk

R f �
� �

� ��
�
�
 �
�

�� � �
� �

* ks ls l
s lk

R f R �
�

� ��
�
 �
�
�
� � �� � (21)

Using the rule of derivation for inverse function, we have

2

'' *

() 1
()ls ks

s lk l s s

g
R R

U x

�
� �

� ��
�

 � �
�
�� � � �
��

Defining ()F t as the following

''() diag(1/ (()),)s s BEF t U x t s S
 � � (22)

we have

2 () () Tg RF t R��
 (23)

and the update equation is given by:

� � � �
1

ˆ(1) () () () Tt t t RF t R c Rx� � �
��� ��
 � �� �� �

 (24)

where (())sx t� is the approximate of *
sx in time t .

The abovementioned update equation necessitates matrix
inversion in each iteration which imposes very large
computational complexity to the system. One remedy to this
problem is to consider the main diagonal elements of the
Hessian and to ignore cross terms. Regarding this
simplification, we only need to calculate the main diagonal
elements of () TRF t R . By defining

() [()]ij L LE t E t �

[()] if
()

0 otherwise

T
ii

ij

RF t R i j
E t

�
���
 �����
 (25)

The update equation using the simplified method can be
rewritten as:

� �1 ˆ(1) () () ()t t t E t c Rx� � �
��� ��
 � �� � (26)

where ()E t is a diagonal matrix and its inverse calculation
poses very light computational load onto the system. It is
worthnoting that (26) admits a very simple scalar form as:

()

()
ˆ(1) ()

[()]
BE

l l l sT
s S lll

t
t t c x

RF t R
�

� �
�

�

� �� �
�� �
��
 � �
� ��

�� �� �� �
� (27)

which in turns implies that the necessary mathematical
operations using the simplified method only involve simple
operations and admit very low computational complexity
overhead.

(11) and (26) together form an iterative algorithm as the
solution to the problem (13) and thereby problem (1). In this
respect, optimal source rates for BE sources can be found
while satisfying capacity constraints and preserving GS traffic
requirements. Thus, the aforementioned algorithm can be used
to control the flow of the BE sources in the NoC. The
aforementioned iterative solution can be addressed in
distributed scenarios. However, due to well-formed structure
of the NoC, we focus on a centralized scheme; we consider a
controller to be mounted in the NoC to implement this
algorithm. The necessary requirement of such a controller is
the ability to accommodate mathematical operations especially
performing matrix inversion as in (11) and (26) and the
allocation of few dedicated links to communicate flow control
information to nodes with a light GS load. We summarize the
proposed algorithm for Best Effort traffic as follows.

384

64

Algorithm 1: Congestion Control for BE Traffics in NoC

Initialization:
1. Initialize l̂c of all links.
2. Set link price vector to zero.

Loop:
Do until (max (1) ())s sx t x t Error� �

1. l L� � : Compute new link prices:

 1 ˆ(1) () () ()()t t t E t c Rx� � �
��� ��
 � �� �

where ()t� can be selected as () ()t a b t�
 � .

2. Compute new BE source rates as follows

()

(1) ((1))s l
l L s

x t f t�
�

�
 ��

where 1 ' ()s sf U x�

Output:
Communicate BE source rates to the corresponding nodes.

Stepsize has an important role on the convergence
behavior of the update equation. There are several choices for
stepsize, each one belonging to a predefined category and
having certain advantages and drawbacks (see [14] and
references herein).

In the family of iterative algorithms for distributed
scenarios, stepsize is usually chosen to be a small enough
constant so that to guarantee the convergence of the algorithm.
Constant stepsize benefits from robustness against propagation
delay and errors in estimation especially in asynchronous
schemes1. However, it mainly suffers from slow convergence
rate. On the contrary, time-varying stepsizes can be adapted to
vary to achieve faster convergence rate. Due to well-formed
structure of the NoC and its unified administration, in this
paper we use a time-varying stepsize. Several categories for
time-varying stepsize exists [14]. In this paper, we focus on a
specific category known as square-summable but not-
summable which satisfy the following conditions [13][14]:

() 0 t t� 	 � (28)

2

1

()
k

t�
!

 !� (29)

1

()
k

t�
!

 !� (30)

One typical example is of the form () ()t a b t�
 � ,

where 0a � and 0b 	 , which we will use in our
simulations.

1 Note that (24) presents a synchronous scheme, and may diverge in
asynchronous cases, e.g. real world conditions with large delays,
etc.

IV. SIMULATION RESULTS

In this section we examine the proposed congestion control
algorithm, listed above as Algorithm 1, for a typical NoC
architecture. We have simulated a NoC with 4 4� Mesh
topology which consists of 16 nodes communicating using 24
shared bidirectional links; each one has a fixed capacity of 1
Gbps. We assume packets traverse the network on a shortest
path using a deadlock free XY routing. Each packet consists of
500 flits and each flit is 16 bit long.

In order to simulate our scheme, some nodes are
considered to have a Guaranteed Service data (such as
Multimedia, etc.) to be sent to a destination while other nodes,
which maybe in the set of nodes with GS traffic, have a Best
Effort traffic to be sent. As stated in section II, GS sources
will obtain the required amount of the capacity of links and the
remainder should be allocated to BE traffics.

In our simulation we have chosen logarithmic utility functions.
In this respect, for source s , we choose () logs s sU x x
 . Such
a utility function satisfies fair conditions among sources and is
said to be Weighted Proportionally-Fair which is an important
property in economics [15]. Due to this property, such utility
functions exhibit fair behavior across all nodes.

On of the most significant issues of our interest, is the
convergence behavior of the source rates. We used two
different scenarios for step-size; both of them are chosen to be
square-summable but not summable. In this regard, step sizes
are chosen as 3 (1)t�
 � and 1 (1)t�
 � which satisfy
(28)-(30).

 Variation of source rates for some nodes using
aforementioned step sizes are shown in Fig. 1(a)-(b).
Regarding Fig. 1(a), it’s apparent that after about 80 iterations,
all source rates will be in the vicinity of the steady state point
of the algorithm. However, for the second case, Fig. 1(b)
reveals that at least 100 iterations needed to have source rates
in the vicinity of the optimal point. Comparing Fig. 1(a) and
1(b), we realize that the initial value of the step size, directly
influences the rate of convergence.

In order to have a better insight about the algorithm
behavior, the relative error with respect to optimal rates which
averaged over all sources, is also shown in Fig. 2. It is
worthnoting that optimal source rates are obtained using CVX
[16] which is a MATLAB-based software for solving
disciplined convex optimization problems.

V. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of congestion
control for BE traffic in NoC systems. Congestion control was
considered as the solution to the source rate utility
maximization problem which was solved indirectly through its
dual using Newton’s method. This was led to an iterative
algorithm which can be used to determine optimal BE source
rates and thereby as a means to control the congestion of the
NoC. The algorithm can be implemented by a controller which
admits a light communication and communication overhead.
Further investigation about convergence behavior of the
algorithm and the effect of different utility functions on the

385

65

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

x 10
8

Iteration

S
o

u
rc

e
R

at
e

(b
p

s)

Source 1
Source 2
Source 3
Source 4

�=3/(1+t)

(a)

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

x 10
8

Iteration

S
o

u
rc

e
R

at
e

(b
p

s)

Source 1
Source 2
Source 3
Source 4

�=1/(1+t)

(b)

Figure 1. Source rates for (a)
3

1 t
�

�
 and (b)

1
1 t

�

�

.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

Iteration

A
ve

ra
g

e
o

f R
el

at
iv

e
E

rr
o

r
(p

er
ce

n
t)

�=3/(1+t)

�=1/(1+t)

Figure 2. Average of relative error with respect to optimal

solution for the three cases.

BE rates and fairness provision is the main directions of our
future studies.

REFERENCES
[1] L. Benini, and G. De Micheli, “Network on Chips: A New SoC

Paradigm”, IEEE Computer, pp. 70-78, January 2002.
[2] A. Jantsch, and H. Tenhunen, "Networks on Chip", Kluwer Academic

Publishers, Boston, USA, January 2003.
[3] W. J. Dally, and B. Towles, “Route Packets, Not Wires: On-Chip

Interconnection Networks”, Proceedings of the 38th Design Automation
Conference, ACM/IEEE, Las Vegas, Nevada, USA, pp. 684-689, June
2001.

[4] B. Gebremichael, F.W. Vaandrager and M. Zhang, “Formal Models of
Guaranteed and Best-Effort Services for Networks on Chip”, Technical
Report ICIS-R05016, ICIS, Radboud University Nijmegen, March 2005.

[5] G. Almes et al. RFC2581: “TCP congestion control”. Technical report,
Network Working Group, 1999.

[6] Y. Gu et al. “A predictive congestion control algorithm for high speed
communication networks”. Proceedings of American Control
Conference, 2001.

[7] C. Yang et al. “A taxonomy for congestion control algorithms in packet
switching networks”. IEEE Network, 9, 1995.

[8] S. H. Low. “Optimization Flow Control, I: Basic Algorithm and
Convergence”, IEEE/ACM Transactions on Networking, 7(6): 861-874,
1999.

[9] U. Ogras et al. “Prediction-based flow control for network-onchip
traffics”. Proceedings of Design Automation Conference (DAC) , 2006.

[10] J. W. van den Brand, C. Ciordas, K. Goossens1 and T. Basten.
“Congestion-Controlled Best-Effort Communication for Networks-on-
Chip”. Proceedings of Design, Automation and Test in Europe
Conference and Exhibition (DATE), April 2007.

[11] J. Hu et al. “DyAD - smart routing for networks-on-chip”. Proceedings
of Design Automation Conference (DAC), 2004.

[12] S. Boyd and L. Vandenberghe, “Convex Optimization”. Cambridge,
U.K, Cambridge Univ. Press, 2004.

[13] Dimitri P. Bertsekas, ”Nonlinear Programming”, Athena Scientific.
1999.

[14] S. Boyd, “Convex Optimization II Lecture Notes”, Stanford University,
2006.

[15] F. P. Kelly. “Charging and rate control for elastic transaction”. European
Transactions on Telecommunications, 8:33{37, 1997.

[16] Michael Grant, Stephen Boyd and Yinyu Ye., “CVX (Ver. 1.0RC3):
Matlab Software for Disciplined Convex Programming”, Download
available at: http://www.stanford.edu/~boyd/cvx.

386

66

Paper 2

A Novel Congestion Control
Scheme for Elastic Flows in
Network-on-Chip Based on
Sum-Rate Optimization

M. S. Talebi
F. Jafari
A.Khonsari
M. H. Yaghmaee

In the Proceedings of the International Conference on Com-
putational Science and its Applications (ICCSA), pp. 398-
409, Kuala Lumpur, Malaysia, August 2007.

67

O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4707, pp. 398 – 409, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Congestion Control Scheme for Elastic Flows
in Network-on-Chip Based on Sum-Rate Optimization

Mohammad S. Talebi1, Fahimeh Jafari1,3, Ahmad Khonsari2,1,
and Mohammad H. Yaghmae3

1 IPM, School of Computer, Tehran, Iran.,
2 ECE Department, University of Tehran

3 Ferdowsi University of Mashhad,
mstalebi@ipm.ir, jafari@ipm.ir, ak@ipm.ir,

hyaghmae@ferdowsi.um.ac.ir

Abstract. Network-on-Chip (NoC) has been proposed as an attractive
alternative to traditional dedicated busses in order to achieve modularity and
high performance in the future System-on-Chip (SoC) designs. Recently, end-
to-end congestion control has gained popularity in the design process of
network-on-chip based SoCs. This paper addresses a congestion control
scenario under traffic mixture which is comprised of Best Effort (BE) traffic or
elastic flow and Guaranteed Service (GS) traffic or inelastic flow. We model
the desired BE source rates as the solution to a rate-sum maximization problem
which is constrained with link capacities while preserving GS traffic services
requirements at the desired level. We proposed an iterative algorithm as the
solution to the maximization problem which has the advantage of low
complexity and fast convergence. The proposed algorithm may be implemented
by a centralized controller with low computation and communication overhead.

1 Introduction

The Systems-on-Chip (SoC) was first designed as a tightly interconnected set of cores,
where all components share the same system clock, and the communication between
components is via shared-medium busses. With the advance of the semiconductor
technology, the enormous number of transistors available on a single chip allows
designers to integrate dozens of IP blocks together with large amounts of embedded
memory. Such IPs consist of CPU or DSP cores, video stream processors, high-
bandwidth I/O, routers, etc. As more and more cores are integrated into a single chip,
it is becoming increasingly difficult to meet the design constraints while still using the
old design methodologies for SoC designs. Shared-medium busses do not scale well,
and do not fully utilize potentially available bandwidth. As the features sizes shrink,
and the overall chip size relatively increases, interconnects start behaving as lossy
transmission lines. Crosstalk, electromagnetic interference, and switching noise cause
higher incidence of data errors. Line delays have become very long as compared to
gate delays causing synchronization problems between cores. A significant amount of
power is dissipated on long interconnects and in clocking network. This trend only

69

 A Novel Congestion Control Scheme for Elastic Flows in NoC 399

worsens as the clock frequencies increase and the features sizes decrease. Lowering
the power supplies and designing smaller logic swing circuits decreases the overall
power consumption at the cost of higher data errors.

One solution to these problems is to treat SoCs implemented using micro-networks,
or Networks on Chips (NoCs). Networks have a much higher bandwidth due to
multiple concurrent connections. They have regular structure, so the design of global
wires can be fully optimized and as a result, their properties are more predictable.
Regularity enables design modularity, which in turn provides a standard interface for
easier component reuse and better interoperability. Overall performance and scalability
increase since the networking resources are shared.

Networking model decouples the communication layers so that design and
synthesis of each layer is simpler and can be done separately. In addition, decoupling
enables easier management of power consumption and performance at the level of
communicating cores. Generally, the concept of NoC which was introduced in [1][2],
suggests that different modules would be connected by a simple network of shared
links and routers. Examples of NoCs are Æthereal [3], Mango [4] and Xpipes [5].
NoCs provide communication services to IPs. Communication services with
guarantees on throughput and latency enable predictable system design. Guarantees
are given by reserving communication resources in the NoC (e.g. wires and buffers).
Although necessary for hard real-time applications, this results in poor resource
utilization for applications that require Variable-Bit Rate (VBR) communication.
According to the nature of such kind of traffic, this is also called Inelastic Flow. Best
Effort service (BE) is another kind of communication services which doesn’t need
any guarantees on latency and bandwidth. According to the nature of this kind of
traffic, this is also called Elastic Flow. Elastic Flow or BE service can give high
resource utilization by using unreserved or unused resources. However, BE traffic is
prone to network congestion. Æthereal [3] and Mango [4] are examples of NoCs that
provide both GS and BE services.

Networks with BE services should have a strategy to avoid congestion. The
congestion control in NoCs is a novel problem for the resource constrained on-chip
designs. During the past two decades, many strategies for congestion control have
been proposed for off-chip networks [6, 7, 8]. Congestion control for on-chip
networks is still a novel issue, however this problem has been investigated by several
researchers [9]-[11]. In [9], a prediction-based flow control strategy for on-chip
networks has been proposed where each router predicts future buffer fillings to detect
future congestion problems. The buffer filling predictions are based on a router
model. Dyad [10] solves congestion problem by switching from deterministic to
adaptive routing when the NoC gets congested. In [11] the link utilization has been
used as congestion measure and the controller determines the appropriate loads for the
BE sources. All of the aforementioned work has dealt with this issue using the
predictive control approach to overcome the congestion in the network. As the NoC
architecture is similar to a regular data network, in this paper we have used an
optimization approach over Best Effort source rates to control the flow.

The main purpose of this paper is to present a congestion control as the solution to
a sum-rate maximization problem for choosing the rate of BE sources. We present an
algorithm as the solution to the optimization problem and prove its convergence. To
evaluate the performance of the proposed approach, we simulate the congestion

70

400 M.S. Talebi et al.

control algorithm under a NoC-based scenario. Similar to [10], we have used a
controller to implement the proposed algorithm; however our approach is completely
different from [10].

This paper is organized as follows. In section 2 we present the system model and
formulate the underlying optimization problem for BE flow control. In section 3 we
solve the optimization problem using an iterative algorithm and propose the solution as
a centralized congestion control algorithm to be implemented as a controller. In section
4 we analyze the convergence behavior of the proposed algorithm and prove the
underlying theorem of its convergence. In section 5 we present the simulation results.
Finally, the section 6 concludes the paper and states some future work directions.

2 System Model

We consider a NoC with two dimensional mesh topology and wormhole routing. In
wormhole networks, each packet is divided into a sequence of flits which are
transmitted over physical links one by one in a pipeline fashion. The NoC architecture
is assumed to be lossless, and packets traverse the network on a shortest path using a
deadlock free XY routing.

We model the congestion control problem in NoC as the solution to an
optimization problem. For more convenience, we turn the aforementioned NoC
architecture into a mathematical model as in [8]. In this respect, we consider NoC as a
network with a set of bidirectional links L and a set of sources S . A source consists
of Processing Elements (PEs), routers and Input/Output ports. Each link l L∈ is a set
of wires, busses and channels that are responsible for connecting different parts of the
NoC and has a fixed capacity of lc packets/sec. We denote the set of sources that

share link l by ()S l . Similarly, the set of links that source s passes through, is

denoted by ()L s . By definition, ()l S l∈ if and only if ()s L s∈ [8].

As previously stated, there are two types of traffic in a NoC: Guaranteed Service
traffic (GS) or inelastic flow and Best Effort (BE) traffic or elastic flow. For
notational convenience, we divide S into two parts, each one representing sources
with the same traffic. In this respect, we denote the set of sources with BE and GS
traffic by BES and GSS , respectively. Each link l is shared between the two

aforementioned traffics. GS sources will obtain the required amount of the capacity of
links and the remainder should be allocated to BE sources.

Our objective is to choose source rates (PE loads) of BE traffics so that to
maximize the sum of rates of all BE traffics. Hence the maximization problem can be
formulated as:

max
s

BE

s
x

s S

x
∈
∑ (1)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (2)

0 s BEx s S> ∀ ∈ (3)

where source rates, i.e. sx , s S∈ , are optimization variables.

71

 A Novel Congestion Control Scheme for Elastic Flows in NoC 401

The constraint Eq. (2) says the aggregate BE source rates passing thorough link l
cannot exceed its free capacity, i.e. the portion of the link capacity which has not been
allocated to GS sources. The abovementioned problem is in fact constrained sum-rate
maximization. Such a problem, in general belongs to the class of Utility-Maximization
Problems for which the utility function of all sources is considered to be Identity
Function, i.e. ()s s sU x x= . Although the general form of Eq. (1) with a general utility

function has been investigated by the authors in another work [12], the approach of
this paper to solve problem Eq. (1) is completely different from the previous work. In
this paper we focus on the primal problem while in [12] the problem is solved via its
dual function. For notational convenience, we define:

()

ˆ
GS

l l s
s S l

c c x
∈

= − ∑ (4)

Hence, Eq. (2) can be rewritten as:

()

ˆ
BE

s l
s S l

x c l L
∈

≤ ∀ ∈∑ (5)

Although problem Eq. (1) is separable across sources, its constraints will remain
coupled across the network. Due to coupled nature of such constrained problems, they
have to be solved using centralized methods like interior point methods [13]-[15].
Such computations may pose a great overhead on the system. Instead of such
methods, we seek to obtain the solution with simpler operations. One way is to use the
subgradient method for constrained optimization problems [16] which will be briefly
reviewed in the next section.

For notational convenience in solving the problem, we use matrix notation. In this
respect, we define Routing matrix, i.e. []ls L SR R ×= , as following:

1 if ()

0 otherwise

BE

ls

s S l
R

⎧ ∈⎪⎪⎪= ⎨⎪⎪⎪⎩
 (6)

We also define the source rate vector (for BE traffic) and link capacity vector as
(,)s BEx x s S= ∈ and ˆ ˆ(,)lc c l L= ∈ , respectively. Therefore problem Eq. (1) can

be rewritten in the matrix form as follows:

max T
x

x1 (7)

subject to:

ˆ Rx c≤ (8)

0 s BEx s S> ∀ ∈ (9)

where 1 is a vector with all one.

72

402 M.S. Talebi et al.

3 Congestion Control Algorithm

In this section, we will solve the sum-rate optimization problem Eq. (7) using
subgradient method for constrained optimization problems [13][16] and present a
flow control scheme for BE traffic – or elastic flows - in NoC systems to overcome
the congestion. Convergence analysis of the algorithm is to be discussed in the next
section.

The subgradient method for constrained optimization problems is very similar to
Poljak’s Method [17]. In this method, for a maximization problem like Eq. (1), the
optimization variable vector will be adjusted in the direction to the gradient of the
objective function. We briefly review this method in lemma 1 as follows.

Lemma 1. Consider the constrained maximization problem,

max ()
x
f x (10)

subject to:

() 0, 1..if x i M≥ = (11)

with the maximal *x and the sequence ()x t as

(1) () () (())x t x t t u x tγ+ = + (12)

where

(()) if () satisfies (11)
(())

(()) s.t (()) 0 j j

f x t x t
u x t

f x t j f x t

⎧∇⎪⎪⎪= ⎨⎪∇ ∃ <⎪⎪⎩
 (13)

where ()tγ is a diminishing step-size rule [13]-[15]. If the 2l -norm of the (())u x t is

bounded (Lipschitz Continuity), i.e. there exist G such that

2u G≤ (14)

and the Euclidian distance of the initial point to the optimal point is bounded, i.e.

*(1)x x D− ≤ (15)

then the sequence { } 1
()

t
x t ∞

=
, as t → ∞ will converge to *x .

Proof: See [16].
In the sequel, we will solve the optimization problem Eq. (7) using subgradient
method for constrained optimization problems as stated in Lemma 1. Regarding Eq.
(12), we should calculate (())u x t . According to Eq. (13), if ()x t is feasible, i.e.

ˆRx c≤ , we have:

T Tu x x= ∇ = ∇ =1 1 1 (16)

73

 A Novel Congestion Control Scheme for Elastic Flows in NoC 403

otherwise at least one of the constraints should be violated. Assuming the
corresponding constraint for link 'l is violated, i.e. '

'()

ˆ
BE

s l
s S l

x c
∈

>∑ . We can represent

this constraint in matrix form as:

'' ˆ() ()T
l l
f x c Rx= − <e 0 (17)

where 'l
e is the 'l th unit vector of L space which is zero in all entries except the

'l th at which it is 1. Therefore, u is given by:

' 'ˆ()T T
l l

u Rx c R= −∇ − = −e e (18)

Using Eq. (16) and Eq. (18), the update equation to solve problem Eq. (7) is given
by:

(1) () () (())x t x t t u x tγ+ = + (19)

where (())u x t is given by:

' '

'

()

'

()

ˆ () ,

()
ˆ () ,

BE

BE

s l
s S l

T
sl l

s S l

x t c l

u t
R x t c l

∈

∈

⎧⎪ ≤ ∀⎪⎪⎪= ⎨⎪− > ∃⎪⎪⎪⎩

∑

∑

1

e
 (20)

Stepsize has an important role on the convergence behavior of the update equation.
There are several choices for stepsize, each one belonging to a predefined category
and having certain advantages and drawbacks (see [14] and references herein).

In the family of gradient algorithms, for distributed scenarios stepsize is usually
chosen to be a small enough constant so that to guarantee the convergence of the
algorithm. Constant stepsize is robust in the sense of convergence in time-varying
conditions and asynchronous schemes1. However, it mainly suffers from slow
convergence rate. On the contrary, time-varying stepsizes are defined in such a way to
adapt to the error with the desired point, i.e. optimal point of the optimization
problem, and hence benefit from much more faster convergence. However, they
should be constrained to guarantee that the iterative algorithm will converge.

In our scheme, the algorithm is to be centralized in implementation, and thus we
use a time-varying stepsize to take advantage of fast convergence. To this end, we
choose ()tγ as a time-varying stepsize, to be square-summable but not summable

[14][16]. In this respect, ()tγ satisfies

() 0 t tγ ≥ ∀ (21)

2

1

()
k

tγ
∞

=

<∞∑ (22)

1 Note that Eq. (19) proposes a synchronous scheme, and may diverge in asynchronous ones,

e.g. real world conditions with large delays, etc.

74

404 M.S. Talebi et al.

1

()
k

tγ
∞

=

= ∞∑ (23)

One typical example that satisfies Eq. (21)-(23), is () ()t a b tγ = + , where 0a >

and 0b ≥ , which we have used in this paper.
Eq. (19) and Eq. (20) together propose an iterative algorithm as the solution to

problem Eq. (7). In this respect, optimal source rates for BE sources can be found
while satisfying capacity constraints and preserving GS traffic requirements. Thus,
the aforementioned algorithm can be employed to control the congestion of the BE
traffic in the NoC. The above iterative algorithm is decentralized in the nature and can
be addressed in distributed scenarios. However, due to well-formed structure of the
NoC, we focus on a centralized scheme; a simple controller can be mounted in the
NoC to implement this algorithm. The necessary requirement of such a controller is
the ability to accommodate simple mathematical operations as in Eq. (19) and Eq.
(20) and the allocation of few wires to communicate congestion control information
to nodes with a light GS load. Algorithmic realization of the proposed Congestion-
Controller for BE traffic is listed as Algorithm 1.

Algorithm 1. Congestion Control for BE Traffics in NoC

Initialization:

1. Initialize l̂c of all links.

2. Set source rate vector to zero.

Loop:

Do until (max (1) ())s sx t x t Error+ − <

1. s S∀ ∈ : Compute new source rate:

(1) () () (())x t x t t u x tγ+ = +

where ()tγ can be selected as () ()t a b tγ = + and

' '

'

()

()

ˆ () ,

()
ˆ ()

BE

BE

s l
s S l

T
sl l

s S l

x t c l

u t
R x t c

∈

∈

⎧⎪ ≤ ∀⎪⎪⎪= ⎨⎪− >⎪⎪⎪⎩

∑

∑

1

e

Output:

Communicate BE source rates to the corresponding nodes.

4 Convergence Analysis

In this section, we investigate the convergence analysis of the proposed algorithm
using a time-varying stepsize in Eq. (19). As stated in the previous section, in this
paper the stepsize is selected to be square-summable but not summable [16].

75

 A Novel Congestion Control Scheme for Elastic Flows in NoC 405

Theorem 1. The iterative congestion control scheme proposed by Eq. (19) and Eq.
(20) with a time-varying stepsize which satisfies Eq. (21)-(23), will converge to the
optimal point of problem Eq. (1).

Proof: By lemma 1, it is clear that if its assumptions hold, the proof of Theorem is
done. First, (())u x t should admit an upper bound in 2l -norm. In doing so, it suffices

to show that its gradient is upper bounded in 2l -norm. Considering Eq. (16) and (18),

we have

'2 2 2
max{ , }T

l
u R≤ −1 e

 S= (24)

hence u in 2l -norm is bounded with at least S .

In the next step, we show that the Euclidian distance of the initial point to the
optimal point is bounded at least with D , i.e.

*

2
0 s.t. (1)D x x D∃ > − ≤

According to Eq. (3), we have 0, s BEx s S> ∀ ∈ . On the other hand, optimal

source rates are bounded at most with maximum value of link capacities, i.e.

* ˆmax max maxs l l
s l l
x c c≤ ≤ (25)

therefore,

* *

2 2
(1) max min (1)x x x x− ≤ −

2
 max 0ll

c= −

max lLc= (26)

and hence the initial Euclidian distance is bounded and Eq. (26) with Eq. (24)
completes the proof.

5 Simulation Results

In this section we examine the proposed congestion control algorithm, listed above as
Algorithm 1, for a typical NoC architecture. We have simulated a NoC with 4 4×
Mesh topology which consists of 16 nodes communicating using 24 shared
bidirectional links; each one has a fixed capacity of 1 Gbps. In our scenario, packets
traverse the network on a shortest path using a deadlock free XY routing. We also
assume that each packet consists of 500 flits and each flit is 16 bit long.

In order to simulate our scheme, some nodes are considered to have a Guaranteed
Service data (such as Multimedia, etc.) to be sent to a destination while other nodes,

76

406 M.S. Talebi et al.

Fig. 1. Source rates for (a)
1

1 t
γ =

+
, (b)

0.5
1 t

γ =
+

 and (c) 0.01γ =

77

 A Novel Congestion Control Scheme for Elastic Flows in NoC 407

which maybe in the set of nodes with GS traffic, have a Best Effort traffic to be sent.
As stated in section 2, GS sources will obtain the required amount of the capacity of
links and the remainder should be allocated to BE traffics.

One of the most significant issues of our interest is the convergence behavior of the

source rates. We used three different scenarios for step-size; two of them are chosen

to be square-summable but not summable and the third is set to be constant. For the

first two cases, stepsizes are chosen as 1 (1)tγ = + and 0.5 (1)tγ = + which

satisfy Eq. (21)-(23). For the constant case, stepsize is set to be 0.01γ = . The first

and second cases will be comparable with the constant stepsize after about 99 and 49

iterations, respectively.
Variation of source rates for some nodes using aforementioned stepsizes are shown

in Fig. 1(a)-(c). Regarding Fig. 1(a), it’s apparent that after about 50 iterations, all
source rates will be in the vicinity of the steady state point of the algorithm. However,
for the second case, Fig. 1(b) reveals that at least 80 iterations needed to have source
rates in the vicinity of the optimal point. For the third case, the rate of convergence is
even less and at least 150 iterations are needed to fall within the neighborhood of the
steady state point of the algorithm. It is clear that compared to the square-summable
but not summable stepsizes, constant stepsize has much slower rate of convergence.
Comparing Fig. 1(a) and 1(b), we realize that the initial value of the stepsize, directly
influences the rate of convergence.

In order to have a better insight about the algorithm behavior, the relative error
with respect to optimal rates which averaged over all sources, is also shown in Fig. 2.
Optimal source rates are obtained using CVX [18] which is MATLAB-based software
for solving disciplined convex optimization problems. This figure reveals that square-
summable but not summable stepsizes can lead to lower relative error in

Fig. 2. Average of relative error with respect to optimal solution for the three cases

78

408 M.S. Talebi et al.

average with regard to constant stepsize. The faster rate of convergence of the first
two cases than the third, can also be verified and it is apparent that the first case
slightly acts better from the second in terms of averaged relative error.

6 Conclusion and Future Work

In this paper we addressed the problem of congestion control for BE traffic in NoC
systems. Congestion control was modeled as the solution to the sum-rate
maximization problem which was solved using subgradient method for constrained
optimization problems. This was led to an iterative algorithm which determine
optimal BE source rates. We have also studied the realization of the algorithm as a
centralized congestion controller and presented a theorem to prove the convergence
of the proposed congestion control scheme. Simulation results confirm that the
proposed algorithm converges very fast and the computational overhead of the
congestion control algorithm is small. Fast convergence of the algorithm also
justifies that the delay incurred by the algorithm is very small. Further investigation
about the effect of other utility functions on the BE rates and fairness provision is the
main direction of our future studies.

References

1. Guerrier, P., Greiner, A.: A Generic Architecture for On-Chip Packet-Switched
Interconnections. In: Proc. Design, Automation and Test in Europe Conference and
Exhibition (DATE) (2000)

2. Dally, W.J., Towles, B.: Route Packets, Not Wires: On-Chip Interconnection Networks.
In: Proc. DAC 2001 (2001)

3. Goossens, K., et al.: The Æthereal network on chip: Concepts, architectures, and
implementations. IEEE Design and Test of Computers 22(5) (2005)

4. Bjerregaard, T., et al.: A router architecture for connection oriented service guarantees in
the MANGO clockless Network-on-Chip. In: Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE) (2005)

5. Bertozzi, D., et al.: Xpipes: A network-on-chip architecture for gigascale systems-on-chip.
IEEE Circuits and Systems Magazine (2004)

6. Kelly, F.P., Maulloo, A., Tan, D.: Rate control for communication networks: Shadow
prices, proportional fairness, and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

7. Yang, C., et al.: A taxonomy for congestion control algorithms in packet switching
networks. IEEE Network 9 (1995)

8. Low, S.H., Lapsley, D.E.: Optimization Flow Control, I: Basic Algorithm and
Convergence. IEEE/ACM Transactions on Networking 7(6), 861–874 (1999)

9. Ogras, U., et al.: Prediction-based flow control for network-onchip traffic. In: Proc. DAC
(2006)

10. Hu, J., et al.: DyAD - smart routing for networks-on-chip. In: Proc. DAC (2004)
11. van den Brand, J.W., Ciordas, C., Goossens, K., Basten, T.: Congestion- Controlled Best-

Effort Communication for Networks-on-Chip. In: Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE) (April 2007)

79

 A Novel Congestion Control Scheme for Elastic Flows in NoC 409

12. Talebi, M.S., Jafari, F., Khonsari, A.: Utility-Based Congestion Control for Best Effort
Traffic in Network-on-Chip Architecture, (Submitted to MASCOTS 2007) (2007)

13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge,
U.K (2004)

14. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)
15. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation. Prentice-Hall,

Englewood Cliffs (1989)
16. Boyd, S.: Convex Optimization II Lecture Notes. Stanford University (2006)
17. Poljak, B.T.: A General Method of Solving Extremum Problems. Soviet Math

Doklady 8(3), 593–597 (1967)
18. Grant, M., Boyd, S., Ye, Y.: CVX (Ver. 1.0RC3): Matlab Software for Disciplined Convex

Programming, Download available at: http://www.stanford.edu/ boyd/cvx

80

Paper 3

Proportionally-Fair Best Effort
Flow Control in Network-on-Chip
Architectures

M. S. Talebi
F. Jafari
A.Khonsari
M. H. Yaghmaee

In the Proceedings of the International Workshop on Per-
formance Modeling, Evaluation, and Optimization of Ubiq-
uitous Computing and Networked Systems (PMEO UCNS),
in conjunction with the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Miami, Florida,
USA, April 2008.

81

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Proportionally-Fair Best Effort Flow Control in
Network-on-Chip Architectures

Mohammad S. Talebi1, Fahimeh Jafari1,2, Ahmad Khonsari3,1,

and Mohammad H. Yaghmaee2
 1 IPM, School of Computer, Tehran, Iran

2 Ferdowsi University of Mashhad, Mashahhad, Iran
3 ECE Department, University of Tehran,Tehran, Iran

mstalebi@ipm.ir, jafari@ipm.ir, ak@ipm.ir, hyaghmae@ferdowsi.um.ac.ir

Abstract

The research community has recently witnessed the
emergence of Multi-Processor System on Chip
(MPSoC) platforms consisting of a large set of
embedded processors. Particularly, Interconnect
networks methodology based on Network-on-Chip
(NoC) in MP-SoC design is imminent to achieve high
performance potential. More importantly, many well
established schemes of networking and distributed
systems inspire NoC design methodologies. Employing
end-to-end congestion control is becoming more
imminent in the design process of NoCs. This paper
presents a centralized congestion scheme in the
presence of both elastic and streaming flow traffic
mixture. In this paper, we model the desired Best
Effort (BE) source rates as the solution to a utility
maximization problem which is constrained with link
capacities while preserving Guaranteed Service (GS)
traffics services requirements at the desired level. We
proposed an iterative algorithm as the solution to the
maximization problem which has the benefit of low
complexity and fast convergence. The proposed
algorithm may be implemented by a centralized
controller with low computation and communication
overhead

1. Introduction

The high level of system integration characterizing

Multi-Processor Systems-on-Chip (MPSoCs) is raising
the scalability issue for communication architectures.
Towards this direction, traditional system
interconnects based on shared busses are evolving both
from the protocol and the topology viewpoint.
Advanced bus protocols acts in favor of better
exploitation of available bandwidth, while more
parallel topologies are instead being introduced in
order to provide more bandwidth [1].

In the long run, many researchers and SoC designers
agree on the fact that this trend approaches the
Network-on-Chip (NoC) as a solution to the lack of

SoCs’ Scalability [2].

A NoC system fundamentally consists of three
components: switches, Network Interfaces (NIs) and
links. The switches can be arbitrarily connected to
each other and to NIs, based on a specified topology.
They are responsible for routing, switching and flow
control logic, as well as error control handling. NIs are
responsible for packetization/depacketization and
implement the service levels associated with each
transaction.

Recently, Quality-of-Service (QoS) provisioning in
NoC’s environment has attracted many researchers and
currently it is the focus of many literatures in NoC
research community. NoCs are expected to serve as
multimedia servers and are required not only to carry
Elastic Flows, i.e. BE traffic, but also Inelastic Flows,
i.e. GS traffic which requires tight performance
constraints such as necessary bandwidth and
maximum delay boundaries.

It’s obvious that a network with data services needs
some mechanisms to avoid congestion. Congestion
Control in data networks is known as a widely-studied
issue over the past two decades. However, it is still a
novel problem in NoCs and to the best of our
knowledge only few works has been carried out in this
field. Congestion control, or equivalently, flow control
in NoCs mainly focuses on the resource constrained
on-chip designs, with the aim of minimizing the
network cost or maximizing network utility while
maintaining the required Quality-of-Service (QoS).

2. Related Works

Flow control for data networks is a widely-studied

issue [3]-[6]. A wide variety of flow control
mechanisms in data network belongs to the class of
End-to-End control schemes, like TCP/IP, which is
mainly based on the window-based scheme. In this
methods, routers and intermediate nodes avoid the
network from becoming congested by means of packet
dropping deterministically (as in DropTail) or

83

randomly (as in RED). Therefore, sent packets are
subject to loss and the network must aim to providing
an acknowledgement mechanism. On the other On-
chip networks pose different challenges. The reliability
of on-chip wires and more effective link-level flow-
control allows NoCs to be loss-less. Therefore, there is
no need to utilize acknowledgment mechanism and we
face to slightly different concept of flow control.

So far, several works have focused on this issue for
NoC systems. In [7], a prediction-based flow-control
strategy for on-chip networks is proposed in which
each router predicts the buffer occupancy to sense
congestion. This scheme controls the packet injection
rate and regulates the number of packets in the
network. In [8] link utilization is used as a congestion
measure and a Model Prediction-Based Controller
(MPC), determines the source rates. Dyad [9] controls
the congestion by using adaptive routing when the
NoC faces congestion.

In this paper, we focus on the flow control for BE
traffic as the solution to a utility-based optimization
problem. To the best of our knowledge, none of the
aforementioned works have dealt with the flow control
problem through utility optimization approach. In our
seminal work [10], we have modeled desired BE
source rates as the solution to a utility-based
optimization problem with general form utility
function and aimed at the issue with solving the
proposed problem using Newton method. In [11], we
also have considered this issue via sum-rate
optimization problem and used a different approach to
solve the problem. This paper we address the
performance analysis of our seminal work [10] with a
special utility function which satisfies Proportional
Fairness feature and solve the flow control problem
using a different approach which leads to low
complexity flow control algorithm for BE traffic in
NoCs.

This paper is organized as follows. In Section 3 we
present the system model and formulate the underlying
optimization problem for BE flow control. In section 4
we proceed to the proposed algorithm and discuss
about some remarks. In section 5 we solve the
optimization problem using an iterative algorithm over
its dual and analyze the convergence behavior of it and
present the underlying theorem of its convergence.
Section 6 presents the simulation results. Finally, the
section 7 concludes the paper and states some future
work directions.

3. System Model and Flow Control
Problem

We consider a NoC architecture which is based on a

two dimensional mesh topology and wormhole
routing. In wormhole networks, each packet is divided
into a sequence of flits which are transmitted over
physical links one by one in a pipeline fashion. A hop-
to-hop credit mechanism assures that a flit is
transmitted only when the receiving port has free space
in its input buffer. We also assume that the NoC
architecture is lossless, and packets traverse the
network on a shortest path using a deadlock free XY
routing [2].

We model the flow control in NoC as the solution to
an optimization problem. For the sake of convenience,
we turn the aforementioned NoC architecture into a
mathematically modeled network, as in [12]. In this
respect, we consider NoC as a network with a set of
bidirectional links L and a set of sources S . A source
consists of Processing Elements (PEs), routers and
Input/Output ports. Each link l L∈ is a set of wires,
busses and channels that are responsible for
connecting different parts of the NoC and has a fixed
capacity of lc packets/sec. We denote the set of
sources that share link l by ()S l . Similarly, the set of
links that source s passes through, is denoted by

()L s . By definition, ()l S l∈ if and only if ()s L s∈ .
As discussed in section I, there are two types of

traffic in a NoC: Guaranteed Service (GS) and Best
Effort (BE) traffic. For notational convenience, we
divide S into two parts, each one representing sources
with the same kind of traffic. In this respect, we denote
the set of sources with BE and GS traffic by BES and

GSS , respectively. Each link l is shared between the
two aforementioned traffics. GS sources will obtain
the required amount of the capacity of links and BE
sources benefit from the remainder.

Our objective is to choose source rates with BE
traffic so that to maximize the weighted sum of the
logarithm of the BE source rates. Hence the
maximization problem can be formulated as [12]:

max log
s

BE

s sx
s S

a x
∈
∑ (1)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (2)

0 s BEx s S> ∀ ∈ (3)

Optimization variables are BE source rates, i.e.
(,)BEx s Ss ∈ and sa is the weight for source s . We
later on discuss how such a weight determines the
priority of source s in resource allocation. The
constraint (2) states that the sum of BE source rates
passing thorough link l cannot exceed its free

84

capacity, i.e. the portion of lc which has not been
allocated to GS traffic.

In General, problem (1) belongs to the class of
utility-based optimization problems, for which the
utility function, sU , is assumed to be logarithmic, i.e.

() logs s s sU x a x= . Such utility functions, are positive,
concave and strictly increasing, as logarithmic
function does. There are many choices for utility
function, other than logarithmic, with specific features
and behavior. We discuss in section V, that
logarithmic utility function have nice properties in
terms of economic terminology, known as proportional
fairness [3].

It is worth to mention that despite the restriction of
ourselves to a specific utility function, our work can be
easily generalized to arbitrary utility functions, as in
our seminal work [10].

With the model above, problem (1) is a convex
optimization problem with linear constraints. Hence it
admits a unique maximizer [13][14], i.e. there exists
an optimal source rate vector, * *(,)s BEx x s S= ∈ that
maximizes the objective of problem (1) while
satisfying capacity constraints.

Problem (1) is coupled across the network through
its constraints. Such a coupled nature, necessitate
usage of centralized methods like Interior Point
method which poses great computational overhead
onto the system [13][14] and hence is of little interest.

In contrast, there are several low-complexity and
distributive methods to solve unconstrained problems.
Hence, one way to reduce the computational
complexity is to transform the constrained
optimization problem into its Dual, which can be
defined to be unconstrained. According to the Duality
Theory [13][14], each convex optimization
(maximization) problem has a dual, whose optimal
solution, called Dual-Optimal, leads to best bound
(upper bound) of the optimal solution of the main
problem. In this respect, the main problem is
retroactively called Primal Problem. As the dual
problem can be defined in such a way to be
unconstrained, solving the dual is much simpler than
the primal.

For notational convenience, we define:

()

ˆ
GS

l l s
s S l

c c x
∈

= − ∑ (4)

We also define the source rate vector (for BE traffic)
and link capacity vector as (,)s BEx x s S= ∈ and
ˆ ˆ(,)lc c l L= ∈ , respectively. To avoid confusing with
summations indices, we define Routing matrix,
i.e. []ls L SR R ×= , as following:

1 if ()

0 otherwise
BE

ls

s S l
R

 ∈= 
 (5)

Using the abovementioned definitions, problem (1)
can be rewritten as:

max log
s

s sx
s

a x∑ (6)

subject to:

ˆRx c≤ (7)

0 s BEx s S> ∀ ∈ (8)

4. Optimal Flow Control Algorithm

In this section, we present a centralized flow control

algorithm for BE traffic in NoC systems which
controls the BE source rates in favor of problem (1).
Later, in section V, we show that solving problem (1)
leads to the proposed algorithm, and therefore the
algorithm is an iterative optimal solution to it. The
proposed flow control algorithm is listed below as
algorithm 1.

In the sequel, we make some worth-mentioning
remarks. Performance analysis of the algorithm is to
be discussed in the next section.

Remarks:
1. Considering algorithm 1 as a centralized

algorithm, we consider a simple controller that can be
mounted in the NoC, whether as a separate hardware
module or a part of the operating system, which is
responsible for running of the algorithm. From
computational aspect, such a controller must have the
ability of carrying out simple mathematical operations,
as in Algorithm 1. Another necessary requirement of
the controller, as Output section of the algorithm 1
suggests, is some links e.g. a control bus, to
communicate the algorithm output to the BE sources.

Although Algorithm 1 is centralized, it can be easily
casted into a distributive one upon introducing low
communication overheads. Thus it can be addressed in
decentralized scenarios, too. However, due to well-
formed structure of NoC Systems, such a centralized
algorithm suits for the system and thereafter we only
focus on the centralized scheme.

2. The proposed flow control algorithm is very

similar to End-to-End congestion control schemes in
data networks, also known as TCP which are widely
used to control BE data flow in the internet. End-to-
End schemes use window-based method, i.e. each

85

 Algorithm 1: Flow Control for BE in NoC

Initialization:

1. Initialize lc of all links.
2. Set link shadow price vector to zero.
3. Set the ε as the stopping criteria.

Loop:
Do until (max (1) ())s sx t x t ε+ − <

1. l L∀ ∈ : Compute new link prices:

[
+

() ()

(1) ()

 () () (())
GS BE

l l

l s s
s S l s S l

t t

c t x t x t

λ λ

γ λ
∈ ∈

+ =

  − − −   
∑ ∑

2. Compute new BE source rates as follows

(1)
(1)
s

s
ls l

l

a
x t

R tλ
+ =

+∑

Output:
Communicate BE source rates to the corresponding
nodes.

source maintains a window of packets which are
transmitted, but not acknowledged. Because the
packets in data networks may be lost due to dropping
at the routers or link failure, destination should
acknowledge the ordered receipt of each packet in the
current window. Each source changes its window size
in response to congestion signals, i.e. negative
acknowledges or duplicates ones, and thereby avoids
the network to face congestion. Roughly, the source
rate in each round trip (i.e. the way from source to
destination and back to the source for
acknowledgment), is the ratio of window size to the
round trip time (i.e. duration of the trip).

Although flow control in TCP is carried out by
means of window updates, however we can derive the
corresponding rate updates, too. The proposed flow
control algorithm is very similar to rate update in TCP
scheme. Such a similarity stems from the similarity in
the underlying flow control problem in both schemes.
However, it is worth noting that unlike TCP, in
algorithm 1 we have not considered any window based
transmission and acknowledgement mechanism. This
is due to the fact that NoC architecture is lossless, as
previously stated in section III, and hence all packets
will be delivered successfully and no acknowledgment
is needed.

5. Performance Analysis: Optimal Solution
and Convergence Analysis

In this section, we discuss that solving problem (1)

through its Dual, leads to Algorithm 1. Towards this
end, we first obtain the Dual of problem (1) and then
solve it using Gradient Projection Method [14][15] and
derive the abovementioned flow control algorithm.
Then, we focus on the convergence behavior and other
aspects of the proposed algorithm.

5.1. Dual Problem

In this part, we will obtain the dual of problem (1).

Using the standard optimization methods [12], the
Lagrangian of the problem (1) can be written as:

ˆ(,) log ()s s l ls s l
s l s

L x a x R x cλ λ= − −∑ ∑ ∑ (9)

where 0lλ > is the Lagrange Multiplier associated
with constraint (2) for link l . Usually, lλ is called
shadow price [12] for the economic interpretation of
its role in solving the primal problem through dual.

Regarding the Lagrangian of problem (1), the dual
function is defined as [13]:

() sup (,)
sx

g L xλ λ= (10)

where λ is the vector of positive Lagrange multipliers.
Thus the dual function is given by:

ˆ() max log ()

ˆ =max log

s

s

s s l ls s lx
s l s

s s s ls l l lx
s l l

g a x R x c

a x x R c

λ λ

λ λ

= − −

  − +   

∑ ∑ ∑

∑ ∑ ∑

 (11)

By Karush-Kuhn-Tucker (KKT) Theorem [13], we
can obtain optimal source rates, i.e.

* *(,)s BEx x s S= ∈ . Duality theory states that when
the primal problem is convex, strong duality holds and
thereby the duality gap is zero [13]. In this respect, the
optimal source rate vector, *x , corresponds to the
optimal Lagrange multiplier vector, *λ [13]. In other
words, if x is a feasible point of the primal problem,
which is primal-optimal the corresponding λ will be
dual-optimal and vice versa. Therefore, at optimality
we have

* *(,)
(,)x x
L x

λ
λ∇ = 0 (12)

where 0 is a vector with all zero. By taking the
derivative of (9) with respect to x , we have

86

* *
*

*(,)
0

s

s
ls lx

ls s

aL
R

x xλ
λ

∂
= − =

∂ ∑ (13)

*
*

s
s

ls l
l

a
x

R λ
=
∑

 (14)

Substituting *
sx into (11) yields

ˆ() (log 1) log()s s s ls l l l
s l l

g a a a R cλ λ λ
 = − − +   ∑ ∑ ∑

 (15)
The dual problem is defined as [13]:

0
min ()g
λ

λ
≥

therefore, we have

0
ˆmin (log 1) log()s s s ls l l l

s l l

a a a R c
λ

λ λ
≥

  − − +   ∑ ∑ ∑

 (16)

It is proven that the dual is always convex regardless
of convexity or non-convexity of the primal problem
[13]. Moreover, it is apparent from (16) that, by
ignoring the mild condition on the positivity of λ , the
dual problem is unconstrained. As dual problem is
convex, it admits a unique optimal, i.e. a unique
minimizer, which can be obtained using iterative
algorithms. As the dual problem is unconstrained;
solving (16) using iterative methods is much simpler
than the primal.

5.2. Solving The Dual Problem

In this part, we will solve the dual problem using

Projected Gradient Method [13] and derive algorithm
1.
 The Projected Gradient Method adjusts shadow
prices, i.e. Lagrange multiplier vector, in opposite
direction to the gradient of the dual function, i.e.

()g λ∇ , as follows:

[](1) () (())t t g tλ λ γ λ ++ = − ∇ (17)

where 0γ > is a constant stepsize, and
[] max{ ,0}x x+ . Since the objective of problem (1)
is strictly concave, ()g λ is continuously differentiable
[13], hence ()g λ∇ exists. Using (15), the l -th
element of the gradient vector is given by:

()
(1 log log())

ˆ +

s s ls l
s ll l

l l
l

g
a a R

c

λ
λ

λ λ

λ

  ∂ ∂ = − −    ∂ ∂  




∑ ∑

∑

 (18)

Therefore,

() ˆ ls s
l

sl ls l
l

g R a
c

R
λ
λ λ

∂
= −

∂ ∑∑
 (19)

Regarding (14), (19) can be rewritten as:

()

() ˆ ()

ˆ ()

l ls s
sl

l s
s S l

g
c R x

c x

λ
λ

λ

λ
∈

∂
= −

∂

= −

∑

∑
 (20)

and the update equation is given by:

()

ˆ(1) () (())
BE

l l l s
s S l

t t c x tλ λ γ λ

+

∈

   + = − −      
∑ (21)

where ()(1) (1), lt t l Lλ λ+ = + ∈ and (())sx tλ is

the approximate of *
sx in time t . (14) and (21)

together forms the proposed algorithm. Therefore,
algorithm 1 is the iterative solution to problem (1).

5.3. Convergence Analysis

In this part, we investigate the convergence behavior

of the proposed algorithm. As stepsize has an
important role in the convergence behavior of the
update equation, we mainly focus on the effect of
stepsize. The conditions under which Algorithm 1
converges and performance analysis of the algorithm
will be obtained with respect to the choice of stepsize.

There are several choices for stepsize, each one
belonging to a predefined category and having certain
advantages and drawbacks (see [16] and references
herein). In the family of gradient algorithm for
distributed scenarios, stepsize is usually chosen to be a
small enough constant so that to guarantee the
convergence of the algorithm. Constant stepsize is
robust in the sense of convergence in time-varying
conditions and asynchronous schemes. However, it
usually has slower convergence rate than time-varying
ones. Due to its simplicity and robustness, in this paper
we have used a constant step-size.

Before proceeding to the theorem, we first present
the fundamental lemma for the gradient optimization
algorithms.

87

Lemma 1 [14]: Consider the unconstrained
minimization problem,
min ()
x
f x

with the minimal *x . If ()f x∇ has Lipschitz
Continuity property, i.e. there exist L such that

1 2 1 2 2
() ()f x f x L x x∇ −∇ ≤ − (22)

then the sequence ()x t defined as

(1) () (())x t x t f x tγ+ = − ∇

converges to the neighborhood of *x provided that

2
L
ε

ε γ
−

≤ ≤ (23)

for some 0ε > ,

Proof: See [14].

The following theorem, determines the condition on
the stepsize, under which the Algorithm 1 converges to
the neighborhood of the optimal of the problem (16)
and thereby that of problem (1).

Theorem 1: The iterative flow control scheme
proposed by (14) and (21) converges to a
neighborhood of the optimal point of the primal
problem (1) provided that

2

20 a
c LS

γ< ≤ (24)

where S is the length of the longest path used by the
sources, L is the number of sources sharing the most
congested link, a is the minimum weight of sources
and c is the upper bound on link capacities.

Proof: Omitted due to space limit.

5.4. Proportional Fairness

Utility function directly influences the policy by

which system resources, i.e. bandwidth, are shared
among the competing sources. In this respect, in terms
of economics terminology, utility function controls the
fairness among users or sources. Several fairness
criteria have been defined in the economics which are
applicable to problem (1). Among them are Max-Min
Fairness and Proportional Fairness [3]. In a system
with Max-Min fairness, the resources are mainly
shared in favor of weak users while in system with
Proportional Fairness the resources are shared in
proportion to the resource usage of each source. In the

latter case, given an optimal source rate allocation
()* *, sx x s S= ∈ satisfying Proportional Fairness,

with any other feasible source rate, say
(), sx x s S= ∈ , the total proportional net benefit

gained by the new source rates is decreased [3], i.e.:
*

* 0s s

s s

x x
x
−

≤∑ (25)

It is proven, systems with proportional fairness that
satisfies (25), must have logarithmic utility functions
[3], i.e.

() logs s sU x x= (26)

Thus the proposed flow control algorithm, with equal
weight factors will be proportionally fair. It is worth to
note that the case of heterogeneous weight factors
corresponds to another implementation of fairness, the
so-called Weighted Proportionally Fair, for which (25)
turns to be

*

* 0s s
s

s s

x x
a

x

 −   ≤   
∑ (27)

In the sequel, we briefly discuss about the effect of
weight factors. As previously stated, sa is the weight
for source s in the optimization problem which
controls the priority of source s in resource sharing.
To gain more insights on the role of sa in the flow
control, we consider a simple network with a single
bottleneck link, say link l ′ . Since all other links
doesn’t saturate, we have 0, l l lλ ′= ≠ . Using (2)
and (14) we have:

()

, ()s s
s

l l
l L s

a a
x s S l

λλ ′
∈

′= = ∈
∑

 (28)

1
... , , ()ji n

i j n l

xx x
i j n S l

a a a λ ′

′= = = = ∈ (29)

() ()
()

l
s sl l l l

s S l s S l s
s S l

c
x c a c

a
λ λ ′

′ ′ ′ ′
′ ′∈ ∈

′∈

= ⇒ = ⇒ =∑ ∑ ∑
 (30)

combining (28)-(29), leads to

()

 ()i l
i

s
s S l

a c
x i S l

a
′

′∈

′= ∀ ∈
∑

 (31)

Therefore, (31) shows that in a network with single
congested link, the sources passing through the
congested link, achieve their rates in proportion to
their weights. For networks with multiple congested

88

links, such an insight might not be easily seen,
however weight factors influence the capacity sharing
at bottle neck links. In this respect, we can allocate
more resources, i.e. link capacity, to some specified
sources by assigning larger weights to them.

6. Simulation Results

In this section we examine the proposed flow control
algorithm, listed above as Algorithm 1, for a typical
NoC architecture. In our scenario, we have used a NoC
with 4 4× Mesh topology which consists of 16 nodes
communicating using 24 shared bidirectional links;
each one has a fixed capacity of 1 Gbps. In our
scheme, packets traverse the network on a shortest
path using a deadlock free XY routing. We also
assume that each packet consists of 500 flits and each
flit is 16 bit long.

In order to simulate our scheme, some nodes are
considered to have a GS data (such as Multimedia,
etc.) to be sent while other nodes have a BE traffic. As
stated before, GS sources will obtain the required
amount of the capacity of links and the remainder
should be allocated to BE traffics. Routing policy for
BE sources is shown in Fig. 1. We assume that all
sources have logarithmic utility function of the form

() logs s s sU x a x= where sa represents the weight
factor for source s. In the sequel, we present our results
in the following parts as below.

One of the most significant issues of our interest is
the convergence behavior of the source rates. In this
part, we have simulated our scheme using 2 different
values for step-size, 1.05 and 0.2, respectively. Weight
factor for all sources is assumed to be unity. The
convergence behavior of source rates for after 150
iterations is depicted in Fig. 2(a)-(b). Regarding Fig.
2(a), it’s apparent that for 1.05γ = , after 20 iteration
steps the source rates will have very little variations,
however, from Fig. 2(b) , i.e. for 0.2γ = , these
threshold of iterations will be at least 85 steps.

In order to have a better insight about the algorithm
behavior, the relative error with respect to optimal
source rates which is averaged over all active sources,
is also shown in Fig. 3. Optimal values are obtained
using CVX [17] which is MATLAB toolbox for
solving disciplined convex optimization problems. Fig.
3 reveals the first step size leads to less than 10% error
in average just after about 13 iteration steps, and after
20 steps the average error lies below 5%. However, the
second step size would reach the two aforementioned
error margins at the expense of iterating for about 60
and 75 steps, respectively. Although not shown in Fig.
3, with much more iteration steps simulation results

verify that the average error curve for the smaller step
size lies below that of larger step size. However, for
practical implementations and real world applications,
due to faster convergence speed, larger step size is
more appropriate.

1 2 3 4

5

9

13 14 15 16

6

10

7

11

8

12

Fig. 1. Network Topology and Routing Policy

(a)

(b)

Fig. 2. Source rates convergence with symmetric weight
factors for (a) 1.05γ = and (b) 0.2γ =

89

Fig. 3. Average Relative Error

7. Conclusion and Future Works

In this paper we addressed the problem of flow control
for BE traffic in NoC systems. Flow control was
considered as the solution to the utility maximization
problem which was solved indirectly through its dual
using gradient projection method. This was led to an
iterative algorithm which can be used to determine
optimal BE source rates.
The algorithm can be implemented by a controller
which admits a light communication and
communication overhead to the system. We have also
investigated the convergence behavior of the
algorithm. Further investigation about the effect of
delay incurred by the proposed algorithm is the main
direction of our future studies.

8. References

[1] L. Benini, and G. DeMicheli, “Networks on Chips: A

New SoC Paradigm.” Computer, 2002, vol. 35, no. 1,
pp. 70-78.

[2] W. J. Dally, and B. Towles, “Route Packets, Not
Wires: On-Chip Interconnection Networks.” Design
Automation Conference, 2001, pp. 684-689.

[3] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for
communication networks: Shadow prices, proportional
fairness, and stability.” Operational Research Society,
1998, vol. 49, no. 3, pp. 237–252.

[4] S. Mascolo, “Classical control theory for congestion
avoidance in high-speed internet” Decision and
Control IEEE Conference, 1999, vol. 3, pp. 2709-
2714.

[5] Y. Gu, H. O. Wang and L.G. Yiguang Hong
Bushnell, “A predictive congestion control algorithm
for high speed communication networks.” American
Control Conference, vol. 5, pp. 3779-3780, 2001.

[6] C. Yang, and A. V. S. Reddy, “A taxonomy for
congestion control algorithms in packet switching

networks.” IEEE Network, 1995, vol. 9, no. 4, pp. 34-
45.

[7] U. Y. Ogras, and R. Marculescu, “Prediction-based
flow control for network-on-chip traffic.” In
Proceedings of the Design Automation Conference,
2006.

[8] J. W. van den Brand, C. Ciordas, K. Goossens and T.
Basten, “Congestion-Controlled Best-Effort
Communication for Networks-on-Chip.” Design,
Automation and Test in Europe Conference, 2007, pp.
948-953.

[9] Hu. Jingcao, and R. Marculescu, “DyAD - smart
routing for networks-on-chip.” Design Automation
Conference, 2004, pp. 260- 263.

[10] M. S. Talebi, F. Jafari, A. Khonsari, “A Novel Flow
Control Scheme for Best Effort Traffic in NoC Based
on Source Rate Utility Maximization.” In proceedings
of the Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2007.

[11] M. S. Talebi, F. Jafari, A. Khonsari, and M. H.
Yaghmaee, “A Novel Congestion Control Scheme for
Elastic Flows in Network-on-Chip Based on Sum-Rate
Optimization.” International Conference on
Computational Science and its Applications, 2007, pp.
398-409.

[12] S. H. Low, and D. E. Lapsley, “Optimization Flow
Control, I: Basic Algorithm and Convergence.”
IEEE/ACM Transactions on Networking, 1999, vol. 7,
no. 6, pp. 861-874.

[13] Boyd, S., and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.

[14] Bertsekas, D. P., Nonlinear Programming, Athena
Scientific, 1999.

[15] Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and
distributed computation, Prentice-Hall, 1989.

[16] Boyd, S., Convex Optimization II Lecture Notes,
Stanford University, 2006.

[17] Grant, M., S. Boyd, and Y. Ye, CVX (Ver. 1.0RC3):
Matlab Software for Disciplined Convex
Programming. Download available at:
http://www.stanford.edu/~boyd/cvx.

90

Paper 4

A Novel Congestion Control
Scheme in Network-on-Chip Based
on Best Effort Delay-Sum
Optimization

F. Jafari
M. S. Talebi
A.Khonsari
M. H. Yaghmaee

In the Proceedings of the International Symposium on Par-
allel Architectures, Algorithms and Networks (ISPAN), pp.
191-196, Sydney, NSW, Australia, May 2008.

91

A Novel Congestion Control Scheme in Network-on-Chip Based on Best
Effort Delay-Sum Optimization

Fahimeh Jafari1,2, Mohammad S. Talebi2, Ahmad Khonsari3,2,
Mohammad H. Yaghmaee1

1Ferdowsi University of Mashhad, Mashhad, Iran.,
2IPM, School of Computer, Tehran, Iran.,

3ECE Department, University of Tehran, Tehran, Iran.,
 jafari@ipm.ir, mstalebi@ipm.ir, ak@ipm.ir, hyaghmae@ferdowsi.um.ac.ir

Abstract

With the advances of the semiconductor technology,
the enormous number of transistors available on a
single chip allows designers to integrate dozens of IP
blocks together with large amounts of embedded
memory. This has been led to the concept of Network
on a Chip (NoC), in which different modules would be
connected by a simple network of shared links and
routers and is considered as a solution to replace
traditional bus-based architectures to address the
global communication challenges in nanoscale
technologies. In NoC architectures, controlling
congestion of the best effort traffic will continue to be
an important design goal. Towards this, employing
end-to-end congestion control is becoming more
imminent in the design process of NoCs. In this paper,
we introduce a centralized algorithm based on the
delay minimization of Best Effort sources. The
proposed algorithm can be used as a mechanism to
control the flow of Best Effort source rates by which
the sum of propagation delays of network is to be
minimized.

1. Introduction

With the emergence of complex VLSI chips, the
designers are facing several new challenges.
Nowadays, application-specific integrated circuits
(ASICs) have evolved into systems-on-chip (SoCs),
where dozens of predesigned IP cores are assembled
together to form large chips with complex
functionality.

A recently proposed platform for the on-chip
interconnects is the network-on-chip (NoC)
architecture, where the IPs are usually placed on a grid
of tiles and networking protocols governs the
communication between tiles. Such a regular structures

are very attractive because they can offer well-
controlled electrical parameters, which enable high-
performance circuits by reducing the latency and
increasing the bandwidth. In fact, NoCs provide
enhanced performance and scalability, in comparison
with previous communication architectures. The
advantages of NoC are achieved thanks to efficient
sharing of wires and a high level of parallelism [1].

The provision of Quality-of-Service (QoS) in NoC’s
environment is currently the focus of much discussion
in research community. NoCs are expected to serve as
multimedia servers and are required not only to carry
Best Effort (BE) traffic, but also Guaranteed Service
(GS) traffic which requires tight performance
constraints such as necessary bandwidth and maximum
delay boundaries. Networks with BE services must
choose a mechanism to avoid congestion. Congestion
control in NoCs is a novel issue and usually studied
regarding minimizing the network cost (in delay, area
and power) or maximizing network utility while
maintaining the required QoS, as we will focus on it in
more detail later.

2. Related Works

During the past few years, many strategies for
congestion control have been proposed for off-chip
networks [2-5]. Congestion control for on-chip
networks is still a novel issue, however this problem
has been investigated by several researchers [6]-[8]. In
[6], a prediction-based congestion control strategy for
on-chip networks has been proposed where each router
predicts buffer occupancies to detect future congestion
problems. In [7] the link utilization has been used as
congestion measure and the controller determines the
appropriate loads for the BE sources. Dyad [8]
overcomes the congestion by switching from

The International Symposium on Parallel Architectures, Algorithms, and Networks

978-0-7695-3125-0/08 $25.00 © 2008 IEEE
DOI 10.1109/I-SPAN.2008.45

191

The International Symposium on Parallel Architectures, Algorithms, and Networks

978-0-7695-3125-0/08 $25.00 © 2008 IEEE
DOI 10.1109/I-SPAN.2008.45

191

The International Symposium on Parallel Architectures, Algorithms, and Networks

978-0-7695-3125-0/08 $25.00 © 2008 IEEE
DOI 10.1109/I-SPAN.2008.45

191

93

deterministic to adaptive routing when the NoC is
going to be congested.

The main purpose of this paper is to present a
congestion control as the solution to a delay
minimization problem for choosing the rate of BE
sources. Our approach is different from the
aforementioned works, e.g. [6][7], in which no delay
consideration were taken into account. We present an
algorithm as the solution to the optimization problem.
To evaluate the performance of the proposed approach,
we simulate the congestion control algorithm under a
NoC-based scenario.

This paper is organized as follows. In Section 3 we
present the system model and formulate the underlying
optimization problem for BE congestion control. In
Section 4 we solve the optimization problem using an
iterative algorithm and propose the solution as a
centralized congestion control algorithm to be
implemented as a controller. In Section 5 we analyze
the convergence behavior of the proposed algorithm
and prove the underlying theorem of its convergence.
In Section 6 we present the simulation results. Finally,
the section 7 concludes the paper.

3. System Model

We consider a NoC with two dimensional mesh
topology and wormhole routing. In wormhole
networks, each packet is divided into a sequence of
flits which are transmitted over physical links one by
one in a pipeline fashion. The NoC architecture is
assumed to be lossless, and packets traverse the
network on a shortest path using a deadlock free XY
routing. We model the congestion control problem in
NoC as the solution to an optimization problem. For
more convenience, we turn the aforementioned NoC
architecture into a mathematical model as in [9]. In this
respect, we consider NoC as a network with a set of
bidirectional links L and a set of sources S . A source
consists of Processing Elements (PEs), routers and
Input/Output ports. Each link l L� is a set of wires,
busses and channels that are responsible for connecting
different parts of the NoC and has a fixed capacity of
lc packets/sec. We denote the set of sources that share

link l by ()S l . Similarly, the set of links that source

s passes through, is denoted by ()L s . By definition,

()l S l� if and only if ()s L s� .

As previously stated, there are two types of traffic
in a NoC: GS and BE. For notational convenience, we
divide S into two parts, each one representing sources
with the same traffic. In this respect, we denote the set
of sources with BE and GS traffic by BES and GSS ,

respectively. Each link l is shared between the two
aforementioned traffics. GS sources will obtain the
required amount of the capacity of links and the
remainder should be allocated to BE sources.

3.1. Delay Model

In recent years, researchers have presented different
delay models in NoC (e.g. [10] and references therein).
Due to simplicity of the model introduced in [10], we
adopt its model in our framework.
Interconnects and network routers are two fundamental
parts of the NoC which are subject to power
consumption and communication latency. In our
model, the delay of link l L� is denoted by ld which

represents the delay incurred to the system by packet
propagation over this link. More precisely, ld is given

by

l w rd d d� � (1)

where wd and rd are delay of unit flow on

interconnects and routers, respectively. In this respect,
when a flow of amount lf passes through link l , the

total latency is:

l l lD fd� (2)

Interconnect or wire delay, wd , is closely related to

the wire styles. We assume that four types of wire
styles are available for interconnects, namely, RC
wires with repeated buffers with wire pitch varying
from 1×, 2×, and 4× minimum global wire pitch, and
on-chip transmission line with wire pitch equal to 16
micron. For RC wires with repeated buffers, we
assume wd is proportional to wire length, as below:

per grid length delay wire lengthwd � �

On the other hand, for on-chip transmission line,
relatively large setup cost should be added to wd . We

use transmission line model proposed by Chen et al.
[11] to estimate transmission line delay. Table 1 lists
delay per grid length (2mm) of these four types of wire
styles in 0.18 micron design technology. Setup cost of
50ps is added to wd for transmission line.

We use the router delay model proposed by Peh et
al. [12] to estimate NoC router delay. Table 2 shows

Table1: Delay Model of Wires

Wire Type RC-1x RC-2x RC-4x T-line

wd (ns) 0.127 0.112 0.100 0.020

192192192

94

latency of routers in 0.18 micron technology node.
When router input/output ports increase, rd increases

almost linearly.

Table 2: Model of Routers

Ports 2 3 4 5 6 7 8

rd (ns) 0.599 0.662 0.709 0.756 0.788 0.819 0.835

3.2. Flow Control Model

Our objective is to choose source rates (IP loads) of
BE traffics so that to minimize the sum of delays of all
BE traffics. Hence the minimization problem can be
formulated as:

1

min
s

L

lx
l

D
�
� (3)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
� �

� � � �� � (4)

BE

s
s S

x f
�

	� (5)

0 s BEx s S
 � �
where source rates, i.e. sx , s S� , are optimization

variables.

Regarding (2), we rewrite (3) as below:

1 ()

min ()
s

BE

L

s lx
l s S l

x d
� �
� � (6)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
� �

� � � �� � (7)

BE

s
s S

x f
�

	� (8)

0 s BEx s S
 � �
The constraint (7) says that the aggregate BE source

rates passing thorough link l cannot exceed its free
capacity, i.e. the portion of the link capacity which has
not been allocated to GS sources. The constraint (8)
says that the sum of BE source rates must be at least f .
For notational convenience, we define:

()

ˆ
GS

l l s
s S l

c c x
�

� � � (9)

Hence, (7) can be rewritten as:

()

ˆ
BE

s l
s S l

x c l L
�

� � �� (10)

Although problem (6) can be separated across sources,
its constraints will remain coupled across the network.

Due to coupled nature of such constrained problems,
they have to be solved using centralized methods like
interior point methods [13]. Such computations may
pose great overheads on the system. Instead of such
methods, we seek to obtain the solution with simpler
operations. One way is to use the Projected Gradient
Method for constrained optimization problems [13]
which will be briefly reviewed in the next section.

For notational convenience in solving the problem,
we use matrix notation. In this respect, we define
Routing matrix, i.e. []ls L SR R �� , as following:

1 if ()

0 otherwise

BE

ls

s S l
R

� �

� �

�
 (11)

We also define the source rate vector (for BE traffic),
link delay and link capacity vectors as

(,)s BEx x s S� � , (,)ld d l L� � and ˆ ˆ(,)lc c l L� � ,

respectively. Therefore problem (6) can be rewritten in
the matrix form as follows:

min
s

T

x
d Rx (12)

subject to:
ˆ Rx c� (13)

T x f	1 (14)
0 s BEx s S
 � �

where 1 is a vector with all one.

4. Congestion Control Algorithm

In this section, we will solve the optimization
problem using Projected Gradient Method for
constrained problems [13][14] and present a
congestion control scheme for BE traffic in NoC
systems to overcome the congestion.

The Projected Gradient Method for constrained
minimization problems is very similar to the original
one which only applies to unconstrained ones [13]. We
briefly review this method in the following.
Consider the constrained minimization problem

min ()ox
f x (15)

subject to:
() 0, 1..if x i m� � (16)

in which : n
if R R� are convex functions.

In order to solve (15) iteratively, we define the
following minimizing sequence

(1) () ()k k k
kx x g�� � � (17)

where

193193193

95

()
() () 0, 1,...,

(()) () 0

o jk

j j

f x f x i m
g

f x t f x

�� � �

� �
�

�
(18)

and k� is the step size which satisfies:

0k�
 (19)

0k� � (20)

1
k

k

�
�

�

� �� (21)

To quantify the performance of the method we define

� �() ()min () , 1,...,k i i
best of f x x feasible i k� �

The following lemma, states the conditions on g
under which the minimizing sequence (17) converges
to the optimal point of (15), i.e. *k

bestf f� and
*kx x� as k � � .

Lemma 1: Consider the constrained minimization
problem, as in (15). The minimizing sequence defined
by (17) and (18) with the stepsize satisfying (19)-(21),
converges to the optimal point of (15), i.e. *x , if the
following conditions hold

()

2

kg G� (22)

(1) *

2
x x E� � (23)

Proof: See [14].
In the sequel, we will solve the optimization

problem (12) using Projected Gradient Method for
constrained problems as stated in Lemma 1. Regarding
(17), we have to calculate ()kg . According to (18), if

()kx is feasible, i.e. ˆRx c� and T x f	1 , we have:

T T Tg d Rx R dx R d� � � � � (24)

otherwise at least one of the constraints must be
violated. Assume link capacity constraint is violated
for link 'l , i.e. '

'()

ˆ
BE

s l
s S l

x c
�

� . Rewriting this in matrix

form, yields:

' ˆ()T
l
Rx c�
e 0 (25)

where 'l
e is the 'l th unit vector of LR space which is

zero in all entries except the 'l th at which it is 1.
Therefore, g is given by:

' 'ˆ()T T
l l

g Rx c R� � � �e e (26)

Assuming that link capacity constraints are being
satisfied, the sum-rate constraint is violated, i.e.

T x f�1 , or equivalently in the standard form as in

(16), 0Tf x�
1 . Therefore g is given by:

T Tg x x� �� � �� � �1 1 1 (27)

Using (24), (26) and (27), the update equation to
solve problem (12) is given by:

(1) () ()k k k
s s kx x g�

�� � �� �� �� � (28)

where � � max{ ,0}z z� � to satisfy non-negativity of

source rate and ()kg is given by:

' '

'

()

() '

()

ˆ () , and

ˆ () ,

BE

BE

T T
s l

s S l

k T
sl l

s S l

T

R d x t c l x f

g R e x t c l

x f

�

�

�
 � � 	

�
 ��

� �

�

�

�

1

1 1

 (29)

(28) and (29) together propose an iterative
algorithm as the solution to problem (12). In this
respect, optimal source rates for BE sources can be
found while satisfying capacity constraints and
preserving GS traffic requirements. Thus, the
aforementioned algorithm can be employed to control
the congestion of the BE traffic in the NoC. The
iterative algorithm is decentralized in the nature and
can be addressed in distributed scenarios. However,
due to well-formed structure of the NoC, we focus on a
centralized scheme; we consider a controller to be
mounted in the NoC to implement the proposed
algorithm. The necessary requirement of such a
controller is the ability to accommodate simple
mathematical operations as in (28) and (29) and the
allocation of few wires to communicate congestion
control information to nodes with a light GS load.
Algorithmic realization of proposed Congestion-
Controller for BE traffic is listed below as Algorithm
1.

5. Convergence Analysis

In this section, we investigate the convergence
analysis of the proposed algorithm using a time-
varying stepsize in (28). As stated in the previous
section, in this paper the stepsize is selected as (19)-
(21).

Theorem 1: The iterative congestion control scheme
proposed by (28) and (29) with a time-varying stepsize
which satisfies (19)-(21), will converge to the optimal
point of problem (6).

194194194

96

Proof: By lemma 1, it is clear that if its assumptions
hold, the proof of Theorem is done. In this respect, ()kg
should admit an upper bound in 2l -norm. In doing so,

it suffices to show that its gradient is upper bounded in
2l -norm. Considering (29), we have

'
()

2 2 22
max{ , , }

k T T
l

g R d R

S

� �

�

1 e
 (30)

Hence g in 2l -norm is bounded at least with S .

In the next step, we show that the Euclidian distance
of the initial point to the optimal point is bounded at
least with D , i.e.

*

2
0 s.t. (1)D x x D�
 � � (31)

We have 0, s BEx s S
 � � . On the other hand,

optimal source rates are bounded at most with
maximum value of link capacities, i.e.

* ˆmax max maxs l ls l l
x c c� � (32)

Therefore,

* *

2 2
(1) max min (1)x x x x� � �

2
 max 0ll

c� �

max lLc� (33)

Hence the initial Euclidian distance is bounded with
at least maxlLc . (30) and (33) complete the proof.

6. Simulation Results

In this section we examine the proposed congestion
control algorithm, listed above as Algorithm 1, for a
typical NoC architecture. We have simulated a NoC
with 4 4� Mesh topology which consists of 16 nodes
communicating using 24 shared bidirectional links;
each one has a fixed capacity of 1 Gbps. In our
scenario, packets traverse the network on a shortest
path using a deadlock free XY routing. We also
assume that each packet consists of 500 flits and each
flit is 16 bit long.

One of the most significant issues of our interest, is
the convergence behavior of the source rates. The step
size is chosen to be 3 (1)k k� � � which apparently

satisfies (19)-(21). Variation of source rates for some
nodes using above parameters are shown in Fig. 1.

Regarding Fig. 1, it’s apparent that after about 270
iteration steps, all source rates will be in the vicinity of
the steady state point of the algorithm; however, for the
second case, at least 600 iteration steps is needed that

Algorithm 1: Congestion Control for BE
Traffics in NoC

Initialization:
1. Initialize l̂c of all links.

2. Set source rate vector to zero.
Loop:

Do until (1) ()(max)k k
s sx x Error� � �

1. s S� � : Compute new source rate:

(1) () ()k k k
s s kx x g�

�� � �� �� �� �

where k� can be selected as � k
a
b t� � � and

' '

'

()

() '

()

ˆ () , 1

ˆ () ,

1 1

BE

BE

T T
s l

s S l

k T
sl l

s S l

T

R d x t c l and x f

g R e x t c l

x f

�

�

�
 � � 	

�
 ��

� �

�

�

�

Output:

Communicate BE source rates to the corresponding
nodes.

after which the source rates to be in the vicinity of the
steady state point.

In order to have a better insight about the algorithm
behavior, the relative error with respect to optimal rates
which averaged over all sources, is also shown in Fig.
2. Optimal source rates are obtained using CVX [15]
which is MATLAB-based software for solving
disciplined convex optimization problems. As shown
in Fig. 2, it is clear that after about 380 steps, the
average of relative error of all sources falls below 20%,
which is acceptable in practice. Thus, the proposed
congestion control algorithm is computationally
tractable.

Our final result is devoted to investigate the
performance of algorithm 1 in terms of sum of delay in
the network. In this respect, we have calculated sum of
the delay for two cases; using Algorithm 1 and using
uniform rate allocation. The result is depicted in Fig. 3.
As a comparison, we conclude that the delay-sum is
reduced at least by a factor of two which verifies the
aim of the underlying optimization problem in source
assignment in terms of delay-sum reduction.

7. Conclusion and Future Works

In this paper we addressed the problem of
congestion control for BE traffic in NoC systems.
Congestion control was modeled as the solution to the
delay-sum minimization problem which was solved
using gradient projection method for constrained

195195195

97

Fig. 1. Source rates for 3 (1)k k� � �

Fig. 2. Average of Error with respect to optimal solution
for 3 (1)k k� � �

Fig. 3. Delay-Sum Comparison between proposed rate
allocation and uniform rate allocation

optimization problems. This was led to an iterative
algorithm which determine optimal BE source rates.
We have also studied the realization of the algorithm as
a centralized congestion controller. Simulation results
confirm that the proposed algorithm converges and the
computational overhead of the congestion control
algorithm is small.

8. References

[1] L. Benini and G. DeMicheli, “Networks on Chips: A
New SoC Paradigm.” Computer, vol. 35, no. 1, pp.
70-78, 2002.

[2] F. P. Kelly, A. Maulloo and D. Tan, “Rate control for
communication networks: Shadow prices, proportional
fairness, and stability.” Operational Research Society,
vol. 49, no. 3, pp. 237–252, 1998.

[3] S. Mascolo. “Classical control theory for congestion
avoidance in high-speed internet.” Decision and
Control IEEE Conference, vol. 3, pp. 2709-2714, 1999.

[4] Y. Gu, H. O. Wang and L.G. Yiguang Hong
Bushnell, “A predictive congestion control algorithm
for high speed communication networks.” American
Control Conference, vol. 5, pp. 3779-3780, 2001.

[5] C. Yang and A. V. S. Reddy, “A taxonomy for
congestion control algorithms in packet switching
networks.” IEEE Network, vol. 9, no. 4, pp. 34-45,
1995.

[6] U. Y. Ogras and R. Marculescu, “Prediction-based flow
control for network-on-chip traffic.” In Proceedings of
the Design Automation Conference, 2006.

[7] J. W. van den Brand, C. Ciordas, K. Goossensl and T.
Basten, “Congestion-Controlled Best-Effort
Communication for Networks-on-Chip.” Design,
Automation and Test in Europe Conference, pp. 948-
953, 2007.

[8] J. Hu and R. Marculescu, “DyAD - smart routing for
networks-on-chip.” Design Automation Conference,
pp. 260- 263, 2004.

[9] S. H. Low, D. E. Lapsley, “Optimization Flow Control,
I: Basic Algorithm and Convergence”, IEEE/ACM
Transactions on Networking, vol. 7, no. 6, pp. 861-874,
1999.

[10] Y. Hu, Y. Zhu, H. Chen, R. Graham and C. K. Cheng,
“Communication latency aware low power NoC
synthesis.” Annual ACM IEEE Design Automation
Conference, pp. 574 – 579, 2006.

[11] H. Chen, R. Shi, C.K. Cheng, and D. Harris, “Suriner:
A Distortionless Electrical Signaling Scheme for Speed
of Light On-Chip Communications.” IEEE Intl. Conf.
on Computer Design, pp.497-502, 2005.

[12] L.S. Peh, “Flow Control and Micro-Architectural
Mechanisms for Extending the Performance of
Interconnection Networks.” Ph.D. Thesis, Stanford
University, 2001.

[13] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.

[14] S. Boyd, Convex Optimization II Lecture Notes,
Stanford University, 2006.

[15] M. Grant, S. Boyd and Y. Ye, CVX (Ver. 1.0RC3):
Matlab Software for Disciplined Convex Programming.
Download available at:
http://www.stanford.edu/~boyd/cvx.

196196196

98

Paper 5

Max-Min-Fair Best Effort Flow
Control in Network-on-Chip
Architectures

F. Jafari
M. H. Yaghmaee
M. S. Talebi
A. Khonsari

In the Proceedings of the International Conference on Com-
putational Science (ICCS), Part I, LNCS 5101, pp. 436-
445, Krakow, Poland, June 2008.

99

M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 436–445, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Max-Min-Fair Best Effort Flow Control in
Network-on-Chip Architectures

Fahimeh Jafari1,2, Mohammad H. Yaghmaee1, Mohammad S. Talebi2,
and Ahmad Khonsari3,2

1 Ferdowsi University of Mashhad, Mashhad, Iran
2 IPM, School of Computer, Tehran, Iran

3 ECE Department, University of Tehran, Tehran, Iran
{jafari,ak}@ipm.ir, hyaghmae@ferdowsi.um.ac.ir,

mstalebi@gmail.com

Abstract. Network-on-Chip (NoC) has been proposed as an attractive alterna-
tive to traditional dedicated busses in order to achieve modularity and high per-
formance in the future System-on-Chip (SoC) designs. Recently, end to end
flow control has gained popularity in the design process of network-on-chip
based SoCs. Where flow control is employed, fairness issues need to be consid-
ered as well. In fact, one of most difficult aspects of flow control is that of treat-
ing all sources fairly when it is necessary to turn traffic away from the network.
In this paper, we proposed a flow control scheme which admits Max-Min fair-
ness criterion for all sources. In fact, we formulated Max-Min fairness criterion
for the NoC architecture and presented implementation to be used as flow con-
trol mechanism.

Keywords: Network-on-Chip, flow control, Max-Min fairness.

1 Introduction

Network-on-Chip (NoC) is a new paradigm structure for designing future System-on-
Chips (SoC) [1]. A typical NoC architecture provides a scalable communication infra-
structure for interconnecting cores. Since the communication infrastructure as well as
the cores from one design can be easily reused for a new product, NoC provides
maximum possibility for reusability.

NoCs with their flexible and scalable interconnect provide high computational power
to support computationally extensive multimedia applications, i.e. those that combine
audio, video and data. In contrast to simple data applications, which can work without
guarantees of timing of data delivery, multimedia applications require a guaranteed
degree of service in terms of required bandwidth and timelines. According to the net-
working terminology, we refer to the traffic of simple data as elastic or Best Effort (BE)
traffic and to multimedia traffic as inelastic or Guaranteed Service (GS) traffic.

Due to the rapid growth of the number of processing elements (PEs) in NoCs [2],
employing efficient policy for flow control is inevitable in the design of NoCs to

101

 Max-Min-Fair Best Effort Flow Control in Network-on-Chip Architectures 437

provide the required Quality of Service (QoS). A NoC should support network level
flow control in order to avoid congestion in the bottleneck links, i.e. link through
which several sources pass [3]. The design and control of NoCs raises several issues
well suited to study using techniques of operational research such as optimization and
stochastic modeling. Recently, some novel researches have been embarked in study-
ing congestion control in NoCs [4-5]. Congestion control schemes in NoCs mainly
focus on utilizing NoC’s resources, with the aim of minimizing network cost or
maximizing network utility while maintaining the required QoS for Guaranteed Ser-
vice traffics.

Many strategies for flow control have been proposed for off-chip networks, e.g.
data networks, etc. [6-9]. On-chip networks pose different challenges. For instance, in
off-chip environments, to overcome congestion in links, packet dropping is allowed.
On the contrary, reliability of on-chip wires makes NoCs a loss-less environment.

So far, several works have addressed this problem for NoC systems. In [4], a pre-
diction-based flow-control strategy for on-off traffic in on-chip networks is proposed
where the prediction is used in router to be aware of buffer fillings. In [5] a flow-
control scheme for Best Effort traffic based on Model Predictive Control is presented,
in which link utilization is used as congestion measure. Dyad [10] controls the con-
gestion by switching from deterministic to adaptive routing when system is going to
be congested. [11] proposes a flow control scheme as the solution to rate-sum maxi-
mization problem for choosing the BE source rates. The solution to the rate-sum op-
timization problem is presented as a flow control algorithm.

Where flow control is employed, fairness issues need to be considered as well [3].
In fact, one of most difficult aspects of flow control is to choose a policy to accom-
modate a fair rate allocation. All of the abovementioned studies only regarded the
flow control by taking into account the constraints of the system and to the best of our
knowledge no policy to maintain fairness among sources was chosen.

The fairness of TCP-based flow control algorithms was first analyzed in [12]. The
analysis in [12] was based on a single bottleneck link. Different flow control ap-
proaches can be classified with respect to the fairness criteria, in favor of which rate
allocation is done. One of the famous forms of fairness criterion is Max-Min fair-
ness, which has been discussed in earlier literature and described clearly in [13]. Our
main contribution in this paper is to present a flow control scheme for Best Effort
traffic in NoC which satisfies Max-Min fairness criterion. Our framework is mainly
adopted from the seminal work [13] which presents a basic Max-Min fairness
optimization problem. In this paper, we reformulate such a problem for the NoC
architecture.

The organization of the paper is as follows. In Section 2 we present the system
model, the concept of Max-Min fairness and formulation of the flow control as an
optimization problem. In section 3 we present an iterative algorithm as the solution to
the flow control optimization problem. Section 4 presents the simulation results and
discussion about them. Finally, the section 5 concludes the paper and states some
future work directions.

102

438 F. Jafari et al.

2 System Model

We consider a NoC with two dimensional mesh topology, a set S of sources and a set
L of bidirectional links. Let lc be the finite capacity of link l L∈ . The NoC assumed

to use wormhole routing. In wormhole-routed networks, each packet is divided into a
sequence of flits which are transmitted over physical links one by one in a pipeline
fashion. The NoC architecture is also assumed to be lossless, and packets traverse the
network on a shortest path using a deadlock free XY routing. A source consists of
Processing Elements (PEs), routers and Input/Output ports. Each link is a set of wires,
busses and channels that are responsible for connecting different parts of the NoC.
We denote the set of sources that share link l by ()S l . Similarly, the set of links that

source s passes through is denoted by ()L s . By definition, ()l S l∈ if and only

if ()s L s∈ .

We assume that there are two types of traffic in the NoC: GS and BE traffic. For
notational convenience, we divide S into two parts, each one representing sources
with the same kind of traffic. In this respect, we denote the set of sources with BE and
GS traffic by BES and GSS , respectively. Each link l is shared between the two

aforementioned traffics. GS sources will obtain the required amount of the capacity of
links and the remainder should be allocated to BE sources.

2.1 Max-Min Fairness Concept

Any discussion of the performance of a rate allocation scheme must address the issue
of fairness, since there exist situations where a given scheme might maximize net-
work throughput, for example, while denying access for some users or sources. Max-
Min fairness is one the significant fairness criteria. Crudely speaking, a set of rates is
max-min fair if no rate can be increased without simultaneously decreasing another
rate which is already smaller. In a network with a single bottleneck link, max-min
fairness simply means that flows passing through the bottleneck link would have
equal rates.

The following definition states the formal definition of Max-Min fairness.

Defination 1. A feasible rate allocation (,)sx x s S= ∈ is said to be “max-min fair”

if and only if an increase of any rate within the domain of feasible allocations must
be at the cost of a decrease of some already smaller rate. Formally, for any other
feasible allocationy , if s sy x> then there must exist some s ′ such that

ssx x′ ≤ and s sy x′ ′< [13].

Depending on the network topology, a max-min fair allocation may or may not exist.
However, if it exists, it is unique (see [14] for proof).

In what follows the condition under which the Max-Min rate allocation exists will
be stated. Before we proceed to this condition, we define the concept of bottleneck
link.

103

 Max-Min-Fair Best Effort Flow Control in Network-on-Chip Architectures 439

Defination 2. With our system model above, we say that link l is a bottleneck for
source s if and only if

 1. link l is saturated:
() ()BE GS

s s l
s S l s S l

x x c
∈ ∈

+ =∑ ∑

 2. source s on link l has the maximum rate among all sources using link l.

Intuitively, a bottleneck link for source s is a link which limits sx .

Theorem 1. A max-min fair rate allocation exists if and only if every source has a
bottleneck link (see [14] for proof).

2.2 Flow Control Model

Our focus will be on two objectives. First, choosing source rates (IP loads) of BE
traffics so that to accomplish flow control in response to demands at a reasonable
level. Second, maintaining Max-Min fairness for all sources. We model the flow
control problem in NoC as the solution to an optimization problem. For more
convenience, we turn the aforementioned NoC architecture into a mathematical
model as in [5]. In this respect, the Max-Min fairness flow control problem can be
formulated as:

max min sx s S
x

∈
 (1)

 subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (2)

0 s BEx s S> ∀ ∈ (3)
where source rates, i.e. sx , s S∈ , are optimization variables.

The constraint (2) says the aggregate BE source rates passing thorough link l can-
not exceed its free capacity, i.e. the portion of the link capacity which has not been
allocated to GS sources. For notational convenience, we define

min ss S
u x

∈
=

()

ˆ
GS

l l s
s S l

c c x
∈

= − ∑ ,

therefore the above mentioned problem can be rewritten as:

min ss S
u x

∈
= (4)

max u (5)

subject to:

()

ˆ
BE

s l
s S l

x c l L
∈

≤ ∀ ∈∑ (6)

0 s BEx s S> ∀ ∈ (7)

104

440 F. Jafari et al.

To solve the above problem, it should be converted so as to be in the form of disci-
plined optimization problems [15] as follows:

maxu (8)

subject to:

 su x s S≤ ∀ ∈ (9)

()

ˆ
BE

s l
s S l

x c l L
∈

≤ ∀ ∈∑ (10)

0 s BEx s S> ∀ ∈ (11)

The above optimization problem can be solved using several methods. In the next
section, we introduce a simple and famous algorithm, known as “progressive filling”,
to solve (8) iteratively.

In order to compare the results of progressive filling algorithm with the exact val-
ues, we solve problem (8) using CVX [16] which is a MATLAB-based software for
disciplined convex optimization problems, whose results will be given in section 4.

3 Max-Min Fairness Algorithm

Theorem 1 is particularly useful in deriving a practical method for obtaining a max-
min fair allocation, called “progressive filling”. The idea is as follows: rates of all
flows are increased at the same pace, until one or more links are saturated. The rates
of flows passing through saturated links are then frozen, and the other flows continue
to increase rates. All the sources that are frozen have a bottleneck link. This is be-
cause they use a saturated link, and all other sources using the saturated link are fro-
zen at the same time, or were frozen before, thus have a smaller or equal rate. The
process is repeated until all rates are frozen. Lastly, when the process terminates, all
sources have been frozen at some time and thus have a bottleneck link. Using Theo-
rem 1, the allocation is max-min fair.

Theorem 2. For the system model defined above, with fixed routing policy, there
exists a unique max-min fair allocation. It can be obtained by the progressive filling
algorithm. (see [14] for proof)

In the sequel, we derive the max-min rate allocation as the solution to problem (8) and
based on this algorithmic solution, we present a flow control scheme for BE traffic in
NoC systems.

Thus, the aforementioned algorithm can be employed to control the flow of BE
traffic in the NoC. The iterative algorithm can be addressed in distributed scenario.
However, due to well-formed structure of the NoC, we focus on a centralized scheme;
we use a controller like [5] to be mounted in the NoC to implement the above algo-
rithm. The necessary requirement of such a controller is the ability to accommodate
simple mathematical operations and the allocation of few wires to communicate flow
control information to nodes with a light GS load.

105

 Max-Min-Fair Best Effort Flow Control in Network-on-Chip Architectures 441

Algorithm 1. Max-Min Fair (MMF) Flow Control Algorithm for
BE in NoC.

Initialization:
1. Initialize l̂c of all links.

2. Define:
a. T as the set of sources not passing through any satu-

rated link.
b. B as the set of saturated links.

c. B L B= − and BET S T= − .

3. Set source rate vector to zero.
4. Initialize BET S= and B =∅ .

Loop:

Do until (T = ∅)

1. min ()s l ls s lsl B
s T s T

c R x t R
∈

∈ ∈

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟Δ = −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎣ ⎦
∑ ∑

2. (1) () s s sx t x t s T+ = +Δ ∀ ∈

3. Calculate new bottleneck links and update B and B .

4. s T∀ ∈ ; if s passes through any saturated link then
{ }T T s⇐ −

Output:
Communicate BE source rates to the corresponding nodes.

4 Simulation Results

In this section we examine the proposed flow control algorithm, listed above as Algo-
rithm 1, for a typical NoC architecture. We have simulated a NoC with 4 4× Mesh
topology which consists of 16 nodes communicating using 24 shared bidirectional
links, each one has a fixed capacity of 1 Gbps. In our scenario, packets traverse the
network on a shortest path using a deadlock free XY routing. We also assume that
each packet consists of 500 flits and each flit is 16 bit long.

In order to simulate our scheme, some nodes are considered to have a GS data,
such as Multimedia, etc., to be sent to a destination while other nodes, which maybe
in the set of nodes with GS traffic, have a BE traffic to be sent. As stated in section 2,
GS sources will obtain the required amount of the capacity of links and the remainder
should be allocated to BE traffics.

We are mainly interested in investigating the fairness properties among source
rates. In order to investigate the rate allocation in the optimal sense, we solved
problem (8) using CVX [16], which is a MATLAB-based software for disciplined

106

442 F. Jafari et al.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 1. Network topology

convex optimization problems. Optimal source rates, obtained by CVX, are shown
in Fig. 2.

Source rates obtained from Algorithm 1 is depicted in Fig. 3. The main feature re-
garding Fig. 1 and Fig. 2 is that both yield equal values for the minimum source rate,
i.e. 0.03 Gbps. The main difference is in the aggregate source rate which is greater for
the result of Algorithm 1.

In order to compare the results of the proposed Max-Min fair flow control with
other fairness criteria, we have accomplished rate allocation based on maximizing the
sum of source rates, i.e. the so-called Rate-Sum Maximization, whose results are
depicted in Fig. 4. Comparing Fig. 3 with Fig. 4, it's apparent that although Rate-Sum
criterion aims at maximizing the sum of source rates, there is no guarantee for the
rates of weak sources, i.e. sources which achieve very small rate. Indeed, in many
scenarios with Rate-Sum criterion, such sources will earn as small as zero.

To compare the results of the three above mentioned schemes in more detail,
we have considered five parameters featuring the merit of the different schemes as
following:

1. least source rate
2. sum of source rates
3. Variance of source rates with respect to mean value.
4. Jain’s fairness Index [17]
5. min-max ratio [17]

These parameters are presented in Table 1. Jain’s fairness Index and max-min ra-
tio, are defined by (12) and (13), respectively.

()
2

1

2

1

Jain's Fairness Index

S

ss

S

ss

x

S x

=

=

=
∑
∑

 (12)

min
Min-Max Ratio

max

ss S

ss S

x

x
∈

∈

= (13)

107

 Max-Min-Fair Best Effort Flow Control in Network-on-Chip Architectures 443

From table 1 we realize that rate allocation with Maximum Rate-Sum criteria, yield
slightly greater rate-sum from Max-Min Fair criteria, i.e. Algorithm 1. However, as
discussed above, Algorithm 1 guarantees that the rate allocation is max-min fair, and
hence the minimum source rate wouldn’t be greater with any other feasible rate allo-
cation and hence rate allocation is carried out in favor of weak sources. On the con-
trary, Maximum Rate-Sum has no guarantee on such sources and as a result, the
weakest source, has achieved his rate as low as zero. Another point which is worth
mentioning is that similarity of the rate allocation to uniform rate allocation is further
in the Max-Min scheme. To be more precise, we have calculated the variance of
source rates in with respect to mean value of source rates in equilibrium. Table 1
shows that the variance of Max-Min rate allocation, obtained from Algorithm 1, is
evidently less than that of Maximum Rate-Sum scheme, which in turn implies the
inherent fairness in the Max-Min rate allocation.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sources

S
o

u
rc

e
R

at
e

(x
10

8 b
p

s)

Fig. 2. Rate allocation using CVX results

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sources

S
o

u
rc

e
R

at
e

(x
10

8 b
p

s)

Fig. 3. Rate allocation using Algorithm 1

108

444 F. Jafari et al.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sources

S
o

u
rc

e
R

at
e

(x
10

8 b
p

s)

Fig. 4. Rate allocation using Rate-Sum Maximization

Table 1. Quantitative comparison between different rate allocation schemes

Least Rate
(810× bps)

Sum of Source
Rates (810× bps)

Variance Fairness
Index

Min-max
Ratio

Max-Min Fair
(Mathematical

Model)
0.310 10.079 0.1558

0.7181

0.1856

Max-Min Fair
(Algorithm 1) 0.310 13.545 0.5004 0.5888 0.1148

Maximum Rate-
Sum 0 15.349 1.1974 0.4346 0

5 Conclusion

In this paper we addressed the flow control problem for BE traffic in NoC systems.
We considered two objectives. First, choosing source rates (IP loads) of BE traffics so
that to accomplish flow control in response to demands at a reasonable level. Second,
maintaining Max-Min fairness for all sources. Flow control was modeled as the solu-
tion to a simple algorithmic solution to an optimization problem. The algorithm can
be implemented by a controller which admits a light communication and communica-
tion overhead. Finally, we compared the results of the proposed Max-Min fair flow
control with Rate-Sum Maximization scheme based on several criteria such as Jain’s
fairness index, max-min ratio, and etc. comparison shows using the proposed flow
control scheme, rate allocation has larger fairness index, which denotes that the aim of
the proposed flow control scheme is to allocate NoC resources in a fair manner.

References

1. Benini, L., DeMicheli, G.: Networks on Chips: A New SoC Paradigm. Computer Maga-
zine of the IEEE Computer Society 35(1), 70–78 (2002)

2. Dally, W.J., Towles, B.: Route Packets, Not Wires: On-Chip Interconnection Networks.
In: Design Automation Conference, pp. 684–689 (2001)

109

 Max-Min-Fair Best Effort Flow Control in Network-on-Chip Architectures 445

3. Cidon, I., Keidar, I.: Zooming in on Network on Chip Architectures. Technion Department
of Electrical Engineering (2005)

4. Ogras, U.Y., Marculescu, R.: Prediction-based flow control for network-on-chip traffic. In:
Proceedings of the Design Automation Conference (2006)

5. van den Brand, J.W., Ciordas, C., Goossens, K., Basten, T.: Congestion- Controlled Best-
Effort Communication for Networks-on-Chip. In: Design, Automation and Test in Europe
Conference and Exhibition, pp. 948–953 (2007)

6. Kelly, F.P., Maulloo, A., Tan, D.: Rate control for communication networks: Shadow
prices, proportional fairness, and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

7. Mascolo, S.: Classical control theory for congestion avoidance in high-speed internet. In:
Decision and Control IEEE Conference, vol. 3, pp. 2709–2714 (1999)

8. Gu, Y., Wang, H.O., Hong, Y., Bushnell, L.G.: A predictive congestion control algorithm
for high speed communication networks. In: American Control Conference, vol. 5, pp.
3779–3780 (2001)

9. Yang, C., Reddy, A.V.S.: A taxonomy for congestion control algorithms in packet switch-
ing networks. J. IEEE Network 9(4), 34–45 (1995)

10. Hu, J., Marculescu, R.: DyAD - smart routing for networks-on-chip. In: Design Automa-
tion Conference, pp. 260–263 (2004)

11. Talebi, M.S., Jafari, F., Khonsari, A., Yaghmae, M.H.: A Novel Congestion Control
Scheme for Elastic Flows in Network-on-Chip Based on Sum-Rate Optimization. In: In-
ternational Conference on Computational Science and its Applications, pp. 398–409
(2007)

12. Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. J. Computer Networks and ISDN Systems 17(1), 1–14
(1989)

13. Bertsekas, D.P., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)
14. Le Boudec, J.Y.: Rate adaptation, Congestion Control and Fairness: A Tutorial. Ecole

Polytechnique Fédérale de Lausanne (EPFL) (2001)
15. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)
16. Grant, M., Boyd, S., Ye, Y.: CVX (Ver. 1.0RC3): Matlab Software for Disciplined Convex

Programming, \url{http://www.stanford.edu/boyd/cvx}
17. Jain, R., Chiu, D., Hawe, W.: A Quantitative Measure of Fairness and Discrimination for

Resource Allocation in Shared Computer Systems. DEC Research Report TR-301 (1984)

110

Paper 6

A Novel Flow Control Scheme for
Best Effort Traffics in
Network-on-Chip Based on
Weighted Max-Min-Fairness

F. Jafari
M. H. Yaghmaee

In the Proceedings of International Symposium on Telecom-
munications (IST), pp. 458-463, Tehran, Iran, August 2008.

111

A Novel Flow Control Scheme for Best Effort
Traffics in Network-on-Chip Based on Weighted

Max-Min-Fairness
Fahimeh Jafari, Mohammad H. Yaghmaee

Ferdowsi University of Mashhad
Mashhad, Iran

fjafari@wali.um.ac.ir, hyaghmae@ferdowsi.um.ac.ir

Abstract- Network on Chip (NoC) has been proposed as an

attractive alternative to traditional dedicated busses in order to
achieve modularity and high performance in the future
System-on-Chip (SoC) designs. Recently, end to end flow
control has gained popularity in the design process of network-
on-chip based SoCs. Where flow control is employed, fairness
issues need to be considered as well. In fact, one of most
difficult aspects of flow control is that of treating all sources
fairly when it is necessary to turn traffic away from the
network. In this paper, we propose a flow control scheme
which admits Max-Min fairness criterion for all sources. In
fact, we formulate Weighted Max-Min fairness criterion for
the NoC architecture and presente implementation to be used
as flow control mechanism.

Keywords: Network on Chip; flow control; Weighted Max-Min
fairness.

I. INTRODUCTION
The high level of system integration characterizing Multi-

Processor Systems on Chip (MPSoCs) is raising the
scalability issue for communication architectures. The
problems emanating from the scalability issue in the
MPSoCs have been remedied by the emergence of Network-
on Chip (NoC) architectures [1]. Due to the rapid growth of
the number of processing elements in NoCs [2], employing
efficient policies for flow control has become an inevitable
subject in the design of NoCs to provide the required
Quality of Service (QoS). A NoC must have network level
flow control in order to avoid congestion in the bottleneck
links.

Recently, QoS provisioning in NoC’s environment has
attracted many researchers and currently is the focus of
many literatures in NoC research community. NoCs are
expected to serve as multimedia servers and are required to
carry both Best Effort (BE) and Guaranteed Service (GS)
traffics. It’s trivial that such a networked architecture with
data services should have some policies to avoid congestion.
Congestion Control in data networks is known as a widely-
studied issue over the past two decades. However, it is still a
novel issue in NoC and to the best of our knowledge only a
few works have been carried out in this field.

Many strategies for flow control have been proposed for
off-chip networks, e.g. data networks, etc. [3-5]. On-chip
networks pose different challenges. For instance, in off-chip
environments, to overcome congestion in links, packet
dropping is allowed. On the contrary, reliability of on-chip
wires makes NoCs a loss-less environment.

So far, several works have focused on this issue for NoC
architectures. In [6], a prediction-based flow-control
strategy for on-chip networks has been proposed in which
each router predicts the buffer occupancy to sense
congestion. In [7] link utilization is used as a congestion
measure and a Model Prediction-based Controller (MPC),
determines source rates. Dyad [8] controls the congestion by
using adaptive routing when the NoC faces congestion.

Where flow control is employed, fairness issues need to
be considered as well [9]. In fact, one of the most difficult
aspects of flow control is to choose a policy to
accommodate a fair rate allocation. All of the
abovementioned studies only regarded the flow control by
taking into account the constraints of the system. To the best
of our knowledge no policy to maintain fairness among
sources has been chosen.

Different flow control approaches can be classified with
respect to the fairness criteria, in favor of which rate
allocation is done. One of the famous forms of fairness
criterion is Max-Min fairness, which has been discussed in
earlier literature and described clearly in [10]. Our main
contribution in this paper is to present a flow control scheme
for Best Effort traffic in NoC which satisfies Weighted
Max-Min fairness criterion through the analysis of
mathematical model and simulation. Our framework is
mainly adopted from the seminal work [10] which presents a
basic Max-Min fairness. In this paper, we formulate
Weighted Max-Min problem for the NoC architecture.

The organization of the paper is as follows. In Section II
we present the system model and flow control problem. In
section III we present an iterative algorithm as the solution
to the flow control optimization problem. Section IV

2008 Internatioal Symposium on Telecommunications

978-1-4244-2751-2/08/$25.00 ©2008 IEEE 458

113

presents the simulation results and discussion about them.
Finally, section IV concludes the paper.

II. SYSTEM MODEL AND FLOW CONTROL PROBLEM
We consider a NoC architecture which is based on a two

dimensional mesh topology and wormhole routing. We also
assume that the NoC architecture is lossless, and packets
traverse the network on a shortest path using a deadlock free
XY routing [2].

We model the flow control in NoC as the solution to an
optimization problem. For the sake of convenience, we turn
the aforementioned NoC architecture into a mathematically
modeled network. In this respect, we consider NoC as a
network with a set of bidirectional links L and a set of
sourcesS . Each source s S∈ consists of processing
elements, routers and input/output ports. Each link l L∈ is
a set of wires, busses and channels that are responsible for
connecting different parts of the NoC and has a fixed
capacity of lc packets/sec. We denote the set of sources that
share link l by ()S l . Similarly, the set of links that source
s passes through, is denoted by ()L s . By definition,

()l L s∈ if and only if ∈ ()s S l .

As discussed in section 1, there are two types of traffic in
a NoC: Guaranteed Service (GS) and Best Effort (BE)
traffic. For notational convenience, we divide S into two
parts, each one representing sources with the same kind of
traffic. In this respect, we denote the set of sources with BE
and GS traffic by BES and GSS , respectively. Each link l is
shared between the two aforementioned traffics. GS sources
will obtain the required amount of the capacity of links and
BE sources benefit from the remainder.

Our objective is to choose source rates with BE traffic so
that to maximize the type of weighted α -Fair function in
whichα = ∞ . Weighted α -Fair function is define as below
[11]:

1

 1
(, ,) 1

ln 1

x
w

U x w
w x

α

α
α α

α

−⎧⎪⎪ ≠⎪⎪= −⎨⎪⎪ =⎪⎪⎩

 (1)

where 0α > is a parameter. Therefore we define our flow
control problem as below:

1

lim max
1s

s
sx

s

x
w

α

α α

−

→∞ −∑ (2)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (3)

0 s BEx s S> ∀ ∈ (4)

Optimization variables are BE source rates, i.e.
∈(,)s BEx s S . The constraint (3) states that the sum of BE

source rates passing thorough link l cannot exceed its free
capacity, i.e. the portion of lc which has not been allocated
to GS traffic.

Problem (2) is a convex optimization problem with linear
constraints. Hence it admits a unique maximizer [12].
Treating problem (2) using such an extreme case is not
disobedient. However, the following theorem states that it
can be reduced to a well-known type of disciplined
optimization problem known as Weighted Max-Min
problem. The following definition states the formal
definition of WMMF.

THEOREM 1: α -Fair maximization problem for α = ∞
reduces to weighted max-min optimization problem, as
below [11]:

max min s sx s S

w x
∈

 (5)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (6)

0 s BEx s S≥ ∀ ∈ (7)

For notational convenience, we define:

min s ss S
u w x

∈
=

()

ˆ
GS

l l s
s S l

c c x
∈

= − ∑

To solve the above problem, it should be converted so as
to be in the form of disciplined optimization problems [13]
as follows:

maxu (8)
subject to:

 s su w x s S≤ ∀ ∈ (9)

()

ˆ
BE

s l
s S l

x c l L
∈

≤ ∀ ∈∑ (10)

0 s BEx s S> ∀ ∈ (11)

Weighted Max-Min optimization problem is a widely-
studied problem formulation in the design of data networks.
Weighted Max-Min problem has an important property
which discriminates it from the others. The optimal solution
to the weighted max-min problem exists, a specific type of
fairness characteristic know as Weighted Max-Min Fairness
(WMMF) is admitted which will formally be defined in the
following.

 DEFINITION 1: (Weighted Max-Min Fairness [14]). Given
some positive constants iw (called the “weights”),

(,)sx x s S= ∈ is “Weighted-Max-Min Fair”, if and only if
increasing one component sx must be at the expense of
decreasing some other component tx such as
t s
t s

x x
w w≤ .

If we assume 1 sw s S= ∀ ∈ , WMMF will be known as
Max-Min Fairness (MMF) which will formally be defined in
the following.

DEFINITION 2: (Max-Min Fairness [14]). A feasible rate
allocation (,)sx x s S= ∈ is said to be “Max-Min Fair”
(MMF) if and only if an increase of any rate within the

459

114

domain of feasible allocations must be at the cost of a
decrease of some already smaller rate. Formally, for any
other feasible allocationy , if s sy x> then there must exist
somes ′ such that ssx x′ ≤ and s sy x′ ′< .

Depending on the network topology, a max-min fair
allocation may or may not exist. However, if it exists, it is
unique (see [14] for proof). In what follows the condition
under which the Max-Min rate allocation exists will be
stated. Before we proceed to this condition, we define the
concept of bottleneck link.

DEFINITION 3: (Bottleneck Link [14]), With our system
model above, we say that link l is a bottleneck for source s if
and only if

 1. link l is saturated:
() ()BE GS

s s l
s S l s S l

x x c
∈ ∈

+ =∑ ∑

 2. source s on link l has the maximum rate among all
sources using link l.

Intuitively, a bottleneck link for source s is a link which
limits sx .

THEOREM 2: A max-min fair rate allocation exists if and
only if every source has a bottleneck link.

Proof: See [14] for proof.

Any discussion of the performance of a rate allocation
scheme must address the issue of fairness, since there exist
situations where a given scheme might maximize network
throughput, for example, while denying access for some
users or sources. Max-Min fairness is one the significant
fairness criteria. Crudely speaking, a set of rates is max-min
fair if no rate can be increased without simultaneously
decreasing another rate which is already smaller. In a
network with a single bottleneck link, max-min fairness
simply means that flows passing through the bottleneck link
would have equal rates.

The most famous and simplest algorithm to solve the
max-min problem is the well-known Progressive Filling
Algorithm [10]. We would like to modify the progressive
filling algorithm as an iterative solution to the weighted
max-min problem (8) for our system model. We finally
would like to utilize it as BE flow control mechanism in
NoC. The modified version of the progressive filling as a
BE flow control mechanism is listed below as algorithm 1.

III. WEIGHTED MAX-MIN-FAIRNESS ALGORITHM

Theorem 2 is particularly useful in deriving a practical
method for obtaining a max-min fair allocation, called
“progressive filling”. The idea is as follows: rates of all
flows are increased at the same pace, until one or more links
are saturated. The rates of flows passing through saturated
links are then frozen, and the other flows continue to
increase rates. All the sources that are frozen have a
bottleneck link. This is because they use a saturated link,
and all other sources using the saturated link are frozen at
the same time, or were frozen before, thus have a smaller or
equal rate. The process is repeated until all rates are frozen.
Lastly, when the process terminates, all sources have been

Algorithm 1: Weighted Max-Min Fair (WMMF) Flow
Control Algorithm for BE in NoC

Initialization:
1. Initialize l̂c of all links.
2. Define:

a. T as the set of sources not passing through any
saturated link.

b. B as the set of saturated links.

3. Set source rate vector to zero.
4. Initialize BET S= and B = ∅ .

Loop:
Do until (T = ∅)

1.
()

()

min ()
BE

s l ls s s lsl L B
s S T s T

c R x t w R
∈ −

∈ − ∈

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜Δ = − ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑

2. (1) () s s s sx t x t w s T+ = + Δ ∀ ∈
3. Calculate new bottleneck links and update B .
4. s T∀ ∈ ; if s passes through any saturated link

then { }T T s⇐ −
Output:
Communicate BE source rates to the corresponding nodes.

frozen at some time and thus have a bottleneck link. Using
Theorem 2, the allocation is max-min fair.

In the sequel, we modify the progressive filling algorithm
as an iterative solution to the weighted max-min problem (8)
for our system model and based on this algorithmic solution,
we present a flow control scheme for BE traffic in NoC
systems.

Thus, the aforementioned algorithm can be employed to
control the flow of BE traffic in the NoC. The iterative
algorithm can be addressed in distributed scenario.
However, due to well-formed structure of the NoC, we focus
on a centralized scheme; we use a controller like [7] to be
mounted in the NoC to implement the above algorithm. The
necessary requirement of such a controller is the ability to
accommodate simple mathematical operations and the
allocation of few wires to communicate flow control
information to nodes with a light GS load.

IV. SIMULATION RESULTS

In this section we examine the proposed flow control
algorithms for a typical NoC architecture. In our scenario,
we have used a NoC with 4 4× Mesh topology which
consists of 16 nodes communicating using 24 shared
bidirectional links; each one has a fixed capacity of 1 Gbps.
In our scheme, packets traverse the network on a shortest
path using a deadlock free XY routing. We also assume that
each packet consists of 500 flits and each flit is 16 bit long.

In order to simulate our scheme, some nodes are considered
to have a GS data, such as Multimedia, etc., to be sent to a
destination while other nodes, which maybe in the set of
nodes with GS traffic, have a BE traffic to be sent. As stated
in section 2, GS sources will obtain the required amount of
the capacity of links and the remainder should be allocated
to BE traffics.

460

115

Fig. 1 Source Rates vs. Iteration Steps for Max-Min

Fig. 2 Source Rates vs. Iterations for Weighted Max-Min with w1

We are mainly interested in investigating the fairness
properties among source rates.

A. WMMF with Various Weights
We obtained source rates using proposed algorithm in

MATLAB. Rate variation versus iteration steps for both
MMF and WMMF (with weight vector w1) flow control
schemes are shown in Fig. 1 and Fig. 2, respectively.

We solved problem (8) with different weight vectors such
as w2 and w3 (due to space limit, values of weight vectors
have been omitted) to control the priority of resource
allocation. Such weighting factors can be appropriately
derived so that to designate the network resources (link
capacities) in favor of source priorities.

For the sake of convenience in comparing these schemes,
steady state source rates for all sources are depicted in Fig.
3. It is clear from Fig. 3 that with different weight vectors,
priorities of sources vary significantly and as a result,
WMMF lead to great differences in rate allocations.

B. WMMF Fairness Metrics
In order to compare the results of the proposed Max-Min

fair flow control with other fairness criteria, we have used
rate allocation based on maximizing the sum of source rates,
i.e. the so-called Rate-Sum Maximization. For comparing
the two schemes, steady state source rates for all sources are
depicted in Fig. 4. Comparing Rate-Sum and Max-Min in
Fig. 4, it's evident that although Rate-Sum criterion aims to
maximize the sum of source rates, there is no guarantee for

Fig. 3 Comparison of Max-Min, Weighted Max-Min with w1 and Weighted

Max-Min with w2

Fig. 4 Comparison between Rate-Sum and Max-Min

the rates of weak sources, i.e. ones which achieve very small
rate. Indeed, in many scenarios with Rate-Sum flow control,
such sources will earn as small as zero. On the other hand,
the weakest source in Max-Min scenario earns about 0.3
Gbps.

To compare the results of the above mentioned schemes
in more detail, we have considered four parameters featuring
the merit of the different schemes as following:

1. Least source rate
2. Variance of source rates with respect to mean

value.
3. Jain’s fairness Index (JFI) [15]
4. min-max ratio [15]

These parameters are presented in Fig. 5 and Fig 6. Jain’s
fairness Index and max-min ratio, are defined by (12) and
(13), respectively.

()
2

1

2

1

Jain's Fairness Index

N

ss

N

ss

x

N x

=

=

=
∑
∑

 (12)

min
Min-Max Ratio

max

ss S

ss S

x

x
∈

∈

= (13)

Amongst the aforementioned parameters, Jain’s Fairness
Index, Min-Max Ratio and Variance of source rates for

461

116

Fig. 5 Different parameters for Different scenarios

Fig. 6 Least source rate for Different scenarios

MMF, WMMF (with three different weights) and Rate-Sum
schemes are depicted in Fig. 5. It is apparent that using
MMF and WMMF schemes, the variance of source rates are
considerably less than Rate-Sum, which denotes the intrinsic
fairness in these mechanisms with respect to Rate-Sum
mechanism. Smaller variance results in the larger Min-Max
Ratio and JFI; therefore MMF and WMMF schemes have
greater Min-Max Ratio and JFI.

To have a better insight about the influence of weights on
the MMF scheme, the rate of the weakest source for the
aforementioned scenarios is shown in Fig. 6. It’s apparent
that with pure Max-Min scheme, the weakest user obtains
the largest rate among other schemes. As the variance of
weight elements increases, the weakest source’s rate falls
rapidly. Finally, in the Rate-Sum, the rate of the weakest
source is approximately zero.

C. Rate-Region for WMMF
In order to analyze the effect of the weighting scheme in

more detail, we introduce the concept of Rate Region for the
flow control we considered in this paper. We think of a Rate
Region as a region of all possible rate tuples 1 2(, ,...,)Sx x x
that satisfy link capacity constraints, i.e.

1 2
()

(, ,...,) ;S
S s l

s S l

x x x x c l L
∈

⎧ ⎫⎪ ⎪⎪ ⎪∈ ≤ ∀ ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑

Rate region for two Weighted Max-Min scenarios are
depicted in Fig. 7 and Fig. 8. We briefly discuss about some
heuristic insights that can be obtained from these figures.

Fig. 7 Rate region for x7 and x10

Fig. 8 Rate region for x8 and x5

For the sake of simplicity in representing such a region,
we fix the weight of all nodes to 1 and assume the weights
of two nodes, say nodes i and j, are set to w and 2-w,
respectively. Then, by sweeping w over [0,2] interval, we
study the effect of the rate allocation on the rate of node i
and j, e.g. xi and xj. In this respect, rate region can be
depicted efficiently using a two-dimensional curve whose
axes are xi and xj. In Fig. 7, we have i=7 and j=15. It is
apparent that by varying the weight from 0 to 2, x15 would
vary from 0 to 0.12 Gbps, however, for the source 7 such a
variation is limited to 0.04 to 0.22 Gbps. This means that in
the worst case source 7 would obtain a considerably larger
weight with regard to source 15. In fact, source 15 is more
sensitive to weight selection than source 7. Setting i=8 and
j=5 yields the rate region depicted in Fig. 8. A similar
discussion also holds and we conclude that source 8 is more
sensitive to weighting, because the range over which its
rates varies is much larger.

Another advantage of such rate regions, which is worth
discussing, might be the selection of efficient weighting
factors which suits the demands and constraints of the
underlying system. Crudely speaking, we may study such a
S-dimensional rate region by evaluating a number of simpler
two-dimensional rate-regions, as with above, and then
determine source pairs which are highly-sensitive to weight
selection. Regarding such regions, based on the rate
demands of sources, we can obtain the appropriate point of
the region, thereby the corresponding weights.

462

117

V. CONCLUSION
In this paper we addressed the flow control problem for

BE traffic in NoC systems. We considered two objectives.
First, choosing source rates (IP loads) of BE traffics so that
to accomplish flow control in response to demands at a
reasonable level. Second, maintaining Weighted Max-Min
fairness for all sources. Flow control was modeled as the
solution to a simple algorithmic solution to an optimization
problem. The algorithm can be implemented by a controller
which admits a light communication and communication
overhead.

REFRENCES
[1] L. Benini, and G. DeMicheli, ”Networks on Chips: A New SoC

Paradigm.” Computer, 2002, vol. 35, no. 1, pp. 70-78.
[2] W. J. Dally, and B. Towles, ”Route Packets, Not Wires: On- Chip

Interconnection Networks,” in Proceedings of Design Automation
Conference, 2001, pp. 684-689.

[3] F. P. Kelly, A. Maulloo, and D. Tan, ”Rate control for communication
networks: Shadow prices, proportional fairness, and stability.”
Operational Research Society, 1998, vol. 49, no. 3, pp. 237-252.

[4] Y. Gu, H. O. Wang, and L. G. Yiguang Hong Bushnell, ”A predictive
congestion control algorithm for high speed communication networks,”
in Proceedings of American Control Conference, 2001, vol. 5, pp.
3779-3780.

[5] C. Yang, and A. V. S. Reddy, ”A taxonomy for congestion control
algorithms in packet switching networks,” IEEE Network, 1995, vol. 9,
no. 4, pp. 34-45.

[6] U. Y. Ogras, and R. Marculescu, ”Prediction-based flow control for
network-on-chip traffic,” in Proceedings of Design Automation
Conference, 2006.

[7] J. W. van den Brand, C. Ciordas, K. Goossens, and T. Basten,
”Congestion-Controlled Best-Effort Communication for Networks-on-
Chip,” Design, Automation and Test in Europe Conference, 2007, pp.
948-953.

[8] J. Hu, and R. Marculescu, ”DyAD - smart routing for networks-onchip,”
in Proceedings of Design Automation Conference, 2004, pp. 260-263.

[9] I. Cidon and I. Keidar, “Zooming in on Network on Chip
Architectures.” Technion Department of Electrical Engineering, 2005.

[10] D. Bertsekas, and R. Gallager, Data Networks, Prentice-Hall, 1992.
 [11] J. Mo, J. Walrand, ”Fair End-to-End Window-Based Congestion

Control,” IEEE/ACM Transactions on Networking, 2000, vol. 8, no.
5, pp. 556-567.

[12] S. H. Low, and D. E. Lapsley, ”Optimization Flow Control, I: Basic
Algorithm and Convergence,” IEEE/ACM Transactions on
Networking, 1999, vol. 7, no. 6, pp. 861-874.

[13] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
[14] J. Y. Le Boudec, ”Rate adaptation, Congestion Control and Fairness:

A Tutorial.” Ecole Polytechnique Federale de Lausanne (EPFL),
2001.

 [15] R. Jain, D. Chiu, and W. Hawe, ”A Quantitative Measure of Fairness
And Discrimination For Resource Allocation In Shared Computer
Systems”, DEC Research Report TR-301, 1984.

463

118

Paper 7

Throughput-Fairness Tradeoff in
Best Effort Flow Control for
On-chip Architectures

F. Jafari
M. S. Talebi
M. H. Yaghmaee
A.Khonsari

In the Proceedings of the International Workshop on Per-
formance Modeling, Evaluation, and Optimization of Ubiq-
uitous Computing and Networked Systems (PMEO UCNS),
in conjunction with the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Rome, Italy,
May 2009.

119

Throughput-Fairness Tradeoff in Best Effort Flow Control
for On-Chip Architectures

Fahimeh Jafari∗†, Mohammad S. Talebi†, Mohammad H. Yaghmaee∗, Ahmad Khonsari‡†
and Mohamed Ould-Khaoua§¶

∗ Ferdowsi University of Mashhad, Mashhad, Iran
† School of Computer Science, IPM, Tehran, Iran

‡ ECE Department, University of Tehran, Tehran, Iran
§ Department of Electrical and Computer Engineering, Sultan Qaboos University, Oman

¶ Department of Computing Science, University of Glasgow
Emails: jafari@ipm.ir, mstalebi@ipm.ir, hyaghmae@ferdowsi.um.ac.ir, ak@ipm.ir, mohamed@dcs.gla.ac.uk

Abstract

We consider two flow control schemes for Best Effort
traffic in on-chip architectures, which can be deemed as
the solutions to the boundary extremes of a class of utility
maximization problem. At one extreme, we consider the
so-called Rate-Sum flow control scheme, which aims at
improving the performance of the underlying system by
roughly maximizing throughput while satisfying capacity
constraints. At the other extreme, we deem the Max-Min flow
control, whose concern is to maintain Max-Min fairness in
rate allocation by fairly sacrificing the throughput. We then
elaborate our argument through a weighting mechanism in
order to achieve a balance between the orthogonal goals
of performance and fairness. Moreover, we investigate the
implementation facets of the presented flow control schemes
in on-chip architectures. Finally, we validate the proposed
flow control schemes and the subsequent arguments through
extensive simulation experiments.

1. Introduction

With the advance of the semiconductor technology, the
enormous number of transistors available on a single chip
allows designers to integrate dozens of IP (Intellectual
Property) blocks together with large amounts of embedded
memory. Such IPs may be CPU or DSP cores, video stream
processors, high-bandwidth I/O, etc. Dedicated links may
lead to an irregular architecture which is difficult to reuse.
Also, shared-medium busses do not scale well, and do not
fully utilize potentially available bandwidth. As the feature
sizes shrink, and the overall chip size relatively increases, the
interconnects start behaving as lossy transmission lines. Line
delays have become very long as compared to gate delays
causing synchronization problems between cores. This trend
only worsens as the clock frequencies increase and the
features sizes decrease.

One solution to these problems is to treat systems on a
chip implemented using the Networks-on-Chip (NoC) para-
digm. Multiple concurrent connections provide much higher
bandwidth in Networks. Also, regularity enables design
modularity, which in turn provides a standard interface for
easier component reuse and better interoperability. Overall
performance and scalability increase since the networking
resources are shared [1]. Due to the rapid growth of the
number of processing elements in NoCs [2], employing
efficient policies for flow control has become an inevitable
subject in the design of NoCs to provide the required Quality
of Service (QoS). A NoC must have network level flow
control in order to avoid congestion in the bottleneck links.

Recently, QoS provisioning in NoC’s environment has
attracted many researchers and currently is the focus of many
literatures in NoC research community. NoCs are expected
to serve as multimedia servers and are required to carry both
Best Effort (BE) and Guaranteed Service (GS) traffics. It’s
trivial that such a networked architecture with data services
should have some policies to avoid congestion. Congestion
Control in data networks is known as a widely-studied issue
over the past two decades. However, it is still a novel issue
in NoC and to the best of our knowledge only a few works
have been carried out in this field.

In this paper, we focus on the flow control for BE traffic
as the solution to an optimization problem. In our previous
work [3], we have modeled desired BE source rates as
the solution to a utility-based optimization problem with
a general form utility function and solved the problem
using Newton method. In [4], we also considered this issue
via Rate-Sum optimization problem and used a different
approach to solve it. In this paper, we mainly focus on
the two extreme cases of the utility optimization approach
which lead to different performance and fairness properties.
In the first view, in this paper we present two flow control
mechanisms for BE traffic in NoC which are derived for
the extreme cases of utility definition in [3]. These flow
control schemes exhibit different fairness and performance

121

properties. In another view, investigating and balancing the
tradeoff between such conflicting properties is the other
contribution of ours in this paper.

The organization of the paper is as follows. In Section 2
we will briefly review the most significant works on this
subject. In Section 3, we present the system model and
problem formulation. In Section 4 we focus on the Rate-Sum
problem and propose a flow control for BE as an iterative
solution to it. In Section 5 we consider the Max-Min problem
along with the concept of the Max-Min fairness and present
another BE flow control mechanism. Section 6 is devoted to
the discussion about the fairness and performance tradeoff
for the presented flow control mechanisms and presents a
remedy to balance between them. Section 7 presents the
simulation results and discussion about them. Finally, the
Section 8 concludes the paper.

2. Related Works

In this section, we briefly review the most significant
works focused on this issue.

Flow control for data networks is a widely-studied is-
sue [5]-[7]. A wide variety of flow control mechanisms
in data network belongs to the class of End-to-End flow
control schemes, like TCP/IP, which mainly act based on
the window-based protocols. In this method, sent packets
are subject to loss and the network must aim to provide an
acknowledgment mechanism. On the other hand, On-chip
networks pose different challenges. The reliability of on-
chip wires and more effective link-level flow-control makes
NoC a loss-less environment. Therefore, there is no need
to utilize acknowledgment mechanisms and we face to a
slightly different concept of flow control.

So far, several works have focused on this issue for
NoC architectures. Dyad [8] controls the congestion by
using adaptive routing when the NoC faces congestion.
However this method can not guarantee that congestion is
solved (i.e. the alternative paths might also be congested).
In [9], a prediction-based flow-control strategy for on-chip
networks is proposed in which each router predicts the buffer
occupancy to sense congestion. In [10] link utilization is
used as a congestion measure and a Model Prediction-based
Controller (MPC), determines source rates. The authors in
[10] state that their work is more complete than [9] because
in [9] the router buffer filling information is used for toggling
the sources while their approach allows both toggling and
fluent control of loads offered by IPs.

To the best of our knowledge, none of the aforemen-
tioned works have dealt with the problem through utility
optimization approach. As mentioned in [11], our approach
has little control overhead than [10] because in [10] the
link utilization measurements are periodically performed by
hardware probes and are transported to a controller by GS
connections while in our approach control packets are sent

to the controller only when a flow enters to the network or
exits from it. Besides, since we do not need any hardware
probes, costs of hardware implementation is reduced.

3. System Model and Flow Control Problem

We consider a NoC architecture with wormhole switching.
In wormhole switching networks, each packet is divided
into a sequence of flits which are transmitted over physical
links one by one in a pipeline fashion. A hop-to-hop credit
mechanism guarantees that a flit is transmitted only when
the receiving port has free space in its input buffer. We also
assume that the NoC architecture is lossless, and packets
traverse the network on a shortest path using a deadlock
free XY routing [2].

We model the flow control in NoC as the solution to
a utility-based optimization problem. We turn the afore-
mentioned NoC architecture into a mathematically modeled
network, as in [12]. In this respect, we consider NoC as a
network with a set of bidirectional links L = {1, 2, . . . , L}
and a set of sources S = {1, 2, . . . , S}. A source consists of
Processing Elements (PEs), Routers and Input/Output ports.
Also, each link l ∈ L has a fixed capacity of cl bits/sec
and is a set of wires and channels that are responsible for
connecting different parts of the NoC. We denote the set
of sources that share link l by S(l). Similarly, the set of
links that source s passes through, is denoted by L(s). By
definition, s ∈ S(l) if and only if l ∈ L(s).

As presented before, two classes of traffic are considered
in a NoC: Guaranteed Service (GS) and Best Effort (BE).
For notational convenience, we represent BE and GS traffic
rates by xs and ys, respectively. The two classes flow over
a link by sharing its capacity as following: GS traffic will
obtain the required amount of link capacity and BE traffic
can benefit from the remainder.

Our objective is to choose source rates with BE traffic
so as to maximize the sum of utilities of BE sources.
We assume that source s when transmitting BE packets at
rate xs bps, achieves a utility equal to Us(xs). Thus, the
optimization problem can be formulated as below:

max
xs

∑

s∈S
Us(xs) (1)

subject to:
∑

s∈S(l)

xs + ys ≤ cl; ∀l ∈ L (2)

xs > 0; ∀s ∈ S (3)

where optimization variables are BE rates, which in vector
form are denoted by x = (xs, s ∈ S) and belong to RS

+.
(RS

+ denotes nonnegative real).
The constraint (2) simply states that the sum of BE

rates passing through link l cannot exceed its free capacity,
i.e. the portion of cl which hasn’t been dedicated to GS

122

traffic. Constraint (2) is equivalent to the case in which the
maximum capacity of links can be used. Such an assumption
may not hold in general unless the buffering space at each
router tends to infinity. Although, such an assumption may
seem restrictive, it will be useful in the sense that it yields
the upper bound of the achievable source rate. Moreover,
we argue that one of the advantages of applying a flow
control mechanism is to efficiently allocate source rates
so as to better utilize the maximum capacity of links.
Therefore, using flow control, we can avoid buffer shortage
by efficiently limiting the injection rates of nodes, and
therefore, we shift from a buffer-restricted regime towards a
link capacity-limited regime.

Problem (1) is such a general form is a Utility Maximiza-
tion Problem. Based on the convex optimization theory, for
such a problem to have a unique optimal point, Us should be
positive, concave and strictly increasing [12]. Several candi-
dates for Us exist for which the aforementioned conditions
hold. Amongst them, presumably α-Fair functions are the
most significant ones as they have nice properties in terms
of economically fair behavior.

In this paper, we consider problem (1) with the class of
α-Fair utility functions, defined as below [13]:

U(x, α) =

{
x1−α

1−α α �= 1

lnx α = 1
(4)

where α > 0 is a parameter. With the aforementioned
choice of utility function, problem (1) is a convex opti-
mization problem with linear constraints. Hence it admits
a unique maximizer [14][15]. For notational convenience,
we define:

ĉl = cl −
∑

s∈S(l)

ys (5)

Although ĉl denotes the usable link capacity, with a
slight abuse of definition, hereafter we will refer to ĉl as
the link capacity. Moreover, similar to BE rate vector, we
represent link capacity vector as ĉ = (ĉl, l ∈ L). Finally, to
avoid confusing with summations indices, we define Routing
matrix as R = [Rls]L×S , where Rls is defined as:

Rls =

{
1 if l ∈ L(s)
0 otherwise

(6)

In this paper, we mainly focus on the two extreme cases;
i.e. α = 0 and α → ∞ which lead to performance tradeoffs
in rate allocation. In the sequel, we first focus on the case of
α = 0 for which problem (1) reduces to the so-called Rate-
Sum Maximization and then investigate the case of α → ∞
for which problem (1) converts to the so-called Max-Min
problem.

4. Rate-Sum Flow Control

In this section, we consider the case of α = 0 and solve
the accordingly-derived Rate-Sum Maximization problem

Algorithm 1: Maximum Rate-Sum Flow Control Algorithm for BE
Initialization:

1. Initialize ĉl of all links.
2. Set source rate vector to zero.
3. Specify an appropriate value for ε.

Loop:
Do until (maxs∈S | xs(t+ 1)− xs(t) |< ε)

1. ∀s ∈ S : Compute new source rate:
x(t+ 1) = x(t) + γ(t)u(x(t))

where γ(t) can be selected as γ(t) = a
b+t

and

u(x(t)) =

{
1

∑
s∈S(l) xs(t) ≤ ĉl, ∀l

−RT el′
∑

s∈S(l) xs(t) > ĉl, ∃l′

Output:
Communicate BE source rates to the corresponding nodes.

in an iterative manner. We finally present a flow control
algorithm for BE source rates based on the iterative solution.

Regarding problem (1), it’s apparent that by substituting
α = 0, problem (1) can be rewritten as:

max
xs

∑

s∈S
xs (7)

subject to:

Rx ≤ ĉ (8)

xs > 0; s ∈ S (9)

We will solve this problem using Gradient Method for
constrained problems [14]. The Projected Gradient Method
for constrained problems is very similar to the original
one which only applies to unconstrained problems [14][15].
Therefore, the update equation to solve problem (7) is given
by:

x(t+ 1) = x(t) + γ(t)u(x(t)) (10)

where γ(t) is a diminishing step-size rule which
satisfies specific conditions [14]. One typical example
is γ(t) = a/(b+ t), where a > 0 and b ≥ 0, which we have
used in this paper. u(x(t)) is given by:

u(x(t)) =

{
1

∑
s∈S(l) xs(t) ≤ ĉl, ∀l

−RTel′
∑

s∈S(l) xs(t) > ĉl, ∃l′

(11)

where el′ is the l′-th unit vector of RL space which is zero
in all entries except the l′-th at which it is 1.

Equations (10) and (11) together form an iterative algo-
rithm to solve Rate-Sum Maximization problem (7). Algo-
rithmic realization of the proposed flow control algorithm
for BE traffic is listed as Algorithm 1.

123

5. Max-Min Flow Control Problem

In this section, our focus is on the case of α → ∞. First,
we show that the corresponding problem can be construed as
a Max-Min problem which can be solved using Progressive
Filling algorithm [16]. Finally, Based on this algorithm,
we present a flow control algorithm for BE source rates.
Considering problem (1), it’s apparent that when α tends to
the infinity, we have

max
xs

lim
α→∞

∑

s∈S

x1−α
s

1 − α
(12)

subject to:

Rx ≤ ĉ (13)

xs > 0; s ∈ S (14)

Problem (12) in such an extreme case is disobedient. How-
ever, the following theorem states that it can be reduced to
the well-known Max-Min optimization problem.

Theorem 1: The maximization problem (12) reduces to
the Max-Min optimization problem, as below

max
xs

min
s∈S

xs (15)

subject to:
∑

s

Rlsxs ≤ ĉl; ∀l ∈ L (16)

xs > 0; ∀s ∈ S (17)

Proof: Proof is omitted due to space limit.

Max-Min optimization problem is a widely-studied prob-
lem formulation in resource management scenarios such
as rate allocation in data networks. This is mainly due to
an important property, which is inherent in the Max-Min
problem, and discriminates it from the others. The optimal
solution to the max-min problem, if exists, admits a specific
type of fairness characteristic known as Max-Min Fairness
(MMF), which will formally be defined in the sequel.

Definition 1: (Max-Min Fair [17]) A feasible rate alloca-
tion (xs, s ∈ S) is said to be Max-Min Fair (MMF) if and
only if an increase of any rate within the domain of feasible
allocations must be at the cost of a decrease of some already
smaller rate. Formally, for any other feasible allocation y,
if ys > xs then there must exist some s′ such that xs′ ≤ xs

and y′s < x′
s.

Depending on the network topology, a Max-Min fair allo-
cation may or may not exist. However, upon its existence, it
is unique (see [17] for proof). In what follows the condition
under which the Max-Min rate allocation exists will be
stated. Before we proceed to this condition, we must define
the concept of bottleneck link.

Definition 2: (Bottleneck Link [17]) A link l is said to be
a bottleneck for source s if and only if:

Algorithm 2: Max-Min Fair Flow Control Algorithm for BE
Initialization:

1. Initialize ĉl of all links.
2. Define:

a. T as the set of sources not passing through any saturated link.
b. B as the set of saturated links.

3. Set source rate vector to zero.
4. Initialize T = S and B = ∅.

Loop:
Do until (T = ∅)

1. Δs = minl∈(L−B)[(cl −
∑

s∈(S−T) Rlsxs(t))/
∑

s∈T Rls]

2. xs(t+ 1) = xs(t) + Δs, ∀s ∈ T

3. Calculate new bottleneck links and update B.

4. ∀s ∈ T ; if s passes through any saturated link then
T ⇐ T − {s}

Output:
Communicate BE source rates to the corresponding nodes.

1) link l is saturated; i.e.
∑

s Rls(xs + ys) = cl
2) Source s on link l has the maximum rate among all

sources passing through this link.

Intuitively, a bottleneck link for source s is the link which
limits xs.

Theorem 2: A MMF rate allocation exists if and only if
every source has a bottleneck link.

Proof: See [17] for proof.

The most famous and simplest algorithm to solve the
Max-Min problem (15) is the well-known Progressive Filling
Algorithm [16].

We would like to employ the progressive filling algorithm
as an iterative solution to the max-min problem (15). Similar
to (7), we finally would like to utilize it as a BE flow control
mechanism in NoC. The modified version of the progressive
filling as a BE flow control mechanism is listed below as
algorithm 2.

Algorithm 1 and 2 can be used as centralized flow control
mechanisms for BE sources in NoC. In this regard, we
consider a simple controller that can be embodied by the
NoC, whether as a separate hardware module or as a part
of its operating system, which is responsible for running
the algorithms. From computational complexity point of
view, such a controller must have the ability of carrying out
simple mathematical and logical operations, as in Algorithm
1 and 2. Another issue worth considering is the mechanism
with which the controller communicates with sources. Since
we would like source rate information being communicated
without delay and loss, we send them by GS connections to
assure that this communication is not subject to congestion.

124

6. Throughput-Fairness Tradeoff

So far, we have presented two different flow control
schemes for BE traffic in NoC. The first one, i.e. Rate-Sum
scheme, has been designed to maximize the aggregate source
rates. With a slight abuse in the definition of throughput
in lossless scenarios, as in NoC, we partly interpret the
aggregate of source rate as the throughput of the system.
In this respect, Rate-Sum flow control scheme might be
construed as one whose aim is to maximize the throughput
while simultaneously satisfying link capacity constraints.
On the other hand, Max-Min scheme is responsible for
maintaining Max-Min fairness among source rates while
satisfying capacity constraints.

Any discussion of rate allocation must address the two
conflicting issues:

1) Throughput as the measure of the efficiency of the
network performance.

2) Fairness to guarantee that network resources have
been allocated to transmitting sources in accordance
to a specified fairness metric.

Conflicting with each other, the two mentioned issues are
in the extremes of performance spectrum which cannot be
simultaneously obtained. Indeed, with the exception of few
trivial networking scenarios, there isn’t any rate allocation
mechanism that can simultaneously realize both optimal fair-
ness and optimal throughput. In fact, any such mechanisms
can be seen as providing a tradeoff between throughput and
fairness metric. Roughly speaking, boosting one of them will
be at the expense of alleviating the other.

One efficient and straight-forward way to establish a
tradeoff between throughput and fairness is to introduce
weight factors to the underlying optimization problems, i.e.
by replacing xs with wsxs in problem (7) and (15). ws is
the weight assigned to source s which determines its priority
of rate allocation with respect to other sources. Intuitively,
each source upon increase of his weight will obtain more
network resources.

As the focus of problem (7) (problem (15)) is on through-
put maximization (maintaining max-min fairness) under
capacity constraints, the perception of such tradeoffs could
not be attained directly. In order to provide more insights,
we employ several well-known measures which are defined
based on the statistical properties of a rate allocation. In fact,
they are defined to quantify performance and fairness factors
for a rate allocation vector, regardless of its underlying
allocation strategy. Such statistical measures can be further
used to compare the inherent tradeoff in different flow
control schemes.

Due to space limit, we only introduce the most sig-
nificant one, i.e. Jain Fairness Index [18], which is a
widely-addressed index for measuring the fairness main-
tained amongst the individuals of a rate allocation scenario.

Jain Fairness Index, which hereafter will be abbreviated as
JFI, is defined as [18]:

JFI =

(∑S
s=1 xs

)2

S
∑S

s=1 x
2
s

(18)

It can be proven that JFI for positive rate vectors always
falls within [0,1] interval. JFI can be interpreted as a positive
fraction which reflects the efficiency of fairness maintained
between rate elements. Unity and 1/S correspond to the
most fair and the least fair cases, respectively.

JFI and throughput together can be used as two simple
and efficient measures for quantifying the tradeoffs between
performance (throughput) and fairness in any rate allocation
scheme. In the next section, we utilize JFI as a fairness
measure for different examined scenarios.

7. Simulation Results

In this section we examine the proposed flow control algo-
rithms for a typical NoC architecture. Using MATLAB, we
have simulated a NoC with 4×4 Mesh topology consisting
of 16 nodes communicating using 24 shared bidirectional
links; each one has a fixed capacity of 1 Gbps. In our
scheme, packets traverse the network on a shortest path using
a deadlock free XY routing. We also assume that each packet
consists of 500 flits and each flit is 16 bits long.

Figure 1. Source Rates vs. Iteration Steps for Rate-
Sum

In order to simulate our scheme, some nodes are consid-
ered to have a GS-type traffic (such as Multimedia, etc.) to
be sent to a destination while other nodes, while others have
a BE traffic.

7.1. Comparison Between Rate-Sum and Max-Min

We obtained source rates using proposed algorithms in
MATLAB. The evolution of source rates versus iteration
steps for both Rate-Sum and Max-Min Fair flow control

125

Figure 2. Source Rates vs. Iteration Steps for Max-Min

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

Sources

S
o

u
rc

e
R

at
es

 (
b

p
s)

Rate−Sum Maximization
MMF

Figure 3. Comparison between Rate-Sum and Max-Min

schemes are shown in Fig. 1 and Fig. 2, respectively. These
figures show that after passing enough iteration steps, the
proposed algorithms converge to their steady state points.
For the sake of convenience in comparing the two schemes,
steady state source rates for all sources are depicted in Fig.

Figure 4. Source Rates vs. Iteration Steps for Weighted
Rate-Sum with w1

Figure 5. Source Rates vs. Iteration Steps for Weighted
Rate-Sum with w2

3. Comparing Rate-Sum and Max-Min in Fig. 3, it’s evident
that although Rate-Sum criterion aims at maximizing the
sum of source rates, there is no guarantee for the rates
of weak sources, i.e. those which achieve very small rates.
Indeed, in many scenarios with Rate-Sum flow control, such
sources will obtain as small as zero. On the other hand,
the weakest source in Max-Min scenario obtains about 0.3
Gbps. Also, it is clear that the variance of Max-Min scheme
is evidently less than that of Maximum Rate-Sum (MRS)
scheme, which in turn implies the inherent fairness in the
Max-Min rate allocation.

From Table 1 we realize that rate allocation with Maxi-
mum Rate-Sum criterion, yields greater aggregate rate than
Max-Min Fair. However, as discussed above, Max-Min Al-
gorithm guarantees that the rate allocation is Max-Min fair,
and hence the minimum source rate wouldn’t be greater with
any other feasible rate allocation and therefore rate allocation
is carried out in favor of such weak sources. On the contrary,
Maximum Rate-Sum has no guarantee for such sources and
as a result, the weakest source, has achieved as small as
zero.

7.2. Influence of Weight Factors

In order to have much more flexibility to balance between
throughput and fairness, we introduce two weight factors,
w1 and w2 to determine the priority of resource allocation.
Due to space limit, values of weight factors have been
omitted. Such weight factors can be appropriately derived so
as to designate network resources (link capacities) in favor

Table 1. Comparison between MRS and MMF

Max-Min Fair Rate-Sum
Latest Rate 0.310× 108 0

Sum of Source Rate 10.079× 108 15.349× 108

126

Figure 6. Source Rates vs. Iteration Steps for Weighted
Max-Min with w1

Figure 7. Source Rates vs. Iteration Steps for Weighted
Max-Min with w2

of throughput or fairness. In this respect, we have consid-
ered four additional scenarios featuring Weighted Rate-Sum
(WMRS) and Weighted Max-Min (WMMF) schemes. The
corresponding rate allocations are depicted in Fig. 4-7. From
these figures, it is apparent that different weight factors have
led to different rate allocations.

7.3. Fairness Metrics

To compare the results of the above mentioned schemes
in more detail, we have considered four parameters featuring
the merit of the different schemes as following:

1) Variance of source rates with respect to mean value
2) Jain’s fairness Index (JFI) [18]
3) Min-Max ratio [18]
The Min-Max ratio is defined as (19).

Min-Max Ratio =
mins∈S xs

maxs∈S xs
(19)

The aforementioned parameters for MMF, WMMF (with
two different weights), MRS and WMRS (with two different

Figure 8. Different Parameters for Different Scenarios

weights) schemes are depicted in Fig. 8. It is apparent
that using MMF and WMMF schemes, the variance of
source rates are considerably less than MRS and WMRS,
which denote the intrinsic fairness in these mechanisms with
respect to MRS and WMRS mechanisms. Smaller variance
results in the larger Min-Max Ratio and JFI; therefore MMF
and WMMF schemes have greater Min-Max Ratio and JFI.

8. Conclusion

In this paper we addressed the problem of flow control
for BE traffic in NoC architectures. We considered two
extreme cases of the family of α-Fair utility maximization
problems, whose solutions led to two iterative flow control
algorithms for BE traffics. These extreme cases were 0-
Fair and ∞-Fair, which are semantically connected to the
throughput-optimal and fairness-optimal scenarios, respec-
tively. These schemes aim at achieving two extreme goals:
the first one, MRS aims at maximizing rate-sum (throughput)
of the system, while the second, MMF aims at allocating
resources in favor of weak sources. We focused on the
concept of weight factors to remedy the problem of weak
sources in MRS and the problem of throughput inefficiency
in MMF. Simulation experiments validated that introducing
appropriately-assigned weight factors, could efficiently com-
promise between throughput and fairness, making proposed
flow control algorithms suitable for realistic scenarios.

References

[1] L. Benini, and G. DeMicheli, “Networks on Chips: A New
SoC Paradigm,” Computer, vol. 35, no. 1, pp. 70-78, 2002.

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks,” Design Automation Confer-
ence, pp. 684-689, 2001.

[3] M. S. Talebi, F. Jafari, and A. Khonsari, “A Novel Flow Control
Scheme for Best Effort Traffic in NoC Based on Source Rate
Utility Maximization,” Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pp. 381-386, 2007.

127

[4] M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaee,
“A Novel Congestion Control Scheme for Elastic Flows in
Network-on-Chip Based on Sum-Rate Optimization,” Interna-
tional Conference on Computational Science and its Applica-
tions, pp. 398-409, 2007.

[5] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness, and
stability,” Operational Research Society, vol. 49, no. 3, pp.
237-252, 1998.

[6] Y. Gu, H. O. Wang, and Y. Hong, “A predictive congestion
control algorithm for high speed communication networks,”
American Control Conference, vol. 5, pp. 3779-3780, 2001.

[7] C. Yang and A. V. S. Reddy, “A taxonomy for congestion con-
trol algorithms in packet switching networks,” IEEE Network,
vol. 9, no. 4, pp. 34-45, 1995.

[8] J. Hu and R. Marculescu, “DyAD - smart routing for networks-
on-chip,” Design Automation Conference, pp. 260-263, 2004.

[9] U. Y. Ogras and R. Marculescu, “Prediction-based flow control
for network-on-chip traffic,” Design Automation Conference,
pp. 839-844, 2006.

[10] J. W. van den Brand, C. Ciordas, K. Goossens, and T. Bas-
ten, “Congestion-Controlled Best-Effort Communication for
Networks-on-Chip,” Design, Automation and Test in Europe
Conference, pp. 948-953, 2007.

[11] F. Jafari,M. S. Talebi, A. Khonsari, and M. H. Yaghmaee,
“Best Effort Flow Control Mechanisms in on-Chip Archi-
tectures,” Technical Report, TRCS2008-30, IPM, School of
Computer Science, 2008.

[12] S. H. Low, and D. E. Lapsley, “Optimization Flow Control I:
Basic Algorithm and Convergence,” IEEE/ACM Transactions
on Networking, vol. 7, no. 6, pp. 861-874, 1999.

[13] J. Mo, J. Walrand, “Fair End-to-End Window-Based Conges-
tion Control,” IEEE/ACM Transactions on Networking, vol. 8,
no. 5, pp. 556-567, 2000.

[14] D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
1999.

[15] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, 2004.

[16] D. P. Bertsekas and R. Gallager, Data Networks, Prentice-
Hall, 1992.

[17] J. Y. Le Boudec, “Rate adaptation, Congestion Control and
Fairness: A Tutorial,” Ecole Polytechnique Federale de Lau-
sanne (EPFL), 2001.

[18] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure
of Fairness And Discrimination For Resource Allocation In
Shared Computer Systems,” DEC Research Report TR-301,
1984.

128

Paper 8

Optimal Regulation of Traffic
Flows in Network-on-Chip

F. Jafari
Z. Lu
A. Jantsch
M. H. Yaghmaee

In the Proceedings of the Design Automation & Test in
Europe (DATE), pp. 1621-1624, Dresden, Germany, March
2010.

129

Optimal Regulation of Traffic Flows in
Networks-on-Chip

Fahimeh Jafari∗†, Zhonghai Lu†, Axel Jantsch† and Mohammad H. Yaghmaee∗
∗Ferdowsi University of Mashhad, Iran

†Royal Institute of Technology (KTH), Sweden
Email: fjafari@wali.um.ac.ir, {zhonghai, axel}@kth.se, hyaghmae@ferdowsi.um.ac.ir

Abstract—We have proposed (σ, ρ)-based flow regulation to
reduce delay and backlog bounds in SoC architectures, where σ
bounds the traffic burstiness and ρ the traffic rate. The regulation
is conducted per-flow for its peak rate and traffic burstiness. In
this paper, we optimize these regulation parameters in networks
on chips where many flows may have conflicting regulation re-
quirements. We formulate an optimization problem for minimizing
total buffers under performance constraints. We solve the problem
with the interior point method. Our case study results exhibit 48%
reduction of total buffers and 16% reduction of total latency for
the proposed problem. The optimization solution has low run-time
complexity, enabling quick exploration of large design space.

I. INTRODUCTION

Integrating IPs into a SoC infrastructure presents challenges
because (1) traffic flows from IPs are diverse and typically have
stringent performance constraints; (2) the impact of interferences
among traffic flows is hard to analyze; (3) due to the cost and
power constraint, buffers in the SoC infrastructure must not
be over-dimensioned while still satisfying performance require-
ments even under worst case conditions.

The admission of traffic flows from source IPs into the SoC in-
frastructure can be controlled by a regulator rather than injecting
them as soon as possible [1]. In this way, we can control Quality-
of-Service (QoS) and achieve cost-effective communication. To
lay a solid foundation for our approach, flow regulation has been
based on network calculus [2]. By importing and extending the
analytical methods from network calculus, we can obtain worst-
case delay and backlog bounds. In [3], we implemented the
microarchitecture of the regulator and quantified its hardware
speed and cost. The aim of this paper is to optimize the regulator
parameters including peak rate and traffic burstiness of flows by
formulating an optimization problem.

Silicon area and power consumption are two critical design
challenges for NoC architectures. The network buffers take up
a significant part of the NoC area and power consumption;
consequently, the size of buffers in the system should be
minimized. On the other hand, buffers should be large enough
to obtain predictable performance. It means that, there is a
trade-off between buffer size and performance metrics. Hence,
we address an optimization problem of minimizing the total
number of buffers subject to the performance constraints of the
applications running on the SoC. Finally, we show the benefits
of the proposed method and quantify performance improvement
and buffer size reduction.

The remainder of this paper is organized as follows. Section II
gives account of related works. In Section III, we introduce
the flow regulation concept along with the basics of Network
Calculus. Section IV discusses the underlying system model.

Section V formulates the minimizing buffer optimization prob-
lem. Our simulation results are described in Section VI. Finally,
Section VII gives the conclusions.

II. RELATED WORK

NoC based SoC architectures are often designed for a specific
application or a class of applications. Thus, designers customize
it for a specific application to achieve best performance, and
cost trade-offs. The authors in [4] show the advantage of the
topological mapping of IPs on the NoC architectures. In [5], the
network topology customization and its effects on the system
are considered. In [6], the authors investigate the customized
allocation of buffer resources to different channels of routers.
Actually, these works strived to distribute a given budget of
buffering space among channels. Also, they are based on the
average-case analysis which is not appropriate for a system with
hard real-time requirements.

The presented work in this paper follows a different direction
by addressing an optimization problem to find the minimum total
buffering requirements while satisfying acceptable communica-
tion performance. Also, our method is presented based on tight
worst-case bounds derived by network calculus. Therefore, it is
suitable for real-time system designs.

III. THE CONCEPTS OF FLOW REGULATION

A. Network Calculus Basics

In network calculus [2], a flow fj(t) represents the accumu-
lated number of bits transferred in the time interval [0, t]. To
obtain the average and peak characteristics of a flow, Traffic
SPECification (TSPEC) is used. With TSPEC, fj is charac-
terized by an arrival curve αj(t) = min(Lj + pjt, σj + ρjt)
in which Lj is the maximum transfer size, pj the peak rate
(pj ≥ ρj), σj the burstiness (σj ≥ Lj), and ρj the average
(sustainable) rate that we denote it as fj ∝ (Lj , pj , σj , ρj).
The burstiness also is a important case among these parameters
because a flow with low average rate and unlimited burst size
can incur an unlimited delay on its own packets.

The abstraction of service curve is used in Network calculus
to model a network element processing traffic flows. A well-
formulated service model is the latency-rate function βR,T =
R(t− T)+, where R is the minimum service rate and T is the
maximum processing latency of the node [2]. Notation x+ = x
if x > 0;x+ = 0, otherwise.

According to [2], the maximum delay and the buffer required
for flow j are bounded by Eq. (1) and (2), respectively.

D̄j =
Lj + θj(pj −R)+

R
+ T (1)

978-3-9810801-6-2/DATE10 © 2010 EDAA

131

B̄j = σj + ρjT + (θj − T)+[(pj −R)+ − pj + ρj] (2)

where θj = (σj−Lj)/(pj−ρj). The output flow f∗j is bounded
by another affine arrival curve α∗j (t) = (σj+ρjT)+ρjt, θj ≤ T ;
α∗j (t) = min((T + t)(min(pj , R)) + Lj + θj(pj −R)+, (σj +
ρjT) + ρjt), θj > T .

B. Regulation Spectrum

TR,β
** : jjf α

jjf α:

a) Flow served without regulation

TR,β
** :

jj RRf α
jjf α:

R̂
jj RRf α:jregB

b) Flow served after regulation

Regulator

),(:ˆ
jj RRj pR σ

),,,(jjjjj pLf ρσ∝),,,(jRRjR jjj
pLf ρσ∝

regulated flow),(ρδ

token queue

token rate ρ

unregulated flow

stall/ready
1 flit/token server

δ

Fig. 1. Flow regulation

TSPEC can also be used to define a traffic regulator. Fig. 1
shows that an input flow fj reshaped by a regulation component
R̂j(pRj

, σRj
) results in an output flow fRj

. We assume the
regulator has the same input and output data unit, flit, and the
same input and output capacity C flits/cycle. We also assume
that fj’s average bandwidth requirement must be preserved.
The output flow fRj is characterized by the four parameters
(Lj , pRj , σRj , ρj), where pRj ∈ [ρj , pj], σRj ∈ [Lj , σj]. fj
can be losslessly reshaped by the regulator, meaning that fRj

has the same L and average rate ρ as fj . The two intervals
pRj

∈ [ρj , pj] and σRj
∈ [Lj , σj] are called the regulation

spectrum, where the former is for the regulation of peak rate and
the latter for the regulation of traffic burstiness. We implemented
microarchitecture of the regulator and quantified its hardware
speed and cost in [3]. Selecting appropriate pRj

and σRj
is very

effective in performance and cost of communications.

IV. SYSTEM MODEL

A. Assumptions and Notations

We consider an NoC architecture which can have different
topologies. Every node contains an IP core and a router with
p+ 1 input channels and q+ 1 output channels. NIs provide an
interface between IPs and the network. Note that the presence
of NIs is the consequence of using a network not regulators.
Regulators are inserted between the source IP and NI and their
number is the same as the number of flows originating from
that node. We presume the number of Virtual Channels (VCs)
for each Physical Channel (PC) is the same as the number
of flows passing through that channel. Fig. 2 shows required
buffers of flows f1 and f2 from different sources to the same
destination. The following analysis on buffer requirements of
flows is illustrated by this figure. Although in this paper we
have focused on the output buffers of switches, our method can
be easily adapted to input buffers, too. We also assume that the
NoC architecture is lossless, and packets traverse the network
in a best-effort fashion using a deterministic routing.

We consider NoC as a network with a set of bidirectional
channels L, a set of sources S and a set of flows F . Each
physical channel i ∈ L has a fixed capacity of cli flits/cycle.
We denote the set of flows that share channel i by Fli and their
number is denominated as nli . Similarly, the set of channels
that flow j passes through, is denoted by Lfj and their number
is denominated as nfj . By definition, j ∈ Fli if and only if
i ∈ Lfj .

Source IP

NI

Regulator

o
u

tp
u

t ch
an

n
els

in
p
u
t ch

an
n
els

1 1

ejection

channel

injection

channel

MUX

M
U

X

M
U

X

Destination IP

NI

MUX

Source IP

NI

Regulator
1regB

11B

12B

1mB
2mB

21B

2regB

),,,(11111 ρσpLf ∝),,,(22222 ρσpLf ∝

Crossbar Switch

o
u

tp
u

t ch
an

n
els

in
p
u
t ch

an
n
els

p
q

Routing Control Unit

M
U

X

Fig. 2. An example of required buffers for two flows

B. The Analysis of Network ElementsModeling of Network

1f

il
nf

M
U

X

D
E

M
U

X

Channeljf

2f

*

1f

*

il
nf

*

jf

*

2f

Fig. 3. Shared channel

Fig. 3 depicts a channel li allocated to nli flows. Since
the arbitration policy determines how much the flows influence
each other, it has to be known. We assume that the channel
access is arbitrated with a round robin policy. Assuming a fixed
word length of Lw in all of flows, round robin arbitration
means that each flow gets at least a cli/nli of the channel
bandwidth. A flow may get more if the other flow uses less,
but we now know a worst-case lower bound on the bandwidth.
Round robin arbitration has good isolation properties because
the minimum bandwidth for each flow does not depend on
properties of the other flow. We can model a round robin arbiter
of channel li as a latency-rate server [7] that its function is as
βRli

,Tli
= Rli(t− Tli)+. Rli and Tli are defined as following:

Rli =
cli
nli

(3)

Tli =
(nli − 1)Lw

cli
(4)

Fig. 4 shows a traffic flow fj after regulation which is called
fRj

and is passing through adjacent channels. Every channel
li ∈ Lfj can be modeled as a latency-rate server with service
curve βRli

,Tli
.

Assuming node k is destination of flow j, the ejection channel
multiplexer of this node also can be modeled as a latency-rate
server βRmk

,Tmk
. If processing capacity of the multiplexer is

considered as cmk
flits/cycle, it offers minimum service rate Rmk

flits/cycle and the maximum delay Tmk
cycles for each flow as

following:

Modeling of Network

ρσ∝
),,,(jRRjR pLf ρσ′′∝′),,,(pLf ρσ

(((
∝

),,,(jjjjj pLf ρρρρσσσσ∝∝∝∝

Regulator

),,,(jRRjR jjj
pLf ρσ∝

Network
),,,(***

jRRjR jjj
pLf ρσ∝

),(:ˆ
jj RRj pR σ

),,,(jRRjR jjj
pLf ρσ∝

11
, ll TRβ

jfnl
jfnl

TR ,β
kmkm TR ,β

),,,(jRRjR jjj
pLf ρσ′′∝′),,,(jRRjR jjj

pLf ρσ∝
),,,(***

jRRjR jjj
pLf ρσ∝

jeje TRβ
),,,(jRRjR jjj

pLf ρσ∝),,,(***

jRRjR jjj
pLf ρσ∝

Fig. 4. Modeling each network element as a latency-rate server

132

Rmk
=
cmk

ndk
(5)

Tmk
=

(ndk − 1)Lw
cmk

(6)

where ndk is the number of flows with destination node k.

V. BUFFER SIZE OPTIMIZATION PROBLEM

A. Tight Worst-Case Bounds for Each Flow
Let us assume that flow j passes through the regulator and sev-

eral network elements offering each a latency-rate service curve.
For determining the delay and backlog due to the regulation, the
impact of it on the behavior of IPs should be considered. One
is that IPs are stalled and therefore, there is no queuing buffer
at the regulator. In the other case which is considered in this
work, IPs are not stalled and the regulators use buffers to store
transactions. This can reduce back-pressure at the expense of
buffering cost. Let Dregj and Bregj be the delay and backlog
for flow j, respectively. We have Bregj = ∆σj = σj − σRj ,
which is the difference between the input and output burstiness
of the regulator, and Dregj = ∆σj/ρj [1].

For calculating tight worst-case bound on backlog along the
network, the sum of the individual bounds on every element
is computed. Thus, required buffer in network for flow j is
bounded as following:

B̄j =
∑

i∈Lfj

B̄ji + B̄mj (7)

where B̄ji is upper bound on the buffer of flow j for each
i ∈ Lfj and B̄mj

is maximum required buffer for the multiplexer
of the destination node of flow j. B̄ji and B̄mj

can easily be
obtained by Eq. (2). Finally, the buffer requirements for the flow
j is bounded by Bregj + B̄j .

For obtaining tight worst-case delay bound along the network,
we use the theorem of Concatenation of network elements [2].
Given are two nodes sequentially connected and each is offering
a latency-rate service curve βRi,Ti , i = 1 and 2, can be
represented as a single latency-rate server as follows:

βR1,T1
⊗ βR2,T2

= βmin(R1,R2),T1+T2
(8)

We can model all network elements on a given flow as a single
latency-rate server βRej

,Tej
with following charactericts:

Rej = min(minli∈Lfj (
cli
nli

),
cmk

ndk
) (9)

Tej =
∑

li∈Lfj
(
(nli − 1)Lw

cli
) +

(ndk − 1)Lw
cmk

(10)

Based on a corollary of this theorem which is known as Pay
Bursts Only Once [2], the equivalent latency-rate server is used
for obtaining worst-case delay bound. Therefore, according to
(1), (9) and (10), the maximum delay for the flow j in network
is bounded by Eq. (11).

D̄j =
Lj + θRj

(pRj
−Rej)+

Rej
+ Tej + nfjdp (11)

where dp is delay for propagation in a channel which is assumed
identical for all channels. Therefore, nfjdp is propagation delay
in whole network for flow j and θRj

=
σRj
−Lj

pRj
−ρj . Hence, the

maximum delay for the flow j is bounded as: Dregj + D̄j .

B. Problem Definition

As stated before, our objective is to choose output peak
rate and traffic burstiness of regulators for each flow so as to
minimize the buffer requirements while satisfying acceptable
performance in the network. Thus, the minimization problem
can be formulated as:

min
pRj

,σRj

∑

∀fj∈F
Bregj + B̄j (12)

subject to:

Dregj + D̄j ≤ dj ; ∀fj ∈ F (13)
ρj ≤ pRj

≤ pj ; ∀fj ∈ F (14)
Lj ≤ σRj

≤ σj ; ∀fj ∈ F (15)
B̄j > 0; ∀fj ∈ F (16)

pRj
and σRj

are optimization variables and dj is the maximum
delay that flow j can suffer in the network. Since we measured
the flow performance in terms of its latency, we can consider
dj as a criterion of minimum guaranteed performance for flow
j. It is clear that by following the above mentioned equations,
we can understand the effect of optimization variables on the
objective function and all constrains of the defined problem.

In the literature, problem (12) is called a nonconvex Non-
Linear Programming (NLP) problem [8]. There are different
methods for solving this kind of optimization problems. In
particular, we will use the Interior Point method [8] [9] to solve
it.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the capability of our method, we applied it to a
real application provided by Ericsson Radio Systems which are
mapped to a 4× 4 2D mesh network. Although the experiments
are performed on a mesh, our method is topology independent.
In this work, the proposed analytical model is implemented
in MATLAB and throughout the experiments, we consider an
SoC with 500 MHZ frequency, 32 flits packets and 32 bits
flits. We also assume that packets traverse the network on a
shortest path using a deadlock free XY routing. As mapped
onto a 4 × 4 mesh in Fig. 5, this application consists of 16
IPs. Specifically, n2, n3, n6, n9, n10, and n11 are ASICs;
n1, n7, n12, n13, n14, and n15 are DSPs; n5, n8, and n16
are FPGAs; n1 is a device processor which loads all nodes
with program and parameters at startup, sets up, and controls
resources in normal operation. Traffic to/from n1 is for system
initial configuration and no longer used afterward. There are 26
node-to-node traffic flows that are categorized into nine types of
traffic flows {a, b, c, d, e, f, g, h, i}, as marked in the figure. The
traffic flows are associated with a bandwidth requirement.

TABLE I
COMPARISON OF THE REQUIRED BUFFER BETWEEN DIFFERENT SCHEMES

Network Buffer Regulator Buffer Total Buffer
Without Reg. 421 0 421

Unoptimized Reg. 400 46 446
Optimized Reg. 196 21 217

133

ax3: 4096

bx6: 512

cx4: 512

dx2: 2048

ex1: 512

fx4: 128

to/from all

n1 n2 n3 n4

n5
n6 n7 n8

h
f

f

f

f

g

a a a

h

h i i
e

fx4: 128

gx1: 64

hx3: 4096

ix2: 512

unit: Mbits/s

n9
n10 n11 n12

n13
n14 n15

n16

a a a

b

b

b

b

b

b

d

dc
c

Fig. 5. Ericsson radio systems application

B. Buffer Size Optimization

Tables I and II, respectively, depict the maximum buffer
requirements and delay for three schemes: In without regu-
lation, there is no regulator; in unoptimized regulation, there
is a regulator but it works on the worst-case with respect to
buffer requirements; optimized regulation works based on the
proposed minimizing buffer problem (12). From these tables,
we can see that the optimized regulation scheme leads to a
48% reduction in total maximum required buffer and 16% in
total maximum delay when compared with the without regu-
lation scheme. Furthermore, these tables show that generally
the regulator decreases the maximum buffer and delay in the
network because of reducing the contention for shared resources.
However, the unoptimized regulation scheme does not arrange
these parameters appropriately; consequently, buffer area and
packet latency in the regulator are increased to the extent that
total buffer requirements and delay in this scheme become more
than the without regulation scheme.

To go into more detail, we depict maximum required buffer
and delay of each flow for these schemes in Fig. 6 and 7,
respectively. Regarding Fig. 6, it is apparent that in the network
with the proposed regulator, most flows require less buffer and
also, as mentioned in Table I, total required buffer in this scheme
is just a little more than half of it in the network wihout regulator.
Also, Fig. 7 shows that regulated flows can experience longer
or shorter delays than other schemes which depends on their
requested QoS and also the buffer distribution in the whole
network. However, due to Table II, total and network delay are
decreased in the optimized regulation scheme because of buffer-
aware allocation in the network and contention reduction for
shared resources.

The run-time of the proposed method in MATLAB is typically
in the order of a few seconds. It is about 0.22 sec for the
proposed problem of this application. Another interesting point
is that the proposed regulator have no negative effect on the
network throughput and it is the same in with and without

TABLE II
COMPARISON OF THE MAXIMUM DELAY BETWEEN DIFFERENT SCHEMES

Network Delay Regulator Delay Total Delay
Without Reg. 1302.9 0 1302.9

Unoptimized Reg. 1219.3 677.6323 1897
Optimized Reg. 907.6691 183.8812 1091.6

10

15

20

25

30

35

To
ta

l
B

u
ff

e
r

fo
r

E
a

ch
 F

lo
w

 (
fl

it
s)

Without Regulation

Unoptimized Regulation

Optimized Regulation

0

5

10

15

20

25

30

35

To
ta

l
B

u
ff

e
r

fo
r

E
a

ch
 F

lo
w

 (
fl

it
s)

Flows

Without Regulation

Unoptimized Regulation

Optimized Regulation

Fig. 6. Maximum buffer requirements for each flow

40

60

80

100

120

To
ta

l
D

e
la

y
 f

o
r

E
a

ch
 F

lo
w

 (
cy

cl
e

s)

Without Regulation

Unoptimized Regulation

Optimized Regulation

0

20

40

60

80

100

120

To
ta

l
D

e
la

y
 f

o
r

E
a

ch
 F

lo
w

 (
cy

cl
e

s)

Flows

Without Regulation

Unoptimized Regulation

Optimized Regulation

Fig. 7. Maximum delay for each flow

regulation schemes.

VII. CONCLUSION

In this paper, based on the concepts of regulation spectrum,
we have presented an optimization problem for minimizing
total buffers under QoS requirements. The regulation analysis is
performed for best-effort packet switching networks. We have
also demonstrated that the proposed model exerts significant
impact on communication performance and buffer requirements.
Since reusing similar or identical switches facilitates the design
process of NoC-based systems, as future work we intend to
model both objectives as a multi-objective problem.

REFERENCES

[1] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf and T. Henriksson,
”Flow Regulation for On-Chip Communication”, Proceedings of the Design,
Automation and Test in Europe Conference (DATE), Nice, France, April
2009.

[2] J. Y. L. Boudec and P. Thiran, ”Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet”, Number 2050 in LNCS, 2004.

[3] Z. Lu, D. Brachos, and A. Jantsch, ”A flow regulator for on-chip communi-
cation”, In Proceedings of the System on Chip Conference (SOCC), Belfast,
Northern Ireland, 2009.

[4] A. E. Kiasari, S. Hessabi, H. Sarbazi-Azad, ”PERMAP: A performance-
aware mapping for application-specific SoCs”, Proceedings of ASAP, pp.
73-78, 2008.

[5] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, ”xPipesCompiler:
A tool for instantiating application-specific NoCs,” Proceedings of Design,
Automation and Test in Europe Conference (DATE), pp. 884-889, 2004.

[6] L. P. Tedesco, N. Calazans, and F. Moraes, ”Buffer Sizing for Multimedia
Flows in Packet-Switching NoCs”, Journal Integrated Circuits and Systems,
Vol. 3, No. 1, pp. 46-56, 2008.

[7] F. Gebali and H. Elmiligi, editors, ”Networks on Chip: Theory and Practice”,
Taylor and Francis Group LLC - CRC Press, 2009.

[8] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
[9] H.Y. Benson, R.J. Vanderbei, D.F. Shanno. ”Interior-Point Methods for

Nonconvex Nonlinear Programming: Filter Methods and Merit Functions”
Computational Optimization and Applications, Vol. 23, No. 2, pp. 257-
272(16), 2002.

134

Paper 9

Output Process of Variable
Bit-Rate Flows in On-Chip
Networks Based on Aggregate
Scheduling

F. Jafari
A. Jantsch
Z. Lu

In the Proceedings of the International Conference on Com-
puter Design (ICCD), pp. 445-446, Amherst, USA, Octo-
ber 2011.

135

Output Process of Variable Bit-Rate Flows in
On-chip Networks Based on Aggregate Scheduling

Fahimeh Jafari, Axel Jantsch, and Zhonghai Lu
Royal Institute of Technology (KTH), Sweden

Email: {fjafari, axel, zhonghai}@kth.se

Abstract—This paper proposes an approach for more accurate
analyzing of output flows in FIFO multiplexing on-chip networks
with aggregate scheduling by considering peak behavior of flows.
The key idea of our proposed method involves presenting and
proving a technical proposition to derive output arrival curve for
an individual flow under the mentioned system model.

I. INTRODUCTION

Since the number of real-time communication services
being deployed on NoCs is increasing [1], it is clear that
architectures based on aggregate scheduling, which schedule
multiple flows as an aggregate flow, will be an appropriate
option for transmitting real-time traffic. For example, the com-
position of flows sharing the same buffer can be considered
as an aggregate flow [2]. Furthermore, real-time applications
require stringent QoS guarantees which usually employed by
tight performance bounds. As analyzing output behavior of
flows gives an exact vision about output metrics used for
obtaining performance bounds, we aim for deriving the output
characterization of Variable Bit-Rate (VBR) traffic transmitted
in the FIFO order and scheduled as aggregate. In this paper,
based on network calculus [3][4], we present and prove the
required proposition for calculating output arrival curve under
the mentioned system model.

The VBR is a class of traffic in which the rate can vary
significantly from time to time, containing bursts. Real-time
VBR flows can be characterized by a set of four parameters,
(L, p, σ, ρ), where L is the maximum transfer size, p peak
rate, σ burstiness, and ρ average sustainable rate [4]. Our as-
sumption is that the application-specific nature of the network
enables to characterize traffic with sufficient accuracy.

Authors in [5] present a theorem for calculating per-flow
output arrival curve in tandem networks of rate-latency nodes
traversed by leaky-bucket shaped flows. This theorem in-
vestigates computing output traffic characterization only for
average behavior of flows while the proposed proposition in
this paper considers both average and peak behavior, which
results in a more accurate analysis.

II. NETWORK CALCULUS BACKGROUND

Network Calculus is a theory that provides deep analysis
on flow problems encountered in networking. It uses the
abstraction of service curve to model a network element
processing traffic flows modeled with an arrival curve in
terms of input and output flow relationships. Network elements
such as routers, links, and regulators, can be modeled by

L
p
σθ

ρ
−

=
−

σ

L

D
at

a
vo

lu
m

e

timeT

3ρ

2ρ

1ρ

3σ

Fig. 1. Left Curve is the arrival curve of flow f with TSPEC (L, p, σ, ρ)
and right one is the pseudoaffine service curve with three leaky-bucket stages

corresponding service curves. A flow f is an infinite stream
of unicast traffic (packets) sent from a source node to a des-
tination node. To model the average and peak characteristics
of a flow, Traffic SPECification (TSPEC) is used. As shown
in Fig. 1, with TSPEC, f is characterized by an arrival curve
α(t) = min(L+ pt, σ + ρt) in which p ≥ ρ and σ ≥ L.

Theorem 1. (Output Flow [4]). Assume a flow, constrained by
arrival curve α, traverses a system that offers a service curve
of β, the output flow is constrained by the arrival curve α∗ =
α� β, where � represents the min-plus deconvolution of two
functions f, g ∈ F, (f � g)(t) = sups≥0 {f(t+ s)− g(s)}.

III. ANALYSIS

We assume that flows are classified into a pre-specified num-
ber of aggregates at their source nodes. In addition, we assume
that traffic of each aggregate is buffered and transmitted in the
FIFO order and different aggregates are buffered separately.
The network is lossless, and packets traverse the network using
a deterministic routing.

we first consider a class of curves, namely pseudoaffine
curves [5], which is a multiple affine curve shifted to the
right and given by β = δT ⊗ [⊗1≤x≤nγσx,ρx]. In fact, a
pseudoaffine curve represents the service received by single
flows in tandems of FIFO multiplexing rate-latency nodes.
Due to concave affine curves, it can be rewritten as β = δT ⊗
[∧1≤x≤nγσx,ρx], where the non-negative term T is denoted as
offset, and the affine curves between square brackets as leaky-
bucket stages. Fig. 1 shows a pseudoaffine service curve with
three leaky-bucket stages.

137

We now propose the proposition for computing output
arrival curve as follows.

Proposition 1. (Output Arrival Curve with FIFO) Consider
a VBR flow, with TSPEC (L, p, ρ, σ), served in a node that
guarantees to the flow a pseudo affine service curve equal to
β = δT ⊗ γσx,ρx . The output arrival curve α∗ given by:

α∗ =





θ > T γ(p∧R)T+θ(p−R)++L−σx,p∧R
∧γσ−σx+ρT,ρ

θ ≤ T γσ−σx+ρT,ρ

(1)

where ∧ represents the minimum operation.

Proof. From Theory 1, the output flow is constrained by the
arrival curve α∗ = α�β = supu≥0 {α(t+ u)− β(u)}. Thus,
α∗ = supu≥0 {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρx (u− T)+

}

We now consider two different situations including θ ≤ T
and θ > T . If θ ≤ T , we have:

α∗ = supu≥0 {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρx (u− T)+

}

= sup0≤u≤T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx}
∨ supu>T {min (σ + ρ (t+ u) , L+ p (t+ u))

−σx − ρxu+ ρxT}
= {min (σ + ρ (t+ T) , L+ p (t+ T))− σx}∨

supu>T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρxu+ ρxT}

= {σ + ρ (t+ T)− σx} ∨ supu>T {σ + ρ (t+ u)− σx
−ρxu+ ρxT}

= {σ + ρ (t+ T)− σx} ∨ supu>T {σ + ρt+ ρxT − σx
+u (ρ− ρx)}

Since ρ ≤ ρx and thus ρ− ρx is negative, u in the second
term should get its lowest possible value to achieve supremum.
Thus, we have

= {σ + ρ (t+ T)− σx} ∨ {σ + ρ (t+ T)− σx}
= σ + ρ (t+ T)− σx = γσ−σx+ρT,ρ (2)

If θ > T , we have:

α∗ = supu≥0 {min (σ + ρ (t+ u) , L+ p (t+ u))− σx−
ρx (u− T)+

}

= sup0≤u≤T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx}
∨ supu>T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρxu+ ρxT}

= {min (σ + ρ (t+ T) , L+ p (t+ T))− σx} ∨ supu>T {
min (σ + ρ (t+ u)− σx − ρxu+ ρxT, L+ p (t+ u)

−σx − ρxu+ ρxT)} (3)

For completing the proof, we need to consider the second
term in right side of Eq. (3) in details. Therefore, we call it
Term2 in the following:

Term2 =supu>T {min (σ + ρ (t+ u)− σx − ρxu+ ρxT,

L+ p (t+ u)− σx − ρxu+ ρxT)}
For solving Term2, we consider two different situations

including t + u ≤ θ and t + u ≥ θ. Thus, if t + u ≥ θ, we
have u > T and t+ u ≥ θ.
⇒ Term2 = supu>T (σ + ρ (t+ u)− σx − ρxu+ ρxT)

= supu>T (σ + ρt+ ρxT − σx + (ρ− ρx)u)
= σ + ρt+ ρxT − σx + (ρ− ρx)T
= σ + ρ (t+ T)− σx = γσ−σx+ρT,ρ (4)

If t+ u ≤ θ, we have u > T and t+ u ≤ θ ⇒ u ≤ θ − t.
⇒ Term2 = supT<u≤θ−t (L+ p (t+ u)− σx − ρxu+ ρxT)

= supT<u≤θ−t (L+ pt+ ρxT − σx + (p− ρx)u)
Selecting an appropriate value for u depends on if (p− ρx)

is positive or negative. Therefore, we have two different
situations including p > ρx and p ≤ ρx. If p > ρx ⇒ (p− ρx)
is positive and u should be the highest possible value to
have supremum value. Thus, due to u = θ − t, Term2 =
L + ρx (t+ T) − σx + θ (p− ρx). If p ≤ ρx ⇒ (p− ρx)
is negative. Therefore, u gets its lowest value and Term2 is
equal to L+ p (t+ T)− σx.
⇒ Term2 = L+ (p ∧ ρx) (t+ T)− σx + θ (p− ρx)+ (5)

From Eq. 3, 4 and 5, if θ > T , we have:
α∗ = min

(
L+ (p ∧ ρx) (t+ T)− σx + θ (p− ρx)+ ,

σ + ρ (t+ T)− σx))
= γ(p∧R)T+θ(p−R)++L−σx,p∧R ∧ γσ−σx+ρT,ρ (6)

From Eq. 2 and 6, we straightforwardly obtain the thesis.

IV. CONCLUSIONS

Real-time applications exert stringent requirements on net-
works. To this end, we have presented and proved the required
proposition for computing the output arrival curve of VBR
flows in a FIFO multiplexing network to detail output traffic
characterization. The proposition can be applied for an archi-
tecture based on aggregate scheduling. In the future, we will
present a formal approach to calculate performance bounds
under the mentioned system model.

REFERENCES

[1] Z. Shi, A. Burns, L. S. Indrusiak, “Schedulability Analysis for Real
Time On-Chip Communication with Wormhole Switching”, International
Journal of Embedded and Real-Time Communication Systems, vol. 1, no.
2, pp. 1-22, 2010.

[2] Y. Qian, Z. Lu, W. Dou, “Analysis of Worst-case Delay Bounds for
Best-effort Communication in Wormhole Networks on Chip”, In the
Proceedings of the 3rd ACM/IEEE International Symposium on Networks-
on-Chip (NOCS’09), pp. 44-53, San Diego, CA, 2009.

[3] C. Chang, Performance Guarantees in Communication Networks,
Springer-Verlag, 2000.

[4] J. Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet, (LNCS, vol. 2050). Berlin,
Germany: Springer-Verlag, 2004.

[5] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-end per-
flow delay bounds in fifo multiplexing sink-tree networks”, Performance
Evaluation, vol. 63, no. 9, pp. 956-987, 2006.

138

Paper 10

Worst-Case Delay Analysis of
Variable Bit-Rate Flows in
Network-on-Chip with Aggregate
Scheduling

F. Jafari
A. Jantsch
Z. Lu

In the Proceedings of the Design Automation & Test in
Europe (DATE), pp. 538-541, Dresden, Germany, March
2012.

139

Worst-Case Delay Analysis of Variable Bit-Rate
Flows in Network-on-Chip with Aggregate Scheduling

Fahimeh Jafari, Axel Jantsch, and Zhonghai Lu
KTH Royal Institute of Technology, Sweden

Email: {fjafari, axel, zhonghai}@ kth.se

Abstract—Aggregate scheduling in routers merges several flows
into one aggregate flow. We propose an approach for computing the
end-to-end delay bound of individual flows in a FIFO multiplexer
under aggregate scheduling. A synthetic case study exhibits that the
end-to-end delay bound is up to 33.6% tighter than the case without
considering the traffic peak behavior.

I. INTRODUCTION

Real-time applications such as multimedia and gaming boxes
etc., require stringent performance guarantees, usually enforced
by a tight upper bound on the maximum end-to-end delay [1].
For the worst-case performance analysis, we derive the upper
delay bound of a flow in a FIFO multiplexing and aggregate
scheduling network. The behavior of a flow is determined by
four parameters including the maximum transfer size (L), peak
rate (p), burstiness (σ), and average sustainable rate (ρ). To
calculate the tight delay bound per flow, the main problem is
to obtain the end-to-end Equivalent Service Curve (ESC) which
the tandem of routers provides to the flow. However, the required
propositions for calculating performance metrics of Variable Bit-
Rate (VBR) traffic characterized with (L, p, σ, ρ), transmitted
in the FIFO order and scheduled as aggregate do not exist.
Based on network calculus [2][3], we first present and prove the
required propositions and then calculate the delay bound under
the mentioned system model.

There are some works for deriving per-flow worst-case delay
bound under different system models [4]-[6]. However, they
investigate computing delay bounds only for average behavior
of flows while we analyze both average and peak behavior.
In [7], we presented a theorem for computing output traffic
characterization. The aim of this paper is to represent and prove
propositions for deriving end-to-end ESC and tighter upper bound
on the end-to-end delay.

II. NETWORK CALCULUS BACKGROUND

In network calculus, traffic flows are modeled by arrival curves
and network elements by service curves. Network calculus uses
Traffic SPECification to model the average and peak characteris-
tics of a flow. With TSPEC, fj is characterized by an arrival
curve αj(t) = min(Lj + pjt, σj + ρjt) in which Lj is the
maximum transfer size, pj the peak rate (pj ≥ ρj), σj the
burstiness (σj ≥ Lj), and ρj the average (sustainable) rate. We
denote it as fj ∝ (Lj , pj , σj , ρj).

Network calculus also derives delay bound for lossless systems
with service guarantees as the following theorem proves.

Theorem 1. (Delay Bound [3]). Assume a flow, constrained by
arrival curve α, traverses a system that offers a service curve of
β, the virtual delay d(t) for all t satisfies: d(t) ≤ h (α, β).

The theorem says that the delay is bounded by the maximum
horizontal deviation between the arrival and service curves.

Now, we consider a node which guarantees a minimum service
curve to an aggregate flow and also handles packets in order of
arrival at the node.

Theorem 2. (FIFO Minimum Service Curves [3]). Consider a
lossless node serving two flows, 1 and 2, in FIFO order. Assume
that packet arrivals are instantaneous. Assume that the node
guarantees a minimum service curve β to the aggregate of the
two flows. Assume that flow 2 has α2 as an arrival curve. Define
the family of functions βeq(t, α2, τ) ≡ βeq

1 (t, τ) = βeq
1 (t, τ) =

[β(t) − α2(t − τ)]
+
{t>τ}. For any τ ≥ 0 such that βeq

1 (t, τ) is
wide-sense increasing, then flow 1 is guaranteed the service curve
βeq
1 (t, τ).

III. SYSTEM MODEL

We assume that flows are classified into a pre-specified number
of aggregates. In addition, we assume that traffic of each aggre-
gate is buffered and transmitted in the FIFO order, denoted as
FIFO multiplexing. Different aggregates are buffered separately.
The network is lossless, and packets traverse the network using a
deterministic routing. We call the flow for which we shall derive
its delay bound tagged flow, other flows that share resources with
it interfering flows.

While building network calculus analysis models, we follow
the notation conventions in the min-plus algebra [3]. ⊗ rep-
resents the min-plus convolution of two functions f, g ∈ F,
the set of wide-sense increasing functions defined on [0, t),
(f ⊗ g)(t) = inf0≤s≤t {f(t − s) + g(s)}; ∧ represents the
minimum operation, f ∧ g = min(f, g). Burst delay function
δT (t) = +∞, if t > T ; δT (t) = 0, otherwise. Affine function
γb,r(t) = b + rt, if t > 0; γb,r(t) = 0, otherwise. Therefore,
min-plus convolution of burst delay and affine function is given
as δT ⊗ γb,r(t) = b+ r(t − T).

IV. ANALYSIS

In this section, we propose and prove the propositions needed
for analyzing performance of VBR flows in a FIFO multiplexing
network. We consider a class of service curves, namely pseu-
doaffine curves [5], which is a multiple affine curve shifted to
the right and given by β = δT ⊗ [⊗1≤x≤nγσx,ρx] = δT ⊗
[∧1≤x≤nγσx,ρx

], where the non-negative term T is denoted as
offset, and the affine curves between square brackets as leaky-
bucket stages. In fact, a pseudoaffine curve represents the service
received by single flows in tandems of FIFO multiplexing rate-
latency nodes. It is clear that a rate-latency service curve is in
fact pseudoaffine, since it can be expressed as β = δT ⊗ γ0,R.978-3-9810801-8-6/DATE12/ c©2012 EDAA

141

σ

L

t

3ρ

2ρ

1ρ

tσ ρ+

L Pt+

(,)h α β σ

L

t

T

3ρ

2ρ

1ρ
tσ ρ+

L Pt+

(,)h α β

1
) min()x

x n
a p ρ

≤ ≤

≤
1

) max()x
x n

b p ρ
≤ ≤

≥

T

Fig. 1. Computation of delay bound for one VBR flow served by a pseudo
affine curve

We now propose a proposition for computing delay bound as
follows.

Proposition 1. (Delay Bound) Let β be a pseudo affine curve,
with offset T and n leaky-bucket stage γσx,ρx , 1 ≤ x ≤ n, this
means we have β = δT⊗[⊗1≤x≤nγσx,ρx

] = δT⊗[∧1≤x≤nγσx,ρx
]

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ
(ρ∗β = min1≤x≤nρx), then the maximum delay for the flow is
bounded by

h(α, β) = T +

[
∨1≤x≤n

L − σx + θ (p − ρx)
+

ρx

]+

(1)

where θj = (σj − Lj)/(pj − ρj).

Proof. As stated before in Theorem 1, the delay is bounded by the
maximum horizontal deviation between the arrival and service
curves. Thus, due to Fig. 1, if p ≤ min1≤x≤n(ρx), we have:





L = σ1 + ρ1 (t1 − T) ⇒ t1 = T +
L − σ1

ρ1

L = σ2 + ρ1 (t2 − T) ⇒ t2 = T +
L − σ2

ρ2
...

...
...

L = σn + ρn (tn − T) ⇒ tn = T +
L − σn

ρn

(2)

⇒ h(α, β) = max1≤x≤ntx = T +

[
∨1≤x≤n

L − σx

ρx

]+

(3)

If p ≥ max1≤x≤n(ρx), due to Fig. 1, we have:




L+ pθ = σ1 + ρ1 (t1 + θ − T)

⇒ t1 = T +
L+ pθ − σ1

ρ1
− θ

L+ pθ = σ2 + ρ2 (t2 + θ − T)

⇒ t2 = T +
L+ pθ − σ2

ρ2
− θ

...
...

...

L+ pθ = σn + ρn (tn + θ − T)

⇒ tn = T +
L+ pθ − σn

ρn
− θ

⇒ h(α, β) = max1≤x≤ntx = T +

[
∨1≤x≤n

L+ pθ − σx

ρx
− θ

]+

= T +

[
∨1≤x≤n

L − σx + θ (p − ρx)

ρx

]+

(4)

From Eq. 2 and 4, we can say:

h(α, β) = T +

[
∨1≤x≤n

L − σx + θ (p − ρx)
+

ρx

]+

(5)

In Propositions 2 and 3, we obtain ESC with FIFO multiplex-
ing under different assumptions.

Proposition 2. (Equivalent Service Curve) Let β be a pseudo
affine curve as β = δT ⊗[⊗1≤x≤nγσx,ρx

] = δT ⊗[∧1≤x≤nγσx,ρx
]

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ
(ρ∗β = min1≤x≤nρx) and p ≥ ρ◦β (ρ◦β = max1≤x≤nρx), then
the equivalent service curve is obtained by subtracting arrival
curve α, {βeq(α, τ), τ = h(α, β)} ≡ βeq(α), with

βeq(α) = δ
T+∨1≤i≤n

[
L−σi+θ(p−ρi)

+

ρi

]+
+θ

⊗ [⊗1≤x≤n [

γ
ρx

{
∨1≤i≤n

[
L−σi+θ(p−ρi)

+

ρi

]+
−σ−σx−(ρx−ρ)θ

ρx

}
,ρx−ρ






(6)

Proof. Let us apply Theorem 2 to service curve β as follows.

βeq(α, τ) = [δT ⊗ [⊗1≤x≤nγσx,ρx
]

−min (L+ p (t − τ) , σ + ρ (t − τ))]
(7)

Eq. (7) is wide-sense increasing for any τ ≥ 0. Since we
assumed τ = h(α, β), due to Proposition 1, we have:

τ = T +

[
∨1≤x≤n

L − σx + θ (p − ρx)
+

ρx

]+

(8)

Without losing generality, we follow proof for n = 1. There-
fore, by Eq. (8) we have:

τ − T =

[
L − σx + θ (p − ρx)

+

ρx

]+

(9)

We then apply Theorem 2 to service curve β́ (β́ is β when
n = 1) as follows.

β́eq(α, τ) = δT ⊗ γσx,ρx
− min (L+ p (t − τ) , σ + ρ (t − τ))

= σx + ρx (t − T) − min (L+ p (t − τ) , σ + ρ (t − τ)) (10)

We now consider two situations including 0 ≤ t − τ ≤ θ and
t − τ > θ.

If 0 ≤ t − τ ≤ θ ⇒ min (L+ p (t − τ) , σ + ρ (t − τ)) =
L+ p (t − τ). Let us assume t́ = t − τ ⇒ t − T = t́+ (τ − T).

From Eq. 9, we can say t − T = t́+
[
L−σx+θ(p−ρx)

+

ρx

]+
.

β́eq(α, τ) = σx + ρx


t́+

[
L − σx + θ (p − ρx)

+

ρx

]+



−
(
L+ pt́

)

= σx + ρxt́+
[
L − σx + θ (p − ρx)

+
]+

− L − pt́

= − (p − ρx) t́+ θ (p − ρx)
+

Since p ≥ ρ◦β and t́ ≤ θ, we have:

β́eq(α, τ) = − (p − ρx) t́+ θ (p − ρx)
+

≤ − (p − ρx) θ + θ (p − ρx) ≤ 0

142

TR,
β

11
:αf

NNf α:

11
: ++ NNf α

ttf α:

22
:αf

Fig. 2. Computation of ESC for flow N + 1 in a rate-latency node

Therefore, β́eq(α, τ) = 0 where 0 ≤ t − τ ≤ θ. By definition
of the service curve, we can say that if 0 ≤ t ≤ θ + τ then
β́eq(α, τ) = 0, and this means that the offset of β́eq(α, τ) is
equal to τ + θ.

If t − τ > θ ⇒ min (L+ p (t − τ) , σ + ρ (t − τ)) =
σ + ρ (t − τ). Therefore, β́eq(α, τ) = σx + ρx (t − T) −
(σ + ρ (t − τ)). If ρxτ is added to and subtracted from β́eq(α, τ),
we have

β́eq(α, τ) = σx + ρx (t − T) − (σ + ρ (t − τ)) + ρxτ − ρxτ

= σx − σ + ρx (τ − T) + (ρx − ρ) (t − τ)

= δτ ⊗ γσx−σ+ρx(τ−T),ρx−ρ (11)

Since we concluded that the offset of β́eq(α, τ) is τ + θ, we
add (ρx − ρ) θ to Eq. 11 and then subtract it. We obtain:

β́eq(α, τ) = σx − σ + ρx (τ − T) + (ρx − ρ) (t − τ)

+ (ρx − ρ) θ − (ρx − ρ) θ

= σx − σ − ρθ + ρx (τ + θ − T) + (ρx − ρ) (t − τ − θ)

= δτ+θ ⊗ γσx−σ−ρθ+ρx(τ+θ−T),ρx−ρ (12)

Thus, the offset of βeq(α, τ) is equal to τ + θ. Furthermore,
each leaky bucket-stage in βeq(α, τ) can be computed as γσ́j ,ρ́j

,
with σ́j = σx − σ − ρθ + ρx (τ + θ − T) and ρ́j = ρj − ρ.
Therefore, we have βeq = δτ+θ ⊗ [⊗1≤x≤nγσ́x,ρ́x] and by
substituting (8) into βeq , we prove the proposition.

We can specifically capitalize on Proposition 2 to obtain a para-
metric expression. We assume that the number of flows passing
through a rate-latency node is N + 1. Therefore, for computing
ESC for the tagged flow, we should subtract the arrival curves
of other N flows. It can be calculated by iteratively applying
Proposition 2 for N times. Without any loss of generality, we
presume that the tagged flow is flow N + 1. We now present
following proposition:

Proposition 3. (Equivalent Service Curve for Rate-Latency
Service Curve With N + 1 Flows) Consider one node with
a rate-latency service curve βR,T = δT ⊗ γ0,R. Let αi =
min(Li + pit, σi + ρit) = γLi,pi

∧ γσi,ρi
be arrival curve of

flow i and pi ≥ R− ∑i−1
j=1 ρj , where 1 ≤ i ≤ N +1 and N +1

is the number of flows passing through that node as shown in
Fig. 2. The equivalent service curve for flow N +1 in the node,
obtained by subtracting N arrival curves, is:

βeq
N+1 = δ

T+
∑N

i=1




[
Li+θi(pi−R+

∑i−1
j=1

ρj)
+

R−∑i−1
j=1

ρj

]+

+θi



⊗ γ0,R−∑N

j=1 ρj

(13)

Proof. We use the simplest form of mathematical inductive proof
method. It proves that a statement involving a number N holds
for all values of N . The proof consists of two steps:

Application

- communication pattern
-TSPEC of flows
- tagged flow

Architecture

- topology
- deterministic routing
- service curve of routers

Are service curves
����������	
�����
�	��
��	�

Are service curves
rate-latency?

Calculate ESC in each
router due to Proposition 3

Calculate ESC in each
router by iteratively

applying Proposition 2

�	�

Calculate end-to-end ESC by using concatenation theorem

Calculate end-to-end delay bound by using Proposition 1

��	���

��	���

��	���

Fig. 3. End-to-end delay bound analysis flow

Base Step: In this step, we show that the statement holds when
N = 1. In order to verify this, we compute the ESC obtained by
subtracting one arrival curve (N = 1), offered by Proposition 3:

βeq
2 = δ

T+

[
L1+θ1(p1−R)+

R

]+
+θ1

⊗ γ0,R−ρ1 (14)

If we apply Proposition 2 for a rate-latency service curve βR,T

where n = 1, σx = 0 and ρx = R, Eq. 14 is easily obtained.
Therefore, the statement holds when N = 1.

Inductive Step: In this step, we show if the statement holds for
some N , then the statement also holds when N+1 is substituted
for N . Assume that βeq

N+1 is an ESC for flow N + 1, obtained
by subtracting N arrival curves as represented in Eq. 13. We
shall compute ESC βeq

N+2 for flow N +2. Therefore, in this case
we should subtract N + 1 arrival curves. After subtracting N
arrival curves, the ESC for aggregated flow {N +1, N +2} will
be equal to βeq

N+1. Therefore, for computing βeq
N+2, it is enough

to subtract flow N + 1 from βeq
N+1 by applying Proposition 2.

From βeq
N+1, we can say n, ρx, σx and Tx in Proposition

2 are as n = 1, ρx = R − ∑N
j=1 ρj , σx = 0, and Tx = T +

∑N
i=1

[
Li+θi(pi−R+

∑i−1
j=1 ρj)

+

R−∑i−1
j=1 ρj

]+

+
∑N

j=1 θj . Also, α in Proposi-

tion 2 is equal to αN+1 = min(LN+1+pN+1t, σN+1+ρN+1t).
After applying Proposition 2 and computing some straightfor-
ward algebraic manipulation, βeq

N+2 is given by:

βeq
N+2 = δ

T+
∑N+1

i=1




[
Li+θi(pi−R+

∑i−1
j=1

ρj)
+

R−∑i−1
j=1

ρj

]+

+θt



⊗ γ

0,R−∑N+1
j=1 ρj

(15)
which proves the inductive step.

Fig. 3 shows the overall analysis flow for computing end-to-
end delay bound of a tagged flow under the mentioned system
model. We illustrate the steps with an example in section V.

V. NUMERICAL EXAMPLE

To show how the proposed propositions are used, we applied
them to a simple example depicted in Fig. 4. The figure depicts
a network with 4 flows and 3 routers which serve flows in the
FIFO order. f3 is the tagged flow and f1, f2 and f4 are inter-
fering flows. Flows follow TSPEC, f1 ∝ (1, 1, 2, 0.128), f2 ∝
(1, 1, 2, 0.032), f3 ∝ (1, 1, 4, 0.256), and f4 ∝ (1, 1, 2, 0.008).
Each router guarantees the service curve of βR,T (t) = δT ⊗
γ0,R = 1(t − 1)+, where the serving rate R = 1 flit/cycle and
the processing latency T = 1 cycle.

143

A. Computation of the end-to-end equivalent service curve

Step 1: We first calculate the ESC for the tagged flow in each
node. Then, we can model a flow passing through a series of
routers as a series of concatenated pseudoaffine servers. Before
that, θj is computed for each flow fj as θ1 = (σ1 − L1)/(p1 −
ρ1) = (2 − 1)/(1 − 0.128) = 1.146, θ2 = 1.033, θ3 = 4.032,
and θ4 = 1.008.

We use sub-index ”(j, ri)” for notations to indicate that they
are related to flow j in router i. For example, βeq

(j,ri)
denotes the

ESC of flow j in router i.
From Proposition 3, we obtain the ESC for f3 in node 1

by subtracting arrival curves of f1 and f2. The serving rate
and latency for aggregate flow f(1,2,3) in node 1 is equal to
R1 = 1 and T1 = 1, respectively. Therefore, we have T eq

(3,r1)
=

T1+

([
L1+θ1(p1−R1)

+

R1

]+
+ θ1

)
+

[
L2+θ2(p2−R1+ρ1)

+

R1−ρ1

]+
+θ2 =

5.477, ρeq(3,r1) = R1 − ρ1 − ρ2 = 0.84, and σeq
(3,r1)

= 0.

⇒ βeq
(3,r1)

= δ5.477 ⊗ γ0,0.84 (16)

This Proposition also allows computing the ESC for f3 in node
2 by subtracting arrival curve of flow f4, as well. T eq

(3,r2)
= T2+([

L4+θ4(p4−R2)
+

R2

]+
+ θ4

)
= 3.008, ρeq(3,r2) = R2−ρ4 = 0.992,

and σeq
(3,r2)

= 0.

⇒ βeq
(3,r2)

= δ3.008 ⊗ γ0,0.992 (17)

Since there is no interfering flow in node 3, the ESC of flow
3 in this node is equal to

βeq
(3,r3)

= σ1 ⊗ γ0,1 (18)

Step 2: We use the theorem of concatenation of nodes [3]
for obtaining the equivalent end-to-end service curve. Given is a
flow traversing two nodes sequentially connected and each node
is offering a service curve βi, i = 1, 2 to the flow. Then the
concatenation of the two nodes offers a service curve of β1 ⊗β2

to the flow. Thus, βeq
3 is given by

βeq
3 = βeq

(3,r1)
⊗ βeq

(3,r2)
⊗ βeq

(3,r3)
(19)

= δ5.477+3.008+1 ⊗ [γ0,0.84 ∧ γ0,0.992 ∧ γ0,1] = δ9.485 ⊗ γ0,0.84

B. Computation of the end-to-end delay bound

Step 3: According to Proposition 1 and Eq. 19, the maximum
delay for flow 3 is bounded by

h(α3, β
eq
3) = 9.485 ∨

[(
1 − 0 + 4.032(1 − 0.84)+

0.84

)+

,

(
1 − 0 + 4.032(1 − 0.992)+

0.992

)+

,

(
1 − 0 + 4.032(1 − 1)+

1

)+
]

= 9.485 +max(1.958, 1.04, 1) = 11.443 (20)

Here if we only use (σ, ρ) instead of TSPEC, each flow
j would be constrained by arrival curve αj = σj + ρjt =
γσj ,ρj

. Therefore, flows in the example are represented as f1 ∝
(2, 0.128), f2 ∝ (2, 0.032), f3 ∝ (4, 0.256), and f4 ∝ (2, 0.008).
We then follow the stages of computing individual delay bound
for a tagged flow as stated before. For this purpose, we can easily
revise our proposed propositions for (σ, ρ) flows by substituting
σ and ρ into L and p, respectively, in all formulas. We can also
apply the method presented in [5]. With both approaches, the
same value for h(α3, β

eq
3) is achieved and equals to 17.241. Thus,

1
β

3
β

2
β

1
f

3
f

2
f

4
f

Fig. 4. An example

we have about 33.6% improvement on the tightness of the delay
bound.

To analyze delay sensitivity, Table I depicts the end-to-end
delay bound for tagged flow f3 in a network with CBR (Constant
Bit-Rate) flows (DelayCBR) and also VBR flows (DelayV BR)
versus the different values of service rate R, along with values
for the end-to-end equivalent service rate Req

3 . From this table,
it is clear that the end-to-end equivalent service rate, Req

3 , is
decreasing by reducing R, while the end-to-end delay bounds
are increasing as well. Also, it is worth mentioning that the
improvement percentage (ImP) decreases because of reduction
of Req

3 .

TABLE I
END-TO-END DELAY COMPARISON FOR f3 UNDER DIFFERENT SERVICE RATES

R1 = 1 R2 = 0.7 R3 = 0.5
Req

3 0.84 0.54 0.34
DelayCBR 17.241 22.804 31.327
DelayV BR 11.443 17.773 27.541

Improvement Percentage 33.6% 22% 12%

VI. CONCLUSIONS

We have presented and proved the required propositions for
computing delay bound of VBR flows in a FIFO multiplexing
network. The propositions can be applied for an architecture
based on aggregate scheduling. To exemplify the potential of
our technique, derivation of formulas for computing equivalent
service curve and the delay bound is detailed. In the future,
we will apply our formal approach for performance analysis of
concatenated routers with multiple virtual channels per inport.

ACKNOWLEDGMENT

The research is funded in part by Intel Corporation through a
research gift.

REFERENCES

[1] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.
Stockhammer, and T. Wedi, “Video coding with h.264/avc: Tools, perfor-
mance and complexity”, IEEE Circuits and Systems Magazine, vol. 4, no.
1, pp. 7-28, 2004.

[2] C. Chang, Performance Guarantees in Communication Networks, Springer-
Verlag, 2000.

[3] J. Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, (LNCS, vol. 2050). Berlin, Germany:
Springer-Verlag, 2004.

[4] Y. Jiang, “Delay bounds for a network of guaranteed rate servers with FIFO
aggregation”, Computer Networks, vol. 40, no. 6, pp. 683-694, 2002.

[5] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-end per-
flow delay bounds in fifo multiplexing sink-tree networks”, Performance
Evaluation, vol. 63, no. 9, pp. 956-987, 2006.

[6] Y. Qian, Z. Lu, and Q. Dou, “QoS Scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin”, In the Proceedings of the 28th
International Conference on Computer Design (ICCD’10), pp. 52-59, Amer-
stedam, The Netherlands, 2010.

[7] F. Jafari, A. Jantsch, Z. Lu, “Output process of variable bit-rate flows in
on-chip networks based on aggregate scheduling”, In the Proceedings of
the International Conference on Computer Design (ICCD), pp. 445-446,
Amherst, USA, 2011.

144

Paper 11

Proportionally Fair Flow Control
Mechanism for Best Effort Traffic
in Network-on-Chip Architectures

M. S. Talebi
F. Jafari
A.Khonsari
M. H. Yaghmaee

International Journal of Parallel, Emergent, and Dis-
tributed Systems (IJPEDS), Vol. 25, No. 4, pp 345-362
Jul. 2010.

145

This article was downloaded by: [The University of Manchester Library]
On: 22 August 2014, At: 04:39
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Parallel,
Emergent and Distributed Systems
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gpaa20

Proportionally fair flow control
mechanism for best effort traffic in
network-on-chip architectures
Mohammad S. Talebi a , Fahimeh Jafari a b , Ahmad Khonsari a c &
Mohammad Hossien Yaghmaee b
a School of Computer Science, IPM , Tehran, Iran
b Ferdowsi University of Mashhad , Mashhad, Iran
c Department of ECE , University of Tehran , Tehran, Iran
Published online: 09 Jul 2010.

To cite this article: Mohammad S. Talebi , Fahimeh Jafari , Ahmad Khonsari & Mohammad Hossien
Yaghmaee (2010) Proportionally fair flow control mechanism for best effort traffic in network-
on-chip architectures, International Journal of Parallel, Emergent and Distributed Systems, 25:4,
345-362, DOI: 10.1080/17445760902894647

To link to this article: http://dx.doi.org/10.1080/17445760902894647

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &147

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

148

Proportionally fair flow control mechanism for best effort traffic
in network-on-chip architectures

Mohammad S. Talebia*, Fahimeh Jafaria,b, Ahmad Khonsaria,c and Mohammad

Hossien Yaghmaeeb

aSchool of Computer Science, IPM, Tehran, Iran; bFerdowsi University of Mashhad, Mashhad, Iran;
cDepartment of ECE, University of Tehran, Tehran, Iran

(Received 19 January 2009; final version received 11 February 2009)

The research community has recently witnessed the emergence of multi-processor
system on chip (MPSoC) platforms consisting of a large set of embedded processors.
Particularly, Interconnect networks methodology based on network-on-chip (NoC) in
MPSoC design is imminent to achieve high performance potential. More importantly,
many well established schemes of networking and distributed systems inspire NoC
design methodologies. Employing end-to-end congestion control is becoming more
imminent in the design process of NoCs. This paper presents a centralised congestion
control scheme in the presence of both elastic and streaming flow traffic mixture. We
model the desired best effort source rates as the solution to an optimisation problem
with weighted logarithmic objective which is known to admit proportional fairness
criterion. The problem is constrained with link capacities while preserving guaranteed
service traffics services requirements at the desired level. We propose an iterative
algorithm as the solution to the optimisation problem which has the benefit of low
complexity and fast convergence, and can be implemented by a controller unit with low
computation and communication overhead.

Keywords: network-on-chip; flow control; best effort; optimisation; proportional
fairness

1. Introduction

The high level of system integration characterising multi-processor system-on-chips

(MPSoCs) is raising the scalability issue for communication architectures. Towards this

direction, traditional system interconnects based on shared busses are evolving both from

the protocol and the topology viewpoint. Advanced bus protocols acts in favour of better

exploitation of available bandwidth, while more parallel topologies are instead being

introduced in order to provide more bandwidth [1]. In the long run, many researchers and

SoC designers agree on the fact that this trend approaches the network-on-chip (NoC) as a

solution to the lack of SoCs’ Scalability [5].

A NoC system fundamentally consists of three components: switches, network

interfaces (NIs) and links. The switches can be arbitrarily connected to each other and to

NIs, based on a specified topology. They are responsible for routing, switching and flow

control logic, as well as error control handling. NIs are responsible for packetisation/de-

packetisation and implement the service levels associated with each transaction.

ISSN 1744-5760 print/ISSN 1744-5779 online

q 2010 Taylor & Francis

DOI: 10.1080/17445760902894647

http://www.informaworld.com

* Corresponding author. Email: mstalebi@ipm.ir

International Journal of Parallel, Emergent and Distributed Systems

Vol. 25, No. 4, August 2010, 345–362

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

149

Recently, quality-of-service (QoS) provisioning in NoC’s environment has attracted

many researchers and currently is the focus of many literature in NoC research

community. NoCs are expected to serve as multimedia servers and are required not only to

carry elastic flows, i.e. best effort (BE) traffic, but also inelastic flows, i.e. guaranteed

service (GS) traffic which requires tight performance constraints such as necessary

bandwidth and maximum delay boundaries.

The Internet Engineering Task Force, realising the limitations of the BE model, has

undertaken serious steps to meet the QoS demand in the Internet infrastructure. Current

achievements in integrating more processor cores on a single chip have made it possible to

employ these MPSoCs as real time multimedia servers which require intensive

computational power. Thus, it is imperative to provide in MPSoCs, capabilities such as

QoS which has been well available in traditional Internet servers. This implies that the

underlying on-chip communication will be required to provide deterministic bounds on

delay and throughput for communication among communicating nodes on a chip.

Congestion control as a critical means of providing QoS in traditional data networks is a

well known issue and has been widely studied over the past two decades. However, it is

still a novel problem in NoCs and to the best of our knowledge only few works has been

carried out in this field [8,12,16].

Network congestion has a negative effect on its performance. The problem occurs in

networks when resources, i.e. available bandwidths, get saturated. The resulting

performance degradation is experienced by BE network users as an increase of latency and

loss of bandwidth. Figure 1 shows a shared link transporting both constant bitrate BE

traffic and variable bitrate (VBR) GS traffic with the reserved bandwidth depicted with a

dashed line. BE traffic improves resource utilisation but at certain moments the shared

resource is congested. Figure 2 shows a shared resource with congestion controlled BE and

VBR GS traffic.

This paper is organised as follows. We discuss related work in Section 2. In Section 3

we present the system model and formulate the underlying optimisation problem for BE

flow control. In Section 4 we solve the underlying optimisation problem using duality

approach and propose a flow control algorithm. In Section 5 we analyse the performance

of the proposed algorithm in terms of convergence behaviour and fairness. Section 6

Figure 1. Shared resource without congestion controlled BE.

M.S. Talebi et al.346

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

150

addresses the realisation aspects of the proposed flow control algorithm. Section 7 presents

the simulation results. Finally, Section 8 concludes the paper and states some future work

directions.

2. Related works

Flow control for data networks is a widely studied issue [7,9,11,17]. A wide variety of flow

control mechanisms in data network belongs to the class of end-to-end control schemes,

like TCP/IP, which is mainly based on the window-based protocols. In these protocols,

intermediate routers avoid the network from becoming congested by means of packet

dropping deterministically (as in DropTail) or randomly (as in RED). Therefore,

transmitted packets are subject to loss and the network must aim to provide an

acknowledgement mechanism. On the other hand, on-chip networks pose different

challenges. The reliability of on-chip wires and more effective link-level flow-control

allows NoCs to be lossless. Therefore, there is no need to utilise an acknowledgment

mechanism and we face to a slightly different concept of flow control.

So far, several works have focused on this issue for NoC systems. In Ogras and

Marculescu [12] a prediction-based flow-control strategy for on-chip architectures is

proposed in which each router predicts the buffer occupancy to sense congestion. This

scheme controls the packet injection rate and regulates the number of packets in the

network. In van den Brand et al. [16] link utilisation is used as a congestion measure and a

model prediction-based controller, determines the source rates. DyAD [8] controls the

congestion by using adaptive routing when the NoC faces congestion.

In this paper, we focus on the flow control for BE traffic as the solution to a utility-

based optimisation problem. To the best of our knowledge, none of the abovementioned

works have dealt with the flow control problem using a utility optimisation approach. In

our previous work [13], we have modelled desired BE source rates as the solution to a

utility-based optimisation problem with a general form utility function and solved the

proposed problem using Newton’s method. In Talebi et al. [14], we focused this problem

via sum-rate optimisation problem and used a different approach to solve the problem. In

Talebi et al. [15] we have used the flow control problem outlined in Talebi et al. [13] and

focused on a especial form utilityfunction and adopted a different approach to solve the

Figure 2. Shared resource with congestion controlled BE.

International Journal of Parallel, Emergent and Distributed Systems 347

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

151

problem. As an extension to our previous work [15], in this paper we address the

performance analysis of the flow control problem outlined in Talebi et al. [13] for a

especial form of utility functions, known as proportional utility functions, which satisfies

nice fairness features. We focus on the solution of the flow control problem and investigate

its fairness and convergence behaviour.

3. System model and problem formulation

We consider a NoC architecture with wormhole routing. In wormhole-routed networks,

each packet is divided into a sequence of flits which are transmitted over physical links one

by one, in a pipeline fashion. A hop-to-hop credit mechanism guarantees that a flit is

transmitted only when the receiving port has free space in its input buffer. We also assume

that the NoC architecture is lossless, and packets traverse the network on a shortest path

using a deadlock free XY routing [5].

We model the flow control in NoC as the solution to a utility-based optimisation

problem. For the sake of convenience, we turn the aforementioned NoC architecture

into a mathematically modelled network, as in Low and Lapsley [10]. In this respect,

we consider NoC as a network with a set of bidirectional links L ¼ {1; 2; . . . ; L} and a

set of sources S ¼ {1; 2; . . . ; S}. A source consists of processing elements, routers and

input/output ports. Each link l [L is a set of wires, busses and channels that are

responsible for connecting different parts of the NoC and has a fixed capacity of

cl bits/s. We denote the set of sources that share link l by SðlÞ. Similarly, the set of

links that source s passes through, is denoted by LðsÞ. By definition, s [SðlÞ if and

only if l [LðsÞ.
As discussed in Section 1, there are two types of traffic in a NoC: GS and BE. For

notational convenience, we represent BE and GS traffic rates by xs and ys, respectively.

Each link l [L is shared between the two traffics. GS traffics will obtain the required

amount of link capacity and BE traffics benefit from the remainder.

Our objective is to choose source rates with BE traffic so as to maximise the weighted

sum of the logarithm of the BE source rates while satisfying capacity constraints. Thus, the

optimisation problem can be formulated as [10]:

max
xs

X
s[S

as log xs ð1Þ

subject to:

X
s[SðlÞ

xs þ ys # cl ;l [L ð2Þ

xs . 0 ;s [S ð3Þ

where as is the positive weight of source s. Optimisation variables are BE rates, which in

vector form are represented by x ¼ ðxs; s [SÞ and belong to R
S
þ. (RS

þ denotes

nonnegative real).

The constraint (2) states that the sum of BE and GS traffic rates passing through

link l cannot exceed its free capacity, i.e. cl. The objective function of problem (1) is

convex and its constraints are affine, and hence it is a convex optimisation problem

with linear constraints and admits a unique maximiser [2,4]; i.e. there exists an

optimal source rate vector, x*, which maximises (1) while satisfying capacity

constraints.

M.S. Talebi et al.348

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

152

In general, problem (1) belongs to the class of utility-based optimisation problems, for

which the utility function is assumed to be weighted logarithmic, i.e. UsðxsÞ ¼ as log xs.

Such utility functions, are assumed to be concave and strictly increasing. There are many

choices for such utility functions with specific features and behaviours. We discuss in

Section 5, that logarithmic utility function has nice properties known as proportional

fairness [9].

It is worth mentioning that despite the restriction of ourselves to a specific utility

function, our work can be easily extended to arbitrary utility functions, as in our previous

work [13].

For notational convenience, we define:

ĉl ¼ cl 2
X
s[SðlÞ

ys: ð4Þ

Also, for the sake of simplicity in our derivations throughout this paper, we define the

routing matrix as R ¼ ½Rls�L£S, where Rls is defined as

Rls ¼
1 if l [LðsÞ
0 otherwise

(
ð5Þ

Thereafter, we will follow this notation, unless the otherwise is stated. Regarding this,

(1) for the aforementioned class of utility functions can be rewritten as

max
xs

X
s[S

as log xs ð6Þ

subject to:

X
s

Rlsxs # ĉl ;l [L ð7Þ

xs . 0 ;s [S ð8Þ

4. Optimal flow control algorithm

In this section we solve (6) and derive the optimal flow control algorithm.

Although problem (6) is separable among sources, its constraints will remain coupled

across the links over the network. The coupled nature of such constrained problems,

necessitates usage of centralised methods like interior point method which poses great

computational overhead on the system [2,4].

One way to reduce the computational complexity is to transform the constrained

optimisation problem into an unconstrained one, which can be solved efficiently using

several iterative methods. According to the duality theory [2,4], each convex optimisation

problem has a dual problem. Regarding this terminology, the main problem is

retroactively called the primal problem. Optimal solution of the dual for a maximisation

(minimisation) problem leads to an upper bound (lower bound) to the optimal value of the

primal. With certain conditions (such as strong convexity) such an upper bound (lower

bound) is tight and hence solving the dual is equivalent to solving the primal [4]. However,

as the dual problem can be defined in a way to be unconstrained, solving the dual is much

simpler than the primal.

International Journal of Parallel, Emergent and Distributed Systems 349

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

153

In the sequel, we will obtain the dual of problem (6) and solve it using efficient

iterative algorithms.

4.1 Deriving the dual

We start by writing the Lagrangian of (6). Using the standard optimisation methods [4],

the Lagrangian of problem (6) can be written as:

Lðx; lÞ ¼
X
s

as log xs 2
X
l

ll
X
s[S

Rls xs 2 ĉl

 !
; ð9Þ

where ll is the positive Lagrange multiplier associated with the corresponding

constraint of link l and l ¼ ðll; l [LÞ is the vector of Lagrange multipliers and

belongs to R
L
þ. In economics literature, ll is called shadow price [9] for the

interpretation of its role in solving the primal problem via its dual. Later on, we will

discuss about this issue.

Regarding the Lagrangian, the dual function is defined as [4]:

gðlÞ ¼ max
x

L ðx; lÞ: ð10Þ

Duality theory states that when the duality gap1 is zero, the optimal source rate vector, x*,

corresponds to the optimal Lagrange multipliervector, l* [2,4]. In other words, if x is a

feasible point of the primal problem and x is primal-optimal, the corresponding l will be

dual-optimal and vice versa. Therefore, at optimality using Karush–Kuhn–Tucker (KKT)

condition, we have

7xL ðx; lÞjðx*;l *Þ ¼ 0; ð11Þ

where 0 is a vector with all zero. From (9), we have

›L

›xs
jðx*;l *Þ ¼

d

dxs
ðas log xsÞjx*

s
2
X
l

Rlsl
*
l ¼ 0: ð12Þ

Hence, the optimal source rate is given by

x*
s ¼

asP
lRlsl

*
l

: ð13Þ

From (13) it is apparent that x*
s is a decreasing function of ll; therefore ll can be construed

as the price which must be paid for the source rate xs. As the nature of such a price is

hidden to the sources from the primal problem perspective, it is called shadow price.

Substituting x*
s into (9) yields

gðlÞ ¼
X
s

asðlog as 2 1Þ2 as log
X
l

Rlsll

 ! !
ð14Þ

þ
X
l

llĉl: ð15Þ

M.S. Talebi et al.350

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

154

The dual problem is defined as [4]:

min
ll

gðlÞ ð16Þ

subject to:

ll $ 0 ;l [L: ð17Þ

Therefore, the dual problem is given by:

min
ll$0

X
l

llĉl 2
X
s

as log
X
l

Rlsll

 !
: ð18Þ

The dual problem is always convex regardless of convexity or non-convexity of the

primal problem. Moreover, the dual problem can be defined to be unconstrained. Thus, the

primal has been transformed into an unconstrained convex optimisation problem.

Strict convexity of the primal problem (6) guarantees strong duality. Therefore the

duality gap is zero; i.e. solving the dual leads to the optimal point of the primal [2,4]. Since

dual problem is convex, it admits a unique minimiser, which can be obtained using

iterative methods. As the dual problem is unconstrained; solving (18) using iterative

methods is much simpler than the primal.

There exist several methods to search the optimal point of an unconstrained

optimisation problem iteratively [2,4]. One famous and simple ones is gradient projection

method [2] which admits tractable computational complexity. Another famous one is

Newton’s method that has better convergence behaviour at the expense of higher

computational complexity [2,4].

We postpone solving the dual to the next subsection.

4.2 Solving the dual

In this subsection, we solve the dual problem using gradient projection method [2].

The gradient projection method adjusts shadow prices, i.e. Lagrange multipliers, in

opposite direction to the gradient of the dual function, as follows:

lðk þ 1Þ ¼ ½lðkÞ2 g7gðlðkÞÞ�þ; ð19Þ

where g . 0 is a sufficiently small constant stepsize, and ½z�þ ¼ max{z; 0}. Since the

objective of problem (6) is strictly concave, gðlÞ is continuously differentiable [2], and

thus 7gðlÞ exists. Using (14), the lth element of the gradient vector is given by:

›gðlÞ

›ll
¼

›

›ll

X
l

llĉl 2
X
s

as log
X
l

Rlsll

 !" #
: ð20Þ

Therefore,

›gðlÞ

›ll
¼ ĉl 2

X
s

RlsasP
kRkslk

: ð21Þ

International Journal of Parallel, Emergent and Distributed Systems 351

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

155

Regarding (13), (21) can be written as

›gðlÞ

›ll
¼ ĉl 2

X
s

Rlsxs ð22Þ

and the update equation is given by:

llðk þ 1Þ ¼ llðkÞ2 g ĉl 2
X
s

RlsxsðlÞ

 !" #þ
: ð23Þ

where xsðlðkÞÞ is obtained by (13), given lðkÞ. In the next subsection, we propose a flow

control algorithm based on the update Equation (23).

4.3 Optimal algorithm

In this subsection, we present a centralised flow control algorithm for BE traffic in NoC

systems which controls the BE source rates in favour of problem (6). Regarding (23) and

(13), it is clear that they form an iterative algorithm as the solution to problem (18) and

thereby problem (6). In this respect, optimal source rates for BE sources can be found

while satisfying capacity constraints and preserving GS traffic requirements. Thus, such an

algorithm can be used to control the flow of BE sources in the NoC. This algorithm is listed

below as Algorithm 1.

The above iterative algorithm has a decentralised nature and can also be addressed in

distributed scenarios. However, due to well-formed structure of the NoC, we focus on a

centralised scheme; a controller can be devised to implement such an algorithm. The

necessary requirements of such a controller are the ability to accomplish simple

mathematical operations as in (23) and (13) and the allocation of few dedicated links to

communicate congestion control information to nodes with a light real-time load. Later, in

Section 6 we will discuss about the implementation aspects of such a controller.

Algorithm 1. Fair BE flow control in NoC

Initialisation
Initialise the following items:

1. Sets of sources and links including
the routing matrix.
2. ĉl for l [L.

Main loop
Do until maxsjxsðk þ 1Þ2 xsðkÞj , e

1.
;l [L Compute new link prices:
llðk þ 1Þ ¼ llðkÞ2 g ĉl 2

P
lRlsxsðkÞ

� �� �þ
2.
;s [S Compute new BE source rates as follows:
xsðk þ 1Þ ¼ asP

l
RlsllðkÞ

Output
Communicate BE source rates to the
corresponding sources.

M.S. Talebi et al.352

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

156

5. Performance analysis

In this section, we go into more detail of the performance of the proposed flow control

algorithm. First, we analyse the convergence behaviour of it and then, we explore its

fairness features.

5.1 Convergence analysis

In this subsection, we investigate the convergence behaviour of the proposed algorithm.

Evolution of the proposed flow control algorithm is mainly relying on the update Equation

(23), which in turn is dependent on the stepsize g, as a parameter. Thus, we mainly focus

on the effect of stepsize and state the conditions under which Algorithm 1 converges.

There are several choices for stepsize, each one belonging to a predefined category and

having certain advantages and drawbacks (see [2] and references herein). In the family of

gradient projection algorithms for distributed scenarios, stepsize is usually chosen to be a

small enough constant so as to guarantee the convergence of the algorithm. Due to its

simplicity and robustness, in this paper we focus on the case of constant stepsize.

Before proceeding to state the necessary conditions, we first present the fundamental

lemma for the gradient optimisation algorithms.

Lemma 5.1. Consider the unconstrained minimisation problem min xf ðxÞ with its minimum

point denoted by x *. If 7f ðxÞ has Lipschitz continuity property, i.e. there exist M . 0

such that

j7f ðx1Þ2 7f ðx2Þj # M x1 2 x2k k2 ð24Þ

then the sequence xðkÞ defined as

xðk þ 1Þ ¼ xðkÞ2 g7f ðxðkÞÞ ð25Þ

converges to the neighbourhood of x* provided that the following hold

e # g #
2 2 e

M
ð26Þ

for some values of e . 0.

Proof: See [2] for proof.

The following theorem states the necessary condition on the stepsize, under which

Algorithm 1 converges to the neighbourhood of the optimal point of problem (18) and

thereby that of problem (6).

Theorem 5.2. The iterative flow control algorithm proposed by (13) and (23) converges to

the neighbourhood of the optimal point of the primal problem (6) provided that

0 , g ,
2a

�c2 �L�S
; ð27Þ

where �L is the length of the longest path used by sources, �S is the number of sources

sharing the most congested link, a is the minimum weight of sources and �c is the upper

bound on link capacities.

Proof: See Appendix 1 for proof.

International Journal of Parallel, Emergent and Distributed Systems 353

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

157

5.2 Proportional fairness

The choice of utility function directly influences the policy by which system resources, i.e.

link bandwidth, are shared among competing sources. In this respect, in terms of

economics terminology, utility function maintains a specific criterion of fairness among

users or sources. Several fairness criteria have been defined in literature which can serve as

the objective function in problem (6). Amongst them are Max–Min Fairness [3] and

Proportional Fairness [9]. In networks with Max–Min fairness, resources are mainly

shared in favour of weak users while in those with Proportional Fairness, resources are

shared in proportion to the resource usage of each source. In the sequel the formal

definition of Proportional Fairness is stated.

Definition 1. (Proportional Fairness [9]) The optimal rate allocation x* ¼ ðx*
s ; s [SÞ, is

said to be proportionally fair, if for any other feasible rate allocation, say x0 ¼ ðx0s; s [SÞ,
the total proportional net benefit gained by the new source rates is decreased, i.e.

X
s

x0s 2 x*
s

x*
s

0: ð28Þ

It is proven that systems with proportional fairness, i.e. those satisfying (28), must

have logarithmic utility functions [9], i.e.

UsðxsÞ ¼ log xs: ð29Þ

Thus, the proposed flow control algorithm, with equal weight factors will be

proportionally fair. It is worth noting that the case of heterogeneous weight factors

corresponds to another implementation of such a fairness criterion, the so-called Weighted

Proportionally Fair, for which (28) turns to be

X
s

as
x0s 2 x*

s

x*
s

0 ð30Þ

and the corresponding utility function will be

UsðxsÞ ¼ as log xs: ð31Þ

In the sequel, we briefly discuss about the effects of weight factors. As previously

stated, as is the weight for source s in the optimisation problem which controls its priority

in resource sharing. To gain more insights on the role of as in the flow control, we consider

a simple case in which there is only a single bottleneck link, say link k [L. By a

bottleneck link, say link k, we mean a link for whichX
s

Rksx
*
s ¼ ck ð32Þ

KKT conditions guarantee that in the optimality (i.e. equilibrium) the Lagrange multiplier

associated to such a link is not zero. Furthermore, since all other links does not saturate, we

have X
s

Rlsx
*
s , cl l – k: ð33Þ

M.S. Talebi et al.354

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

158

Likewise, KKT conditions guarantee that in equilibrium, for such links we get

l*
l

X
s

Rlsx
*
s 2 cl

 !
¼ 0 l – k: ð34Þ

Using (33), we deduce that

l*
l ¼ 0 l – k: ð35Þ

We now proceed to see how bandwidth of the bottleneck link is shared among

competing sources s [SðkÞ. Combining (13) and the above results, we have:

xs ¼
asP

l[LðsÞll

¼
as

lk
ð36Þ

xi

ai
¼

xj

aj
¼

1

lk
;i; j [SðkÞ ð37Þ

combining (36) and (37), leads to

xi ¼
aiP

s[SðkÞas
ck: ð38Þ

Equation (38) offers a simple proportional rule for rate allocation in the

abovementioned scenario. It says that in a network with single bottleneck link, the

sources passing through the congested link, achieve their rates in proportion to their

weights. For networks with multiple congested links, such an insight might not be easily

seen, however, weight factors directly influence the capacity sharing at bottleneck links,

similarly. In this respect, we draw a conclusion that more resources, i.e. link capacity, can

be allocated to some specified sources by assigning larger weights to them.

6. Realisation aspects

6.1 Implementation

In this subsection we address the implementation aspects of the proposed BE flow control

algorithm.

As stated earlier, Algorithm 1 can be used as a centralised flow control mechanism for

BE sources in NoC. In this regard, we consider a simple controller that can be embodied by

the NoC, whether as a separate hardware module or as a part of its operating system, which

is responsible for running the algorithm. From computational complexity point of view,

such a controller must have the ability of carrying out simple mathematical and logical

operations, as in Algorithm 1. Another issue worth considering is the mechanism with

which the controller communicates with sources. Since we would like source rate

information being communicated without delay and loss, we designate to it several GS

links in conjunction with all sources with light traffic load. This can be implemented as a

control bus, to communicate the algorithm output to BE sources.

International Journal of Parallel, Emergent and Distributed Systems 355

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

159

Such a controller, even if implemented as a separate hardware module, as in van den

Brand et al. [16], would admit very low power consumption and as a result would pose

negligible overhead to the system.

6.2 Comparison with congestion control in data networks

Motivated by the end-to-end nature of Algorithm 1, we briefly discuss about the inherent

connection of it with those used for BE data transmission in the Internet.

The proposed flow control algorithm are very similar to end-to-end congestion control

schemes in data networks, e.g. TCP variants which are widely used to control BE data flow

in the Internet. Most of such end-to-end schemes use the well-known window-based

method, in which each source maintains a window of packets that are transmitted, but not

acknowledged. In data networks, packets may be lost due to dropping at the routers, and

therefore destination should acknowledge the ordered receipt of them in the current

window. Each source changes its window size in response to congestion signals, i.e.

positive or negative acknowledges or duplicates ones, and thereby avoids the network

facing congestion. Roughly speaking, the source rate in each round trip (i.e. the way from a

source to its destination and then back to the source for acknowledgement), is the ratio of

the window size to the Round Trip Time (RTT) (i.e. duration of the trip).

Although flow control in TCP is carried out through updating window size, one can

derive the corresponding rate updates, too. The proposed flow control algorithm is very

similar to rate update in TCP scheme. Such a close connection stems from the similarity in

the underlying flow control problem in both schemes. However, it is worth mentioning that

unlike TCP, in Algorithm 1 we have not devised any window-based transmission and

acknowledgment mechanism. This is due to the fact that NoC architecture is lossless, as

previously stated in Section 2, and hence all packets will be delivered successfully in the

correct order and therefore no acknowledgement is needed.

7. Simulation results

In this section we examine the proposed flow control algorithm for a typical NoC

architecture. In our scenario, we have used a NoC with 4 £ 4 Mesh topology which

consists of 16 nodes communicating using 24 shared bidirectional links; each one having a

fixed capacity of 1 Gbps. In our scheme, packets traverse the network on a shortest path

using a deadlock free XY routing. We also assume that each packet consists of 500 flits

and each flit is 16 bits long.

In order to simulate our scheme, some nodes are considered to have a GS data (such as

Multimedia, etc.) to be sent while other nodes have a BE traffic. As stated before, GS

sources will obtain the required amount of the link capacities and the remainder should be

allocated to BE traffics. Routing policy for BE sources is shown in Figure 3. We present

our results in the following subsections as below.

7.1 Convergence behaviour

One of the most significant issues of interest is the convergence behaviour of the source

rates. In this subsection, we have simulated our scheme using two different values for step-

size, g ¼ 1:05 and 0.2. Weight factors for all sources are assumed to be unity. The

convergence behaviour of source rates using the two abovementioned choices of step size

are depicted in Figures 4 and 5. Regarding Figure 4, it’s apparent that for g ¼ 1:05, after

M.S. Talebi et al.356

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

160

20 iteration steps the source rates will have very little variations, however, from Figure 5,

i.e. for g ¼ 0:2, such a threshold of iteration steps will be at least 85.

In order to have a better insight about the convergence behaviour of the algorithm, the

relative error with respect to optimal source rates which is averaged over all active

sources, is also depicted in Figure 6. Optimal source rates are obtained using CVX [6]

which is a MATLAB-based software for solving disciplined convex optimisation

problems. This figure reveals that using the first step size leads to less than 10% error in

average just after running about 13 iteration steps, and after 20 steps the average error lies

below 5%. However, with the second step size, the algorithm would reach the two

aforementioned error margins at the expense of iterating for about 60 and 75 steps,

Figure 3. Network topology and routing policy.

0 50 100 150
0

1

2

3

4

5

6

7
× 108

Iteration Steps

S
ou

rc
e

R
at

e
(b

ps
) γ = 1.05

source 2
source 3
source 4
source 5
source 6
source 7
source 8

Figure 4. Source rates convergence for g ¼ 1:05.

International Journal of Parallel, Emergent and Distributed Systems 357

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

161

respectively. For practical implementations and realistic applications, due to faster

convergence speed, the first step size is more appropriate.

7.2 Convergence behaviour in dynamic scenarios

Although we have not considered the tracking feature of Algorithm 1, such a Gradient

based algorithm has nice properties to track the dynamic conditions of the network. Such

an ability of tracking the dynamic conditions emanates from the tracking capability of the

gradient operator. In order to investigate the behaviour of the algorithm to track the

conditions, we consider the following scenario: we assume that the network in the previous

subsection with the routing policy as in Figure 3. At the iteration step 140, source 1 is

activated and starts sending data. In such a case, the constraint (2) would change and

therefore the optimal solution to the problem would be altered, as well. However, there is

no need to restart the algorithm form its initial phase. The proposed flow control algorithm

can track such a dynamic changes and has the capability to move towards the new optimal

0 50 100 150
0

1

2

3

4

5

6

7
× 108

Iteration Steps

S
ou

rc
e

R
at

e
(b

ps
)

source 2
source 3
source 4
source 5
source 6
source 7
source 8

γ = 0.2

Figure 5. Source rates convergence for g ¼ 0:2.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Iteration

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
pe

rc
en

t)

γ = 1.05

γ = 0.2

Figure 6. Average relative error.

M.S. Talebi et al.358

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

162

source rates without restarting from its initial points. Convergence behaviour of the source

rates is depicted in Figure 7. It is apparent that after step 140, using the chosen step size,

just as few as 20 iteration steps will suffice to move towards the new optimal source rates.

Thus, the proposed algorithm would perform satisfactorily in a time-varying environment

with and abrupt real-time changes.

7.3 Effect of the weight

Another case we consider is the role of weight factor on resource (link capacity) sharing. It

is trivial that network shares its resources in favour of sources with larger weight factors.

In the next simulation experiment, we set the weight factor of sources 2 and 7–20.

Convergence behaviour and steady state source rates are shown in Figure 8. Comparing

Figure 8 and Figure 5, we realise that using larger weight factors, sources 2 and 7 have

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
× 108

Iteration Steps

S
ou

rc
e

R
at

e
(b

ps
)

data 7 data 8

data 1 data 2 data 3
data 4 data 5 data 6

Figure 7. Source rate convergence in a time-varying scheme.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7 × 108

Iteration Steps

S
ou

rc
e

R
at

e
(b

ps
)

data 1 data 2
data 3 data 4
data 5 data 6

data 7
γ = 2.2

Figure 8. Source rate convergence for asymmetric weight factors.

International Journal of Parallel, Emergent and Distributed Systems 359

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

163

achieved larger rates; however this is done at the expense of reducing the rate of some

other nodes passing through bottleneck links that sources 2 and 7 were passing. It is also

worth mentioning that such an asymmetric case, adversely influences the speed of

convergence.

8. Conclusion

In this paper, we addressed the problem of flow control for BE traffic in NoC systems.

Flow control was modelled as the solution to an optimisation problem whose objective

was the sum of weighted logarithmic functions. We solved the problem indirectly through

its dual using gradient projection method, which was led to a flow control algorithm that

can be used to determine optimal BE source rates. Moreover, we evaluated the

performance of the proposed algorithm from two aspects: first we investigated its

convergence behaviour and proved that under certain condition, the algorithm would

converge towards (very close vicinity of) optimal point, and second we lightened that this

algorithm admits proportional fairness criterion. Finally, we argued that the proposed

algorithm can be efficiently implemented by a controller unit which poses a light

computation and communication overhead to the system.

Note

1. Duality gap is referred to as the difference between the optimal value of primal and dual
problem.

References

[1] L. Benini and G. DeMicheli, Networks on chips: A new SoC paradigm, IEEE Comput. 35(1)
(2002), pp. 70–78.

[2] D. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[3] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, NJ, 1991.
[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge,

2004.
[5] W.J. Dally and B. Towles, Route packets, not wires: On-chip interconnection networks, Design

Automation Conference (2001), pp. 684–689.
[6] M. Grant, S. Boyd, and Y. Ye, CVX (Ver. 1.0RC3): MATLAB software for disciplined convex

programming, Download available at: http://www.stanford.edu/boyd/cvx.
[7] Y. Gu, H.O. Wang, and Y. Hong, A predictive congestion control algorithm for high speed

communication networks, Am. Control Conf. 5 (2001), pp. 3779–3780.
[8] Hu. Jingcao and R. Marculescu, DyAD-smart routing for networks-on-chip, Design

Automation Conference (2004), pp. 260–263.
[9] F.P. Kelly, A. Maulloo, and D.K.H. Tan, Rate control for communication networks: Shadow

prices, proportional fairness, and stability, Oper. Res. Soc. 49(3) (1998), pp. 237–252.
[10] S.H. Low and D.E. Lapsley, Optimization flow control I: Basic algorithm and convergence,

IEEE/ACM Trans. Netw. 7 (1999), pp. 861–875.
[11] S. Mascolo, Classical control theory for congestion avoidance in high-speed internet, Conf.

Decis. Control 3 (1999), pp. 2709–2714.
[12] U.Y. Ogras and R. Marculescu, Prediction-based flow control for network-on-chip traffic,

Design Automation Conference (2006), pp. 839–844.
[13] M.S. Talebi, F. Jafari, and A. Khonsari, A novel flow control scheme for best effort traffic in

NoC based on source rate utility maximization, in Proceeding of the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (2007), pp. 381–386.

[14] M.S. Talebi, F. Jafari, A. Khonsari, and M.H. Yaghmaee, A novel congestion control scheme
for elastic flows in network-on-chip based on sum-rate optimization, International Conference
on Computational Science and its Applications (2007), pp. 398–409.

M.S. Talebi et al.360

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

164

[15] M.S. Talebi, F. Jafari, A. Khonsari, and M.H. Yaghmaee, Proportionally-fair best effort flow
control in network-on-chip architectures, International Parallel and Distributed Processing
Symposium (2008), pp. 1–8.

[16] J.W. van den Brand, C. Ciordas, K. Goossens, and T. Basten, Congestion-controlled best-effort
communication for networks-on-chip, Design, Automation and Test in Europe Conference
(2007), pp. 948–953.

[17] C. Yang and A.V.S. Reddy, A taxonomy for congestion control algorithms in packet switching
networks, IEEE Netw. 9(4) (1995), pp. 34–45.

Appendix 1. Proof of Theorem 1

We adopt the framework of the proof from Low and Lapsley [10] and briefly recollect the results
from it. According to the duality theory, whenever the strong duality is certified, the duality gap is
zero and the optimal point of the dual leads to the that of primal. Thus, it suffices to seek the
conditions on the stepsize under which (23) converges to a neighbourhood of the dual-optimal point.

By Lemma 1, it is clear that to prove the convergence of Algorithm 1, we should find a constant
M to satisfy Lipschitz condition. Also by Lemma 1, 7gðlÞ should admit the Lipschitz Continuity
property and thereby it suffices to show that the Hessian of gðlÞ is upper bounded in l2-norm. The
Hessian of gðlÞ is a matrix H ¼ ½Hij�L£L, where Hij is defined as

Hij ¼
›2gðlÞ

›li›lj
: ð39Þ

Considering (13), we have

›xsðlÞ

›ll
¼ 2Rls

x2
s

as
ð40Þ

(40) can be rewritten in the matrix form as

›xðlÞ

›l
¼ 2ART; ð41Þ

where

A ¼ diag 2
x2
s

as
; s [S

� �
: ð42Þ

Recall that in matrix form, we can rewrite (22) as

7gðlÞ ¼ ĉ2 Rx ð43Þ

hence the Hessian of gðlÞ is given by

H ¼ 72gðlÞ

¼ 2R
›xðlÞ

›l

� �

¼ RART: ð44Þ

To find the upper bound of the Hessian, we use the following inequality [4]:

kHk2 # kHk1kHk1; ð45Þ

where kHk1 is the maximum column-sum matrix norm of H, and kHk1 is the maximum row-sum

International Journal of Parallel, Emergent and Distributed Systems 361

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

165

matrix norm. for kRARTk1 we have:

kRARTk1 ¼ max
i

X
j

›2gðlÞ

›li›lj

				
				

¼ max
i

X
j

j½RART�ijj

¼ max
i

X
j

X
s

RisRjs

x2
s

as

				
				

¼ max
i

X
s

Ris

x2
s jLðsÞj
as

				
				; ð46Þ

where jLðsÞj represents the number of links in the path of source s. Source rates are upper bounded as

max xs # max
l

ĉl # max
l

cl: ð47Þ

Regarding the statement of the Theorem 1, we define:

max
s
jLðsÞj ¼ �L ð48Þ

max
l
jSðlÞj ¼ �S ð49Þ

max
l

cl ¼ �c ð50Þ

min
s

as ¼ a_: ð51Þ

Hence, we have

kHk1 #
�c 2 �L�S

a
: ð52Þ

Symmetry of kHk1 results in equality of kHk1 and kHk1. Therefore, Hessian is upper bounded at
least as follows:

kHk2 # kHk1 #
�c 2 �L�S

a
: ð53Þ

Therefore, for sufficiently small e , from Lemma 1 we conclude

0 , g ,
2a

�c 2 �L�S
; ð54Þ

which completes the proof.

M.S. Talebi et al.362

D
ow

nl
oa

de
d

by
 [

T
he

 U
ni

ve
rs

ity
 o

f
M

an
ch

es
te

r
L

ib
ra

ry
]

at
 0

4:
39

 2
2

A
ug

us
t 2

01
4

166

Paper 12

Buffer Optimization in
Network-on-Chip through Flow
Regulation

F. Jafari
Z. Lu
A. Jantsch

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), Vol. 29, No. 12, pp 1973-
1986, Dec. 2010.

167

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010 1973

Buffer Optimization in Network-on-Chip Through
Flow Regulation

Fahimeh Jafari, Zhonghai Lu, Member, IEEE, Axel Jantsch, Member, IEEE,
and Mohammad Hossein Yaghmaee, Member, IEEE

Abstract—For network-on-chip (NoC) designs, optimizing
buffers is an essential task since buffers are a major source of cost
and power consumption. This paper proposes flow regulation and
has defined a regulation spectrum as a means for system-on-chip
architects to control delay and backlog bounds. The regulation
is performed per flow for its peak rate and burstiness. However,
many flows may have conflicting regulation requirements due to
interferences with each other. Based on the regulation spectrum,
this paper optimizes the regulation parameters aiming for buffer
optimization. Three timing-constrained buffer optimization prob-
lems are formulated, namely, buffer size minimization, buffer
variance minimization, and multiobjective optimization, which
has both buffer size and variance as minimization objectives.
Minimizing buffer variance is also important because it affects
the modularity of routers and network interfaces. A realistic case
study exhibits 62.8% reduction of total buffers, 84.3% reduction
of total latency, and 94.4% reduction on the sum of variances of
buffers. Likewise, the experimental results demonstrate similar
improvements in the case of synthetic traffic patterns. The
optimization algorithm has low run-time complexity, enabling
quick exploration of large design spaces. This paper concludes
that optimal flow regulation can be a highly valuable instrument
for buffer optimization in NoC designs.

Index Terms—Buffer size, buffer variance, interior point
method, network-on-chip (NoC), optimization problem.

I. Introduction

THE advance of the technology is raising the level of
integration of intellectual property (IP) and scalability

issue for communication architectures in very large-scale
integration systems. Since traditional buses do not scale well
in the system-on-chip (SoC) platforms, this trend has driven
bus-based architecture toward networks-on-chip (NoCs) [1].
Current achievements in integrating more processor cores on
a single chip enable to employ these many-core systems as
real time multimedia servers. Thus, it is imperative to provide
quality of service (QoS) in these systems which have been
well available in traditional Internet servers. IPs for a SoC are
typically developed concurrently using a standard interface,

Manuscript received December 1, 2009; revised May 12, 2010; accepted
July 3, 2010. Date of current version November 19, 2010. This paper was
recommended by Associate Editor V. Narayanan.

F. Jafari, Z. Lu, and A. Jantsch are with the Department of Electronic
Systems, Royal Institute of Technology, SE-164 40 Kista, Stockholm, Sweden
(e-mail: fjafari@kth.se; zhonghai@kth.se; axel@kth.se).

M. H. Yaghmaee is with the Computer Department, Faculty of Engineering,
Ferdowsi University of Mashhad, Mashhad 91775-111, Iran (e-mail: hyagh-
mae@ferdowsi.um.ac.ir).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2063130

e.g., advanced extensible interface or open core protocol.
Despite the standard interfaces, integrating IPs into a SoC
infrastructure presents challenges because: 1) traffic flows
from IPs are diverse and typically have stringent performance
constraints; 2) the impact of interferences among traffic flows
is hard to analyze; and 3) of the cost and power constraint,
buffers in the SoC infrastructure must not be over-dimensioned
while still satisfying performance requirements even under
worst-case conditions.

Fig. 1 illustrates the approach that we have proposed and
investigated in [2] for addressing the IP integration problem.
Master IPs send read and write requests to slave IPs which
respond with read data and write acknowledgments. The
admission of traffic flows from master IPs into the SoC
infrastructure can be controlled by a regulator rather than
injecting them as soon as possible. Thus, we can control
QoS and achieve cost-effective communication. To lay a solid
foundation of the approach, our flow regulation has been based
on network calculus [3]–[6]. By importing and extending
the analytical methods from network calculus, we can obtain
worst-case delay and backlog bounds. In [7], we implemented
the microarchitecture of the regulator and quantified its hard-
ware speed and cost. The aim of this paper is to optimize the
regulator parameters including peak rate and traffic burstiness
of flows by formulating optimization problems.

Silicon area and power consumption are two critical design
challenges for NoC architectures. The network buffers take up
a significant part of the NoC area and power consumption [8];
consequently, the size of buffers in the system should be mini-
mized. On the contrary, buffers should be large enough to im-
prove communication performance. This means that there is a
tradeoff between buffer size and performance metrics. Hence,
we address an optimization problem of minimizing the total
number of buffers subject to the performance constraints of the
applications running on the SoC. Moreover, since reusing sim-
ilar or identical switches facilitates the design process of NoC-
based systems, we formulate another optimization problem to
minimize the variances of buffer size in the respective output
buffers of switches. As both of the mentioned objective func-
tions are worthwhile for the design process, we formulate them
as a multiobjective problem under QoS constraints. Finally, we
show the benefits of the proposed method and quantify perfor-
mance improvement and buffer size and variance reduction.

The remainder of this paper is organized as follows. Sec-
tion II gives an account of related works. In Section III, we

0278-0070/$26.00 c© 2010 IEEE

169

1974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 1. IP integration in SoCs.

introduce the flow regulation concept along with the basics of
Network Calculus [3]–[6]. Section IV discusses the underlying
system model. Section V is devoted to the discussion about the
buffer optimization problems. In Section VI, we present the
solution method using an iterative approach. Our simulation
results are described in Section VII. We discuss the scope
and assumptions in Section VIII. Finally, Section IX gives the
conclusion and future work.

II. Related Work

A. Network Calculus

Cruz [4] and Chang [6] have pioneered the network
calculus [4], which is a mathematical framework to derive
worst case bounds on maximum latency, backlog, and
minimum throughput. In [5], a general latency-rate server
model was proposed for analyzing traffic scheduling
algorithms. Based on this model, they derived deterministic
delay and backlog bounds. Le Boudec and Thiran [3]
summarized the results of network calculus and their
applications in Internet and ATM. Real-time calculus [9],
close to network calculus, was developed for platform-based
embedded systems. It generalizes standard event models
via upper and lower arrival curves, and processing-element
models via upper and lower service curves. Based on these
curves, it derives delay and backlog bounds. The authors
in [2] proposed a network calculus-based flow regulation and
defined a regulation spectrum as a design instrument for SoC
architects to control QoS. In this paper, we use the concept of
regulation and regulation spectrum in [2] and address the issue
of optimal regulation for buffer optimization. We optimize the
regulator parameters including peak rate and traffic burstiness
of flows by formulating optimization problems.

B. Application Specific Design

NoC-based SoC architectures are often designed for a
specific application or a class of applications. Thus, designers
customize it for a specific application to achieve best perfor-
mance and cost trade-offs. The authors in [10] and [11] show
the advantages of the topological mapping of IPs on the NoC
architectures. In [12], the network topology customization and
its effects on the system are considered. In [13] and [14],
the authors investigate the customized allocation of buffer
resources to different channels of routers. Actually, these
works strived to distribute a given budget of buffering space
among channels. Also, they are based on the average-case

analysis which is not sufficient for a system with hard real-
time requirements.

In [15], we followed a different direction by addressing
an optimization problem to find the minimum total buffer-
ing requirements while satisfying acceptable communication
performance in NoCs with round robin arbitration. In this
paper, we have significantly extended the work in [15]. We
address not only the buffer size minimization problem but also
the buffer variance minimization problem. Moreover, since
both objectives are desirable for NoC designs, we formulate a
multiobjective optimization problem to minimize both buffer
size and buffer variance. We give a systematic account of all
the three problems, i.e., the buffer size minimization, the buffer
variance minimization, and the multiobjective optimization.
Furthermore, we construct the model for weighted round robin
arbitration which outperforms round robin policy. It is worth
mentioning that our method is presented based on tight worst-
case bounds derived by network calculus. Therefore, it is
suitable for real-time system designs.

C. Optimization Method

In this paper, we formulate optimization problems to opti-
mize the regulator parameters with respect to buffer require-
ments.

In the literature, the proposed constrained problems
are called nonconvex nonlinear programming (NLP) prob-
lems [16]. The general aim in constrained optimization is to
transform the problem into an easier subproblem that can then
be solved and used as the basis of an iterative process [16]. A
characteristic of a large class of early methods is the translation
of the constrained problem to a basic unconstrained problem
by using a penalty function for constraints that are near or
beyond the constraint boundary. In this way, the constrained
problem is solved using a sequence of parameterized uncon-
strained optimizations, which in the limit converge to the
constrained problem. These methods are now considered rela-
tively inefficient and have been replaced by methods that have
focused on the solution of the Karush-Kuhn-Tucker (KKT)
equations [16], [17]. The KKT equations are necessary con-
ditions for optimality for a constrained optimization problem.

The solution of the KKT equations forms the basis to many
nonlinear programming algorithms. These algorithms attempt
to compute the Lagrange multipliers directly. In particular, we
will solve the proposed optimization problems using interior
point method for constrained NLP problems [16], [17].

III. Concepts of Flow Regulation

A. Network Calculus Basics

A flow f is an infinite stream of unicast traffic (packets) sent
from a source node and flow j is denoted as fj . In network
calculus [3], a flow fj(t) represents the accumulated number of
bits transferred in the time interval [0, t]. To obtain the average
and peak characteristics of a flow, traffic specification (TSPEC)
is used. With TSPEC, fj is characterized by an arrival curve
αj(t) = min(Lj + pjt, σj + ρjt) in which Lj is the maximum
transfer size, pj the peak rate (pj ≥ ρj), σj the burstiness

170

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1975

Fig. 2. Flow served by a latency-rate server. (a) Flow served without
regulation. (b) Flow served after regulation.

Fig. 3. Flow regulation.

(σj ≥ Lj), and ρj the average (sustainable) rate. We denote
it as fj ∝ (Lj, pj, σj, ρj). The burstiness also is an important
case among these parameters because a flow with low average
rate and unlimited burst size can incur an unlimited delay on
its own packets.

Network calculus uses the abstraction of service curve to
model a network element (node) processing traffic flows.
A service curve reflects the processing latency and service
capability of the node. A well-formulated service model is
the latency-rate function βR,T = R(t − T)+, where R is the
minimum service rate and T is the maximum processing
latency of the node [5]. Notation x+ = x if x > 0; x+ = 0,
otherwise.

As depicted in Fig. 2(a), a TSPEC flow fj ∝ (Lj, pj, σj, ρj)
(denoted as fj : αj) is served by a node guaranteeing a latency-
rate service βR,T . According to [3], the maximum delay and
the buffer required for flow j are bounded by (1) and (2),
respectively

D̄j =
Lj + θj(pj − R)+

R
+ T (1)

B̄j = σj + ρjT + (θj − T)+[(pj − R)+ − pj + ρj] (2)

where θj = (σj −Lj)/(pj −ρj). The output flow f ∗
j is bounded

by another affine arrival curve α∗
j (t) = (σj +ρjT)+ρjt, θj ≤ T ;

α∗
j (t) = min((T + t)(min(pj, R))+Lj +θj(pj −R)+, (σj +ρjT)+

ρjt), θj > T .

B. Regulation Spectrum

TSPEC can be used to characterize flows. It can also be
used to define a traffic regulator. Fig. 3 shows that an input
flow fj reshaped by a regulation component R̂j(pRj

, σRj
)

results in an output flow fRj
. We assume the regulator has the

same input and output data unit, flit, and the same input and
output capacity C flits/cycle. We also assume that fj’s average
bandwidth requirement must be preserved. The output flow
fRj

is characterized by the four parameters (Lj, pRj
, σRj

, ρj),
where pRj

∈ [ρj, pj], σRj
∈ [Lj, σj]. fj can be losslessly

reshaped by the regulator, meaning that fRj
has the same L

and average rate ρ as fj . The two intervals pRj
∈ [ρj, pj] and

Fig. 4. Mechanisms of flow regulation. (a) Self-regulating master. (b) IPs
are stalled: no queuing buffer. (c) IPs are not stalled: queuing buffer.

σRj
∈ [Lj, σj] are called the regulation spectrum, where the

former is for the regulation of peak rate and the latter for the
regulation of traffic burstiness.

The regulation spectrum defines the upper and lower limits
of regulation. Fig. 2(b) shows how the flow is served after
regulation. We implemented microarchitecture of the regulator
and quantified its hardware speed and cost in [7]. Selecting
appropriate pRj

and σRj
is very effective in performance and

cost of communications. In the next sections, we formulate
three optimization problems that consider these regulation
parameters as decision variables.

C. Mechanism and Cost of Flow Regulation

There are three different ways to realize the flow regulation,
each of which incurs different costs.

1) Regulation by design methodology: as shown in
Fig. 4(a), no regulator is implemented in the system.
The IP or the application is designed such that it meets
the regulation requirements. If that can be guaranteed,
there is no additional cost in the network or the network
interface. Also, there is no buffers and no delay due to
regulation; consequently, there is no hardware cost for
designing the regulator. However, the design structure
of master should be changed to have a self-regulating
master. This means that the workload is pushed to the
master and application design. Thus, it applies to new
IPs, but not applicable to legacy IPs.

2) Regulation by a hardware regulator: a hardware regu-
lator is implemented which enforces traffic regulation
at the network interfaces. There are two ways that the
hardware regulator may affect the behavior of IPs as

171

1976 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 5. (σ, ρ)-based regulation mechanism.

follows.
a) As shown in Fig. 4(b), the regulator does not

buffer the packets, but stalls the traffic producers
or IPs. In this case, no buffer due to regulation
is required, but the behavior of masters should
also be modified. This may be a good idea if
the traffic producer is a multitasking CPU that
can do something else while waiting. In this case
the traffic generation is simply delayed and no
buffering costs occur in the system.

b) The traffic producers or IPs are not stalled but
the regulators use buffers to store transactions
as depicted in Fig. 4(c). This can reduce back-
pressure at the expense of buffering cost. Thus,
this scheme allows any legacy IPs to be directly
used in the system.

In principle, which option is best will depend on the context
(application, IPs, architecture, and so on). The significant
benefit of case 2b in comparison with others is simplicity
of design process because no changes are required for the
master structure. In this paper, we have implemented our
proposed method based on case 2b concepts, but it can be
easily extended for other cases.

To evaluate the overhead in silicon area due to the use of
regulators, we designed and synthesized a multi-flow regulator
with Synopsys tools using 180 nm technology [7]. When opti-
mized for area, the multi-flow regulator using three regulators
consumes 5K gates, running up to 730 MHz. Buffers and
packet latency due to regulation depend on the values of the
regulation parameters including peak rate and traffic burstiness
which will be calculated in our case study in Section VII. The
regulation mechanism in this paper is described as follows.

The regulator is implemented using the token-bucket mech-
anism [18] as shown in Fig. 5. The token queue has a size of σ.
Initially the token queue is full. The 1-flit/token server admits
one flit by de-asserting the “stall” signal as long as the token
queue is not empty. The token queue is realized by a saturating
credit counter that increments at rate ρ and saturates when it
reaches a count of σ. A flit can be transmitted if and only
if the credit counter is positive (at least one token available).
Each time a flit is sent, the counter is decremented by 1.

IV. System Model and Delay/Backlog Bounds

We aim at optimizing buffer requirements while satisfying
acceptable latency in on chip communications. We shall for-
mulate optimization problems based on an analytical perfor-
mance model. At first, we shall derive the per-flow worst-case
delay and backlog bounds.

Fig. 6. Example of required buffers for two flows.

Fig. 7. (a) Channel sharing among set of flows. (b) Channel service model
for flow j.

A. Assumptions and Notations

We consider a NoC architecture which can have different
topologies. Every node contains an IP core and a router with
p + 1 input channels and q + 1 output channels. Each IP core
performs its own computational, storage or input/output pro-
cessing functionality, and is equipped with a network interface
(NI). NIs provide an interface between IPs and the network
and they are responsible for packetization/depacketization of
messages. Note that the presence of NIs is the consequence of
using a network rather than using regulators. Regulators are in-
serted between the source IP and the NI. We presume the num-
ber of virtual channels for each physical channel is the same as
the number of flows passing through that channel. Fig. 6 shows
required buffers of flows f1 and f2 from different sources to
the same destination. The following analysis on buffer require-
ments of flows is illustrated by this figure. We also assume
that the NoC architecture is lossless, and packets traverse the
network in a best-effort fashion using a deterministic routing.
This means that the path of a flow is statically determined.

To facilitate our discussions, we turn the aforementioned
NoC architecture into a mathematically modeled network. In
this respect, we consider a NoC as a network with a set of
bidirectional channels L, and a set of flows F . Each physical
channel i ∈ L has a fixed capacity of cli flits/cycle. We
denote the set of flows that share channel i by Fli and their
number is denominated as nli . Similarly, the set of channels
that flow j passes through, is denoted by Lfj

and their number
is denominated as nfj

. By definition, j ∈ Fli if and only if
i ∈ Lfj

.

B. Channel Service Model

To compute the flow traversal delay and backlog bounds
using the equations, we first need to build a channel service
model. The network channel and the ejection channel at the
destination node are treated in the same way since both
types of channels are multiplexed by multiple flows with an
arbitration policy.

172

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1977

Fig. 8. Modeling each network element as a latency-rate server.

Fig. 7(a) depicts a channel li allocated to nli flows. Since
the arbitration policy determines how much the flows influence
each other, it has to be known. We assume that, while serving
multiple flows, the routers employ weighted round robin
scheduling to share the link bandwidth. Assuming a fixed word
length of Lw in all of flows, weighted round robin arbitration
means that each flow j gets at least a ρj∑

∀fk∈Fli

ρk

cli of the

channel bandwidth. A flow may get more if the other flow
uses less, but we now know a worst-case lower bound on
the bandwidth. Since network calculus uses the abstraction of
service curve to model a network element processing traffic
flows [3], we can also model a weighted round robin arbiter
of channel li for flow j as a latency-rate server [19] that its
function is as β

R
j

li
,T

j

li

= R
j

li
(t −T

j

li
)+, where R

j

li
is the minimum

service rate and T
j

li
is the maximum processing latency of the

arbiter of channel li for flow j. R
j

li
and T

j

li
are defined as

follows:

R
j

li
=

ρj∑
fk∈Fli

ρk

cli (3)

T
j

li
=

(
∑

fk∈Fli
Nk

li
− N

j

li
)Lw

cli

(4)

where N
j

li
is the minimum positive integer for flow j passing

through channel i provided that
ρj∑

∀fk∈Fli

ρk

=
N

j

li∑
∀fk∈Fli

Nk
li

∀fj ∈ Fli .

For (3), R
j

li
denotes the minimum weight-proportional band-

width that flow j can take from channel i. For (4), T
j

li
denotes

the maximum blocking time for flow j when passing through
channel i. The channel service model for flow j is shown in
Fig. 7(b).

With the channel service model, we can now model a flow
passing through a series of channels including the ejection
channel as a series of concatenated latency-rate servers. Fig. 8
shows a traffic flow fj after regulation which is called fRj

and is passing through adjacent channels. We construct an
analytical model with the network elements depicted in this
figure. Every channel li ∈ Lfj

that flow j passing through can
be modeled as a latency-rate server for flow j with service
curve β

R
j

li
,T

j

li

, and also the ejection channel in the destination

node of flow j, node k, can be modeled as a latency-rate server
with service curve βRmk

,Tmk
.

C. Tight Worst-Case Bounds for Each Flow

Consider that flow j passes through the regulator and
several network channels offering each a latency-rate service
curve. For each flow, the delay and backlog bounds have two
components: one incurred at the regulator and the other the
network.

Fig. 9. Modeling all network elements as a latency-rate server.

1) Delay and Backlog Bounds at Regulators: To determine
the delay and backlog due to the regulation, its impact on
the behavior of IPs should be considered. As discussed in
Section III-C, one is that IPs are stalled and therefore, there
is no queuing buffer at the regulator. In the other case which is
adopted in this paper, IPs are not stalled and the regulators use
buffers to store transactions. This can decrease back-pressure
at the expense of buffering cost. Let Dregj

and Bregj
be the

delay and backlog for flow j due to regulation, respectively.
We have Bregj

= �σj = σj − σRj
, which is the difference

between the input and output burstiness of the regulator, and
Dregj

= �σj/ρj [2].
2) Delay and Backlog Bounds in the Network:

a) Delay bound: To compute the delay bound for a flow
passing a series of nodes, one simple way is to calculate the
summation of delay bounds at each node. However, this results
in a loose total delay bound. To tighten the worst-case delay
bound along the network, we use the theorem of concatenation
of network elements [3]. Given are two nodes sequentially
connected and each is offering a latency-rate service curve
βRi,Ti

, i = 1 and 2. These nodes can be represented as a single
latency-rate server as follows:

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2 . (5)

As depicted in Fig. 9, we can model all network elements
on a given flow as a single latency-rate server βRej

,Tej
with the

following characteristics:

Rej
= min

(
minli∈Lfj

(
ρj∑

fk∈Fli
ρk

cli

)
,

ρj∑
fr∈Fdk

ρr

cmk

)

(6)

Tej
=

∑

li∈Lfj

(
(
∑

fk∈Fli
Nk

li
− N

j

li
)Lw

cli

)

+
(
∑

fr∈Fdk
Nr

dk
− N

j

dk
)Lw

cmk

(7)

where Rej
denotes the minimum service rate among channels

through which flow j passes and Tej
the sum of maximum

processing latency of the mentioned channels.
Based on a corollary of this theorem which is known as Pay

Bursts Only Once [3], the equivalent latency-rate server is used
for obtaining worst-case delay bound. Therefore, according to

173

1978 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

(1), (6), and (7), the maximum delay for flow j in network is
bounded by

D̄j =
Lj + θRj

(pRj
− Rej

)+

Rej

+ Tej
+ nfj

dp (8)

where dp is delay for propagation in a channel which is
assumed identical for all channels. Therefore, nfj

dp is prop-

agation delay in whole network for flow j and θRj
=

σRj
−Lj

pRj
−ρj

.
Hence, the total maximum delay for the flow j is bounded as
Dregj

+ D̄j .
b) Backlog bound: For calculating tight worst-case

bound on backlog along the network, the sum of the individual
bounds on every element is computed [3]. Thus, the required
buffer in network for flow j is bounded by

B̄j =
∑

i∈Lfj

B̄ji + B̄mj
(9)

where B̄ji is the upper bound on the buffer for flow j for
each i ∈ Lfj

and B̄mj
is the maximum required buffer for the

ejection channel multiplexer of the destination node of flow
j. B̄ji and B̄mj

can be easily obtained by (2). For example,
directly applying (2) for flow j in Fig. 8, B̄mk

can be calculated
by

B̄mk
= σ̆Rj

+ρjT
j
mk

+(θ̆j −T j
mk

)+[(p̆Rj
−Rj

mk
)+ − p̆Rj

+ρj]. (10)

Finally, the total buffer requirements for flow j are bounded
by Bregj

+ B̄j .

V. Buffer Optimization Problems

A. Buffer Size Optimization

As stated before, our objective is to choose output peak
rate and traffic burstiness of regulators for each flow so as to
minimize the buffer requirements while satisfying acceptable
performance in the network. Thus, the buffer size minimization
problem, Minimize-Size, can be formulated as follows.

Given a set of flows F =
{
fj ∝ (Lj, pj, σj, ρj)

}
, routing

matrix R, the maximum delay that each flow can suffer in the
network d =

{
dj

}
for ∀fj ∈ F , find the regulator parameters,

peak rate pRj
and traffic burstiness σRj

for ∀fj ∈ F , such that

min
pRj

,σRj

∑

∀fj∈F

(Bregj
+ B̄j) (11)

subject to

Dregj
+ D̄j ≤ dj ∀fj ∈ F (12)

ρj ≤ pRj
≤ pj ∀fj ∈ F (13)

Lj ≤ σRj
≤ σj ∀fj ∈ F (14)

B̄j > 0 ∀fj ∈ F (15)

where pRj
and σRj

for ∀fj ∈ F are optimization variables.
Equation (11) is the objective function of this optimization

problem which minimizes total buffer requirements. Constraint
(12) says that the maximum delay of each flow j cannot exceed
the maximum delay that it can suffer in the network dj . Since
we measured the flow performance in terms of its latency,

we can consider dj as a criterion of minimum guaranteed
performance for flow j. Constraints (13) and (14) are related
to two intervals pRj

∈ [ρj, pj] and σRj
∈ [Lj, σj] which called

the regulation spectrum as described in Section III-B.
It is clear that by following the above mentioned equations,

we can understand the effect of optimization variables on the
objective function and all constraints of the defined problem.

In the literature, (11) is called a nonconvex NLP prob-
lem [16]. There are different methods for solving this kind
of optimization problems. In particular, we will solve the
optimization problem (11) using interior point method for
constrained NLP problems [16], [17].

B. Buffer Variance Optimization

To reuse IP modules, designers would like to use similar
switches as far as possible. However, flow requirements differ
from each other in terms of buffer size; consequently, we
would like to find appropriate peak rate and traffic burstiness
of each flow so that variances of buffer size in the respective
output buffers of switches are minimized. For example in a
2-D mesh network, we would like to minimize the variance
of buffer size in northern output port of switches, as well
as other output ports. Using general variance formula, we can
easily calculate variances of the required buffer on each output
port i which is denoted by vari. Hence, we formulate another
optimization problem to minimize the sum of required buffers
variances while satisfying QoS requirements in the network.
Thus, the buffer variance minimization problem, Minimize-
Variance, can be formulated as follows.

Given a set of flows F =
{
fj ∝ (Lj, pj, σj, ρj)

}
, routing

matrix R, the maximum delay that each flow can suffer in the
network d =

{
dj

}
for ∀fj ∈ F , find the regulator parameters,

peak rate pRj
and traffic burstiness σRj

for ∀fj ∈ F , such that

min
pRj

,σRj

∑

i

vari (16)

subject to

Dregj
+ D̄j ≤ dj ∀fj ∈ F (17)

ρj ≤ pRj
≤ pj ∀fj ∈ F (18)

Lj ≤ σRj
≤ σj ∀fj ∈ F (19)

B̄j > 0 ∀fj ∈ F. (20)

Optimization variables are pRj
and σRj

, ∀fj ∈ F , that can
be detected in the objective function and constraints by the
following equations. Similar to (11), (16) also is a nonconvex
NLP that can be solved via the interior point method.

C. Multiobjective Optimization Problem

As both of the aforementioned objective functions are
worthwhile for designing the network, we formulate a mul-
tiobjective optimization problem which minimizes both total
buffers and variances, Multiobjective, as follows.

Given a set of flows F =
{
fj ∝ (Lj, pj, σj, ρj)

}
, routing

matrix R, the maximum delay that each flow can suffer in the

174

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1979

network d =
{
dj

}
for ∀fj ∈ F , find the regulator parameters,

peak rate pRj
and traffic burstiness σRj

for ∀fj ∈ F , such that

min
pRj

,σRj

f1 =
∑

∀fj∈F

(Bregj
+ B̄j) (21)

min
pRj

,σRj

f2 =
∑

i

vari (22)

subject to

Dregj
+ D̄j ≤ dj ∀fj ∈ F (23)

ρj ≤ pRj
≤ pj ∀fj ∈ F (24)

Lj ≤ σRj
≤ σj ∀fj ∈ F (25)

B̄j > 0 ∀fj ∈ F. (26)

In multiobjective optimizations, there is not even a universally
accepted definition of optimum as in single-objective opti-
mization, which makes it difficult to even compare results of
one method to another, because normally the decision about
what the best answer corresponds to the so-called decision
maker [23]. Overall, there are different ways for solving mul-
tiobjective optimizations. One of them is combining objectives
into a single function which normally denominated Weighted
Sum Approach. Since objective functions in this paper are in
the same direction and they are not in conflict with each other,
we adopt this approach. The results in Section VII also confirm
that the obtained solution of the proposed multiobjective
problem is very close to optimal points of Minimize-Size and
Minimize-Variance problems. This means that it is an appro-
priate method for solving this problem. The main advantage
of this approach is the simplicity of its implementation and its
computational efficiency. This method consists of adding all
the objective functions together using weighting coefficients
for each one of them. Specifically, our multiobjective problem
is transformed into a scalar optimization problem of the form

min(w1f1 + w2f2) (27)

where w1 and w2 are the weighting coefficients representing
the relative importance of the objectives. In this paper, they are
assumed the same. This approach has a low run-time complex-
ity because of its simplicity and efficiency and therefore, can
be applied for complex SoC designs. We solve the mentioned
problem still using the interior point method.

VI. Optimization Method

A. Optimization Algorithm

As stated before, the proposed optimization problems are
called nonconvex NLP problems [16] and solved by the
interior point method. There are different packages for solving
this kind of optimization problems and we particularly use the
MATLAB optimization package in this paper.

To exemplify the optimization approach, we will solve the
buffer size optimization problem (11), using the interior point
method for constrained NLP problems [16], [17].

The interior point approach to constrained minimization is
to solve a sequence of approximate minimization problems

called barrier problem [17]. Due to (11), for each µ > 0, the
barrier problem is

min
pRj

,σRj
,si

∑

∀fj∈F

(Bregj
+ B̄j) − µ

6|F |∑

i=1

ln(si) (28)

subject to

Dregj
+ D̄j − dj + si = 0 ∀fj ∈ F i = 1, ..., |F | (29)

ρj − pRj
+ si = 0 ∀fj ∈ F i = |F | + 1, ..., 2 |F | (30)

pRj
− pj + si = 0 ∀fj ∈ F i = 2 |F | + 1, ..., 3 |F | (31)

Lj − σRj
+ si = 0 ∀fj ∈ F i = 3 |F | + 1, ..., 4 |F | (32)

σRj
− σj + si = 0 ∀fj ∈ F i = 4 |F | + 1, ..., 5 |F | (33)

si − B̄j = 0 ∀fj ∈ F i = 5 |F | + 1, ..., 6 |F | (34)

where |F | is the cardinality of set F .
There are as many slack variables si as inequality constraints

(12)–(15). The si are restricted to be positive to keep ln(si)
bounded. As µ decreases to zero, the minimum of fµ should
approach the minimum of f . The approximate problem (28) is
a sequence of equality constrained problems. These are easier
to solve than the original inequality-constrained problem (11).

To facilitate our discussion, we define pR = (pR1 , ..., pR|F |)
T ,

σR = (σR1 , ..., σR|F |)
T , s = (s1, ..., s6|F |)T and assume

g(pR, σR) = (g1(pR, σR), ..., g6|F |(pR, σR))T so that g(pR, σR)+
s is a vector that its elements are constraints (29)–(34). Thus,
the barrier problem (28) can be rewritten as

min
pR,σR,s

fµ(pR, σR, s) = min
pR,σR,s

f (pR, σR) − µ

6|F |∑

i=1

ln(si) (35)

subject to

g(pR, σR) + s = 0. (36)

In the following, we shall find an approximate solution to
(35), for fixed µ. Then, the used method is applied repeatedly
to (35), for decreasing values of µ, to approximate the solution
of the original problem (11).

Using the optimization methods [16], the Lagrangian of the
problem (35) can be written as

L(pR, σR, s, λ) = f (pR, σR) − µ

6|F |∑

i=1

ln(si) + λT (g(pR, σR) + s)

(37)
where λ = (λ1, ..., λ6|F |)T is the vector of Lagrange multipliers.
Regarding the first-order optimality conditions, at an optimal
solution (pR, σR, s) of the barrier problem, we have

∇pR
L(pR, σR, s, λ) = ∇pR

f (pR, σR) + A(pR, σR)λ = 0 (38)

∇σR
L(pR, σR, s, λ) = ∇σR

f (pR, σR) + Á(pR, σR)λ = 0 (39)

∇sL(pR, σR, s, λ) = −µS−1e + λ = 0 (40)

where A(pR, σR) = (∇pR
g1(pR, σR), ..., ∇pR

g6|F |(pR, σR)) and
Á(pR, σR) = (∇σR

g1(pR, σR), ..., ∇σR
g6|F |(pR, σR)) are the

175

1980 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

matrixes of constraint gradients with respect to pR and σR,
respectively, and where

e =

⎛
⎜⎝

1
...
1

⎞
⎟⎠ , S =

⎛
⎜⎝

s1

. . .
s6|F |

⎞
⎟⎠ .

To solve the approximate problem, we should generate a
step d for displacement at an iterate z, where

d =

⎛
⎝

dpR

dσR

ds

⎞
⎠ .

One of the two main types of steps is used at each iteration.
1) A direct step in (pR, σR, s). This step attempts to solve

the KKT equations for the approximate problem via
a linear approximation. This is also called a Newton
step [20].

2) A conjugate gradient (CG) step, using a trust re-
gion [21].

The algorithm first attempts to take a direct step. If it cannot,
it attempts a CG step. One case where it does not take a direct
step is when the approximate problem is not locally convex
near the current iteration.

Afterward, it is necessary to decide if the step obtained from
the abovementioned methods is acceptable. For this purpose,
a merit function is introduced. The merit function is given by

φ =
∑

∀fj∈F

(Bregj
+ B̄j) − µ

6|F |∑

i=1

ln(si) + ν ‖g(pR, σR) + s‖ (41)

where ν > 0 is a penalty parameter and can increase
with iteration number in order to force the solution toward
feasibility.

The step is accepted if it gives sufficient reduction in the
merit function; otherwise it is rejected. More details of the
direct and CG steps are described in the following.

According to the above discussions, we present an iterative
algorithm as the solution to (11). Algorithmic realization of
the solution method is listed as Algorithm 1. In this respect,
optimal peak rate and traffic burstiness for traffic flows can
be found while minimizing total buffer requirements under
performance constraints.

B. Direct Step

This step attempts to solve the KKT equations for the
barrier problem via a linear approximation. Regarding the
KKT conditions for the equality constrained barrier problem
(35), we have⎛

⎜⎜⎝

∇pR
f (pR, σR) + A(pR, σR)λ

∇σR
f (pR, σR) + Á(pR, σR)λ

−µS−1e + λ

g(pR, σR) + s

⎞
⎟⎟⎠ = 0. (42)

After applying Newton’s method to this system, we have⎛
⎜⎜⎝

∇2
pR,pR

L ∇2
pR,σR

L 0 A(pR, σR)
∇2

σR,pR
L ∇2

σR,σR
L 0 Á(pR, σR)

0 0 µS−2 I

A(pR, σR) Á(pR, σR) I 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dpR

dσR

ds

λ+

⎞
⎟⎟⎠

Algorithm 1: Buffer Size Minimization Algorithm

Initialization:

1. Choose a penalty parameter ν > 0 and a barrier parameter µ > 0.
2. Initialize trust region radius R > 0 and Lagrange multipliers λ.
3. Set an appropriate initial value for peak rate and burstiness of flows

for problem (11) denoted as pR(0), σR(0).
4. Specify an appropriate value for ε, έ (έ denote

value of expectable reduction in merit function).

1. Loop 1: Do until
(max | pR(t + 1) − pR(t) |< ε)&(max | σR(t + 1) − σR(t) |< ε)

2. Set an appropriate initial value for peak rate and burstiness of flows
and slack variables for barrier problem (35) denoted as ṕR(0), σ́R(0),
s(0).

3. Loop 2: Do until
(max | ṕR(k + 1) − ṕR(k) |< ε)&(max | σ́R(k + 1) − σ́R(k) |< ε)

4. if H is not definite positive go to 5
4.1. Calculate d based on Direct Step as described in Section VI-B
4.2. Go to 6.

5. Calculate d based on CG Step as described in Section VI-C

6. ptemp = ṕR(k) + dpR
;

7. σtemp = σ́R(k) + dσR
;

8. stemp = ś(k) + ds

9. Calculate φ(k + 1) by substituting ptemp, σtemp, stemp in
merit problem (41).

10. if (φ(k + 1) − φ(k) ≥ έ)
10.1. Decrease R;
10.2. Go to 4;

11. pR(k + 1) = ptemp; σR(k + 1) = σtemp; s(k + 1) = stemp

12. Compute new Lagrange multipliers λ.
13. End of loop 2.

14. Decrease barrier parameter µ.
15. End of loop 1.

Output:
Communicate optimal peak rates and traffic burstinesses to the
corresponding regulators.

=

⎛
⎜⎜⎝

∇pR
f (pR, σR)

∇σR
f (pR, σR)
µS−1e

−g(pR, σR) − s

⎞
⎟⎟⎠ (43)

where λ+ = λ+dλ. Thus, steps dpR
, dσR

and ds can be calculated
by solving (43). Letting H be the Hessian of the Lagrangian
of the barrier problem, we have

H =

⎛
⎝

∇2
pR,pR

L ∇2
pR,σR

L 0
∇2

σR,pR
L ∇2

σR,σR
L 0

0 0 µS−2

⎞
⎠ . (44)

If the barrier problem is locally convex near the current
iteration, i.e., H is positive definite, the algorithm uses this
step; otherwise, it uses a CG step, described in the next section.

C. Conjugate Gradient (CG)

The CG approach to solving the approximate problem
(35) is similar to other CG calculations. In this case, the
algorithm adjusts pR, σR, and s, keeping the slacks s positive.

176

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1981

The approach is to minimize a quadratic approximation to
the barrier problem in a trust region, subject to linearized
constraints.

The algorithm obtains Lagrange multipliers by approxi-
mately solving the KKT equations, subject to λ being positive.
Then it takes a step d = (dpR

, dσR
, ds)T to approximately solve

min
d

∇fT
µ d +

1

2
dT Hd (45)

subject to

(A(pR, σR)T I)dpR
+ (Á(pR, σR)T I)dσR

+ g(pR, σR) + s = 0

where ∇fµ is the gradient of the barrier problem and is given
by

∇fµ =

⎛
⎝

∇pR
f (pR, σR)

∇σR
f (pR, σR)

−µS−1e

⎞
⎠ . (46)

To obtain convergence from remote starting points, we
introduce a trust region constraint in (45) of the form

∥∥∥∥∥∥

⎛
⎝

dpR

dσR

S−1ds

⎞
⎠

∥∥∥∥∥∥
≤ R (47)

where R > 0 denotes the trust region radius and is updated at
every iteration.

To solve (46), the algorithm tries to minimize a norm of
the linearized constraints inside a region with radius scaled
by R. Then (45) is solved with the constraints being to match
the residual from solving (46), staying within the trust region
of radius R, and keeping s strictly positive. Since it is not
desirable to impede progress of the iteration by employing
small trust regions, the slack variables are bounded away from
zero by imposing the well-known fraction to the boundary
rule [22]

s + ds ≥ (1 − τ)s

where the parameter τ ∈ (0, 1) is chosen close to 1. Therefore,
(45) can be rewritten as follows:

min
d

∇fT
µ d +

1

2
dT Hd (48)

subject to

A(pR, σR)T IdpR
+ Á(pR, σR)T IdσR

+ g(pR, σR) + s = 0 (49)∥∥(dpR
, dσR

, S−1ds)
∥∥ ≤ R (50)

ds ≥ −τs. (51)

Although, (48) could be difficult and complex to solve
exactly, but we intend to only compute approximate solutions
which are sufficiently good solutions [17].

Further details about the optimization method can be found
in [17], [20], and [21].

Fig. 10. Ericsson radio systems application.

VII. Experimental Results

A. Experimental Setup

To evaluate the capability of our method, we applied it
to a realistic traffic pattern and two synthetic traffic patterns
including hot-spot and bit-complement which are mapped to
a 4 × 4 2-D mesh network. Although the experiments are
performed on a mesh, our method is topology independent.

In this paper, the proposed analytical model is implemented
in MATLAB and throughout the experiments, we consider an
SoC with 500 MHz frequency, 32-flit packets, and 32-bit flits.
We also assume that packets traverse the network on a shortest
path using the dimension order XY routing, which is deadlock
free.

B. Realistic Traffic Pattern

We used a real application provided by Ericsson Radio
Systems [1] as shown in Fig. 10. This application consists
of 16 IPs. Specifically, n2, n3, n6, n9, n10, and n11 are ASICs;
n1, n7, n12, n13, n14, and n15 are DSPs; n5, n8, and n16

are FPGAs; n1 is a device processor which loads all nodes
with program and parameters at startup, sets up, and controls
resources in normal operation. Traffic to/from n1 is for system
initial configuration and no longer used afterward. There are 26
node-to-node traffic flows that are categorized into nine types
of traffic flows {a, b, c, d, e, f, g, h, i}, as marked in the figure.
The traffic flows are associated with a bandwidth requirement.

As stated before, each flow j is characterized by
(Lj, pj, σj, ρj) that are input parameters of the regulator. We
assume Lj and pj for all flows are the same and equal to 1 flit

and 1 flit/cycle, respectively. ρj is determined in flits/cycle

due to Fig. 10 and also, σj can be easily calculated for each
flow which its value will be shown in Section VII-B3.

1) Buffer Size Optimization: As we mentioned before, a
regulator limits a flow injection process with two parameters
(peak rate and burstiness). Since there are 26 flows in the
example, 52 parameters have to be assigned to regulators. To
show that how these parameters heavily affect the required
buffer and communication delay, we consider two different
regulator sets.

1) Optimized regulators, which are optimized based on the
proposed minimizing buffer problem (11).

177

1982 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 11. Peak rate of flows.

Fig. 12. Traffic burstiness of flows.

TABLE I

Comparison of the Required Buffer Between Different Schemes

Network Buffer Regulator Buffer Total Buffer
Without reg. 404 0 404
Optimized reg. 118 28 146
Unoptimized reg. 384 37 421

TABLE II

Comparison of the Maximum Delay Between Different Schemes

Network Delay Regulator Delay Total Delay
Without reg. 3460 0 3460
Optimized reg. 502 61 563
Unoptimized reg. 3396 163 3559

2) Unoptimized regulators, which are not optimized. Obvi-
ously, there is a huge number of unoptimized configura-
tions. We consider a configuration that needs maximum
amount of buffers to regulate flows. In fact, we modify
the buffer optimization problem (11) to maximize the
total number of required buffers instead of minimization.

Then, the total maximum buffer and total maximum delay are
calculated and depicted in Tables I and II, respectively, along
with values for a system without regulators.

From these tables, we can see that the optimized regulation
scheme leads to about 64% reduction in total maximum
required buffer and about 84% in total maximum delay when
compared with the without regulation scheme. Also these
tables show that unoptimized regulators decrease the max-
imum required buffer and delay in the network because of
reducing the contention for shared resources. However, buffer
and delay in the regulators are increased to the extent that
the total buffer requirements and delay become more than the
without regulation scheme because the regulator parameters
are not configured appropriately. As a result, we can minimize
total buffer cost and improve communications performance by

Fig. 13. Maximum required buffers for every flow.

Fig. 14. Maximum worst-case delay for every flow.

TABLE III

Comparison Between Different Scenarios

Required Buffer (flits) Variance
Without regulation 404 436.36
Minimize-size 146 33.82
Minimize-variance 192 22.96
Multiobjective 150 24.29

consuming a few buffers in the regulator and assigning the
peak and burstiness parameters of regulators in a wise manner.

2) Buffer Variance Optimization: Identical switches
throughout the network may be a constraint in NoC-based sys-
tems. Therefore, we have formulated the Minimize-Variance
optimization problem to design similar switches as far as
possible. The results show that if there is no regulator in
the network, the sum of variances over different channels of
switches is about 436.36, while by controlling flows based on
obtained output peak rate and traffic burstiness of solving the
Minimize-Variance problem, it is equal to 22.96. So, we have
about 94% reduction on the sum of variances of buffers.

In this respect, the structures of latter switches are more
similar than the former one. It is worth mentioning that if the
peak and burstiness parameters of regulators are not appropri-
ately assigned with respect to buffer variance minimization, we
may have similar or even more buffer variance in comparison
to without regulation scheme. For instance, in one of the
unoptimized schemes, the sum of variances over different
channels of switches is about 436.

3) Multiobjective Optimization: As both minimizing total
required buffer and buffer variance are important for designers,

178

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1983

Fig. 15. Maximum required buffers for the ejection channels in switches.

Fig. 16. Maximum required buffers for the southern channels in switches.

Fig. 17. Maximum required buffers for the northern channels in switches.

Fig. 18. Maximum required buffers for the eastern channels in switches.

Fig. 19. Maximum required buffers for the western channels in switches.

TABLE IV

Comparison of the Maximum Delay Between Different

Scenarios

Network Regulator Total Average
Worst-Case Worst-Case Worst-Case Worst-Case

Delay Delay Delay Delay
Without regulation 3460 0 3460 49.99
With regulation 463 81 544 21.70

we have modeled them as a multiobjective optimization prob-
lem. For more detail, we have calculated two parameters Total
Required Buffer and Variance which are listed in Table III.

As can be observed from Table III, Minimize-Size problem
guarantees that output peak and traffic burstiness selection
is carried out in favor of minimizing total required buffer
while there is no such guarantee for the sum of variances
over various channels. On the contrary, although Minimize-
Variance yields greater required buffer than Minimize-Size, it
gives almost the same structure of switches. The results in
Table III show that the presented Multiobjective problem might
be seen as providing a tradeoff between such parameters. Since
the Total Required Buffer and Variance parameters in this
problem are very close to their optimal values in Minimize-
Size and Minimize-Variance problems, respectively, they are
definitely acceptable for the decision maker. So, in the rest
of paper, with regulation scheme refers to the regulator which
has been optimized for both buffer size and variance.

As can be vividly seen in Figs. 11 and 12, regulators reduce
peak rate and traffic burstiness of flows, respectively.

To go into more detail, we depict maximum required buffer
and delay of each flow for these schemes in Figs. 13 and
14, respectively. Regarding Fig. 13, it is apparent that in the
network with the proposed regulator, most flows require less
buffer and also, as mentioned in Table III, total required buffer
in this scheme is less than half of it in the network without reg-
ulator. Also, Fig. 14 shows that regulated flows can experience
longer or shorter delays than other schemes which depends
on their requested QoS and also the buffer distribution in the
whole network. However, from Table IV, we can see that the
total network and average worst-case delay are decreased in
the with regulation scheme because of buffer-aware allocation
in the network and contention reduction for shared resources.
We have about 84.3% reduction in total worst-case delay when
compared with the without regulation scheme.

179

1984 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

To better understand the effects of the regulator, maximum
required buffers for ejection, southern, northern, eastern, and
western channels are revealed in Figs. 15–19, respectively.
It is obvious that when regulators control traffic parameters
of flows based on the proposed multiobjective problem, the
total number of required buffers and their variances are de-
creased. The with regulation scheme leads to about 62.8%
reduction in total required buffer and 94.4% reduction on the
sum of variances of buffers in comparison to the without
regulation scheme. So, we have smaller, more similar and
more efficient switches. Furthermore, there is desirable QoS in
communications through defined constraints in the mentioned
multiobjective problem.

C. Synthetic Traffic Patterns

In the case of synthetic traffic patterns, we experimented
with hotspot and bit-complement traffic, which represent two
extremes of traffic distribution, i.e., unbalanced and balanced
workloads.

1) Hotspot: in our case, we set a corner node of the 4×4
mesh, node 1, as the hotspot node, and all other nodes
send packets to this node.

2) Bit-complement: in bit-complement traffic, a node with
binary coordinates bn−1bn−2…b1b0 sends packets only
to a node with binary coordinates b̄n−1b̄n−2…b̄1b̄0. With
this workload, all packets must cross the horizontal and
vertical network bisections, and the traffic is evenly
distributed in the 4×4 network.

For all traffic flows, we set the same values for their
maximum packet length Lj and peak rate pj , which are equal
to 1 flit and 1 flit/cycle, respectively. For different flows,
rate ρj varies between 0.008 and 1 flits/cycle, and burstiness
σj between 2 and 32 flits. We apply the multiobjective
optimization here, which is referred to as with regulation
scheme. Compared with the optimization of single objectives,
it is likely more desirable for designers as it can optimize both
buffer size and variance,

Table V compares total maximum required buffer, variance,
and total maximum delay under the hotspot traffic pattern.
This table reveals that by using optimized regulators, the total
maximum required buffer, the variance, and the total maximum
delay are reduced by 45.4%, 84.3%, and 58.4%, respectively,
in comparison with the without regulation scheme.

We also compare these results under the bit-complement
traffic pattern in Tables VI. As can be seen from this table,
the optimized regulation results in about 49.6% reduction in
the total maximum required buffer, 95.1% reduction in the
variance, and 64.9% reduction in the total maximum delay.

To present more details, we show the maximum required
buffer and delay of each flow under the hotspot traffic in
Figs. 20 and 21, respectively. Also, these results under the
bit-complement are plotted in Figs. 22 and 23.

The run-time of the proposed method in MATLAB is
typically in the order of a few seconds. It is about 2.7 s, 5.76 s,
and 0.22 s for the multiobjective optimization of the realistic,
hotspot, and bit-complement traffic patterns, respectively. An-
other interesting point is that the proposed regulator has no
negative effect on the network throughput and it is the same

TABLE V

Comparison Between Different Scenarios Under Hotspot

Traffic

Network Regulator Total Variance
Buffer Buffer Buffer

Without regulation 361 0 361 830.4023

With regulation 144 53 197 129.7305

Network Regulator Total Average
Worst-Case Worst-Case Worst-Case Worst-Case

Delay Delay Delay Delay

Without regulation 3328 0 3328 89.10

With regulation 789 597 1386 53.68

TABLE VI

Comparison Between Different Scenarios Under

Bit-Complement Traffic

Network Regulator Total Variance
Buffer Buffer Buffer

Without regulation 254 0 254 178.73

With regulation 112 16 128 8.72

Network Regulator Total Average
Worst-Case Worst-Case Worst-Case Worst-Case

Delay Delay Delay Delay

Without regulation 410 0 410 28.10

With regulation 128 16 144 9.23

with and without the regulation schemes. This is because the
flow rates are maintained.

VIII. Scope and assumption

We discuss possible extensions to address the main assump-
tions of our approach. We have made two main assumptions.

1) The network routing is deterministic. As such, the path
of each flow is determined and thus flow contention be-
comes predictable. Therefore we can use and have used
deterministic network calculus to derive deterministic
delay and backlog bounds.
Deterministic routing has advantages in easier analysis,
simplicity, and low implementation overhead. However,
it may lead to inferior performance due to being unable
to adapt workload to the network congestion status.
Due to this limitation, adaptive routing may be favored,
though complicating implementation. Adaptive routing
means that a flow may use multiple possible paths when
delivering packets. For each alternative path, one may
find a probability for its use. In such a case, stochastic
network calculus [24] can be used to calculate delay and
backlog bounds. Still, stochastic network calculus keeps
the same fundamentals as the deterministic network cal-
culus. However, the derived delay and backlog bounds
will accordingly become stochastic.

2) We assume a static set of flows, which are mapped
statically on the network nodes.
The reason to use static flows with static mapping is that
the deterministic analysis relies on known traffic char-
acteristics and known source and destination for each
flow. Flows’ characteristics may be obtained through
traffic profiling. Static mapping can usually facilitate
the search of mapping design space in order to find
an optimal or near-optimal mapping under performance
and energy constraints [10]. As a consequence, the static
flows and mapping allow us to apply static regulations
on the flows.

180

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1985

Fig. 20. Maximum required buffers for every flow under hotspot traffic.

Fig. 21. Maximum worst-case delay for every flow under hotspot traffic.

Fig. 22. Maximum required buffers for every flow under Bit-complement.

To alleviate this assumption, there are a few possibilities
to enable semi-dynamic and dynamic regulations as we
explained as follows.

1) Semi-dynamic regulation:

a) Dynamically changing traffic specifications for
each input flow. If a flow’s traffic specification
may change, we may prepare a set of variants
for its parameters. Depending on different traffic
specifications, different regulations for the same
flow may apply at run-time.

b) Different use cases and mappings. An application
usually contains multiple use cases [25]. For each
use case, a set of flows with possible mappings
can be pre-compiled. All the use cases must fit
into the maximum buffer sizes. These use cases
can then be invoked and switched at run-time by
reconfiguring the regulators and the network.

Fig. 23. Maximum worst-case delay for every flow under Bit-complement.

Semi-dynamic configurations can be realized by check-
ing user-defined values of a configurable register in the
network interface. Our current regulator implementation
in hardware supports re-configuration of regulation pa-
rameters at run-time [7].

2) Dynamic regulation: we can embed a closed-loop con-
trol mechanism in which the network feedback is used as
an input to help make regulation decisions. For example,
network congestion status could be gathered from the
network and then the regulation parameters are adjusted
accordingly. This mechanism complicates the regulation
mechanisms but has promises in improving performance.
In addition, best effort traffic, i.e., traffic without the
requirement of delay guarantees, can be better accom-
modated by allowing them to use the slack bandwidth.
The closed-loop control mechanism is currently under
our investigation.

IX. Conclusion

IP integration requires the provision of performance guar-
antees for traffic flows and efficient buffer dimensioning tech-
niques. The regulation changes the burstiness and timing of
traffic flows, and thus can be used to control delay and reduce
buffer requirements in the SoC. Since a larger fraction of the
NoC cost is due to the network buffers, minimizing buffer
requirements is an important problem to achieve an efficient
NoC implementation. Also, designing similar switches, as
far as possible, facilitates the design process of NoC-based
systems. In this paper, based on the concepts of formal
regulation, we have presented three relevant optimization
problems for weighted round robin arbitration, first one for
minimizing total required buffers, second one for minimizing
the variance of buffers, and last one which is a multiobjective
optimization problem for minimizing both of them under QoS
requirements. The regulation analysis is performed for best-
effort packet switching networks. We have also demonstrated
that the proposed model exerts significant impact on commu-
nication performance and buffer requirements. The algorithm
for solving the proposed minimization problems runs very fast.
For the case studies, the optimized solution is found within
seconds. Although in this paper we have focused on the output

181

1986 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

buffers of switches, our method can be easily adapted to input
buffers, too.

References

[1] Z. Lu and A. Jantsch, “TDM virtual-circuit configuration for network-
on-chip,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 8, pp.
1021–1034, Aug. 2008.

[2] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf, and T.
Henriksson, “Flow regulation for on-chip communication,” in Proc.
DATE, Apr. 2009, pp. 578–581.

[3] J. Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet (LNCS, vol. 2050). Berlin,
Germany: Springer-Verlag, 2004.

[4] R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation; part II: Network analysis,” IEEE Trans. Inform. Theory, vol.
37, no. 1, pp. 132–141, Jan. 1991.

[5] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol.
6, no. 5, pp. 611–624, Oct. 1998.

[6] C. Chang, Performance Guarantees in Communication Networks. Lon-
don, U.K.: Springer-Verlag, 2000, p. 410.

[7] Z. Lu, D. Brachos, and A. Jantsch, “A flow regulator for on-chip
communication,” in Proc. SOCC, 2009, pp. 151–154.

[8] H. Wang, X. Zhu, L. Peh, and S. Malik, “Orion: A power-performance
simulator for interconnection networks,” in Proc. MICRO, 2002, pp.
294–305.

[9] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architec-
ture evaluation using modular performance analysis: A case study,” Int.
J. STTT, vol. 8, no. 6, pp. 649–667, 2006.

[10] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” in Proc. DATE, 2004, pp. 896–901.

[11] A. E. Kiasari, S. Hessabi, and H. Sarbazi-Azad, “PERMAP: A
performance-aware mapping for application-specific SoCs,” in Proc.
ASAP, 2008, pp. 73–78.

[12] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “xPipesCompiler:
A tool for instantiating application-specific NoCs,” in Proc. DATE, 2004,
pp. 884–889.

[13] L. P. Tedesco, N. Calazans, and F. Moraes, “Buffer sizing for multimedia
flows in packet-switching NoCs,” J. Integr. Circuits Syst., vol. 3, no. 1,
pp. 46–56, 2008.

[14] J. Hu, U. Y. Ogras, and R. Marculescu, “System-level buffer allocation
for application-specific networks-on-chip router design,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 12, pp. 2919–
2933, Dec. 2006.

[15] F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, “Optimal regulation
of traffic flows in network-on-chip,” in Proc. DATE, Mar. 2010, pp.
1621–1624.

[16] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scien-
tific, 1999.

[17] H. Y. Benson, R. J. Vanderbei, and D. F. Shanno, “Interior-point
methods for nonconvex nonlinear programming: Filter methods and
merit functions,” Computat. Optimiz. Applicat., vol. 23, no. 2, pp. 257–
272, 2002.

[18] P. P. Tang and T. Y. C. Tai, “Network traffic characterization using token
bucket model,” in Proc. IEEE INFOCOM, Mar. 1999, pp. 51–62.

[19] F. Gebali and H. Elmiligi, Eds., Networks on Chip: Theory and Practice.
Boca Raton, FL: CRC Press, 2009.

[20] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region
Methods, Society for Industrial and Applied Mathematics (SIAM),
2000.

[21] L. M. Adams and J. L. Nazareth, Linear and Nonlinear Conjugate
Gradient-Related Methods, Society for Industrial and Applied Mathe-
matics (SIAM), 1996.

[22] M. H. Wright, “Interior methods for constrained optimization,” Acta
Numerica. vol. 1, pp. 341–407, Jan. 1992.

[23] C. A. Coello Coello, “A comprehensive survey of evolutionary based
multiobjective optimization techniques,” Knowl. Inform. Syst.: An Int.
J., vol. 1, no. 3, pp. 269–308, 1999.

[24] Y. Jiang, “A basic stochastic network calculus,” in Proc. Conf. Appli-
cat., Technol., Architectures, Protocols Comput. Commun. (SIGCOMM),
2006, pp. 123–134.

[25] A. Hansson and K. Goossens, “Tradeoffs in the configuration of a
network on chip for multiple use-cases,” in Proc. 1st Int. Symp. NoCs,
2007, pp. 233–242.

Fahimeh Jafari received the B.S. and M.S. degrees
in computer engineering from the Ferdowsi Univer-
sity of Mashhad, Mashhad, Iran, in 2002 and 2005,
respectively. She is currently pursuing the Ph.D.
degree from the Department of Electronic Systems,
Royal Institute of Technology, Kista, Stockholm,
Sweden.

Her current research interests include design
methodologies, interconnection networks, optimiza-
tion theory, and performance evaluation.

Zhonghai Lu (M’05) received the B.S. degree in
radio and electronics from Beijing Normal Univer-
sity, Beijing, China, in 1989, and the M.S. degree
in system-on-chip design and the Ph.D. degree in
electronic and computer systems design, both from
the Royal Institute of Technology (KTH), Kista,
Stockholm, Sweden, in 2002 and 2007, respectively.

From 1989 to 2000, he worked extensively on
the areas of electronic and embedded systems. He
took research visits to Samsung Electronics, Seoul,
Korea, the National Institute of Informatics, Tokyo,

Japan, and the Swiss Federal Institute of Technology, Zürich, Switzerland.
He is currently a Senior Researcher with the Department of Electronic
Systems, School of Information and Communication Technology, KTH. His
current research interests include network-on-chip/system-on-chip, multicore
computing architectures, cyber-physical systems, performance analysis, and
design automation. He has published about 70 papers in these areas.

Axel Jantsch (M’97) received the Dipl.Ing. and
Dr. Tech. degrees from the Technical University of
Vienna, Vienna, Austria, in 1988 and 1992, respec-
tively.

He was with Siemens Austria, Vienna, Austria, as
a System Validation Engineer from 1995 to 1997.
Since 1997, he has been an Associate Professor
with the Royal Institute of Technology (KTH),
Kista, Stockholm, Sweden. Since 2000, has been a
Docent, and since December 2002, a Full Professor
of Electronic System Design with the Department

of Electronic Systems. He has published over 200 papers in international
conferences and journals, and one book in the areas of very large scale
integration design and synthesis, system level specification, modeling and
validation, HW/SW codesign and cosynthesis, reconfigurable computing, and
networks on chip.

Dr. Jantsch received the Alfred Schrödinger Scholarship from the Austrian
Science Foundation while a Guest Researcher with KTH between 1993 and
1995. He has served on a large number of technical program committees of
international conferences, such as FDL, DATE, CODES+ISSS, SOC, NOCS,
and others. He has been the TPC Chair of SSDL/FDL 2000, the TPC Co-
Chair of CODES+ISSS 2004, the General Chair of CODES+ISSS 2005, and
the TPC Co-Chair of NOCS 2009. From 2002 to 2007, he was a Subject
Area Editor for the Journal of System Architecture. At KTH, he is heading a
number of research projects involving a total number of ten Ph.D. Students,
in two main areas: system modeling and networks-on-chip.

Mohammad Hossein Yaghmaee (M’09) was
born in Mashhad, Iran, in July 1971. He received
the B.S. degree in communication engineering
from the Sharif University of Technology, Tehran,
Iran, in 1993, and the M.S. and Ph.D. degrees
in communication engineering from the Tehran
Polytechnic (Amirkabir) University of Technology,
Tehran, in 1995 and 2000, respectively.

Since 1992, he has been a Computer Network
Engineer with several networking projects at the
Iran Telecommunication Research Center, Tehran,

Iran. From November 1998 to July 1999, he was a Visiting Research Scholar
with the Network Technology Group, C&C Media Research Laboratories,
NEC Corporation, Tokyo, Japan. From September 2007 to August 2008, he
was a Visiting Associate Professor with the Lane Department of Computer
Science and Electrical Engineering, West Virginia University, Morgantown.
He is currently an Associate Professor with the Computer Department,
Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad. He is the
author of four books, all in Farsi. He has published more than 90 international
conference and journal papers. His current research interests include wireless
sensor networks, traffic and congestion control, high-speed networks
including ATM and MPLS, quality of services, and fuzzy logic control.

182

Paper 13

Least Upper Delay Bound for
VBR Flows in Networks-on-Chip
with Virtual Channels

F. Jafari
Z. Lu
A. Jantsch

Submitted to ACM Transactions on Design Automation of
Electronic Systems (TODAES).

183

A

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with
Virtual Channels

FAHIMEH JAFARI, KTH Royal Institute of Technology, Sweden
ZHONGHAI LU, KTH Royal Institute of Technology, Sweden
AXEL JANTSCH, KTH Royal Institute of Technology, Sweden

Real-time applications such as multimedia and gaming boxes require stringent performance guarantees,
usually enforced by a tight upper bound on the maximum end-to-end delay. We consider worst-case delay
bounds for Variable Bit-Rate (VBR) flows in a FIFO multiplexing on-chip network with aggregate schedul-
ing, which schedules multiple flows as an aggregate flow. In this paper, flows are characterized by a max-
imum transfer size (L), peak rate (p), burstiness (σ), and average sustainable rate (ρ). Based on network
calculus, we present and prove technical theorems to analyze performance. We use the theorems to derive
per-flow end-to-end equivalent service curve employed for computing Least Upper Delay Bounds (LUDBs)
of individual flows. We then implement algorithms employed in our methodology. A realistic case study ex-
hibits that the end-to-end delay bound is up to 46.9% more accurate than the case without considering the
traffic peak behavior. Simulation results look into the accuracy of the proposed analysis method. Likewise,
the experimental results demonstrate similar improvements in the case of synthetic traffic patterns.

Additional Key Words and Phrases: Network-on-chip (NoC), performance evaluation, worst-case delay
bound, FIFO multiplexing

1. INTRODUCTION
In networks-on-chip, resources like wires, buffers, and switches are shared among
multiple communication flows to provide cost efficiency. At the same time many ap-
plications have real-time requirements and, consequently, delay and throughput con-
straints on the communication. To guarantee maximum delay and minimum through-
put for one given communication flow, the interference in the shared resources from
other flows has to be analyzed and bounded. We assume that all traffic can be well
characterized as flows and scheduled as aggregate which means multiple flows are
scheduled as an aggregate flow. For a given flow, we study the maximum interference
of all other flows based on the network calculus theory [Le Boudec et al. 2004].

In network calculus, flows are characterized as arrival curves and the service offered
to flows by a network element such as a link or a switch is abstracted as service curve.
Since the network contention for shared resources includes not only direct contention
but also indirect contention, predicting the worst-case performance is extremely hard.

To calculate the accurate delay bound per flow, the main problem is to obtain the end-
to-end Equivalent Service Curve (ESC) and internal output arrival curves of individ-
ual flows in an arbitrary network of servers in terms of the latencies of the individual
schedulers in the network. Since the required theorems for calculating performance
metrics of VBR traffic transmitted in the FIFO order and scheduled as aggregate have
not been represented so far, we have defined and proved them based on network cal-
culus [Chang 2000; Le Boudec et al. 2004] in [Jafari et al. 2011] and [Jafari et al.
2012]. In [Jafari et al. 2011], we proposed and proved the required theorem for deriv-
ing the output characterization of VBR traffic under the defined system model to have
exact vision about output metrics used for obtaining performance bounds. In [Jafari
et al. 2012], the required theorems for computing end-to-end ESC and end-to-end de-
lay bound are defined and proved. Moreover, we presented a simple example to show
how the proposed theorems can be used in the network. The method presented in [Ja-
fari et al. 2012] only considers direct contentions of a tagged flow. In this paper, we
use the proposed theorems in [Jafari et al. 2011; Jafari et al. 2012] to present a formal
approach for performance analysis modeling both direct and indirect contentions.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

185

A:2 F. Jafari et al.

VBR is a class of traffic in which the rate can vary significantly from time to time,
containing bursts. Real-time compressed voice and video and time-sensitive bursty
data traffic are examples of VBR traffic. Real-time VBR flows can be characterized by
a set of four parameters, (L, p, σ, ρ), where L is the maximum transfer size, p peak rate,
σ burstiness, and ρ average sustainable rate [Le Boudec et al. 2004]. For instance, in a
NoC with a link data width of 32 bits, frequency of 500 MHz. This means a link band-
width of 16 Gbits/s (32 bits×500 MHz). An HDTV video stream can be characterized
with L = 32 bits, p = 16 Gbits/s, σ = 960 Kbits, ρ = 76 Mbits/s. Our assumption is
that the application-specific nature of the network enables to characterize traffic with
sufficient accuracy.

For an individual flow, called a tagged flow, we first consider resource sharing sce-
narios (channel sharing, buffer sharing, and channel&buffer sharing) in the routers
and then build analysis models for different resource sharing components. We assume
that the routers employ round robin scheduling to share the link bandwidth. Based
on these models, we can derive the intra-router ESC for an individual flow. To con-
sider the contention which a flow may experience along its routing path, we present a
recursive algorithm to classify and analyze flow interference patterns. The algorithm
uses the proposed theorems to analyze the effect of contention flows on the tagged flow.
Based on this algorithm, we derive the end-to-end ESC and then Least Upper Delay
Bound (LUDB) for a tagged flow under the mentioned system model. To show the po-
tential of our method, we experiment three case studies to derive delay bounds and
compare them with simulation results. It is worth mentioning that the paper does not
deal with the back-pressure, but calculates the buffer size thresholds to make sure the
back-pressure does not occur in the network.

The remainder of this paper is organized as follows. Section 2 gives an account of
related works. In Section 3, we introduce the basics of network calculus. Section 4
discusses the underlying system model and notations in our analysis. Section 5 is de-
voted to the theorems required for computation of performance metrics. We present
our formal method for the performance analysis and computation of LUDB in Section
6. Numerical results are reported in Section 7. Finally, Section 8 gives the conclusions
and highlight directions for future work.

2. RELATED WORK
Recently, NoC designers have a great deal of interest in the development of analyti-
cal performance models [Bakhouya et al. 2011]. Authors in [Ogras et al. 2005] give a
unified representation of NoC architectures and applications and consider some ma-
jor research problems in the design area. As represented in this work, most of re-
search problems need to analytically analyze and evaluate performance metrics in
the network. In [Kiasari et al. 2013], we have surveyed four popular mathematical
formalisms -dataflow analysis, schedulability analysis, queueing theory, and network
calculus- along with their applications in NoCs. Also, we have reviewed strengths and
weaknesses of each technique and its suitability for a specific purpose.

Dataflow analysis is a deterministic approach based on graph theory. As an example,
authors in [Hansson et al. 2008] present a model using a cyclo-static dataflow graph for
buffer dimensioning for NoC applications. In dataflow analysis, it is assumed that the
pattern of communication among cores and switches are deterministic and predefined.
Dataflow analysis must be used with restricted models such as SDF and CSDF to
capture dynamic behavior. In other words, the expressiveness is typically traded off
against analyzability and implementation efficiency in this formalism.

Schedulability analysis is an analytical approach for investigating the timing prop-
erties in real-time systems. It gets a set of tasks, their worst-case execution time, and a
scheduling policy as inputs and determines whether these tasks can be scheduled such

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

186

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:3

that deadline misses never occur. One example of this approach in NoCs is presented
in [Shi et al. 2008]. Schedulability analysis uses simpler event models compared to
the other mathematical formalisms and consequently the performance model is easily
extracted with less accuracy.

The proposed models in [Lee 2003], [Rahmati et al. 2009], and [Rahmati et al. 2013]
are inspired by schedulability analysis. In [Lee 2003], the author presents a worst-case
analysis model for real-time communication and also proposes a feasibility test algo-
rithm for a simplex virtual circuit in wormhole networks. This work is extended by
[Rahmati et al. 2009] towards NoCs, computing real-time bounds for high bandwidth
traffic. In [Rahmati et al. 2013], the authors extend the model to provide more detailed
switch models and consider virtual channels and variable buffer lengths. The key ad-
vantage of these methods is that they compute the worst-case bounds with low time
complexity without any special hardware support, but the main limitation is that they
do not leverage the input arrival patterns, which it leads to over approximations of the
performance analysis.

Most of the current works use queuing theory-based approaches. For example, au-
thors in [Moadeli et al. 2007] analyze the traffic behavior in a NoC with the spidergon
topology and wormhole routing and then present a queuing-theory-based analytical
model for evaluating the average message latency in the network. In [Ben-Itzhak et al.
2011], authors propose an analytical model for deriving average end-to-end delay in a
heterogeneous wormhole based NoC with heterogeneous traffic patterns, non-uniform
link capacities and a variable number of virtual channels per link. Queuing approaches
often use probability distributions like Poisson to model traffic in the network while
Poisson distribution used in queuing model is not appropriate for characterizing traffic
patterns in NoC applications because it is not able to model all significant features in
this network. Queuing theory generally evaluate average quantities of metrics in an
equilibrium state and characterizing the transient behavior is a very difficult problem.
An approach for addressing this problem is suggested in [Bogdan et al. 2007]. Authors
in this work proposed a statistical physics-inspired framework to model the informa-
tion flow and buffers behavior in NoCs. They analyze the traffic dynamics in NoCs and
effectively capture the nonstationary effects of the system workload. In following up to
this work, authors in [Bogdan et al. 2010] proposed QuaLe model based on statistical
physics that can account for nonstationary observed in packet arrival processes. They
also investigated the impact of packet injection rate and the data packet sizes on the
multifractal spectrum of NoC traffic.

Network calculus is a mathematical framework for deriving worst-case bounds on
maximum latency, backlog, and minimum throughput in network-based systems. It is
able to model all traffic patterns with bounds defined by arrival curves. In this respect,
designers can capture some dynamic features of the network based on shapes of the
traffic flows [Bakhouya et al. 2011]. Network calculus can also abstract many schedul-
ing algorithms and arrival classes at single queue with multiplexed arrival flows, by
service curves. The service curves through a network can be convolved as a single ser-
vice curve. Hence a multi-node network analysis can be simplified to a single-node
analysis. Regarding these two features, network calculus can analyze many schedul-
ing algorithms and arrival classes over a multi-node network in a uniform framework
while classical queuing theory separately models different combination of them [Ciucu
et al. 2012]. The probabilistic version of (deterministic) network calculus is stochastic
network calculus. In some networks, such as wireless networks, the service offered by
a communication channel may vary randomly over time due to channel contention and
impairment. Such networks can only provide stochastic services and guarantees. For
example, authors in [Rizk et al. 2012] use stochastic network calculus to derive per-
flow end-to-end performance bounds in a network of tandem queues under open-loop

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

187

A:4 F. Jafari et al.

fBm cross traffic which is a model for self-similar and long-range dependent aggre-
gate Internet traffic. Since we employ deterministic network calculus, in the rest of
our paper, network calculus refers to the deterministic type. In [Bakhouya et al. 2011],
authors present a network calculus-based methodology for analysis and evaluation of
on-chip interconnects in terms of performance and cost metrics, such as latency, en-
ergy consumption, and area requirements. Authors in this paper compare 2D mesh,
spidergon, and WK-recursive topologies using a given traffic pattern and show that
WK-recursive outperforms mesh and spidergon in all considered metrics. The pro-
posed model in this paper is simple without considering virtual channel effects and
modeling all interferences between flows sharing a resource in the network. Moreover,
the model does not investigate the peak behavior of flows which leads to less accurate
bounds while we consider performance analysis for VBR traffic in on-chip networks
employing aggregate resource management.

The performance evaluation of real-time services in networks employing aggregate
scheduling is particularly challenging because of its complexity. Aggregate scheduling
arises in many cases. In addition to NoC, for example, it can also be applied for obtain-
ing scalability in large-size networks. The Differentiated Services (DiffServ) [Blake
et al. 1998] is an example of an architecture based on aggregate scheduling in the In-
ternet. Despite the research efforts, few results have appeared on this subject. A survey
on the subject can be found in [Bennett et al. 2002]. The authors in [Charny et al. 2000]
consider a closed-form delay bound for a generic network configuration under the fluid
model assumption. It is also extended in [Jiang 2002] to consider packetization effects.
However, these works can derive bounds only for small utilization factors in a generic
network configuration.

Authors in [Martin et al. 2006; Martin et al. 2003; Bauer et al. 2010] employ Tra-
jectory Approach (TA) to compute end-to-end delay bounds in FIFO systems. The Tra-
jectory Approach computes all the possible trajectories of a system under constraints
and then takes maximum end-to-end delays on them. [Bauer et al. 2010] compares
Network Calculus and the Trajectory approaches on a real avionics AFDX configura-
tion and shows that The Trajectory approach computes upper bounds which are tighter
than the upper bounds computed by the network calculus one. However, authors derive
delay bounds by summing per-node bounds, expectedly not arriving at tight bounds but
reported as being at least close under practical conditions.

The computation of delay bounds through network calculus in feed-forward net-
works under arbitrary multiplexing has already been addressed in different lectures
such as [Schmitt et al. 2008; Kiefer et al. 2010; Bouillard et al. 2010]. In [Bouillard
et al. 2010], authors describe the first algorithm which can compute the worst-case
end-to-end delay for a given flow for any feed-forward network under blind multiplex-
ing, with concave arrival curves and convex service curves. Since the problem is intrin-
sically difficult (NP-hard), they show that in some cases, like tandem networks with
cross-traffic interfering along intervals of servers, the complexity becomes polynomial.
Then, authors in [Bouillard et al. 2011] refine the approach of [Bouillard et al. 2010]
in order to take into account fixed priorities. They study networks with a fixed priority
service policy which means each flow is assigned a fixed priority and try to take into ac-
count the pay multiplexing only once (PMOO) phenomenon. This stream of works deal
with networks of arbitrary multiplexing also known as general or blind multiplexing,
which means no assumption is made about the service policy while by assuming an
explicit multiplexing scheme like FIFO, tighter bounds can be obtained.

Authors in [Lenzini et al. 2006; Lenzini et al. 2008; Bisti et al. 2010] propose a
methodology which calculates delay bounds in tandem networks of rate-latency nodes
traversed by leaky bucket shaped flows. They also introduce a software tool, called
DEBORAH, which implements algorithms employed in their methodology to compute

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

188

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:5

ol
um

e

j jtσ ρ+

jσ

da
ta

 v
o

L

j jL p t+
jL

tij j
j

j j

L
p
σ

θ
ρ

−
=

−

time

Fig. 1. Arrival curve of flow fj with TSPEC (Lj , pj , σj , ρj).

delay bounds. These works consider servers in tandem or sink trees, while our pro-
posed method computes end-to-end delay in a generic topology of NoC. Moreover, these
works investigate computing delay bounds only for average behavior of flows and they
do not consider peak behavior, which results in less accurate bounds.

In [Boyer 2010], the authors try to model shaping for an end-to-end delay where
each server is shared by two flows. An applicative token bucket γr,b is shaped by the
bit-rate of the link λR, leading to a two-slopes affine arrival curve which this arrival
curve is similar to one we consider for double leaky buckets. The paper investigates a
simple topology, a sequence of rate-latency servers, each one shared by two flows with a
FIFO policy, and a simple case of nested contentions. Moreover, authors state that their
modeling is incomplete: when computing the worst-case traversal time of a flow, they
model only the shaping on the considering flow, not on the interfering ones (leading
to the title ‘half-modeling of shaping’) In this paper, we investigate both nested and
crossed contentions in general to model all flows (even interfering ones) with complex
interferences in on-chip networks.

All aforementioned works in the subject of aggregate resource management compute
delay bounds in various network infrastructures but not on-chip networks. As regards
to NoC architecture, analytical models are very close to the reality of the system. For
instance, a router in on-chip networks can be modeled in pure hardware which means
the micro-architecture is feasible for analysis. Therefore, network calculus can provide
the analysis more accurate in on-chip networks.

Authors in [Qian et al. 2010] present analytical models for traffic flows under strict
priority queueing and weighted round robin scheduling in on-chip networks. They then
derive per-flow end-to-end delay bounds using these models. Like most of mentioned
works, [Qian et al. 2010] does not deal with peak behavior of flows, which results in less
accurate bounds. The proposed method in this paper considers performance analysis
for VBR traffic characterized by (L, p, σ, ρ) in on-chip networks employing aggregate
resource management. As such, our method achieves more accurate delay bounds.

3. NETWORK CALCULUS BACKGROUND
Network calculus is a mathematical framework to derive worst case bounds and ana-
lyze performance guarantees in networks.

This paper uses Traffic SPECification (TSPEC) [Wroclawski 1997] to model the av-
erage and peak characteristics of flow fj as arrival curve αj(t) = min(Lj + pjt, σj +ρjt)
in which Lj is the maximum transfer size, pj the peak rate (pj ≥ ρj), σj the burstiness
(σj ≥ Lj), and ρj the average (sustainable) rate. We denote it as fj ∝ (Lj , pj , σj , ρj). As

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

189

A:6 F. Jafari et al.

4r1r 3r2r
2f1f

Core

8r6r 7r5r

2f1f

5f

Core CoreCore Core

ejection
channel

injection
channel

Network Interface (NI)

DEMUX

10r 11r9r 12r
3f4f

2f

Core

Core Core Core Core

Core CoreCore Core

output channe

input channe

1 1

q

D
EM

U
X

D
EM

13r 16r15r14r

f
5f 3f

Core

Core Core CoreCore Core

Core Core Core

Crossbar Switch

lsels
p

q

Routing Control Unit

M
U

X

Arbiter

4f

Fig. 2. An example of an NoC with 16 nodes and 5 flows along with the structure of a single node.

shown in Figure 1, θj = (σj−Lj)/(pj−ρj) and αj(t) = Lj +pjt if t ≤ θj ; αj(t) = σj +ρjt,
otherwise.

In this paper, we also consider a class of curves, namely pseudoaffine curves [Lenzini
et al. 2006], which is a multiple affine curve shifted to the right and given by β =
δT ⊗ [⊗1≤x≤nγσx,ρx]. In fact, a pseudoaffine curve represents the service received by
single flows in tandems of FIFO multiplexing rate-latency nodes. Due to concave affine
curves, it can be rewritten as β = δT ⊗ [∧1≤x≤nγσx,ρx], where the non-negative term T
is denoted as offset, and the affine curves between square brackets as leaky-bucket
stages. It is clear that a rate-latency service curve is in fact pseudoaffine, since it can
be expressed as β = δT ⊗ γ0,R.

Given arrival curve α and service curve β, the delay is bounded by the horizontal
deviation between the arrival and service curves.

4. SYSTEM MODEL AND NOTATIONS
As depicted in Figure 2, we consider an NoC architecture in which every node contains
a router and a core which performs its own computational, storage or I/O processing
functionality, and is equipped with a Network Interface (NI). As you can see in the fig-
ure, buffers are arranged to construct VCs in each input channel. To characterize flows
based on their defined TSPEC, we assume unbuffered leaky bucket controllers (regu-
lators) which do not buffer the packets, but stall the traffic producers or IPs [Jafari
et al. 2010].

Assumptions in this work are listed as follows:

— The NoC architecture can have different topologies.
— Packets have fixed length and traverse the network in a best-effort fashion with

virtual-cut-through switching technique using a deadlock-free deterministic routing.
— Routers have only input buffers and VCs.
— Buffers are bounded and the network is lossless.
— The router can have multiple VCs per in-port. VC allocation is deterministic and each

VC receives an aggregate service.
— All traffic is the part of TSPEC flows f = TSPEC(L, p, σ, ρ) at the entry into the

network.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

190

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:7

— In each node that guarantees to serve the flow a pseudo affine service curve β =
δT ⊗ γσx,ρx , it is assumed that ρ ≤ ρx and p ≥ ρx.

— Flows are classified into a pre-specified number of aggregates.
— Traffic of each aggregate is buffered and transmitted in the FIFO order, denoted as

FIFO multiplexing.
— Different aggregates are buffered separately and each aggregate is guaranteed a

rate-latency service curve.
— We use a concrete policy, in this case, round-robin arbitration, to support the assump-

tion on rate-latency service curve. Indeed, it can use some other arbitration policies
as well. We also assume a fixed word length of Lw in all of flows.

— The peak rate is limited by the hardware. It is always 1 flit/cycle.

NoC designers can obtain per flow end-to-end delay bound in NoC architectures by
the proposed method in this paper under the mentioned assumptions.

Most of assumptions in this paper have been widely used by [Qian et al. 2009; Jafari
et al. 2010]. The system model in this paper is more general than [Qian et al. 2009;
Jafari et al. 2010]. In [Qian et al. 2009; Jafari et al. 2010], authors consider a Constant
Bit Rate (CBR) flow in NoCs, defined by (σ, ρ) which is a special case of TSPEC. Fur-
thermore, authors in [Jafari et al. 2010] presume the number of VCs for each PC is the
same as the number of flows passing through that channel while we have relaxed this
limitation in the paper.

We use an example depicted in Figure 2 to explain terminology used in the paper.
The figure shows a network with 16 nodes numbered from 1, 2, ..., 16 connected by links.
There are 5 flows in the example denoted as f1, ..., f5. Multiple flows share the same
buffer and channel in the router are scheduled as a flow called aggregate flow. For
instance, f{1,2} in router 3 is an aggregate flow. A tagged flow is the flow that we shall
derive its delay bound and other flows that share resources with the tagged flow are
contention flows. In this example, f1 is the tagged flow, and f2, f3, and f4 are contention
flows. Notations in the paper are listed in Table I.

We use sub-index ”(fi, rj)” for notations to indicate that they are related to flow fi in
router rj . For example, α(f1,r2) denotes the arrival curve of flow f1 in router r2. We also
employ sub-index ”(si, rj)” to state notations are related to fsi in router rj . In this case,
fsi can be one flow or an aggregate flow. For instance, β({1,2,3},r2) indicates the service
curve of aggregate flow f{1,2,3} in router r2.

5. PROPOSED THEOREMS
In this section, we review the required theorems, proposed in [Jafari et al. 2011; Jafari
et al. 2012], for analyzing performance of VBR flows in a FIFO multiplexing network.

We first represent a theorem for computing delay bound as follows.

Theorem 1. (Delay Bound) Let β be a pseudo affine curve, with offset T and n leaky-
bucket stage γσx,ρx , 1 ≤ x ≤ n, this means we have:

β = δT ⊗ [⊗1≤x≤nγσx,ρx] = δT ⊗ [∧1≤x≤nγσx,ρx]

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ (ρ∗β = min1≤x≤nρx), then the
maximum delay for the flow is bounded by

h(α, β) = T +

[
∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(1)

PROOF. We have proved it in [Jafari et al. 2012]. See Appendix A.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

191

A:8 F. Jafari et al.

Table I. The list of notations

fi Flow i
αi The arrival curve of fi
α∗
i The output arrival curve of fi
Li The maximum transfer size of fi (flits)
pi The peak rate of fi (flits/cycle)
σi The burstiness of fi (flits)
ρi The average rate of fi (flits/cycle)

Src(i) The source node of fi
rj Router j
βj The service curve of rj
R The minimum service rate in a rate-latency service curve
T l The maximum processing latency of the arbiter in the router (cycles)

THoL The maximum waiting time in the FIFO queue of the router (cycles)

TTotal
The total processing delay which comes from contention flows and equals to the
sum of T l and THoL (cycles)

Drouter Time spent for packet routing decision (cycles)
Lw The word length in the flow (flits)
C The channel capacity (flits/cycle)
ρx The minimum service rate in a pseudo affine service curve
CFt The set of contention flows of tagged flow ft in the network

si
The set of joint flows in an aggregate flow (when the number of elements of si is
equal to 1, there is only a single flow)

fsi An aggregate flow of si
|si| The cardinality of set si, which is a measure of the ”number of elements of the set”

S = {si} A set of si ’s in a tandem of routers

sm
A set which has the maximum cardinality between the sets in S.
sm =

{
sx

∣∣|sx| = max (|si|) ; ∀si ∈ S
}

fsm The flow related to sm
rm The router related to sm
βm The service curve related to sm

FB
(si,rj)

The set of flows which share the same buffer in router rj with flow fsi∣∣∣V(si,rj)
∣∣∣ The number of virtual channels that passing flows from them share the same

channel of router rj with flow fsi
F(V Ck,PCi,rj)

The set of flows passing through V Ck in physical channel PCi of router rj

In the rest of the paper, we apply Theorem 1 on the end-to-end ESC to calculate
LUDB for a tagged flow. Due to our proposed method in Section 6, to obtain the end-
to-end ESC, we should able to subtract contention flows from a service curve. To this
end, we propose Proposition 1 and Theorem 2. In Proposition 1, we derive ESC with
FIFO multiplexing where service curve is a pseudo affine curve. We then use Corollary
1 which is an immediate consequence of Proposition 1 to propose Theorem 2. This
theorem is employed for deriving ESC in the underlying system model.

In Proposition 1 and Theorem 2, we obtain ESC with FIFO multiplexing under dif-
ferent assumptions.

Proposition 1. (Equivalent Service Curve) Let β be a pseudo affine curve, with offset
T and n leaky-bucket stage γσx,ρx , 1 ≤ x ≤ n, this means we have:

β = δT ⊗ [⊗1≤x≤nγσx,ρx] = δT ⊗ [∧1≤x≤nγσx,ρx]

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

192

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:9

TR,β

11 :αf

KKf α:
11 : ++ KKf α

ttf α:
22 :αf

Fig. 3. Computation of equivalent service curve for flow K + 1 in a rate-latency node.

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ (ρ∗β = min1≤x≤nρx) and
p ≥ ρ◦β (ρ◦β = max1≤x≤nρx), then the ESC obtained by subtracting arrival curve α,
{βeq(α, τ), τ = h(α, β)} ≡ βeq(α), with

βeq(α) = δ
T+∨1≤i≤n

[
L−σi+θ(p−ρi)+

ρi

]+
+θ
⊗ [⊗1≤x≤n [

γ
ρx

{
∨1≤i≤n

[
L−σi+θ(p−ρi)+

ρi

]+
−σ−σx−(ρx−ρ)θ

ρx

}
,ρx−ρ

]] (2)

PROOF. We have proved it in [Jafari et al. 2012]. See Appendix B.

The following corollary is an immediate consequence.

Corollary 1. Let β = δT ⊗ γσx,ρx be a pseudo affine curve, with offset T and one leaky-
bucket stage γσx,ρx , and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρx ≥ ρ and p ≥ ρx,
then the ESC obtained by subtracting arrival curve α, βeq

βeq = δ
T+
[
L−σx+θ(p−ρx)+

ρx

]+
+θ
⊗ γ0,ρx−ρ (3)

PROOF. We can easily obtain this corollary by applying Proposition 1 for service
curve β when n = 1.

We can specifically capitalize on Corollary 1 to obtain a parametric expression for
the ESC of a tagged flow passing through a rate-latency node. We assume the number
of flows passing through this node is K+1. Therefore, for computing equivalent service
curve for the tagged flow, we should subtract the arrival curves of other K flows. It can
be calculated by iteratively applying Corollary 1 forK times. Without loss of generality,
we presume that the tagged flow is flow K + 1. We now present following theorem:

Theorem 2. (Equivalent Service Curve for Rate-Latency Service Curve with K + 1
Flows) Consider one node with a rate-latency service curve βR,T = δT ⊗ γ0,R. Let αi =

min(Li+pit, σi+ρit) = γLi,pi∧γσi,ρi be arrival curve of flow i and pi ≥ R−
∑K+1

(j=1;j 6=i) ρj ,
where 1 ≤ i ≤ K + 1 and K + 1 is the number of flows passing through that node as
shown in Figure 3. Assuming

∑K+1
j=1 ρj ≤ link rate, where C is the link rate, the ESC

for flow K + 1 in the node, obtained by subtracting K arrival curves, is:

βeqK+1 = δ
T+
∑K
i=1

([
Li+θi(pi−R+

∑i−1
j=1

ρj)
+

R−∑i−1
j=1

ρj

]+

+θi

) ⊗ γ0,R−∑K
j=1 ρj (4)

PROOF. We have proved it in [Jafari et al. 2012]. See Appendix C.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

193

A:10 F. Jafari et al.

Crossbar
Switch

D
E

M
U

X

Channel

2f

1f

Ø Buffer&Channel Sharing

• Set of contention flows of tagged flow , sharing both buffer and channel in router
denoted as CB

rf ji
F),(

if jr

Crossbar
Switch

D
E

M
U

X

Channel
{ }2,1f

• We consider them as an aggregated flow and calculate inter-router ESC for the aggregated
flow

Fig. 4. An example of channel&buffer sharing.

Theorem 3 states how output arrival curve of a VBR flow in a FIFO multiplexing
node can be calculated.

Theorem 3. (Output Arrival Curve with FIFO) Consider a VBR flow, with TSPEC
(L, p, ρ, σ), served in a node that guarantees to the flow a pseudo affine service curve
β = δT ⊗ γσx,ρx . The output arrival curve α∗ given by:

α∗ =




θ > T γ(p∧ρx)T+θ(p−ρx)++L−σx,p∧ρx

∧γσ−σx+ρT,ρ

θ ≤ T γσ−σx+ρT,ρ

(5)

PROOF. We have proved it in [Jafari et al. 2011]. See Appendix D.

We apply this theorem to calculate internal output arrival curves. For instance, in
Section 6.2, we obtain the output arrival curve of a crossed flow when it is split into
two nested flows.

6. FORMAL METHOD FOR LUDB DERIVATION
We have presented and proved the required theorems for deriving LUDB for VBR flows
in on-chip networks based on aggregate scheduling with multiple virtual channels. As
mentioned before, to calculate LUDB per flow, we should first obtain the end-to-end
ESC which the tandem of routers provides to the flow. For calculating the end-to-end
ESC, we propose two following steps:

•Step 1: Intra-router ESC
•Step 2: Inter-router ESC

In the first step, we consider resource sharing scenarios in the routers and then
build analysis models for different resource sharing components. Based on these mod-
els, we can derive the intra-router ESC for an individual flow. In the second step, we
consider the contention which a flow may experience along its routing path. Therefore,
we present recursive algorithm End-to-End ESC to classify and analyze resource shar-
ing models and flow interference patterns. Based on this algorithm, we can derive the
end-to-end ESC for a tagged flow passing through the tandem of routers.

6.1. Step1: Intra-router ESC
To compute intra-router ESC for a tagged flow, it is necessary to investigate resource
sharing. At each router, we identify three types of resource sharing, namely, chan-
nel sharing, buffer sharing, and channel&buffer sharing. Channel sharing means that
multiple flows share the same outport and thus the output channel bandwidth. Buffer
sharing means that multiple flows share the same buffer but not channel. In chan-
nel&buffer sharing, multiple flows share both buffers and channels. They are sched-
uled as a flow called aggregate flow.

6.1.1. Channel&Buffer Sharing. Figure 4 depicts an example of flows sharing both chan-
nel and buffer in the router. As shown in the figure, we consider these flows as an
aggregate flow. When an aggregate flow includes the tagged flow, it is called as tagged

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

194

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:11

Crossbar
Switch

D
E

M
U

X

Channel

3f

1f

DEMUX

C

LF
F

Crf
w

C
jrifC

jrif

ji ×





 −

⊗=
1,0),(

),(

),(

δγβ
C

LF
T

F

CR
w

C

P
rfCrf

jrif

ji

jrif

ji

×




 −

==
1

 ;
),(

),(

),(),(

• If fi is the tagged flow:

C
LTCR wP

rfrf ==),(),(11
 ;

2
• In the example f1 is the tagged flow and we have

Ø Channel Sharing

• Set of contention flows of tagged flow ,
sharing a channel in router denoted as C

jrif
F

),(

if
jr

2f

Fig. 5. An example of a channel sharing three flows.

aggregate flow. In this respect, we calculate intra-router ESC for the tagged aggregate
flow in the router instead of the tagged flow. In Section 6.2, we show how ESC of the
tagged flow is extracted from the ESC of the tagged aggregate flow by removing con-
tention flows one by one. For simplicity, in the rest of the paper, ”tagged flow” refers to
both tagged flow and tagged aggregate flow.

6.1.2. Channel Sharing. Figure 5 depicts a channel shared between three flows f1, f2,
and f3. Since the arbitration policy determines how much the flows influence each
other, it has to be known. We assume that, while serving multiple flows, the routers
employ round robin scheduling to share the channel bandwidth. Assuming a fixed word
length of Lw in all of flows, round robin arbitration means that each flow fsi in router
rj gets at least a C∣∣∣V(si,rj)

∣∣∣
of the channel bandwidth, where C is the channel capacity

and
∣∣V(si,rj)

∣∣ the number of virtual channels that passing flows from them share the
same channel of router rj with flow fsi . A flow may get more if other flows use less,
but we now know a worst-case lower bound on the bandwidth. Round robin arbitration
has good isolation properties because the minimum bandwidth for each flow does not
depend on properties of the other flows.

Since network calculus uses the abstraction of service curve to model a network
element processing traffic flows [Le Boudec et al. 2004], we can also model a round
robin arbiter in router rj for flow fsi as a rate-latency server [Gebali et al. 2009] that
its function is as β(si,rj) = R(si,rj)(t − T l(si,rj))

+, where R(si,rj) is the minimum service
rate and T l(si,rj) is the maximum processing latency of the arbiter in router rj for flow
fsi . R(si,rj) and T l(si,rj) are defined as follows:

R(si,rj) =
C∣∣V(si,rj)

∣∣ (6)

T l(si,rj) =
(∣∣V(si,rj)

∣∣− 1
)
×
(
Lw
C

+Drouter

)
(7)

where Drouter is the delay for packet routing decision in a router.
As mentioned in Section 5, a rate-latency service curve is in fact a pseudoaffine.

Therefore, β(si,rj) can be expressed as δ(∣∣∣V(si,rj)

∣∣∣−1
)
×(LwC +Drouter)

⊗γ0, C∣∣∣∣V(si,rj)
∣∣∣∣

. Assuming

f1 is the tagged flow in the example, β(f1,r) = δ2×(LwC +Drouter) ⊗ γ0,C3
.

6.1.3. Buffer Sharing. Figure 6 shows a buffer shared between two flows f1 and f2. In
this type of sharing, in addition to maximum processing latency for link sharing, T l,
we introduce the head-of-Line delay for a tagged flow as below:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

195

A:12 F. Jafari et al.

Crossbar

D
E

M
U

X

Channel

1f

2f P2P2P2
P2...P2P2P1

1f 0

),(

),(

1

1

=

=

P

rf

rf

T

CR

Crossbar

Switch

C
h
a
n
n
e
l

2f

0

),(

),(

2

2

=

=

P

rf

rf

T

CR

Fig. 6. An example of a buffer sharing two flows.

P2P3P3
P2...P3P2P1

1
f

3
fCrossbar

D
E

M
U

X

Channel

1
f

2
f

3
f

2
f

C
h
a
n
n
e
l

3
fCrossbar

Switch

C
h
a
n
n
e
l

Fig. 7. An example of a buffer sharing three flows.

Head-of-Line delay (HoL): Given a flow comes at time t in a router, the maximum
waiting time in the FIFO queue would be in time t+ THoL.

Therefore, the total processing delay which comes from contention flows for tagged
flow fsi in router rj , TTotal(si,rj)

, is equal to T l + THoL

We assume f1 in Figure 6 is the tagged flow. According to Equation (7), T l(f1,r) = 0.
From the figure, it is clear that THoL(f1,r)

is equal to the maximum delay for passing
packets of flow f2 in the buffer. According to [Le Boudec et al. 2004], the maximum
delay for flow fj is bounded by Equation (8).

D̄(fj ,r) = T l(fj ,r) +
Lj + θj(pj −R(fj ,r))

+

R(fj , r)
(8)

Therefore, we formulate THoL(f1,r)
as follows:

THoL(f1,r)
= T l(f2,r) − θ2 +

L2 + θ2p2

R(f2,r)
(9)

If there is more than one flow sharing the buffer with the tagged flow as shown in
Figure 7, HoL delay for tagged flow fsi in router rj is given by

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

196

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:13

THoL(si,rj)
=

∑

∀fc∈FB(si,rj)

T
HoL(fc)
(si,rj)

(10)

where FB(si,rj) is the set of flows which share the same buffer in router rj with tagged

flow fsi . T
HoL(fc)
(si,rj)

is calculated as follows.

T
HoL(fc)
(si,rj)

= T l(fc,r) − θc +
Lc + θcpc
R(fc,r)

(11)

Therefore router rj can serve flow fsi by curve β(si,rj) = δTTotal
(si,rj)

⊗ γ0,R(si,rj)
, where

TTotal(si,rj)
= THoL(si,rj)

+ T l(si,rj) and R(si,rj) is calculated by Equation (6).
We analyze the buffer space threshold for each VC based on traffic specifications of

flows passing through that VC, and also interference between them. The buffer space
threshold for virtual channel V Ck in physical channel PCi of router rj is given as
below:

B(V Ck,PCi,rj) =
∑

∀fc∈F(V Ck,PCi,rj)

(
σc + ρcT

p
(fc,rj)

+
(
θ − T p(fc,rj)

)+ [(
pc −R(fc,rj)

)+ − pc + ρc

])

(12)

where F(V Ck,PCi,rj) is the set of flows passing through V Ck in physical channel PCi
of router rj .

6.2. Step2: Inter-router ESC
We have analyzed and modeled three kinds of sharing to compute the intra-router
ESC. After analyzing per-router resource sharing (intra-ESC), the effects of buffer
sharing and channel sharing on tagged flow have been considered and we can view an
analysis model which keeps only channel&buffer sharing for tagged flow. This model is
called aggregate analysis model. For example, suppose that a tagged flow f1 traverses
a tandem of routers, and is multiplexed with contention flows as depicted in Figure
8(a). After analyzing intra-router ESC, aggregate analysis model is shown as 8(b). In
this model, β(si,rj) indicates that the service curve is related to flow fsi in router rj .
For instance, β({1,2},r3) is the service curve of flow f{1,2} in router r3. f{1,2} indicates to
a flow aggregated by flows f1 and f2. A set of si’s in a tandem of routers is denoted as
S = {si}. For example, in Figure 8(b), S = {{1}, {1, 2, 3}, {1, 2}, {1}}.

Now, we consider aggregate analysis model to recognize interference patterns and
remove contention flows one by one. A tagged flow directly contends with contention
flows. Also, contention flows may contend with each other and then contend with the
tagged flow again. To consider inter-ESC in the aggregate analysis model, we decom-
pose a complex contention scenario to two basic contention patterns, namely, Nested
and Crossed.Figures 8, 9, 10, and 11 illustrate examples of different kinds of nested
contentions and an example of crossed contention is shown in Figure 12. In the follow-
ing, we will describe these examples with more details.

We use the algebra of sets to recognize the contention scenarios. To facilitate our
discussion, we define convenient notations by the example in Figure 8(b). In the ex-
ample, the tandem of servers is as

{
β({1},r1), β({1,2,3},r2), β({1,2},r3), β({1},r4)

}
and S =

{si} = {{1}, {1, 2, 3}, {1, 2}, {1}}. We define sm =
{
sx
∣∣|sx| = max (|si|) ;∀si ∈ S

}
, where

|sx| is the cardinality (the number of elements) of set sx. The service curve, flow, and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

197

A:14 F. Jafari et al.

� Nested Flows-Case 1

1fa)

1r 2r 3r 4
r

2f 3
f

b)

c)

{ }),3,2,1(2r
β

1f

2
f

3
f

{ }),2,1(3r
β

1f

2f

{ }),2,1(3r
β

{ }),1(1r
β { }),1(4r

β

{ }),1(1r
β { }),1(4r

β{ }),2,1(2r
β

Fig. 8. Analysis for the first type of nested flows.

router related to sm are denoted as fsm , βm, and rm, respectively. Thus, in Figure 8(b),
sm = {1, 2, 3}, fsm = f{1,2,3}, rm = r2, and βm = β({1,2,3},r2).

We denote the service curve placed before βm on the aggregate analysis model by
βPrev and related aggregate flow and router as fsPrev and rPrev, respectively. Notation
βNext indicates to the service curve placed after βm, as well. Therefore, due to βm =
β({1,2,3},r2) in Figure 8(b), βPrev = β({1},r1), sPrev = {1}, fsPrev = f{1}, rPrev = r1,
βNext = β({1,2},r3), sNext = {1, 2}, fsNext = f{1,2}, rNext = r3.

Contention recognition procedure in an aggregate analysis model can be generalized
as following steps:

(1) Find sm =
{
sx
∣∣|sx| = max (|si|) ;∀si ∈ S

}
.

(2) if sPrev ⊂ sNext then the contention is Nested; –Remove fsm−(sm∩sPrev) from βm.
(3) if sNext ⊂ sPrev then the contention is Nested; –Remove fsm−(sm∩sNext) from βm

(4) else
(a) if sPrev ⊂ sm and sNext 6⊂ sm then the contention is Nested;

— Remove fsm−(sm∩sPrev) from βm.
(b) if sNext ⊂ sm and sPrev 6⊂ sm then the contention is Nested;

— Remove fsm−(sm∩sNext) from βm

(c) else, it is Crossed.
— The problem is strictly transformed to the combination of two nested flows

To remove a contention flow from a service curve and derive the new service curve
from that, we apply the proposed corollary 1 in Section 5.

When sm is not unique, each of them can be selected. In this paper, we choose the
first one from the left side in the aggregate analysis network.

In the case of sNext = sPrev, there are two possibilities:

(1) sNext = sPrev 6= sm: Since sNext ⊂ sPrev and sPrev ⊂ sNext, the contention is nested
as previously described in contention recognition steps.

(2) sNext = sPrev = sm: In this case, three nodes sNext, sPrev, and sm should be com-
bined as a single server by applying the theorem of concatenation of network ele-
ments [Le Boudec et al. 2004]. It will be discussed in Section 6.3.

In the following, we give examples for various contention patterns.

6.2.1. Nested Flows. Four different types of nested contention are exemplified as Fig-
ures 8, 9, 10, and 11. Flow f3 is nested in flow f2 in Figures 8, 9, and 10 and it is also
nested in flow f4 in Figure 11.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

198

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:15

1f

3
f2f

a)

1r 2r 3r 4r

� Nested Flows-Case 2

1
f

2f 3
f

{ }),1(4r
β

1f

2
f

{ }),1(4r
β

b)

c)

{ }),1(1r
β

{ }),1(1r
β { }),2,1(2r

β

{ }),2,1(2r
β { }),3,2,1(3r

β

{ }),2,1(3r
β

Fig. 9. Analysis for the second type of nested flows.

1f

3
f

a)

1r 2r 3r 4r 5r

4f

� Nested Flows-Case 3

2f

1
f

2f 3
f

{ }),4,1(4r
β

1f

2
f

b)

c)

{ }),1(1r
β

{ }),1(1r
β { }),2,1(2r

β

{ }),2,1(2r
β { }),3,2,1(3r

β

{ }),2,1(3r
β

4f

{ }),1(5r
β

{ }),4,1(4r
β

4f

{ }),1(5r
β

Fig. 10. Analysis for the third type of nested flows.

1f

2f

a)

3r 4r 5r2r

� Nested Flows-Case 4

1r

3f

4f

1
f

2f 3
f

{ }),4,1(4r
β

b)

c)

{ }),1(1r
β { }),2,1(2r

β { }),4,3,1(3r
β

4f

{ }),1(5r
β

1f

2
f

{ }),4,1(4r
β{ }),1(1r

β { }),2,1(2r
β { }),4,1(3r

β

4f

{ }),1(5r
β

Fig. 11. Analysis for the fourth type of nested flows.

— Figure 8(b) shows the first type of nested flows after applying intra-ESC, in which
sm = {1, 2, 3}, sPrev = {1}, and sNext = {1, 2}. In this case, sPrev ⊂ sNext and due
to step 2 of contention recognition procedure, we remove flow f{1,2,3}−({1,2,3}∩{1,2}) =
f{3} from β({1,2,3},r2) and derive β({1,2},r2), as depicted in Figure 8(c).

— The second type of nested flows in the aggregate analysis model is depicted in Figure
9. Due to Figure 9(b), sm = {1, 2, 3}, sPrev = {1, 2}, and sNext = {1}. In this case,
sNext ⊂ sPrev and flow f{1,2,3}−({1,2,3}∩{1,2}) = f{3} is eliminated from β({1,2,3},r3)

regarding step 3 of contention recognition procedure. Figure 9(c) shows aggregate
analysis model after removing f3.

— Figure 10 shows an example of the third type of nested contention. Based on ag-
gregate analysis model depicted in Figure 10(b), sm = {1, 2, 3}, sPrev = {1, 2}, and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

199

A:16 F. Jafari et al.
� Crossed Flows

b)

a)

5
r

1f

3f

2
r

3
r

4
r

2f

1
r

fb)

c)

d)

1f

2f 3
f

{ }),3,1(4r
β

1f

2f 3f 3
f ′

1f

2f

{ }),2,1(3r
β

{ }),1(1r
β

{ }),1(1r
β

{ }),1(1r
β

{ }),2,1(2r
β

{ }),2,1(2r
β

{ }),2,1(2r
β

{ }),3,2,1(3r
β

{ }),3,2,1(3r
β

{ }),3,1(4r
β

{ }),1(4r
β

{ }),1(5r
β

{ }),1(5r
β

{ }),1(5r
β

Fig. 12. Analysis for crossed Flows.

sNext = {1, 4}. Since sNext 6⊂ sPrev, sPrev 6⊂ sNext, sPrev ⊂ sm, and sNext 6⊂ sm, due to
step 4.a) of contention recognition procedure, the case is nested contention and flow
f{1,2,3}−({1,2,3}∩{1,2}) = f{3} is removed from β({1,2,3},r3), as shown in Figure 10(c).

— Figure 11 shows a type of nested contention related to step 4.b) of contention
recognition procedure. Due to Figure 11(b), sm = {1, 3, 4}, sPrev = {1, 2}, and
sNext = {1, 4}. Since sNext 6⊂ sPrev, sPrev 6⊂ sNext, sNext ⊂ sm, and sPrev 6⊂ sm, it
is a nested contention and Figure 11(c) shows that flow f{1,3,4}−({1,3,4}∩{1,4}) = f{3}
is eliminated from β({1,3,4},r3).

6.2.2. Crossed Flows. Figure 12 shows contention flow f2 crossed with f3. Regarding
Figure 12(b), sm = {1, 2, 3}, sPrev = {1, 2}, and sNext = {1, 3}. Since sPrev is not a
subset of sNext, and vice versa and also both of them are a subset of sm, due to step 4.c)
of contention recognition procedure, this case is a crossed contention. There are two
cross points, one between r2 and r3 and the other between r3 and r4. We cut f3 at the
second cross point, i.e., at the ingress of r4, f3 will be split into two flows, f3 and f́3, as
shown in Figure 12(c). Then the problem is strictly transformed to the combination of
nested flows such that f3 is nested in flow f2 and f́3 in f1. It is clear that the arrival
curve α(f3,r3) equals to α3 and the arrival curve α(f́3,r3) equals to α∗(f3,r3). To compute
α∗(f3,r3), we need to get the ESC of r3 for f3, β(f3,r3). Then, we calculate the output
arrival curve of f3 as α∗(f3,r3) = α(f3,r3) � β(f3,r3) by applying the proposed Theorem 3
in Section 5. Now, nested flows f3 and f́3 can be removed from the tandem as shown in
Figure 12(d).

6.3. End-to-end ESC
We show a high-level analysis flow for deriving the end-to-end ESC in Figure 13 and
then present end-to-end ESC algorithm along with more details and one example.

To calculate end-to-end ESC, we first obtain intra-router ESC for the tagged flow in
each router. Then we use the theorem of concatenation of network elements [Le Boudec
et al. 2004] to model nodes sequentially connected and each is offering a service curve
on the same aggregate flows β(si,rj), j = 1, 2, ..., n as a single server as follows:

β(si,r1,2,...,n) = β(si,r1) ⊗ β(si,r2) ⊗ ...⊗ β(si,rn)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

200

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:17

Application
- communication pattern
-TSPEC of flows

Architecture
- topology
- deadlock-free deterministic routing

- tagged flow
g

- service curve of routers

Calculate Intra-router ESC for each router due to Sectiobn 6.1),(ji rfβ

Yes

Are intra-router ESC
calculated in all routers

No

f⊗⊗⊗ ββββCalculate
{ } { } nrsrsrsrs iiiif

njnijijinjjnii
===⊗⊗⊗= 21),(),(),(),(2211,...,1,...,1

ββββ

Find the first maximum where ms (){ }Ssssss ixxx
m ∈∀== ;||max||

Calculate Inter-router ESC based on Section 6.2

?1=ms

No

Yes

Calculate

One is remained which is end-to-end ESC for the tagged flow),(ji rsβ

{ } { } nrsrsrsrs iiiif
njnijijinjjnii

===⊗⊗⊗= 21),(),(),(),(2211,...,1,...,1
ββββ

Fig. 13. End-to-end ESC analysis flow.

In the next step, we calculate inter-router ESC by applying contention recognition
stages and removing contention flows as described in Section 6.2. After that, the con-
catenation theorem is applied again to find more equivalent servers and reduce the
number of service curves. For instance, after removing contention flow f3 in Figure
8(c), the service curve of sub-tandem {r2, r3} for aggregate flow f{1,2} is computed as
β({1,2},r2,3) = β({1,2},r2) ⊗ β({1,2},r3). If we repeat contention recognition steps, the next
contention flow is f2 nested in f1. If we similarly remove it from β({1,2},r2,3) and calcu-
late convolution β({1},r1,2,3) = β({1},r1) ⊗ β({1},r2,3), the end-to-end ESC of tagged flow f1

is obtained.

1f

2f

4r

3r2r1r

A

5r

Fig. 14. The example of joining point.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

201

A:18 F. Jafari et al.

Algorithm 1 end-to-end ESC
1: Find the set of contention flows of tagged flow ft, denoted by CFt
2: for ∀j ∈ CFt do
3: if Src(j) /∈ Path(t) then
4: Find joiningnode = JoiningPoint(fj)
5: Calculate X = ESC(fj , Src(j), joiningnode)
6: αj = αj �X
7: end if
8: end for
9: Calculate intra-router ESC based on Section 6.1.

10: Calculate β(si1 ,rj1) ⊗ β(si2 ,rj2) ⊗ ...⊗ β(sin ,rjn) if i1 = i2 = ... = in.

11: Find sm =
{
sx
∣∣|sx| = max (|si|) ;∀si ∈ S

}
.

12: repeat
13: if sPrev ⊂ sNext then
14: Remove fsm−(sm∩sNext) from βm

15: else if sNext ⊂ sPrev then
16: Remove fsm−(sm∩sPrev) from βm.
17: else
18: if sPrev ⊂ sm and sNext 6⊂ sm then
19: Remove fsm−(sm∩sPrev) from βm

20: else if sNext ⊂ sm and sPrev 6⊂ sm then
21: Remove fsm−(sm∩sNext) from βm.
22: else
23: Find joiningnode = JoiningPoint(f(sm−sPrev)).
24: Calculate X = ESC(f(sm−sPrev), joiningnode, r

Next).
25: ά(sm−sPrev) = α(sm−sPrev) �X
26: Remove f(sm−sPrev) from βm.
27: Remove f́(sm−sPrev) from βNext.
28: end if
29: end if
30: Calculate β(si1 ,rj1) ⊗ β(si2 ,rj2) ⊗ ...⊗ β(sin ,rjn) if i1 = i2 = ... = in.
31: Find sm.
32: until |sm| 6= 1
33: return end-to-end ESC for tagged flow ft

Algorithm 1 explains the procedure of calculating end-to-end ESC with more details.

— Joining node: In Lines 2−8, the algorithm checks if source node of a contention flow
fi is one of the nodes along the tagged flow’s path or not. If it is not, this means that
we should calculate input TSPEC of the contention flow fi in the point joined to the
tagged flow’s route (point A in Figure 14 when f1 is the tagged flow). We obtain this
point by function JoiningPoint(fi) and call it joining node.

We give an example in Figure 15 to show how to derive an aggregate analysis model
and obtain end-to-end ESC by following the proposed algorithm.

Assuming the tagged flow is f1, line 1 of the algorithm finds CFt which is {f2, f3, f4}
in the example.

— Loop 1 in the algorithm (Lines 2−8): In Lines 3−4, the algorithm obtains joining
node for each contention flow which its source node is not one of the nodes along the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

202

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:19

{ }),3,2,1(2r
β

1f

2f 3
f 4f

{ }),2,1(3r
β

b)

),1(1r
β

)},2,1({ 4r
β

)},4,2,1({ 5r
β

1fa)

{ }),3,2,1(2r
β

1f

2f 3f 4f

),1(1r
β)},2,1({ 4,3r

β
c)

1f

β β
d)

7
r

6({1,4},)r
β

7(1,)r
β

5({1,2,4},)r
β

6({1,4},)r
β 7(1,)r

β

β β

1r 2r 6
r

5
r

3
r

4r

2f
3

f
4f

1f

2f 4f

),1(1r
β)},2,1({ 4,3r

β
)},2,1({ 2r

β
d)

1f

2f 4f

),1(1r
β

)},2,1({ 4,3,2r
β

e)

1f

2f 4f

),1(1r
β

)},2,1({ 4,3,2r
β

4 f ′

f)

1f

2f

7(1,)rβ),1(1r
β

)},2,1({ 4,3,2r
β

g)
5({1,2},)r

β
6({1},)r

β

5({1,2,4},)r
β

6({1,4},)r
β

7(1,)rβ

5({1,2,4},)rβ
6({1,4},)rβ

7(1,)rβ

5({1,2,4},)rβ
6({1,4},)rβ

7(1,)rβ

Fig. 15. An example of end-to-end ESC computation.

tandem. Then, end-to-end ESC of flow fj from the source node to joining node has
been derived by recursively calling ESC(fj , Src(j), joiningnode) in Line 5. Line 6
computes output arrival curve which is input arrival curve to the joining node and
input TSPEC is extracted from that. In the example of Figure 15(a), all source nodes
of contention flows are in the tagged flow’s route and lines 4−6 are skipped for them.

Line 9 obtains intra-router ESC for the tagged flow due to Section 6.1. Figure 15(b)
shows the aggregate analysis model for the example. Due to line 10, β({1,2},r3,4) =
β({1,2},r3) ⊗ β({1,2},r4). Figure 15(c) depicts the example in this step. Regarding line
11, sm = {1, 2, 3}.

— Loop 2 in the algorithm (Lines 12 − 32): In Lines 13 − 29, we consider different
contention scenarios along the route using the algebra of sets. In this step, we intend
to remove contention flows one by one due to their effects on the tagged flow as
mentioned in Section 6.2. Lines 13−21 consider nested contentions and lines 22−28
crossed one.
— Nested contention in the example: From Figure 15(c), sm = {1, 2, 3},
sPrev = {1}, and sNext = {1, 2}. Since sPrev ⊂ sNext, due to line 13, flow
f{1,2,3}−({1,2,3}∩{1,2}) = f3 is removed from β({1,2,3},r2) as shown in Figure 15(d).

Lines 30−31 are the same as lines 10−11 which calculate concatenation of the nodes
on the same aggregate flows and then obtain new sm, which result in β({1,2},r2,3,4) =
β({1,2},r2) ⊗ β({1,2},r3,4), and sm = {1, 2, 4} (Figure 15(e)).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

203

A:20 F. Jafari et al.

— Crossed contention in the example: If we repeat contention recognition steps
in Loop 2, the next contention in the example is crossed. From Figure 15(e), sm =
{1, 2, 4}, sPrev = {1, 2}, and sNext = {1, 4}. Since neither sPrev ⊂ sNext nor sNext ⊂
sPrev and also either sNext ⊂ sm and sPrev ⊂ sm, it goes to the else part (lines 22−
28) of the algorithm. As shown in Figure 15(e), contention flow f2 is crossed with
f4. There are two cross points, one between r2,3,4 and r5 and the other between r5

and r6. Regarding the algorithm, we cut f4 at the second cross point, i.e., at the
ingress of r6, f4 will be split into two flows, f4 and f́4, as shown in Figure 15(f).
Then, the problem is transformed to the combination of two nested scenarios.
Apparently the arrival curve αf́4 of f́4 is equal to α∗f4 of f4. To compute α∗f4 , we
need to get the ESC of f4 from r5 to r6, which is derived regarding lines 23 and 24.
Then, line 25 calculates output arrival curve α∗f4 (αf́4) by applying the proposed
Theorem 3 in Section 5. Then, f4 and f́4 are removed from r5 and r6 due to lines
26 and 27, respectively, as shown in Figure 15(g).

Therefore, according to lines 30 − 31, β({1,2},r2,3,4,5) = β({1,2},r2,3,4) ⊗ β({1,2},r5),
β({1},r6,7) = β({1},r6) ⊗ β({1},r7) , and sm = {1, 2}. We similarly repeat contention
recognition and convolution steps until |sm| 6= 1. When |sm| = 1, the end-to-end ESC
of tagged flow f1 is obtained.

6.4. LUDB Derivation
To compute the delay bound for a flow passing a series of nodes, one simple way is
to calculate the summation of delay bounds at each node. However, this results in a
loose total delay bound. To tighten the worst-case delay bound along the network, the
end-to-end service curve of the flow is used as stated in corollary Pay Bursts Only Once
[Le Boudec et al. 2004]. Hence, we first calculate the end-to-end ESC of the tagged flow
based on the proposed algorithm and then obtain LUDB according to Theorem 1. We
have implemented algorithms employed in our methodology.

7. EXPERIMENTS
7.1. Experimental Setup
To evaluate the capability of our method, we applied it to a synthetic traffic pattern
and a realistic one. Throughout the experiments, we assume an SoC with 500 MHz
frequency in which packets traverse the network using the XY routing algorithm.
Flows follow TSPEC, fi ∝ (Li, pi, σi, ρi), and each node guarantees the service curve
of βR,T (t) = δT ⊗ γ0,R, where the serving rate R is C flit/cycle and the latency T ,
Lw
C +Drouter cycle. We have implemented the proposed analytical model in C++ to au-

tomate analysis steps.

7.2. Synthetic Traffic Pattern
We synthesize a simple traffic pattern as shown in Figure 16 to follow the analytical
approach step by step and derive numerical results. The figure depicts a network with
4 flows and 4 routers which serve flows in the FIFO order. f1 is the tagged flow and f2

and f4 are contention flows.

7.2.1. Computation of the end-to-end equivalent service curve.
Step 1: We first calculate the intra-router ESC for the tagged flow in each node. Then,
we can model a flow passing through a series of routers as a series of concatenated
pseudoaffine servers.

It is worth mentioning that TSPEC of each flow fj mentioned above is the TSPEC of
the input flow to its source node, for example f2 ∝ (L2, p2, σ2, ρ2) which means ρ(f2,r1) =
ρ2 and other characteristics can be obtained as well.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

204

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:21

2f
1f

3f
4f

1r
2r

4r 3r

1r 2r

3r4r

2f

1f

4f

a) b)

3f

Fig. 16. A synthetic example.

— In router r1: From Equation (6) and (7), the ESC for aggregate flow f{1,2} in node 1
is given by:

β(f{1,2},r1) = δ0 ⊗ γ0,C . (13)

— In router r2: FB(f1,r2) = {f2} and due to Equation (6) and (7), R(f1,r2) = C and
T l(f1,r2) = 0. Furthermore, TTotal(f1,r2) = T l(f1,r2) + THoL(f1,r2) and regarding to Equation (10)

and (11), THoL(f1,r2) = max∀fc∈FB(f1,r2)

(
T
HoL(fc)
(f1,r2)

)
= T

HoL(f2)
(f1,r2) where T

HoL(f2)
(f1,r2) is calcu-

lated as follows:

T
HoL(f2)
(f1,r2) = T l(f2,r2) − θ(f2,r2) +

L(f2,r2) + θ(f2,r2)p(f2,r2)

R(f2,r2)
(14)

where R(f2,r2) = C
2 , T l(f2,r2) = Lw

C + Drouter, because two VCs (one transmits f2

and the other f3) are sharing the ejection channel of router r2. In Equation (14),
we should obtain TSPEC of input flow f2 to r2 which is TSPEC of output flow
f2 from r1. Since TSPEC is derived from arrival curve, we obtain arrival curve
of output flow f2 from r1 by applying the proposed Theorem 3 in Section 5. We
assumed θi ≤ T(fi,rj) for ∀fi passing through ∀rj . Thus, α∗(f2,r1) = α(f2,r2) =

γσ(f2,r1)+ρ(f2,r1)T(f2,r1),ρ(f2,r1)
where ρ(f2,r1) = ρ2 and σ(f2,r1) = σ2. In this respect, we

can say α(f2,r2) = γσ2+ρ2T(f2,r1),ρ2 . For deriving T(f2,r1), we should first obtain ESC for
flow f2 in router r1, β(f2,r1), as follows.
From Equation (13), β(f{1,2},r1) = δ0 ⊗ γ0,C . We then remove f1 from aggregate flow
f{1,2} according to Corollary 1 in Section 5, β(f2,r1) is given by:

β(f2,r1) = δ[L1+θ1(p1−C)+

C

]+
+θ1
⊗ γ0,C−ρ1 = δL1+θ1p1

C
⊗ γ0,C−ρ1 (15)

In this respect T(f2,r1) = L1+θ1p1
C , and α(f2,r2) = γ

σ2+
ρ2(L1+θ1p1)

C ,ρ2
which means

σ(f2,r2) = σ2 + ρ2(L1+θ1p1)
C , ρ(f2,r2) = ρ2, L(f2,r2) = L(f2,r1) = L2, and p(f2,r2) = p(f2,r1) =

p2. Therefore, Equation (14) is rewritten as below:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

205

A:22 F. Jafari et al.

a)

1f

2f
b)

)},2,1({ 1r
β)},1({ 2r

β)},1({ 3r
β

1f

2f
c)

)},2,1({ 1r
β)},1({ 3,2r

β

1fd)
β

1f

2f 3
r

2r1r

3
f 4

f

1fd)
)},1({ 1r

β)},1({ 3,2r
β

1fe)
)},1({ 3,2,1r

β

Fig. 17. Analysis steps for the example in Figure 15.

T
HoL(f2)
(f1,r2) =

Lw
C

+Drouter − θ(f2,r2) +
L2 + θ(f2,r2)p2

C
2

(16)

where θ(f2,r2) =
σ(f2,r2)−L(f2,r2)

p(f2,r2)−ρ(f2,r2)
= σ2C+ρ2L1+ρ2θ1p1−L2C

C(p2−ρ2) .
As mentioned before, R(f1,r2) = C, T l(f1,r2) = 0, and TTotal(f1,r2) = T l(f1,r2) + THoL(f1,r2). There-
fore, the ESC for tagged flow f1 in router 2 is given by:

β(f{1},r2) = δ
0+T

HoL(f2)

(f1,r2)

⊗ γ0,C . (17)

— In router r3: Since VC of f1 is sharing the ejection channel of r3 with VC of f4, due
to Equation (6) and (7), R(f1,r3) = C

2 and T l(f1,r3) = Lw
C + Drouter. Thus, the ESC for

tagged flow f1 in router 3 is given by:

β(f{1},r3) = δ(LwC +Drouter) ⊗ γ0,C2
. (18)

Step 2: Now, we are able to compute per-flow ESC provided by the tandem of routers
the tagged flow passes. Figure 17 depicts different steps of computing end-to-end ESC
for tagged flow f1. After calculating intra-router ESC as mentioned in Step 1, we have
an aggregate analysis model as shown in Figure 17(b). Since we have investigated the
effect of flow f2 on tagged flow f1 in router r2, when we calculated β(f1,r2) in step 1, f2

is removed from r2 in Figure 17(b). Similarly, f3 and f4 are eliminated from r2 and r3,
respectively. We then obtain end-to-end ESC for tagged flow f1 by following Algorithm
1. Due to the algorithm, β({1},r2,3) in Figure 17(c) is calculated as β({1},r2) ⊗ β({1},r3).

We use the theorem of Concatenation of network elements [Le Boudec et al. 2004].
Given are two nodes sequentially connected and each is offering a latency-rate service

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

206

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:23

curve βRi,Ti , i = 1and2. These nodes can be represented as a single latency-rate server
as follows:

βR1,T1
⊗ βR2,T2

= βmin(R1,R2),T1+T2
(19)

Therefore, β({1},r2,3) is given by:

β({1},r2,3) = δLw
C +Drouter+T

HoL(f2)

(f1,r2)

⊗ γ0,C2
. (20)

In Figure 17(c), sm = {1, 2}, sPrev = {}, and sNext = {1}. The algorithm then removes
flow f2 from aggregate flow f{1,2} in router r1. To this end, we apply the proposed
corollary 1 to obtain ESC β({1},r1) by subtracting arrival curve of α2 from β({1,2},r1), as
follows:

β({1},r1) = δL2+θ2(p2−C)+

C +θ2
⊗ γ0,C−ρ2 (21)

Figure 17(c) depicts the example after removing arrival curve of flow f2 from
β({1,2},r1). Now, end-to-end ESC can be calculated by:

β({1},r1,2,3) = βeqf1 = β({1},r1) ⊗ β({1},r2,3)

= δLw+L2+θ2(p2−C)+

C +Drouter+θ2+T
HoL(f2)

(f1,r2)

⊗ γ0,min(C2 ,C−ρ2)
(22)

Suppose that flows follow TSPEC, f1 ∝ (1, 1, 8, 0.128), f2 ∝ (1, 1, 2, 0.032), f3 ∝
(1, 1, 2, 0.008), and f4 ∝ (1, 1, 4, 0.128). Therefore, θj is computed for each flow fj as
θ1 = (σ1 − L1)/(p1 − ρ1) = (8 − 1)/(1 − 0.128) = 8.027, θ2 = 1.033, θ3 = 1.008, and
θ4 = 3.44. Also, we assume serving rate C = 1 flit/cycle, Lw = 1 flit, and Drouter = 1
cycle. We then replace the variables in Equation (22) by numbers as follows:

βeqf1 = δ9.363 ⊗ γ0,0.5 (23)

7.2.2. Computation of LUDB.
According to Theorem 1 and Equation (22), the maximum delay for flow f1 is

bounded by

h(α1, β
eq
f1

) =

⌈
Lw + L2 + θ2(p2 − C)+

C
+Drouter + θ2 + T

HoL(f2)
(f1,r2) +

L1 + θ1

(
p1 −min

(
C
2 , C − ρ2

))+

min
(
C
2 , C − ρ2

)
⌉

(24)

If we substitute the values into variables in the above mentioned equation, h(α1, β
eg
f1

)

is equal to d19.39e = 20.
In what follows, we consider the accuracy of our proposed analytical method through

the BookSim simulator [Jiang et al. 2013] and then compare it with the methods with-
out considering the traffic peak rate behavior [Lenzini et al. 2006].

7.2.3. Computation of Buffer Size Thresholds.
As routers are assumed to be input-buffered, we derive buffer size threshold for

each input channel in each router by following Eq. (12). In the example of Figure 16,
we have assumed one VC per each PC. Therefore, buffer size thresholds are calculated
and presented as Table II.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

207

A:24 F. Jafari et al.

Table II. Buffer size thresholds in the case study with synthetic traffic pattern

Injection
Channel

Western
Channel

Northern
Channel

Eastern
Channel

Southern
Channel

Router 1 6 − − − −
Router 2 − 11 − − 3
Router 3 − 8 8 − −
Router 4 6 − − − −

The buffers size thresholds marked by ”-” are not used by flows and thus not relevant
for the threshold calculation.

The value of buffer size thresholds per channel depends on the traffic load on that
channel which is affected by the number of flows passing through the channel, their
traffic specifications, and the contention between them.

7.2.4. Simulation Result.
We investigate the accuracy of the proposed analytical model through BookSim sim-

ulator which is a cycle-accurate simulator [Jiang et al. 2013]. The simulation uses the
same assumptions as the analytical model. We have considered a 2 × 2 mesh on-chip
interconnect as shown in Figure 16 and input-buffered routers with 12 flits in each
input channel. It takes 1 clock cycle to pass a flit within a router and 1 clock cycle
to transmit a flit over wires between neighboring routers. We also consider the XY
routing algorithm to route the data packets among cores.

Simulation result shows that worst-case delay for tagged flow f1 in the previously
mentioned system is equal to 19 cycles, which is below the LUBD of 20 cycles, predicted
by our model.

We also change the value of σ2 from 2 to 4 to consider more experiments. The LUDB
calculated by our analytical model for tagged flow f1 is equal to 24 cycles and the result
from the simulation is also 24 cycles, again below the analytical LUDB.

7.2.5. Comparison.
If we use (σ, ρ) instead of TSPEC, each flow j would be constrained by arrival curve

αj = σj+ρjt = γσj ,ρj . Therefore, flows in the example are represented as f1 ∝ (8, 0.128),
f2 ∝ (2, 0.032), f3 ∝ (2, 0.008), and f4 ∝ (4, 0.128). We then follow the stages of comput-
ing individual delay bounds for a tagged flow as stated before. For this purpose, we
can easily revise our proposed theorems for (σ, ρ) flows by substituting σ and ρ into L
and p, respectively, in all formulas. We can also apply the method presented in [Lenzini
et al. 2006]. With both approaches, the same value for h(α1, β

eq
f1

) is achieved and equals
to 26. Thus, our proposed method which calculates D̄V BR has 23% improvement on the
accuracy of the delay bound than the method with CBR flows (D̄CBR).

To analyze delay sensitivity, Table III depicts LUDB for tagged flow f1 in a network
with CBR flows (D̄CBR) and also VBR flows (D̄V BR) versus the different values of ser-

Table III. End-to-end delay comparison for tagged
flow f1 under different service rates

R1 = 1 R2 = 0.7 R3 = 0.5
Reqf1

0.5 0.35 0.25

T eqf1,CBR
10 13.428 18

T eqf1,V BR
9.363 13.326 18.951

D̄f1,CBR 26 37 50
D̄f1,V BR 20 32 48

ηf1 23% 13.5% 4%

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

208

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:25

t

L
σ

VBRD

CBRD

5.0=eqR

eq
CBRTeq

VBRT

5.0=eqR

θ

Fig. 18. Comparing D̄V BR and D̄CBR with the same equivalent service curve.

vice rate R, along with values for the end-to-end ESC parameterized by Reqf1 , T eqf1,CBR
and T eqf1,V BR. From this table, it is clear that the end-to-end equivalent service rate,
Reqf1 , is decreasing by reducing R, while the end-to-end processing delays and delay
bounds are increasing as well. Also, it is worth mentioning that the improvement per-
centage (η) decreases because of reduction of Reqf1 and increase of T eqf1,CBR and T eqf1,V BR.
This is due to the relation between these parameters which we will elaborate it in the
following.

Figure 18 shows D̄CBR and D̄V BR for Req = 0.5 where p ≥ Req and the end-to-end
ESCs are in the form of δT eq ⊗ γ0,Req . According to [Le Boudec et al. 2004], D̄CBR =

T eqCBR+ σ
Req and with Theorem 1, D̄V BR = T eqV BR+ L+θ(p−Req)

Req . η is calculated as follows.

η =
D̄CBR − D̄V BR

D̄CBR
=
σ − L− pθ +Req (T eqCBR − T eqV BR + θ)

σ + T eqCBRR
eq

(25)

To analyze the behavior of η, we compute the derivative of function η in terms of Req
as follows:

dη

dReq
=
T eqCBR (L+ pθ)− σ (T eqV BR − θ)

(σ + T eqCBRR
eq)

2

From Figure 18, it is obvious that L + pθ ≥ σ and T eqCBR ≥ T eqV BR − θ which results
T eqCBR (L+ pθ) − σ (T eqV BR − θ) ≥ 0. Thus, dη

dReq ≥ 0 and η is an increasing function in
terms of Req which means that when Req increases or decreases, η shows the same
behavior as Req.

Table IV shows Reqf1 , T eqf1,CBR and T eqf1,V BR, D̄CBR, and D̄V BR for tagged flow f1 versus
the different values of processing delay T . From this table, it can be seen that the end-
to-end processing delays and delay bounds are decreasing by reducing T .

Table IV. End-to-end delay comparison for tagged flow f1 under differ-
ent processing delay

T1 = 10 T2 = 2 T3 = 1 T4 = 0.5 T5 = 0.1
Reqf1

0.5 0.5 0.5 0.5 0.5

T eqf1,CBR
26 10 8 7 6.2

T eqf1,V BR
25.363 9.363 7.363 6.363 5.563

D̄f1,CBR 42 26 24 23 23
D̄f1,V BR 39 20 18 17 16

ηf1 7.1% 23% 25% 26.1% 30.4%

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

209

A:26 F. Jafari et al.

f

PaddingVOP
memory

94

313Memory

Down sampling
&

context calculation

16

Reference
memory

Up
sampling

16
16

16
16

f3

f4
f6

f8

f7
f9

f

n1 n2 n3 n4

f1
f6

f10
f15

f16

f17

Stripe
memory

Up

VOP
reconstruction

300

313313
500

Context-based
Arithmetic
decoder

y
157

16

sampling

16
f1

f2

f5
f10

f11
f12

f13

n5 n6 n7 n8

n9 n10 n11 n12

f1

f2

f9
f11

f f
f18

f20
f21

Variable
length

decoder

70 Run-
length

decoder

362 Inverse
scan

362 AC/DC
prediction

362
iQuant

357
IDCT

4927

Up
sampling

353

decoder

f14

f15 f16 f17

f18 f19

f20 f21
n13 n14 n15 n16

f3f4 f5

f7 f8

f12

f13

f14

f19

Fig. 19. VOPD Application

200

300

400

500

600

700

De
la
y
Bo

un
d
(c
yc
le
)

Delay_VBR

Delay_Simulation

0

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D

Flow Index

Fig. 20. Comparison of delay bounds from the proposed model and simulator for VOPD application

7.3. Realistic Traffic Pattern
We consider a real-time multimedia application with a random mapping to the tiles
of a 4 × 4 mesh on-chip network. Figure 19 shows the task graph and flow mapping
of a Video Object Plane Decoder (VOPD) [Bertozzi et al. 2002] in which each block
corresponds to an IP and the numbers near the edges represent the bandwidth (in
MBytes/sec) of the data transfer, for a 30 frames/sec MPEG-4 movie with 1920 × 1088
resolution [Van der Tol et al. 2002]. There are 21 communication flows which charac-
terized by TSPEC. We assume Li and pi for all flows are the same and equal to 1 flit
and 1 flit/cycle, respectively. ρi is determined in flits/cycle due to associated band-
width with flow fi in Figure 19 and also, σi varies between 8 and 128 flits for different
flows.

We derive delay bounds from the proposed analytical model, D̄fi,V BR, and BookSim
simulator, D̄fi,Sim for the whole set of flows in Figure 20. In order to have a better in-
sight about the proposed model, for each obtained delay bound, the relative error with
respect to simulation result is calculated. The calculations show that the maximum
and average relative errors are about 12.1% and 6.8%, respectively, which confirm the
accuracy of the proposed model.

which is below the LUBD of 20 cycles, predicted by our model.
As can be observed from Figure 20, a flows may have larger (like f7) or smaller

(like f14) worst-case delay bound than the other flows, which depends on its traffic

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

210

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:27

300
400
500
600
700
800
900
1000

De
la
y
Bo

un
d
(c
yc
le
)

Delay_VBR

Delay_CBR

0
100
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D

Flow Index

Fig. 21. Comparing D̄V BR and D̄CBR for VOPD application

35

40

45

50

ce
nt
)

10

15

20

25

30

m
pr
ov
em

en
t (
Pe

rc

0

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Im

Flow Index

600

700

800

900

1000

d
(c
yc
le
)

Delay_VBR

Delay_CBR

100

200

300

400

500

De
la
y B

ou
n

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Flow Index

Fig. 22. Improvement percentage of D̄V BR than D̄CBR for VOPD application

specification (TSPEC) and the situation of that flow in the network. For example, if the
worst-case delay bound of a particular flow is too large, 1) the flow is probably more
limited by its TSPEC parameters for injecting to the network, 2) the flow may have a
longer path from its source to destination, or 3) the flow may have more contentions
(both direct and indirect) with other flows along its path.

Figure 21 compares the results of applying our analytical model, D̄fi,V BR, and the
method with CBR flows, D̄fi,CBR. As you can see in this figure, the proposed model
in this paper is more accurate than the method without considering the traffic peak
behavior. Figure 22 presents improvement percentage for each flow fi, ηfi , as defined
in Eq. 25 to show the effectiveness of our model. Compared to previous models with
two parameters, the proposed method improves the accuracy of the delay bounds up to
46.9% and more than 37% on average over all flows.

Table V presents buffer size threshold of input channels used by flows due to Eq. 12.

Table V. Buffer size thresholds for VOPD application

B(r1,I) = 1 B(r5,I) = 17 B(r7,W) = 1 B(r9,S) = 259 B(r12,I) = 1 B(r14,N) = 1
B(r1,S) = 275 B(r5,N) = 1 B(r7,N) = 68 B(r10,I) = 1 B(r12,W) = 4 B(r14,E) = 7
B(r2,I) = 1 B(r5,E) = 7 B(r7,E) = 7 B(r10,E) = 68 B(r13,I) = 204 B(r15,I) = 16
B(r2,E) = 1 B(r5,S) = 262 B(r7,S) = 1 B(r10,S) = 84 B(r13,N) = 1 B(r15,N) = 1
B(r3,I) = 1 B(r6,I) = 1 B(r8,I) = 1 B(r11,I) = 17 B(r13,E) = 68 B(r15,E) = 7
B(r3,W) = 1 B(r6,E) = 1 B(r8,W) = 1 B(r11,N) = 77 B(r14,I) = 2 B(r16,I) = 1
B(r3,E) = 1 B(r6,S) = 17 B(r9,I) = 68 B(r11,E) = 1 B(r14,W) = 84 B(r16,N) = 1
B(r4,I) = 1 B(r7,I) = 1 B(r9,N) = 16 B(r11,S) = 16

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

211

A:28 F. Jafari et al.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

De
la

y B
ou

nd
 (c

yc
le

)

Flow Index

Delay_VBR

Delay_Simulation

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

De
la

y B
ou

nd
 (c

yc
le

)

Flow Index

Delay_VBR

Delay_CBR

Fig. 23. Comparison of delay bounds from the proposed model and simulator under the transpose traffic
pattern

Sub-index (r, L) in Table V refers to input channel L of router r, where r is the
number of the router and L is a letter assigned to the input port which is defined as
I: Injection channel, W : Western input channel, N : Northern input channel, E: East-
ern input channel, and S: Southern input channel. For example, B(r3,W) indicates the
buffer size threshold in western input channel of router 3.

7.4. Transpose Traffic Pattern
To investigate a larger network, we experiment a 8× 8 mesh network under the trans-
pose traffic pattern with 56 communication flows characterized by TSPEC. In this traf-
fic pattern, the node with binary value an−1, an−2, ..., a1, a0 communicates with the node
ān/2−1, ..., ā0, ān−1, ..., ān/2. For all traffic flows, we assume the same values for Li and
pi which are 1 flit and 1 flit/cycle, respectively. For different flows, ρi varies between
0.001 and 0.03 flits/cycle, and σi between 2 and 128 flits. Table VI presents the source
and destination of flows along with the index assigned to them.

Similar to previous case studies, delay bounds from the proposed analytical model,
D̄fi,V BR, and BookSim simulator, D̄fi,Sim are derived for all flows and presented as
Figure 23. As can be seen from this figure, all delays observed in simulations are below
the LUDB but not too far, suggesting that the analytical bound is fairly tight since the
simulation typically does not exercise the worst case.

Table VI. The list of flows

f1 : 0 −→ 63 f11 : 20 −→ 29 f21 : 25 −→ 52 f30 : 55 −→ 1 f39 : 29 −→ 20 f48 : 44 −→ 26
f2 : 1 −→ 55 f12 : 10 −→ 46 f22 : 24 −→ 60 f31 : 47 −→ 2 f40 : 46 −→ 10 f49 : 52 −→ 25
f3 : 2 −→ 47 f13 : 9 −→ 54 f23 : 34 −→ 43 f32 : 39 −→ 3 f41 : 54 −→ 9 f50 : 60 −→ 24
f4 : 3 −→ 39 f14 : 8 −→ 62 f24 : 33 −→ 51 f33 : 31 −→ 4 f42 : 62 −→ 8 f51 : 43 −→ 34
f5 : 4 −→ 31 f15 : 19 −→ 37 f25 : 32 −→ 59 f34 : 23 −→ 5 f43 : 37 −→ 19 f52 : 51 −→ 33
f6 : 5 −→ 23 f16 : 18 −→ 45 f26 : 41 −→ 50 f35 : 15 −→ 6 f44 : 45 −→ 18 f53 : 59 −→ 32
f7 : 6 −→ 15 f17 : 17 −→ 53 f27 : 40 −→ 58 f36 : 22 −→ 13 f45 : 53 −→ 17 f54 : 50 −→ 41
f8 : 13 −→ 22 f18 : 16 −→ 61 f28 : 48 −→ 57 f37 : 30 −→ 12 f46 : 61 −→ 16 f55 : 58 −→ 40
f9 : 12 −→ 30 f19 : 27 −→ 36 f29 : 63 −→ 0 f38 : 38 −→ 11 f47 : 36 −→ 27 f56 : 57 −→ 48
f10 : 11 −→ 38 f20 : 26 −→ 44

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

212

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:29

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

De
la

y B
ou

nd
 (c

yc
le

)

Flow Index

Delay_VBR

Delay_Simulation

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

De
la

y B
ou

nd
 (c

yc
le

)

Flow Index

Delay_VBR

Delay_CBR

Fig. 24. Comparing D̄V BR and D̄CBR under the transpose traffic pattern

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Im
pr

ov
em

en
t (

Pe
rc

en
t)

Flow Index

Fig. 25. Improvement percentage of D̄V BR than D̄CBR under the transpose traffic pattern

To consider the accuracy of the analytical model, the relative errors with respect
to simulation results are computed. The calculations show that the maximum and
average relative errors are about 33.3% and 13%, respectively.

We also calculate per-flow delay bounds from our proposed method, D̄fi,V BR, and
CBR analytical model, D̄fi,CBR, as depicted in Figure 24 and compare the results by
computation of improvement percentages per flow, ηfi . As shown in Figure 25, our
proposed analytical model is up to 39.3% more accurate than CBR analytical model
and more than 31% on average over all flows.

7.5. Discussion About Other Metrics
Although the paper targets an analytical model for latency bound, we briefly consider
evaluating other metrics including throughput, communication load, energy consump-
tion, and area requirements.

The network throughput is the sum of the data rates that are delivered to all ejection
channels in a network and communication load is estimated by utilized bandwidth and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

213

A:30 F. Jafari et al.

calculated as the sum of the data rates injected to the network. As the paper models
the network which is not saturated, the throughput and communication load have
the same values. This value is equal to 0.296 flits/cycle for the synthetic example in
Section 7.2 and 0.73 flits/cycle for VOPD application in Section 7.3.

Network calculus does not directly evaluate energy consumption and area require-
ments. However, we can present a comparative discussion between VBR and CBR
analyses, which is the main contribution of this work. Since we study the classic input-
queuing virtual-channel router, there is nothing new or changed in the structure and
design details of routers. In terms of area, what brings difference is in the calculated
backlog, which determines the buffer size thresholds. In network calculus, the upper
bound on backlog along the network is computed by the sum of the individual bounds
on every element [Le Boudec et al. 2004]. Thus, the total required buffer for flow i is
bounded by:

B̄i =
∑

j∈Lfi

B̄ij (26)

where B̄ij is the upper bound on the buffer size for flow i in each channel j ∈ Lfi and
Lfi is the set of channels along the path of flow i. B̄ij for VBR traffic flows, B̄V BRij , and
CBR traffic flows, B̄CBRij , are given by Eq. (27) and Eq. (28), respectively.

B̄V BRij = σi + ρiTj + ((σi − Lj)/(pi − ρi)− Tj)+[(pi −Rj)+ − pi + ρi] (27)

B̄CBRi = σi + ρiTj (28)

In Eq. (27), term [(pi − Rj)+ − pi + ρi] is negative because Rj ≥ ρi and pi ≥ Rj due
to channel capacity constraint and the assumption stated in Section 4, respectively.
Further, term ((σi − Lj)/(pi − ρi) − Tj)+ is always positive because a+ = a, if a ≥ 0;
a+ = 0, otherwise. Therefore, ((σi −Lj)/(pi − ρi)− Tj)+[(pi −Rj)+ − pi + ρi] < 0 which
means that B̄V BRij ≤ B̄CBRij . In Section 7.2.3, we have calculated the required buffer
size (buffer size threshold) in each input port of routers for a synthetic example. The
sum of these values is the total required buffer size, B̄V BR, which is equal to 42 flits. If
we calculate the total required buffer size for CBR analysis, B̄CBR, by Eq. (26) and (28),
it would be equal to 51 flits, which is about 21.4% larger than B̄V BR. Similarly, B̄V BR
is calculated for VOPD application as a realistic traffic pattern by summing buffer
size bounds derived in Section 7.3. The calculations show that B̄V BR = 1673 flits and
B̄CBR = 2827 flits. Therefore VBR analysis leads to about 40.8% reduction of the total
required buffers. We have also derived B̄CBR and B̄V BR for the case study represented
in Section 7.4 which is a 8 × 8 mesh network under the transpose traffic pattern. Due
to calculations, B̄CBR = 18256 flits and B̄V BR = 12556 flits which shows that the total
required buffers is reduced about 31.2% by VBR analysis. As a result, under the same
network and application, VBR analysis gives tighter backlog bound than CBR analysis
and can thus give more accurate bounds on the buffer requirements. From the design
perspective, the tighter backlog bounds lead to the area saving in the router buffers.

Regarding power consumption, the network power comprises router power (buffer,
switch, control circuit) and link power which are traffic dependent. It is notable that
although VBR analysis derives tighter delay bounds, it does not change the packet
transfer behavior, because it is only deriving more accurate analytical delay bounds
without any change in design features of the router like switching, control, and link
traversal. Therefore, the design decision of the router which our analysis brings impact
on is the buffer dimensioning. Assuming the same system model, VBR analysis can
indeed derive tighter bounds than CBR analysis on buffer requirements, leading to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

214

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:31

power consumption saving. Following a power model for the buffers using, e.g. Orion
[Shi et al. 2002], we can safely assume that the power consumption for buffers will
decrease proportionally to the buffer size.

8. CONCLUSIONS
In this work, we have derived the analysis procedure to investigate per-flow delay
bound. To this end, we have given theorems to calculate end-to-end ESC and internal
output arrival curves in a FIFO multiplexing network. Based on the proposed analysis
technique, we have conducted case studies of worst-case performance analysis, consid-
ered the accuracy of the proposed model through simulation, and compared it with a
method without considering the traffic peak behavior. Analysis steps can be applied for
larger networks with more flows. We have developed algorithms to automate analysis
steps. In the future, we plan to develop network calculus models to investigate differ-
ent scheduling policies and then compare them. We also plan to extend the proposed
analytical method in case of back-pressure in the network. Authors in [Qian et al.
2009] [Zhao et al. 2013] use network calculus to analyze Worst-case Delay Bounds for
CBR flows due to back-pressure in the network. It would be interesting to derive possi-
bly tighter delay bound for VBR flows. In this respect, we have to extend the analytical
models under a given fixed buffer size rather than to-be-determined bounded buffer
size.

REFERENCES
BAKHOUYA, M., SUBOH, S., GABER, J.,EL-GHAZAWI, T., AND NIAR, S. 2011. Performance evaluation and

design tradeoffs of on-chip interconnect architectures. Simulation Modelling Practice and Theory, Else-
vier. 19, 6, 1496-1505.

BAUER, H., SCHARBARG, J. L., AND FRABOUL, C. 2010. Improving the Worst-Case Delay Analysis of an
AFDX Network Using an Optimized Trajectory Approach. IEEE Transactions on Industrial Informat-
ics. 6, 4, 521–533.

BEN-ITZHAK, Y., CIDON, I., AND KOLODNY, A. 2011. Delay Analysis of Wormhole Based Heterogeneous
NoC. In Proceedings of the International Networks-On-Chip Symposium (NOCS). 161–168.

BENNETT, J. C. R., BENSON, K.,CHARNY, A.,COURTNEY, W. F., AND LE BOUDEC, J. -Y. 2002. Delay jitter
bounds and packet scale rate guarantee for expedited forwarding. IEEE/ACM Transactions on Net-
working. 10, 4, 529–540.

BERTOZZI, D., JALABERT, A., MURALI, S., TAMHANKAR, R., STERGIOU, S., BENINI, L., AND DE MICHELI,
G. 2005. NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE
Transactions on Parallel and Distributed Systems. 16, 2, 113–129.

BISTI, L., LENZINI, L., MINGOZZI, E., AND STEA, G. 2010. DEBORAH: A Tool for Worst-case Analysis of
FIFO Tandems. In Proceedings of ISoLA 2010, LNCS 6415. 152–168.

BLAKE, S., BLACK, D., CARLSON, M., DAVIES, E., WANG, Z., AND WEISS, W. 1998. An architecture for
differentiated services. IETF RFC 2475.

BOGDAN, P., AND MARCULESCU, R. 2007. Quantum-like effects in network-on-chip buffers behavior. In
Proceedings of the 44th Design Automation Conference (DAC). 266–267.

BOGDAN, P., KAS, M., MARCULESCU, R., AND MUTLU, O. 2010. QuaLe: A Quantum-Leap Inspired Model
for Non-stationary Analysis of NoC Traffic in Chip Multi-processors. In Proceedings of the International
Networks-On-Chip Symposium (NOCS). 241–248.

BOUILLARD, A., JOUHET, L., AND THIERRY, E. 2010. Tight performance bounds in the worst-case analysis
of feed-forward networks. In Proceedings of Infocom. 1316–1324

BOUILLARD, A. AND JUNIER, D. 2011. Worst-case delay bounds with fixed priorities using network calculus.
In Proceedings of Valuetools. 381–390

BOYER, M. 2010. Half-modelling of shaping in FIFO net with network calculus. RTNS 2010.
CHANG, C. 2000. Performance Guarantees in Communication Networks. Springer-Verlag.
CHARNY, A. AND LE BOUDEC, J. -Y. 2000. Delay Bounds in a Network with Aggregate Scheduling. In

Proceedings of QofIS. 1–13.
CIUCU, F., AND SCHMITT, J. 2012. Perspectives on Network Calculus - No Free Lunch but Still Good Value.

ACM Sigcomm. 42, 4, 311–322.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

215

A:32 F. Jafari et al.

GEBALI, F. AND ELMILIGI, H., EDITORS 2009. Networks on Chip: Theory and Practice. Taylor and Francis
Group LLC - CRC Press.

JAFARI, F., LU, Z., JANTSCH, A., AND YAGHMAEE, M. H. 2010. Buffer Optimization in Network-on-Chip
Through Flow Regulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD). 29, 12, 1973–1986.

JAFARI, F., JANTSCH, A., AND LU, Z. 2011. Output Process of Variable Bit-Rate Flows in On-Chip Networks
Based on Aggregate Scheduling. In Proceedings of the International Conference on Computer Design
(ICCD’11). Amherst, USA, 445–446.

JAFARI, F., JANTSCH, A., AND LU, Z. 2012. Worst-Case Delay Analysis of Variable Bit-Rate Flows in
Network-on-Chip with Aggregate Scheduling. In Proceedings of the Design, Automation and Test in
Europe Conference (DATE’12). Dresden, Germany, 538–541.

JIANG, Y. 2002. Delay bounds for a network of guaranteed rate servers with FIFO aggregation. Computer
Networks. 40, 6, 683–694.

JIANG, N., BECKER, D. U., MICHELOGIANNAKIS, G., BALFOUR, J., TOWLES, B., KIM, J., AND DALLY, W. J.
2013. A Detailed and Flexible Cycle-Accurate Network-on-Chip Simulator. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS). 86–96.

KIASARI, A. E., JANTSCH, A., AND LU, Z. 2013. Mathematical formalisms for performance evaluation of
networks-on-chip. ACM Computing Surveys. 45, 3.

KIEFER, A., GOLLAN, N., AND SCHMITT, J.B. 2010. Searching for Tight Performance Bounds in Feed-
Forward Networks. In Proceedings of MMB/DFT. 227–241.

HANSSON, A., WIGGERS, M.,MOONEN, A., GOOSSENS, K., AND BEKOOIJ, M. 2008. Applying dataflow
analysis to dimension buffers for guaranteed performance in networks on chip. In Proceedings of NOCS.
211–212.

LE BOUDEC, J. Y. AND THIRAN, P. 2004. Network Calculus: A Theory of Deterministic Queuing Systems for
the Internet. (LNCS, vol. 2050). Berlin, Germany: Springer-Verlag.

LEE, S. Real-Time Wormhole Channels. Parallel Distributed Computer. 63, 299–311.
LENZINI, L., MARTORINI, L.,MINGOZZI, E., AND STEA, G. 2006. Tight end-to-end per-flow delay bounds in

fifo multiplexing sink-tree networks. Performance Evaluation. 63, 9, 956–987.
LENZINI, L., MINGOZZI, E., AND STEA, G. 2008. A Methodology for Computing End-to-end Delay Bounds

in FIFO-multiplexing Tandems. Elsevier Performance Evaluation. 65, 11-12, 922–943.
MARTIN, S., MINET, P., AND GEORGE L. 2003. Deterministic End-to-End Guarantees for Real-Time Appli-

cations in a DiffServ-MPLS Domain. In Proceedings of SERA 2003, LNCS 3026. 51–73.
MARTIN, S. AND MINET, P. 2006. Schedulability analysis of flows scheduled with FIFO: Application to the

Expedited Forwarding class. In Proceedings of IPDPS. Rhodes Island, 25–29.
MOADELI, M., SHAHRABI, A., VANDERBAUWHEDE, W., AND OULD-KHAOUA M. 2007. An analytical per-

formance model for the spidergon noc. In Proceedings of 21st AINA. 1014–1021.
OGRAS, U. Y., HU, J., AND MARCULESCU R. 2005. Key research problems in noc design: A holistic perspec-

tive. In Proceedings of CODES+ISSS 2005. 69–74.
QIAN, Y., LU, Z., AND DOU, W. 2009. Analysis of Worst-case Delay Bounds for Best-effort Communication

in Wormhole Networks on Chip. In Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip (NOCS’09). ACM/IEEE, San Diego, CA, 44–53.

QIAN, Y., LU, Z., AND DOU, Q. 2010. QoS Scheduling for NoCs: Strict Priority Queueing versus Weighted
Round Robin. In Proceedings of the 28th International Conference on Computer Design (ICCD’10). Amer-
stedam, the Netherlands, 52–59.

RAHMATI, D., MURALI, S., BENINI, L., ANGIOLINI, F., DE MICHELI, G., AND SARBAZI-AZAD, H. A method
for calculating hard QoS guarantees for Networks-on-Chip. In Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD’09). 579–586.

RAHMATI, D., MURALI, S., BENINI, L., ANGIOLINI, F., DE MICHELI, G., AND SARBAZI-AZAD, H. Comput-
ing Accurate Performance Bounds for Best Effort Networks-on-Chip. IEEE Transactions on Computers
(IEEE-TC). 62, 3, 452–467.

RIZK, A. AND FIDLER, M. 2012. Non-asymptotic End-to-end Performance Bounds for Networks with Long
Range Dependent fBm Cross Traffic. Computer Networks. 56, 1, 127–141.

SCHMITT, J. B., ZDARSKY, F. A., AND FIDLER, M. 2008. Delay bounds under arbitrary multiplexing: When
network calculus leaves you in the lurch In Proceedings of INFOCOM. 1669–1677.

SHI, Z., AND BURNS A. 2008. Real-time communication analysis for on-chip networks with wormhole
switching. In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-Chip (NOCS
2008). IEEE Computer Society. 161–170.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

216

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:33

VAN DER TOL, E.B. AND JASPERS, E.G. T. 2002. Mapping of MPEG4 Decoding on a Flexible Architecture
Platform. SPIE. 4674, , 1–13.

STILIADIS, D. AND VARMA, A. 1998. Latency-rate servers: A general model for analysis of traffic scheduling
algorithms. IEEE/ACM Transactions on Networking. 6, 5, 611–624.

WROCLAWSKI, J. 1997. The Use of RSVP with IETF Integrated Services. IETF RFC 2210.
WANG, H. S., ZHU, X.,PEH, L. S., AND MALIK S. 2002. Orion: A Power-Performance Simulator for In-

terconnection Networks. In Proceedings of the 35th annual ACM/IEEE international symposium on
Microarchitecture (MICRO).

ZHAO, X. and LU, Z. 2013. Per-flow Delay Bound Analysis Based on a Formalized Micro-architectural Model.
In Proceedings of the 7th ACM/IEEE International Symposium on Networks-on-Chip (NOCS’2013),
Tempe Arizona, USA, April 2013.

APPENDIX
To prove the proposed theorems, we need to use three theorems defined in network
calculus as follows:

Theorem 4. (Delay Bound [Le Boudec et al. 2004]). Assume a flow, constrained by
arrival curve α, traverses a system that offers a service curve of β, the delay d(t) for all
t satisfies: d(t) ≤ h (α, β).

The theorem says that the delay is bounded by the horizontal deviation between the
arrival and service curves.

Theorem 5. (Output Flow [Le Boudec et al. 2004]). With the same assumption as in
Theorem 4. The output flow is constrained by the arrival curve α∗ = α� β.

Now, we consider a node which guarantees a minimum service curve to an aggregate
flow and also handles packets in order of arrival at the node.

Theorem 6. (FIFO Service Curves [Le Boudec et al. 2004]). Consider a lossless node
serving two flows, 1 and 2, in FIFO order. Assume that packet arrivals are instantaneous
and the node guarantees a service curve β to the aggregate of the two flows. Assume that
flow 2 has α2 as an arrival curve. Define the family of functions βeq(t, α2, τ) ≡ βeq1 (t, τ)

βeq1 (t, τ) = [β(t)− α2(t− τ)]
+
{t>τ}

For any τ ≥ 0 such that βeq1 (t, τ) is wide-sense increasing, then flow 1 is guaranteed
the service curve βeq1 (t, τ).

A. PROOF OF THEOREM 1
Theorem 1: (Delay Bound) Let β be a pseudo affine curve, with offset T and n leaky-
bucket stage γσx,ρx , 1 ≤ x ≤ n, this means we have:

β = δT ⊗ [⊗1≤x≤nγσx,ρx] = δT ⊗ [∧1≤x≤nγσx,ρx]

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ (ρ∗β = min1≤x≤nρx), then the
maximum delay for the flow is bounded by

h(α, β) = T +

[
∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

Proof. As stated before, the delay is bounded by the maximum horizontal deviation
between the arrival and service curves. Thus, due to Figure 26, if p ≤ min1≤x≤n(ρx), we
have:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

217

A:34 F. Jafari et al.

σ
L

t

3ρ

2ρ

1ρ

tσ ρ+

L Pt+

(,)h α β σ

L

t
T

3ρ

2ρ

1ρ
tσ ρ+

L Pt+
(,)h α β

1
) min()xx n

a p ρ
≤ ≤

≤
1

) max()xx n
b p ρ

≤ ≤
≥

T

Fig. 26. Computation of delay bound for one VBR flow served by a pseudo affine curve.





L = σ1 + ρ1 (t1 − T)⇒ t1 = T +
L− σ1

ρ1

L = σ2 + ρ1 (t2 − T)⇒ t2 = T +
L− σ2

ρ2

...
...

...

L = σn + ρn (tn − T)⇒ tn = T +
L− σn
ρn

(29)

⇒ h(α, β) = max1≤x≤ntx = T +

[
∨1≤x≤n

L− σx
ρx

]+

(30)

If p ≥ max1≤x≤n(ρx), due to Figure 26, we have:





L+ pθ = σ1 + ρ1 (t1 + θ − T)

⇒ t1 = T +
L+ pθ − σ1

ρ1
− θ

L+ pθ = σ2 + ρ2 (t2 + θ − T)

⇒ t2 = T +
L+ pθ − σ2

ρ2
− θ

...
...

...
L+ pθ = σn + ρn (tn + θ − T)

⇒ tn = T +
L+ pθ − σn

ρn
− θ

⇒ h(α, β) = max1≤x≤ntx = T +

[
∨1≤x≤n

L+ pθ − σx
ρx

− θ
]+

= T +

[
∨1≤x≤n

L− σx + θ (p− ρx)

ρx

]+

(31)

From Eq. 30 and 31, we can say:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

218

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:35

h(α, β) = T +

[
∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(32)

If min1≤x≤n(ρx) < p < max1≤x≤n(ρx), we calculate tx for each γσx,ρx and then obtain
the maximum one which is h(α, β). When min1≤x≤n(ρx) < p < max1≤x≤n(ρx), this
means for some ρx, p > ρx and for the others p < ρx. Let us assume p < ρi where
i = 1, . . . ,m and p > ρj where j = m, . . . , n.

For p < ρi where i = 1, . . . ,m, we have ti = T +
[
L−σi
ρi

]+
. Since p < ρi, we can rewrite

it as below:

ti = T +

[
L− σi + θ (p− ρi)+

ρi

]+

i = 1, . . . ,m (33)

When p > ρj , tj is given by:

tj = T +

[
L+ pθ − σj

ρj
− θ
]+

= T +

[
L− σj + θ (p− ρj)+

ρj

]+

j = m, . . . , n (34)

Due to Equation (33) and (34), we can say:

tx = T +

[
L− σx + θ (p− ρx)

+

ρx

]+

x = 1, . . . , n (35)

which means h(α, β) = max1≤x≤ntx = T +
[
∨1≤x≤n

L−σx+θ(p−ρx)+

ρx

]+
.

Hence, we proved the theorem.

B. PROOF OF PROPOSITION 1
Proposition 1: (Equivalent Service Curve) Let β be a pseudo affine curve, with offset
T and n leaky-bucket stage γσx,ρx , 1 ≤ x ≤ n, this means we have:

β = δT ⊗ [⊗1≤x≤nγσx,ρx] = δT ⊗ [∧1≤x≤nγσx,ρx]

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ (ρ∗β = min1≤x≤nρx) and
p ≥ ρ◦β (ρ◦β = max1≤x≤nρx), then the ESC obtained by subtracting arrival curve α,
{βeq(α, τ), τ = h(α, β)} ≡ βeq(α), with

βeq(α) = δ
T+∨1≤i≤n

[
L−σi+θ(p−ρi)+

ρi

]+
+θ
⊗ [⊗1≤x≤n [

γ
ρx

{
∨1≤i≤n

[
L−σi+θ(p−ρi)+

ρi

]+
−σ−σx−(ρx−ρ)θ

ρx

}
,ρx−ρ

]] (36)

Proof. Let us apply Theorem 6 to service curve β as follows.

βeq(α, τ) = [δT ⊗ [⊗1≤x≤nγσx,ρx]

−min (L+ p (t− τ) , σ + ρ (t− τ))]
(37)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

219

A:36 F. Jafari et al.

Eq. (37) is wide-sense increasing for any τ ≥ 0. Since we assumed τ = h(α, β), due to
Proposition 1, we have:

τ = T +

[
∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(38)

Without losing generality, we follow proof for n = 1. Therefore, by Eq. (38) we have:

τ − T =

[
L− σx + θ (p− ρx)

+

ρx

]+

(39)

We then apply Theorem 6 to service curve β́ (β́ is β when n = 1) as follows.

β́eq(α, τ) = δT ⊗ γσx,ρx −min (L+ p (t− τ) , σ + ρ (t− τ))

= σx + ρx (t− T)−min (L+ p (t− τ) , σ + ρ (t− τ)) (40)

We now consider two situations including 0 ≤ t− τ ≤ θ and t− τ > θ.
If 0 ≤ t − τ ≤ θ ⇒ min (L+ p (t− τ) , σ + ρ (t− τ)) = L + p (t− τ). Let us assume

t́ = t− τ ⇒ t− T = t́+ (τ − T). From Eq. 39, we can say t− T = t́+
[
L−σx+θ(p−ρx)+

ρx

]+
.

β́eq(α, τ) = σx + ρx


t́+

[
L− σx + θ (p− ρx)

+

ρx

]+



−
(
L+ pt́

)

= σx + ρxt́+
[
L− σx + θ (p− ρx)

+
]+
− L− pt́

≤ − (p− ρx) t́+ θ (p− ρx)
+

Since p ≥ ρ◦β and t́ ≤ θ, we have:

β́eq(α, τ) = − (p− ρx) t́+ θ (p− ρx)
+

≤ − (p− ρx) θ + θ (p− ρx) ≤ 0

Therefore, β́eq(α, τ) = 0 where 0 ≤ t− τ ≤ θ. By definition of the service curve, we can
say that if 0 ≤ t ≤ θ + τ then β́eq(α, τ) = 0, and this means that the offset of β́eq(α, τ) is
equal to τ + θ.

If t − τ > θ ⇒ min (L+ p (t− τ) , σ + ρ (t− τ)) = σ + ρ (t− τ). Therefore, β́eq(α, τ) =

σx+ρx (t− T)−(σ + ρ (t− τ)). If ρxτ is added to and subtracted from β́eq(α, τ), we have

β́eq(α, τ) = σx + ρx (t− T)− (σ + ρ (t− τ)) + ρxτ − ρxτ
= σx − σ + ρx (τ − T) + (ρx − ρ) (t− τ)

= δτ ⊗ γσx−σ+ρx(τ−T),ρx−ρ (41)

Since we concluded that the offset of β́eq(α, τ) is τ + θ, we add (ρx − ρ) θ to Eq. 41 and
then subtract it. We obtain:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

220

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:37

β́eq(α, τ) = σx − σ + ρx (τ − T) + (ρx − ρ) (t− τ)

+ (ρx − ρ) θ − (ρx − ρ) θ

= σx − σ − ρθ + ρx (τ + θ − T) + (ρx − ρ) (t− τ − θ)
= δτ+θ ⊗ γσx−σ−ρθ+ρx(τ+θ−T),ρx−ρ (42)

Thus, the offset of βeq(α, τ) is equal to τ + θ. Furthermore, each leaky bucket-stage in
βeq(α, τ) can be computed as γσ́j ,ρ́j , with σ́j = σx−σ−ρθ+ρx (τ + θ − T) and ρ́j = ρj−ρ.
Therefore, we have βeq = δτ+θ ⊗ [⊗1≤x≤nγσ́x,ρ́x] and by substituting (38) into βeq, we
prove the proposition.

C. PROOF OF THEOREM 2
Theorem 2: (Equivalent Service Curve for Rate-Latency Service Curve with K + 1
Flows) Consider one node with a rate-latency service curve βR,T = δT ⊗ γ0,R. Let αi =

min(Li + pit, σi + ρit) = γLi,pi ∧ γσi,ρi be arrival curve of flow i and pi ≥ R −∑i−1
j=1 ρj ,

where 1 ≤ i ≤ K + 1 and K + 1 is the number of flows passing through that node as
shown in Figure 3. The ESC for flow K + 1 in the node, obtained by subtracting K
arrival curves, is:

βeqK+1 = δ
T+
∑K
i=1

([
Li+θi(pi−R+

∑i−1
j=1

ρj)
+

R−∑i−1
j=1

ρj

]+

+θi

) ⊗ γ0,R−∑K
j=1 ρj (43)

Proof. We use the simplest form of mathematical inductive proof method. It proves that
a statement involving a number N holds for all values of N . The proof consists of two
steps:

Base Step: In this step, we show that the statement holds when N = 1. In order
to verify this, we compute the ESC obtained by subtracting one arrival curve (N = 1),
offered by Proposition 2:

βeq2 = δ
T+

[
L1+θ1(p1−R)+

R

]+
+θ1

⊗ γ0,R−ρ1 (44)

If we apply Proposition 1 for a rate-latency service curve βR,T where n = 1, σx = 0
and ρx = R, Eq. 44 is easily obtained. Therefore, the statement holds when N = 1.

Inductive Step: In this step, we show if the statement holds for some N , then the
statement also holds when N + 1 is substituted for N . Assume that βeqN+1 is an ESC for
flow N + 1, obtained by subtracting N arrival curves as represented in Eq. 43. We shall
compute ESC βeqN+2 for flowN+2. Therefore, in this case we should subtractN+1 arrival
curves. After subtracting N arrival curves, the ESC for aggregate flow {N + 1, N + 2}
will be equal to βeqN+1. Therefore, for computing βeqN+2, it is enough to subtract flow N +1

from βeqN+1 by applying Proposition 1.
From βeqN+1, we can say n, ρx, σx and Tx in Proposition 1 are as n = 1, ρx = R −

∑N
j=1 ρj , σx = 0, and Tx = T +

∑N
i=1

[
Li+θi(pi−R+

∑i−1
j=1 ρj)

+

R−∑i−1
j=1 ρj

]+

+
∑N
j=1 θj . Also, α in

Proposition 1 is equal to αN+1 = min(LN+1 + pN+1t, σN+1 + ρN+1t). After applying

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

221

A:38 F. Jafari et al.

Proposition 1 and computing some straightforward algebraic manipulation, βeqN+2 is
given by:

βeqN+2 = δ
T+

∑N+1
i=1



[
Li+θi(pi−R+

∑i−1
j=1

ρj)
+

R−∑i−1
j=1

ρj

]+
+θt



⊗ γ

0,R−∑N+1
j=1 ρj

(45)

which proves the inductive step.

D. PROOF OF THEOREM 3
Theorem 3: (Output Arrival Curve with FIFO) Consider a VBR flow, with TSPEC
(L, p, ρ, σ), served in a node that guarantees to the flow a pseudo affine service curve
equal to β = δT ⊗ γσx,ρx . The output arrival curve α∗ given by:

α∗ =




θ > T γ(p∧ρx)T+θ(p−ρx)++L−σx,p∧ρx

∧γσ−σx+ρT,ρ

θ ≤ T γσ−σx+ρT,ρ

(46)

Proof. From Theorem 5, the output flow is constrained by the arrival curve α∗ = α �
β = supu≥0 {α(t+ u)− β(u)}. Thus, α∗ = supu≥0 {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρx (u− T)

+
}

We now consider two different cases including θ ≤ T and θ > T . (1) If θ ≤ T , we have:

α∗ = supu≥0 {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρx (u− T)

+
}

= sup0≤u≤T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx}
∨ supu>T {min (σ + ρ (t+ u) , L+ p (t+ u))

−σx − ρxu+ ρxT}
= {min (σ + ρ (t+ T) , L+ p (t+ T))− σx}∨

supu>T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρxu+ ρxT}

= {σ + ρ (t+ T)− σx} ∨ supu>T {σ + ρ (t+ u)− σx
−ρxu+ ρxT}

= {σ + ρ (t+ T)− σx} ∨ supu>T {σ + ρt+ ρxT − σx
+u (ρ− ρx)}

Since ρ ≤ ρx and thus ρ − ρx is negative, u in the second term should get its lowest
possible value to achieve supremum. Thus, we have

= {σ + ρ (t+ T)− σx} ∨ {σ + ρ (t+ T)− σx}
= σ + ρ (t+ T)− σx = γσ−σx+ρT,ρ (47)

(2) If θ > T , we have:

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

222

Least Upper Delay Bound for VBR Flows in Networks-on-Chip with Virtual Channels A:39

α∗ = supu≥0 {min (σ + ρ (t+ u) , L+ p (t+ u))− σx−
ρx (u− T)

+
}

= sup0≤u≤T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx}
∨ supu>T {min (σ + ρ (t+ u) , L+ p (t+ u))− σx
−ρxu+ ρxT}

= {min (σ + ρ (t+ T) , L+ p (t+ T))− σx} ∨ supu>T {
min (σ + ρ (t+ u)− σx − ρxu+ ρxT, L+ p (t+ u)

−σx − ρxu+ ρxT)} (48)

For completing the proof, we need to consider the second term in right side of Eq. (48)
in detail. Therefore, we call it Term2 in the following:

Term2 =supu>T {min (σ + ρ (t+ u)− σx − ρxu+ ρxT,

L+ p (t+ u)− σx − ρxu+ ρxT)}
For solving Term2, we consider two different situations including t + u ≤ θ and

t+ u ≥ θ. Thus, if t+ u ≥ θ, we have u > T and t+ u ≥ θ.

⇒ Term2 = supu>T (σ + ρ (t+ u)− σx − ρxu+ ρxT)

= supu>T (σ + ρt+ ρxT − σx + (ρ− ρx)u)

= σ + ρt+ ρxT − σx + (ρ− ρx)T

= σ + ρ (t+ T)− σx = γσ−σx+ρT,ρ (49)

If t+ u ≤ θ, we have u > T and t+ u ≤ θ ⇒ u ≤ θ − t.

⇒ Term2 = supT<u≤θ−t (L+ p (t+ u)− σx − ρxu+ ρxT)

= supT<u≤θ−t (L+ pt+ ρxT − σx + (p− ρx)u)

Selecting an appropriate value for u depends on if (p− ρx) is positive or negative.
Therefore, we have two different situations including p > ρx and p ≤ ρx. If p > ρx ⇒
(p− ρx) is positive and u should be the highest possible value to have supremum value.
Thus, due to u = θ − t, Term2 = L+ ρx (t+ T)− σx + θ (p− ρx). If p ≤ ρx ⇒ (p− ρx) is
negative. Therefore, u gets its lowest value and Term2 is equal to L+ p (t+ T)− σx.

⇒ Term2 = L+ (p ∧ ρx) (t+ T)− σx + θ (p− ρx)
+ (50)

From Eq. 48, 49 and 50, if θ > T , we have:

α∗ = min
(
L+ (p ∧ ρx) (t+ T)− σx + θ (p− ρx)

+
,

σ + ρ (t+ T)− σx))

= γ(p∧ρx)T+θ(p−ρx)++L−σx,p∧ρx ∧ γσ−σx+ρT,ρ (51)

Hence, we prove the theorem.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

223

Paper 14

Weighted Round Robin
Configuration for Worst-Case
Delay Optimization in
Network-on-Chip

F. Jafari
A. Jantsch
Z. Lu

Submitted to IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD).

225

Weighted Round Robin Configuration for
Worst-Case Delay Optimization in Network-on-Chip

Fahimeh Jafari∗, Axel Jantsch†, and Zhonghai Lu∗
∗KTH Royal Institute of Technology, Sweden

†Vienna University of Technology (TU Wien), Austria

Abstract—We propose an approach for computing the end-to-
end delay bound of individual Variable Bit-Rate (VBR) flows in
a FIFO multiplexer with aggregate scheduling under Weighted
Round Robin (WRR) policy. To this end, we use the theorems
proposed based on network calculus to derive per-flow end-to-
end Equivalent Service Curve (ESC) employed for computing
Least Upper Delay Bounds (LUDBs) of individual flows. Since
real time applications are going to meet guaranteed services
with lower delay bounds, we optimize weights in WRR policy
to minimize LUDBs while satisfying performance constraints.
We formulate two constrained delay optimization problems,
namely, Minimize-Delay and Multi-objective optimization. Multi-
objective optimization has both total delay bounds and their
variances as minimization objectives. The proposed optimizations
are solved using a genetic algorithm. A realistic case study
exhibits 15.4% reduction of total worst-case delays and 40.3%
reduction on the sum of variances of delays when compared with
round robin policy. The optimization algorithm has low run-time
complexity, enabling quick exploration of large design spaces. We
conclude that an appropriate weight allocation can be a valuable
instrument for delay optimization in NoC designs.

I. INTRODUCTION

Many multi-core Systems on Chip (SoC) require different
levels of service for different applications. Real-time applica-
tions have stringent performance requirements; the correctness
relies on not only the communication result but also the end-
to-end delay bound. A data packet received too late could be
useless. In other words, the Least Upper Delay Bound (LUDB)
for each packet must not exceed its deadline. In such systems,
it is desirable to minimize the end-to-end delay bound of the
traffic streams satisfying their QoS requirements. Therefore,
the first important consideration is to derive the LUDB for a
given communication flow. Since, in such systems, resources
are shared among multiple communication flows, we analysis
the interference in the shared resources for a given flow. To
this end, based on the Network Calculus theory [1], we have
presented and proved required theorems based on network
calculus in [2][3]. We then presented a methodology [4] to
consider resource sharing scenarios and also derive end-to-
end Equivalent Service Curve (ESC) and LUDB by applying
the proposed theorems. We assume that all traffic can be
well characterized as flows and scheduled as aggregates which
means multiple flows are scheduled as an aggregate flow. For
a given flow, we study the maximum interference of all other
flows based on the Network Calculus. Our proposed models
[4] have been defined under Round Robin (RR) policy. RR

policy uses the same service level for each connection while
multiple service levels allow to better adapt to the application
requirements by providing different bandwidth and latency
guarantees. A Weighted Round Robin (WRR) scheduling
policy assigns weights to concurrent communications to define
multiple service levels. Higher service levels have greater
weights and do not preempt lower ones. It is important for
designers to find appropriate weights in WRR policy such that
the corresponding service levels can support QoS requirements
for each communication connection. It is desirable to also
optimize delay and throughput in the network.

In this paper, we extend our earlier proposed methodology
for RR [4] to WRR policy. We then address an optimization
problem of minimizing the total delay bounds subject to the
performance constraints of the applications running on the
SoC. Moreover, to avoid an unfair service in which some flows
have to wait for a very long time, we investigate another goal
which is minimizing the variances of delay bounds in different
flows. As both mentioned objective functions are worthwhile
for the real-time applications, we formulate them as a multi-
objective problem under QoS constraints. Finally, we show
the benefits of the proposed method and quantify performance
improvement.

Regarding optimization problems presented in this paper,
random variables appear in the formulation of the optimiza-
tion problem which causes random objective functions. Such
optimization problems are usually solved by metaheuristic
methods which do not guarantee an optimal solution. However,
they usually find high-quality solutions in reasonable time
[5]. There is a wide variety of metaheuristics like simulated
annealing, tabu search, iterated local search, evolutionary
computation, and genetic algorithms. We compare the perfor-
mance of several metaheuristics (pure random search, markov
monotonous search, adaptive search, and genetic algorithm)
and conclude that a genetic algorithm based method is most
suitable.

The rest of this paper is organized as follows. Section
II discusses related works. Section III introduces the basics
of Network Calculus. Section IV is devoted to the under-
lying system model and notations in our analysis. Section
V introduces the major features of our formal method for
analyzing the contention scenarios and computation of LUDB
along with an example. The proposed optimization problems
and corresponding solutions are represented in Section VI
and VII. Section VIII implements the algorithms for solving978-3-9810801-8-6/DATE12/ c©2012 EDAA

227

the proposed optimization problems. Experimental results are
reported in Section IX. Finally, Section X concludes the paper.

II. RELATED WORK

A. Performance Evaluation of Real-time Services

In networks employing aggregate scheduling, the perfor-
mance analysis of real-time services is a challenging and com-
plex issue. Aggregate scheduling arises in many cases such as
on-chip networks and large-size networks. For instance, The
Differentiated Services (DiffServ) [6] is an architecture based
on aggregate scheduling in the Internet. Bennet et al. provide
a survey on the subject [7].

Charny and Boudec [8] derive a closed-form delay bound
in a generic network assuming the fluid model. An extended
model is proposed [9] to look into packetization effects. The
main limitation of these models is that they work well only
for small utilization factors in a generic network configuration.
Lenzini et al. [10] describe a methodology for obtaining per-
flow worst-case delay bound in tandem networks of rate-
latency nodes traversed by leaky-bucket shaped flows. This
method yields better bounds than those previously proposed.
Qian et al. [12] present analytical models for traffic flows
under strict priority queueing and weighted round robin
scheduling in on-chip networks. They then derive per-flow
end-to-end delay bounds using these models.

All previous works on this subject investigate computing
delay bounds only for average behavior of flows and they
do not consider peak behavior, which results in less accurate
bounds. Since a considerable number of real time applica-
tions are transmitted by VBR traffics, we have proposed a
methodology presented [4] to consider performance analysis
for VBR traffic characterized by (L, p, σ, ρ) in on-chip net-
works employing aggregate resource management. As such,
this method achieves more accurate delay bounds.

In this paper, we extend our proposed method for weighted
round robin policy. Then we regulate weights in each router
to minimize delay bounds while satisfying performance con-
straints.

B. Optimization Method

We formulate optimization problems to optimize the weights
in weighted round robin policy with respect to worst-case
delay bounds. Since the proposed constrained problems are
stochastic optimization problem, metaheuristics can be an
efficient method for providing good solution quickly.

In recent years, a great interest has been devoted to meta-
heuristics. The term metaheuristic is commonly associated
with random search algorithms. One pioneer contribution is
the proposition of the Pure Random Search (PRS) which is
a simple stochastic search algorithm, presented by Brooks
in 1958 [15]. Different techniques of local random search
(markov monotonous search) were proposed by White in 1971
[16]. The simulated annealing method was introduced by
Kirkpatrick et al. in 1982 [17] which makes it possible for
the system to escape local optima. Previous metaheuristics
do not explicitly use memory, except the selection of the

best solutions. The actual first usage of memory in modern
metaheuristics is probably due to Tabu search proposed by
Glover [18] in 1986. Farmer et al. proposed the artificial
immune system [19] as a novel approach inspired by the
specifications of the immune system which uses memory and
learning to solve a problem. In 1988, Koza registered his first
patent on genetic programming, published in 1992 [20]. The
basic idea is to use the genetic principle to gradually produce
the best programs for a given problem. A well known book
on genetic algorithms was published by Goldberg in 1989
[21]. In 1992, Dorigo completed his PhD thesis, in which
he innovates ant colony optimization [22]. In 1993, the first
algorithm based on bee colonies was proposed by Walker et
al. [23]. Another significant progress is the development of the
particle swarm optimization by Kennedy and Eberhart in 1995
[24]. In 1997, Storn and Price proposed differential evolution
[25] as a vector-based evolutionary algorithm which is more
efficient than previous algorithms in many applications. In
2002, Passino introduced an optimization algorithm based
on bacterial foraging [26] which is a common solution for
various optimization problems such as transport modeling
and scheduling. Then, Simon proposed a biogeography-based
optimization algorithm in 2008 [27].

The considerable development of metaheuristics is because
of the significant increase in the processing power of the
computers, and the development of massively parallel archi-
tectures.

In this paper, we solve the proposed optimization problems
using genetic algorithm. To show that GA has a good run-time
efficiency for solving the proposed optimizations, in Section
IX-C, we present a comparative study between commonly
used metaheuristics such as pure random search, markov
monotonous search (local random search), adaptive search, and
genetic algorithm.

III. NETWORK CALCULUS BACKGROUND

Network calculus is a collection of results which gives
deep insights into deterministic queuing systems found in
communication networks [1]. It can be used for example
to analyze flow problems encountered in networking, model
schedulers, and compute worst case bounds used in guaranteed
services. Network calculus uses min-plus algebra to convert
non-linear queueing systems into linear systems. The algebra
structure of min-plus is (< ∪ {+∞},∧,+) in which the
”multiplication” operation is +, and the ”addition” operation
is ∧. ∧ represents the minimum operation, f ∧g = min(f, g).
The min-plus convolution, denoted by ⊗, is defined as (f ⊗
g)(t) = inf0≤s≤t {f(t− s) + g(s)}; where two functions f
and g are wide-sense increasing functions.

Arrival curve and service curve are the most significant
concepts in network calculus. An arrival curve defines an upper
bound on the cumulative arrival process and a service curve
defines a lower bound on the cumulative service process. Net-
work calculus uses the abstraction of arrival curve to character-
ize a traffic flow fj which is an infinite stream of unicast traffic
sent from a source node and also employs the abstraction of

228

a service curve to model a network element processing traffic
flows. In this paper, we use Traffic SPECification (TSPEC)
[28] for characterizing traffic to look into both the average and
peak behaviors of a flow. With TSPEC, the arrival curve of
flow fj is defined as αj(t) = min(Lj+pjt, σj+ρjt) in which
Lj is the maximum transfer size, pj the peak rate (pj ≥ ρj),
σj the burstiness (σj ≥ Lj), and ρj the average (sustainable)
rate. We denote it as fj ∝ (Lj , pj , σj , ρj). A well-formulated
service model to reflect the service capability of a node is the
rate-latency function defined as βR,T = R(t− T)+, where R
is the minimum service rate and T the maximum processing
latency of the node. We use x+ to denote the function x+ = x
if x > 0;x+ = 0, otherwise. More notations in network
calculus, employed through our analysis models in this paper,
are introduced as follows.
∨ represents the maximum operation, f ∨ g = max(f, g).

Burst delay function δT (t) = +∞, if t > T ; δT (t) = 0,
otherwise. Affine function γb,r(t) = b + rt, if t > 0;
γb,r(t) = 0, otherwise. Therefore, δT ⊗γb,r(t) = b+r(t−T).
� represents the min-plus deconvolution as (f � g)(t) =
sups≥0 {f(t+ s)− g(s)}. A pseudoaffine curve represents
the service received by single flows in tandems of FIFO
multiplexing rate-latency nodes [10] and defined as β =
δT ⊗ [⊗1≤x≤nγσx,ρx]. Due to concave affine curves, it can
be rewritten as β = δT ⊗ [∧1≤x≤nγσx,ρx], where T is denoted
as offset, and the affine curves between square brackets as
leaky-bucket stages.

The following theorems are used in this paper to derive
LUDB per flow. We have proposed and proved these theorems
in [2][3].

Theorem 1. (Output Arrival Curve with FIFO) Consider a
VBR flow, with TSPEC (L, p, ρ, σ), served in a node that
guarantees to the flow a pseudo affine service curve β =
δT ⊗ γσx,ρx . The output arrival curve α∗ given by:

α∗ =





θ > T γ(p∧ρx)T+θ(p−ρx)++L−σx,p∧ρx
∧γσ−σx+ρT,ρ

θ ≤ T γσ−σx+ρT,ρ

(1)

where θ = (σ − L)/(p− ρ).

Proof. We have proved it in [2].

Theorem 2. Let β = δT ⊗ γσx,ρx be a pseudo affine curve,
with offset T and one leaky-bucket stage γσx,ρx , and let α =
min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρx ≥ ρ and p ≥ ρx,
then the ESC obtained by subtracting arrival curve α, βeq

βeq = δ
T+
[
L−σx+θ(p−ρx)+

ρx

]+
+θ
⊗ γ0,ρx−ρ (2)

Proof. We have proved it in [3].

Theorem 3. (Delay Bound) Let β be a pseudo affine curve,
with offset T and n leaky-bucket stages γσx,ρx , 1 ≤ x ≤ n,
this means we have:

β = δT ⊗ [⊗1≤x≤nγσx,ρx] = δT ⊗ [∧1≤x≤nγσx,ρx]

Crossbar Switch

O
utput C

hannels

Input C
hannels

ejection
channel

injection
channel

Routing & Arbitration
Unit

D
E

M
U

X
D

E
M

U
X

ejection
channel

injection
channel

Network Interface (NI)

Core

DEMUX

Fig. 1. The structure of a single node in NoC architecture

and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ
(ρ∗β = min1≤x≤nρx), then the maximum delay for the flow is
bounded by

h(α, β) = T +

[
∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(3)

Proof. We have proved it in [3].

IV. SYSTEM MODEL

Figure 1 shows an NoC architecture in which every node
contains an core equipped with a Network Interface (NI) and
a router with input and output channels. Assumptions in this
paper are given as follows:
• The NoC architecture can have different topologies.
• A flow consists of packets and each packet is broken

into flits. We consider the arbitration granularity of one
word with a fixed word length of Lw for all flows. Lw
is assumed to be 1 flit.

• Packets have fixed length and traverse the network in
a best-effort fashion with virtual-cut-through switching
technique using a deadlock-free deterministic routing.

• Routers have only input buffers and Virtual Channels
(VCs).

• The router can have multiple VCs per in-port. VC alloca-
tion is deterministic and each VC receives an aggregate
service.

• Buffers are bounded due to the threshold calculated in
Eq. (10) and the network is lossless.

• All traffic is modeled as TSPEC flows f =
TSPEC(L, p, σ, ρ) at the entry into the network.

• To characterize flows based on their defined TSPEC, we
assume unbuffered leaky bucket controllers (regulators)
which do not buffer the packets, but stall the traffic
producers or IPs [11].

229

4r1r 3r2r

8r6r 7r5r

9r

2f

1f

4f

3f

13r 16r

10r 11r9r 12r

15r14r

Fig. 2. An example of an NoC with 16 nodes and 4 flows.

• We assume weighted round robin arbitration and model
it by a rate-latency service curve as β = δT ⊗ γ0,R, it is
assumed that ρ ≤ R and p ≥ R.

• Flows are classified into a pre-specified number of ag-
gregates.

• Traffic of each aggregate is buffered and transmitted in
the FIFO order, denoted as FIFO multiplexing.

• Different aggregates are buffered separately and each
aggregate is guaranteed a rate-latency service curve.

• The hardware limits the peak rate to 1 flit/cycle.
Figure 2 depicts an example with 16 nodes and 4 flows.

Multiple flows which share the same buffer and channel in the
same router, for example f1 and f2 in router 2, are scheduled
as an aggregate flow denoted as f{1,2}. The tagged flow is a
flow for which the delay bound is derived and the other flows
which compete with the tagged flow for the same resource
are called contention flows. In the example, if f1 is the tagged
flow, f2, f3, and f4 would be contention flows. Table I presents
notations in this work.

Notations with sub-index ”(fi, rj)” indicate that they are
related to flow fi in router rj . For instance, α(f1,r2) indicates
the arrival curve of f1 in router r2. Using fsi instead of fi
in the sub-index means that the notation is related to the fsi
which can be one flow or an aggregate flow. For example,
β({1,2},r2) refers to aggregate flow f{1,2} in router r2.

V. LUDB DERIVATION FOR WRR POLICY

In [2] and [3], based on network calculus, we have presented
and proved the required theorems to derive delay bounds for
flows constrained by dual leaky bucket (VBR flows) in on-
chip FIFO networks with aggregate scheduling and multiple
virtual channels. In [4], we have applied the theorems to obtain
per-flow LUDB under the same system model assuming round
robin scheduling policy. In this section, we extend this method
to weighted round robin policy.

To derive delay bound per flow passing a series of nodes,
one simple way is to calculate the summation of delay bounds
at each node, which results in a loose delay bound. A corollary

TABLE I
THE LIST OF NOTATIONS

fi Flow i

FRPV
(j,i,k)

The set of flows passing through VC k in physical
channel i of router j

F(j,l,s,k)
The set of flows passing from VC s of input
channel l to output channel k in router j

αi The arrival curve of fi
α∗
i The output arrival curve of fi

Input PC# The number assigned to an input physical channel
Output PC# The number assigned to an output physical channel

VC# The number assigned to an input virtual channel
InPC The set of input physical channels in each router
OutPC The set of output physical channels in each router

InV C
The set of input virtual channels in each input
physical channel

Li The maximum transfer size of fi (flits)
pi The peak rate of fi (flits/cycle)
σi The burstiness of fi (flits)
ρi The average rate of fi (flits/cycle)

Src(i) The source node of fi
rj Router j
βj The service curve of rj
R The minimum service rate in a rate-latency service curve

T l The maximum processing latency of the arbiter in
the router (cycles)

THoL The maximum waiting time in the FIFO queue of
the router (cycles)

TTotal The total processing delay which comes from contention
flows the router and equals to the sum of T l and THoL

Drouter Time spent for packet routing decision (cycles)
Lw The word length in the flow (flits)
C The channel capacity (flits/cycle)
CFt The set of contention flows of tagged flow ft

si

The set of joint flows in an aggregate flow (when the
number of elements of si is equal to 1,
there is only a single flow)

fsi An aggregate flow of si

|si| The cardinality of set si, which is a measure
of the ”number of elements of the set”

S = {si} A set of si’s in a tandem of routers

sm
A set which has the maximum cardinality between
the sets in S.
sm =

{
sx

∣∣|sx| = max (|si|) ; ∀si ∈ S
}

fsm The flow related to sm

rm The router related to sm

βm The service curve related to sm

FB
(si,rj)

The set of flows which share the same buffer in
router rj with flow fsi

w(j,l,s,k)
The weight assigned to node rj , input Physical
Channel (PC) l, input VC s, and output PC k

LWR The length of a round in WRR policy

called Pay Bursts Only Once is known to give a tighter upper
estimate on delay bounds, when an end-to-end service curve is
obtained prior to delay computations. This accounts for bursts
of the tagged flow only once instead of at each link inde-
pendently. This principle also holds in aggregate scheduling
networks. To this end, we propose the two following steps to
derive the end-to-end service curve for a tagged flow:

• Step 1: Intra-router ESC: This step derives intra-router
ESCs for each router through which the tagged flow
is passing. Different resource sharing scenarios in each
router are distinguished and intra-router analysis models
are built.

230

1f

2f
D

E
M

U
X

PC

PC

 2,1f

D
E

M
U

X

Fig. 3. An example of channel&buffer sharing

D
E

M
U

X

2f

1f

DEMUX

Input PC# 1

Input PC# 2

Output PC # 1VC# 0

VC# 0 VC# 1

PC

D
E

M
U

X

VC# 1

Node# 3

Fig. 4. An example of channel sharing

• Step 2: Inter-router ESC: In this step, according to the
intra-router analysis models, we present a set-theoretic
approach which recognizes and investigates different con-
tention scenarios that a flow may experience along its
routing path and in turn derive an end-to-end ESC for
the tagged flow.

For extending our proposed analytical method to weighted
round robin policy, we should expand the first step while the
second step keeps the same principles. Similarly, to support
some other arbitration policies, only the first step must be
modified.

A. Intra-router ESC

In this step, we consider three types of resource sharing,
including channel&buffer sharing, channel sharing, and buffer
sharing.

1) Channel&Buffer Sharing: As shown in Figure 3, mul-
tiple flows share both the same buffer and channel in the
router, and are scheduled as a flow called aggregate flow. An
aggregate flow including the tagged flow is named as tagged
aggregate flow. In this case, intra-ESC is derived for the tagged
aggregate flow instead of the tagged flow. In Section V-B, due
to contention scenarios, we will remove contention flows from
the ESC of a tagged aggregate flow in order to extract the ESC
of the tagged flow.

2) Channel Sharing: Figure 4 depicts an example of a
channel shared between two flows f1 and f2. The WRR arbiter
associates a weight w(j,l,s,k) in cycles on each aggregate/single

flow fsi passing from input VC s of input Physical Channel
(PC) l in router rj to output PC k. The value of the weight
assigned to a channel depends on flows passing through that
channel. Then, the router will try to give the flow a period of
w(j,l,s,k) cycles before moving to the next node. In each round,
for a non-empty VC buffer encountered, the router serves up
to corresponding configured weight in cycles. The maximum
length of a round consequently equals to

∑
l,s w(j,l,s,k) cycles,

denoted as LWR. The least service offered to one flow in a VC
is completely dependent on the weight of that VC and the sum
of all other weights. With the WRR scheduling, the worst case
appears for a flow when it just misses its slot in the current
round. Consequently it will have to wait for its slot assigned at
the next round. In the worst case, each flow fsi passing from
input VC s of input PC l in router rj to output PC k will have
to wait up to

(∑
p,q w(j,p,q,k) − w(j,l,s,k)

)
×
(
Lw
C +Drouter

)

cycles before to be served, and get at least a w(j,l,s,k)∑
p,q w(j,p,q,k)

×C
of the channel bandwidth, where C is the channel capacity,
Lw the word length, and Drouter the delay for packet routing
decision in a router. A flow may get more service rate if
other flows use less, but we now know a worst-case lower
bound on the bandwidth. Based on network calculus theory, we
can use the abstraction of service curve to model a weighted
round robin arbiter in router rj for flow fsi as a rate-latency
server β(si,rj) = R(si,rj)(t− T l(si,rj))

+, where R(si,rj) is the
minimum service rate and T l(si,rj) is the maximum processing
latency of the arbiter in router rj for flow fsi . R(si,rj) and
T l(si,rj) are defined as follows:

R(si,rj) =
w(j,l,s,k)∑
p,q w(j,p,q,k)

× C (4)

T l(si,rj) =

(∑

p,q

w(j,p,q,k) − w(j,l,s,k)

)
×
(
Lw
C

+Drouter

)

(5)
In the example of Figure 4:

R(f1,r3) =
w(3,1,0,1)

w(3,1,0,1)+w(3,2,1,1)
× C

T l(f1,r3) = w(3,2,1,1) ×
(
Lw
C +Drouter

)

3) Buffer Sharing: Figure 5 depicts a buffer shared between
two flows f1 and f2. In this type of sharing, we introduce two
kinds of delay for a tagged flow including:
• Head-of-Line delay (HoL) is the maximum waiting time

of the packet in the FIFO queue, which is denoted by
THoL.

• Processing delay is the maximum processing latency of
the router’s arbiter for the flow, which is denoted by T l.

Therefore, total delay for tagged flow fi in router rj is
calculated as TTotal(fi,rj)

= THoL(fi,rj)
+ T l(fi,rj).

T l(fi,rj) and R(fi,rj) can be calculated according to Equation
(5) and (4), respectively. To show how THoL(fi,rj)

is calculated,
we consider the example in Figure 5 and assume that f1 is the
tagged flow. As depicted in the figure, THoL(f1,r)

is equal to the
maximum delay for passing packets of flow f2 in the buffer.

231

PC

1f

2f

P
C

D
E

M
U

X

P
C

1f

2f

0),(

),(

1

1




l

rf

rf

T

CR

0),(

),(

2

2




l

rf

rf

T

CR

P2P2P2P2...P2P2P1

Fig. 5. An example of buffer sharing

According to [1], the maximum delay for flow fj is bounded
by Equation (6).

D̄(fj ,r) = T l(fj ,r) +
Lj + θj(pj −R(fj ,r))

+

R(fj , r)
(6)

Therefore, THoL(f1,r)
is given as follows:

THoL(f1,r)
= T l(f2,r) − θ2 +

L2 + θ2p2

R(f2,r)
(7)

In the case of more than one flow sharing the same buffer
with the tagged flow, HoL delay for tagged flow fsi in router
rj is calculated as belows:

THoL(si,rj)
=

∑

∀fc∈FB(si,rj)

T
HoL(fc)
(si,rj)

(8)

where FB(si,rj) is the set of flows which share the same buffer

in router rj with tagged flow fsi . Also THoL(fc)
(si,rj)

is given by

T
HoL(fc)
(si,rj)

= T l(fc,r) − θc +
Lc + θcpc
R(fc,r)

(9)

Therefore router rj can give flow fsi service bounded by
curve β(si,rj) = δTTotal

(si,rj)
⊗ γ0,R(si,rj)

, where TTotal(si,rj)
is equal

to THoL(si,rj)
+T l(si,rj) and R(si,rj) is calculated by Equation (4).

We analyze the buffer space threshold for each VC based
on traffic specifications of flows passing through that VC, and
also interference between them. The buffer space threshold for
virtual channel k in physical channel i of router j is given as
below:

B(j,i,k) =
∑

∀fc∈FRPV(j,i,k)

(
σc + ρcT

p
(fc,rj)

+
(
θ − T p(fc,rj)

)+

×
[(
pc −R(fc,rj)

)+ − pc + ρc

])

(10)

where FRPV(j,i,k) is the set of flows passing through VC k in
physical channel i of router j.

B. Inter-router ESC

In this step, we aim to extract ESC of the tagged flow by
removing the contention flows from the ESC of the tagged
aggregate flows. We have described this stage in elaborate
detail through paper [4]. Here, we show the procedure of
deriving end-to-end ESC for a tagged flow with the help of
the example in Figure 2. Assuming flow f1 is the tagged flow,
its routing path is shown in a tandem of routers in Figure 6(a).

After analyzing per-router resource sharing scenarios and
deriving intra-router ESCs, we can view an analysis model
which keeps per-router ESCs of a tagged flow or tagged
aggregate flow as shown in Figure 6(b). This model is called
aggregate analysis model. In this model, β(si,rj) indicates
that the service curve is related to flow fsi in router rj . For
instance, β({1,2},r2) is the service curve of aggregate flow
f{1,2} in router r2. A set of si’s in a tandem of routers
is denoted as S = {si}. For example, in Figure 6(b),
S = {{1}, {1, 2}, {1}, {1, 3}, {1, 3, 4}, {1, 4}, {1}}.

We use the theorem of concatenation of network ele-
ments [1] to model nodes sequentially connected and each is
offering a rate-latency service curve to each of the aggregate
flows β(si,rj), j = 1, 2, ..., n as a rate-latency server as
follows:

β(si,r1,2,...,n) = β(si,r1) ⊗ β(si,r2) ⊗ ...⊗ β(si,rn)

(11)

where the minimum service rate and the maximum process-
ing latency in an equivalent rate-latency server are defined as
follows:

R(si,r1,2,...,n) = min
(
R(si,r1), R(si,r2), ..., R(si,rn)

)

T l(si,r1,2,...,n) = T l(si,r1) + T l(si,r2) + ...+ T l(si,rn)

(12)

In Figure 6(b), sequentially connected service curves for the
same aggregate flows do not exist. Thus, we can directly go
to the next step which considers contention scenarios.

As illustrated in Figures 6(a), contention flow f2 is nested
in flow f1 and contention flow f3 is crossed with f4. To
consider contentions in this model and obtain inter-router
ESC, we decompose a complex contention scenario to basic
contention patterns and then remove contention flows one by
one. The contention scenarios can be classified into two basic
patterns, namely, nested and crossed. We apply the algebra of
sets to recognize contention scenarios. Convenient notations
are defined through the example in order to facilitate our
discussion. To recognize the contention scenarios, we first
find sm =

{
sx
∣∣|sx| = max (|si|) ;∀si ∈ S

}
, where |sx| is the

cardinality (the number of elements) of set sx. In other words,
sm is sx ∈ S with the maximum cardinality. The service curve,
flow, and router related to sm are denoted as fsm , βm, and rm,
respectively. Thus, these notations in Figure 6(b) are given by
S = {{1}, {1, 2}, {1}, {1, 3}, {1, 2, 3, 4}, {1, 4}, {1}},

sm = {1, 3, 4}, fsm = f{1,3,4}, rm = r8, and βm =
β({1,3,4},r8).

232

1f

2f

a)
2r 3r

3f
4r

4f
8r 12r1r 16r

1f 2f

b)

3f 4f
),1(3r

β)},3,1({ 4r
β)},4,3,1({ 8r

β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r
β),1(1r

β

c)

1f 2f 3f

),1(3r
β)},3,1({ 4r

β)},4,3,1({ 8r
β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r

β),1(1r
β

4f 4f ′

d)

1f 2f 3f

),1(3r
β)},3,1({ 4r

β)},3,1({ 8r
β),1(12rβ),1(16rβ)},2,1({ 2r

β),1(1r
β

e)

1f 2f 3f

),1(3r
β)},3,1({ 8,4r

β),1(16.12rβ)},2,1({ 2r
β),1(1r

β

1f

g)),1(16,12,8,4,3,2,1r
β

Fig. 6. An example of end-to-end ESC computation

The set placed before sm in S is called sPrev and the set
after that sNext. In this respect, the related aggregate flow,
service curve, and router to sPrev are denoted as fsPrev ,
βPrev, and rPrev, respectively. fsNext , βNext, and rNext are
related to sNext as well. Therefore, due to sm ={1,3,4} in
Figure 6(b), sPrev = {1, 3}, βPrev = β({1,3},r4), fsPrev =
f{1,3}, rPrev = r4, sNext = {1, 4}, βNext = β({1,4},r12),
fsNext = f{1,4}, and rNext = r12.

Now, we can recognize contention scenarios as below:
1) if sNext ⊂ sPrev then the contention is nested;

– Remove fsm−(sm∩sNext) from βm

2) else if sPrev ⊂ sNext then the contention is nested;
– Remove fsm−(sm∩sPrev) from βm.

3) else
• if sNext ⊂ sm then the contention is nested;

– Remove fsm−(sm∩sNext) from βm

• else if sPrev ⊂ sm then the contention is nested;
– Remove fsm−(sm∩sPrev) from βm.

• else, it is crossed.
– The problem is strictly transformed to the com-

bination of two nested flows
Regarding Figure 6(b), sm = {1, 3, 4}, sPrev = {1, 3}, and

sNext = {1, 4}. Since sPrev is not a subset of sNext, and vice
versa, due to contention recognition procedure, this case is a
crossed contention. There are two cross points, one between
r4 and r8 and the other between r8 and r12. We cut f4 at the
second cross point, i.e., at the ingress of r12, f4 will be split
into two flows, f4 and f́4, as shown in Figure 6(c). Then the
problem is strictly transformed to the combination of nested
flows such that f4 is nested in flow f3 and f́4 in f1. It is

clear that the arrival curve α(f́4,r12) equals to output arrival
curve f4 in router r8, α∗(f4,r8). To compute α∗(f4,r8), we need
to get the ESC of r8 for f4, β(f4,r8). Then, we calculate the
output arrival curve of f4 as α∗(f4,r8) = α(f4,r8)�β(f8,r8) and
remove nested flows f4 and f́4 from the tandem as shown in
Figure 6(d). Deriving output arrival curve and removing the
contention flows are done by applying our proposed Theorems
1 and 2 in [2][3].

After subtracting each contention flow from the ESC, we
should apply the concatenation theorem again to find more
equivalent servers and reduce the number of service curves.
For instance, after removing contention flows f4 and f́4, the
example looks like Figure 6(d). In this figure, the service curve
of sub-tandem {r4, r8} for aggregate flow f{1,3} is computed
as β({1,3},r4,8) = β({1,3},r4)⊗β({1,3},r8) and also β(1,r12,16) is
calculated as β(1,r12)⊗β(1,r16). The aggregate analysis model
with new equivalent servers is shown in Figure 6(e).

If we repeat contention recognition steps, the next con-
tention flows are f2 and f3 nested in flow f1. Due to Figure
6(e), we have two options for sm, one is {1, 2} and the other
one {1, 3}. When sm is not unique, each of them can be
selected. In this paper, we choose the first one from the left
side in the aggregate analysis model. Therefore, sm = {1, 2},
sPrev = {1}, and sNext = {1}. In this case, sPrev ⊂ sNext

and also sPrev ⊂ sNext. Thus, it satisfies conditions 1 and
2 in contention recognition steps which state the contention
is nested. It does not matter that which condition is fol-
lowed since the results are the same. We particularly follow
the first condition which states flow fsm−(sm∩sNext) should
be removed from βm. In this example, we eliminate flow
f{1,2}−({1}∩{1,2}) = f{2} from β({1,2},r2) to derive β(1,r2) by
applying Theorem 2 proposed in [4]. After that, convolution

233

β({1},r1,2,3) = β({1},r1) ⊗ β({1},r2) ⊗ β({1},r3) is calculated.
We similarly repeat contention recognition and convolution

steps until |sm| 6= 1. When |sm| = 1, it means, the end-to-end
ESC of tagged flow is obtained. In the example, if we perform
contention recognition steps one more time by removing
f{3} from β({1,3},r4,8) to derive β(1,r4,8) and then calculate
β({1},r1,2,3,4,8,12,16) = β({1},r1,2,3) ⊗ β({1},r4,8) ⊗ β({1},r12,16),
the example looks like Figure 7 and β({1},r1,2,3,4,8,12,16) would
be the end-to-end ESC of tagged flow f1.

1f

2f

a)
2r 3r

3f
4r

4f
8r 12r1r 16r

1f 2f

b)

3f 4f
),1(3r

β)},3,1({ 4r
β)},4,3,1({ 8r

β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r
β),1(1r

β

c)

1f 2f 3f

),1(3r
β)},3,1({ 4r

β)},4,3,1({ 8r
β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r

β),1(1r
β

4f 4f ′

d)

1f 2f 3f

),1(3r
β)},3,1({ 4r

β)},3,1({ 8r
β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r

β),1(1r
β

4f ′

e)

1f 2f 3f

),1(3r
β)},3,1({ 8,4r

β)},4,1({ 12rβ),1(16rβ)},2,1({ 2r
β),1(1r

β

4f ′

1f

g)),1(16,12,8,4,3,2,1r
β

Fig. 7. The final stage of end-to-end ESC computation

Algorithm 1 presents all stages of deriving the end-to-
end ESC for a given tagged flow as described through the
example. The only difference between this algorithm and the
one presented for RR [4] results from the different methods
proposed for calculating intra-router ESCs (Line 9).

Now, we can obtain LUDB from end-to-end ESC according
to Theorem 3 proposed in [3]. We have automated our pro-
posed analytical approach as a tool for worst-case performance
analysis.

VI. OPTIMIZATION PROBLEM FORMULATION

The members of a workshop on on-chip communication
challenges in 2006 did agree that latency is one of the most
critical challenges for on-chip interconnection network archi-
tectures [13]. From the design perspective, there exists a huge
search space to explore the network for minimizing latency.
Thus, to design a low latency on-chip network, designers need
to investigate optimization problems and make appropriate
decisions. The general problem is defined as below:

General Problem Definition
Given Architecture specifications, application parame-
ters, and traffic characteristics (e.g. TSPEC in this paper);
Find A set of decision variables;
Such that network delay is minimized and performance
constraints are satisfied.

In this formulation, decision variables can include finding
an efficient application mapping to processing cores, traffic
regulation parameters (e.g. peak rate, burstiness, and packet
injection rates to the network), switch architecture, a resource
allocation strategy (e.g., bandwidth of channels, etc.), weight
configuration in WRR policy, and a routing algorithm.

In this paper, we find optimal weight configuration in WRR
policy to minimize total worst-case delay in the network.
Weight allocation is actually one of resource allocation strate-
gies in which a flow with larger weight gets more bandwidth
or higher service level. The weight of each non-empty VC is
selected due to traffic specifications of flows passing through
that VC, and also interference between them. In Section IX,

Algorithm 1 End-to-End ESC Algorithm
1: Find the set of contention flows of tagged flow ft, denoted

by CFt
2: for ∀j ∈ CFt do
3: if Src(j) /∈ Path(t) then
4: Find joiningnode = JoiningPoint(fj)
5: Calculate X = ESC(fj , Src(j), joiningnode)
6: αj = αj �X
7: end if
8: end for
9: Calculate intra-router ESC for WRR based on Section

V-A.
10: Calculate β(si1 ,rj1) ⊗ β(si2 ,rj2) ⊗ ...⊗ β(sin ,rjn) if i1 =

i2 = ... = in.
11: Find sm =

{
sx
∣∣|sx| = max (|si|) ;∀si ∈ S

}
.

12: repeat
13: if sPrev ⊂ sNext then
14: Remove fsm−(sm∩sNext) from βm

15: else if sNext ⊂ sPrev then
16: Remove fsm−(sm∩sPrev) from βm.
17: else
18: if sPrev ⊂ sm then
19: Remove fsm−(sm∩sPrev) from βm

20: else if sNext ⊂ sm then
21: Remove fsm−(sm∩sNext) from βm.
22: else
23: Find joiningnode =

JoiningPoint(f(sm−sPrev)).
24: Calculate X =

ESC(f(sm−sPrev), joiningnode, r
Next).

25: ά(sm−sPrev) = α(sm−sPrev) �X
26: Remove f(sm−sPrev) from βm.
27: Remove f́(sm−sPrev) from βNext.
28: end if
29: end if
30: Calculate β(si1 ,rj1) ⊗ β(si2 ,rj2) ⊗ ...⊗ β(sin ,rjn) if

i1 = i2 = ... = in.
31: Find sm.
32: until |sm| 6= 1
33: return end-to-end ESC for tagged flow ft

we show that an unoptimized weight configuration increases
network delay.

On the other hand, the faster transmission delay is not nec-
essarily better in a shared communication channel since faster
delivery requires higher link bandwidth reservation and may
incur a larger delay for another contention flow in a shared
channel, leading to an intolerable delay. To avoid throttling
for some communications, we investigate another objective
function which is minimizing the variances of delay bounds
in different flows. As both mentioned goals are worthwhile
for the real-time applications, we formulate them as a multi-
objective problem in Section VI-B.

234

A. Delay Optimization

As stated before, our objective is to choose appropriate
weights in weighted round robin policy, assigned to channels
on the path of flows, so as to minimize the sum of LUDBs
while satisfying acceptable performance in the network. It is
worth mentioning that w(j,l,s,k) = 0 when no flow is passing
from virtual channel s of input channel l to output channel
k in router j. Thus, the delay bound minimization problem,
Minimize-Delay, can be formulated as follows.

Given a set of flows F = {fi ∝ (Li, pi, σi, ρi)}, routing
matrix R, the number of weight cycles LWR, find the weights
in weighted round robin policy as w(j,l,s,k) for ∀i ∈ N , ∀j ∈
InPC, ∀s ∈ InV C, and ∀k ∈ OutPC, such that

min
w(j,l,s,k)

∑

∀fi∈F
Di (13)

subject to:
∑
l,s w(j,l,s,k) = LWR ∀j ∈ N ;∀k ∈ OutPC (14)
LWR×

∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k) ≤ LWR (15)
∀j ∈ N, ∀l ∈ InPC, ∀s ∈ InV C,∀k ∈ OutPC

where w(j,l,s,k) for ∀j ∈ N , ∀l ∈ InPC, ∀s ∈ InV C, and
∀k ∈ OutPC are optimization variables.

Eq. (13) is the objective function of this optimization
problem which minimizes total LUDBs. Constraint (14) says
that the sum of weights assigned to flows which pass through
through the same output channel k in router j, the same
weighted round robin scheduler, is equal to LWR. Although
we have assumed the same value of LWR for all arbiters,
the optimization problem can be easily adapted to different
values of the sum of weights. To reach acceptable perfor-
mance in the network, the share of w(j,l,s,k) from LWR

should be proportionate to
∑
m∈F(j,l,s,k)

ρm

C , where F(j,l,s,k)

is the set of flows which pass through virtual channel s of
input channel l to output channel k in router j. Therefore,

we can consider
∑
m∈F(j,l,s,k)

ρm

C as a criterion of minimum
guaranteed performance for flows in F(j,l,s,k). In this re-

spect, we have
∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k)

LWR
which means

LWR×
∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k) as stated in Constraint (15).
It is also clear that the value of each weight should be less than
the number of weight cycles which means w(j,l,s,k) ≤ LWR.

By following the equations described in Section V, the
effect of optimization variables on the objective function of
the defined problem is obvious.

In the literature, problem (13) is called a stochastic and
nonlinear optimization problem [14]. We solve it using genetic
algorithms because of their well-known robustness and ability
to solve large and complex discrete optimization problems.

B. Multi-objective Optimization Problem

In order to avoid an intolerable delay of some flows due
to processing and transmission of other flows, we would like

to find appropriate weights in weighted round robin policy so
that variance of delay bounds in the network is minimized.
Using a general variance formula, we can calculate variances
of the delay bounds as 1

|F | ×
∑
∀fi∈F (E(D)−Di)

2. Hence,
another optimization problem can be formulated to minimize
both the total delay bounds and their variance while satisfying
the constrains (14) and (15), as follows.

Given a set of flows F = {fi ∝ (Li, pi, σi, ρi)}, routing
matrix R, the number of weight cycles LWR, find the weights
in weighted round robin policy as w(j,l,s,k) for ∀j ∈ N , ∀l ∈
InPC, ∀s ∈ InV C, and ∀k ∈ OutPC, such that

min
w(j,l,s,k)

∑

∀fi∈F
Di (16)

min
w(j,l,s,k)

1

|F | ×
∑

∀fi∈F
(E(D)−Di)

2 (17)

subject to:
∑
l,s w(j,l,s,k) = LWR ∀j ∈ N ;∀k ∈ OutPC (18)
LWR×

∑
m∈F(j,l,s,k)

ρm

C ≤ w(j,l,s,k) ≤ LWR (19)
∀j ∈ N, ∀l ∈ InPC, ∀s ∈ InV C,∀k ∈ OutPC

Although the solution of multi-objective optimization prob-
lems consists of a set of solutions, the user needs only one
solution. The decision about which solution is best depends
on the decision maker and there is no a universally accepted
definition of optimum as in single-objective optimizations [29].
A multi-objective problem is often solved by composing the
objective function as the weighted sum of the objectives which
is in general known as the weighted-sum or scalarization
method. In this approach, a relative preference factor of the
objectives should be known in advance. In more detail, the
weighted-sum method minimizes a positively weighted sum
of the objectives, that is,

min(γ1f1 + γ2f2) (20)

where γ1 and γ2 are the weighting coefficients representing
the relative importance of the objectives.

The simplicity and efficiency of this method makes it an
appropriate option for solving multi-objective optimizations
with complex and nonsmooth objective functions. Therefore,
we convert our proposed multi-objective problem into a scalar
optimization problem with equal weighting coefficients. Since
the problem is still a nonsmooth and stochastic optimization,
we use the genetic algorithm to solve it.

VII. SOLUTION METHOD

The proposed optimization problems have complex and
highly nonlinear objective functions. Moreover, due to Eq. (4)
and (12), minimization functions of decision variables appear
in the formulation of per-flow LUDBs and in turn in the
objective formulation which cause random objective functions.

Such optimization problems are usually solved by meta-
heuristic methods which make few assumptions about the

235

Algorithm 2 A General Scheme of GA in Pseudo-code
1: P1← Generate random population of n chromosomes
2: Evaluate the fitness f(x) for each x ∈ P1
3: repeat . Create a new population
4: Selection: Select two parents from a population.
5: Crossover: With a crossover probability cross over the

parents to form a new offspring (children).
6: Mutation: With a mutation probability mutate new

offspring at each locus (position in chromosome).
7: Accepting: Place new offspring in a new population
8: until the new population is not complete
9: Use new generated population for a further run.

10: if the end condition is satisfied then
11: return The best solution in current population
12: else
13: Go to step 2
14: end if

problem being solved and do not guarantee an optimal so-
lution. However, they can usually find a good solution [5].

Among different types of metaheuristics, we choose ge-
netic algorithms to solve the proposed optimization problems
because they are most appropriate for large and complex
non-linear models specially where the objective function is
discontinuous, stochastic, very rugged and complex, noisy, or
has many local optima [30], [31], [32]. Moreover, they have
been proven to be effective at avoiding getting trapped in local
optima and discovering the global optimum in even a problem
with very complex objective functions [31]. GAs tend to be
computationally expensive for the solutions of optimization
problems with nonlinear equality and inequality constraints
[32], which does not occur in our proposed problems. Al-
though a GA does not always find a global optimum to a
problem, it almost always finds high-quality solutions [31].

GA generates solutions to optimization problems mimicking
the process of natural evolution such as inheritance, muta-
tion, selection, and crossover. Algorithm 2 presents a general
scheme of GA in pseudo-code. The algorithm is started with
an initial population of solutions represented by chromosomes.
A chromosome contains the solution as a set of parameters
in form of genes. A gene is a position or set of positions
in a chromosome, represented as a simple string or other
data structures. The algorithm selects solutions, called parents,
from the population and produces a new solution, called
offspring, to form a new population. Although parents can be
selected in many different ways, the main idea is that better
parents according to their fitness hopefully will produce better
offspring. Crossover and mutation are two basic operators of
GA which produce a new offspring. This process is repeated
until some condition, such as the number of populations or
improvement of the best solution, is satisfied.

A method for encoding potential solutions of the problem
is needed. There are different approaches to encode solutions
like binary encoding, value encoding, permutation encoding,
and tree encoding.

Algorithm 3 Genetic Algorithm
1: Pop1← Initilization F irstPopulation()
2: Encoded Pop1← Encoding(Pop1)
3: Temp Pop← Encoded Pop1
4: for i=1 to Iteration# do
5: New Pop[0]← Elitism(Lb, Ub)
6: for j=1 to Pop Size do
7: Cross Rate←MersenneTwister()
8: if (Cross Rate ≤ Cross Prob) then
9: Chromosome1← Selection(Lb, Ub)

10: Chromosome2← Selection(Lb, Ub)
11: Offspring ←

Crossover(Chromosome1, Chromosome2)
12: else
13: Offspring ← Selection(Lb, Ub)
14: end if
15: Mut Rate←MersenneTwister()
16: if (Mut Rate ≤Mut Prob) then
17: Offspring ←Mutation(Offspring)
18: end if
19: New Pop[j]← Offspring
20: end for
21: Temp Pop← New Pop
22: end for
23: Decoded Pop← Encoding(Temp Pop)
24: Optimal Weight←Minimum(Decoded Pop)
25: return Optimal Weight

VIII. IMPLEMENTATION

We present Algorithm 3 to detail the procedure of deriv-
ing optimal weights for the proposed optimization problems.
Parent is introduced as a vector of decision variables of
weights, which presents the current solution for this round
and offspring is a new vector generated from the parent
which may be the next solution. The algorithm uses a binary
representation of chromosomes as fixed-length strings over the
alphabet {0, 1}, such that they are well suited to handle the
optimization problems. It uses function Encoding() to map
solutions ~w ∈W to a binary string {0, 1}l and defines function
Decoding() to do the reverse. To this end, real-valued vector
~w ∈ <n is presented by a chromosome in form of a binary
string ~x ∈ {0, 1}l. The chromosome is logically divided into
n segments (gene) of equal length Sgene as (w1...wn), where
Sgene is gene size and l = n×Sgene. Each gene wi is decoded
to yield the corresponding integer value, and the integer value
is in turn linearly mapped to its interval of real values, denoted
as [Lbi, Ubi] ⊂ <, where Lbi and Ubi indicate lower and
upper bound constraints on wi, respectively. In this work, we
use a gray code interpretation of the binary string. The main
advantage of gray codes is that they are different by only one
bit.

Figure 8 shows an example of the decoding process for
string segments of length Sgene = 8 which allows the repre-
sentations of integers {0, 1, ..., 255}. As shown in the figure,

236

function Decoding() first converts a given gray code to an in-
teger value pi ∈

{
0, ..., 2Sgene − 1

}
and then maps pi linearly

to its corresponding interval [Lbi, Ubi] as Lbi+ Ubi−Lbi
2Sgene−1

×pi.Decoding

Ch

Gene
Chromosome

01100110 00001001 01110111 00101001Chromosome
in Gray Code

Decoding to the integer value

68 14 90 49

[0.1,1] [0.5,1] [0.3,1] [0.1,0.7]

Decimal Value:

[Lb,Ub]

0.34 0.527 0.547 0.215

Linear mapping to the interval [Lb,Ub]

Fig. 8. An example of decoding and linear mapping

After encoding, the algorithm starts producing a new pop-
ulation in Line 5-20. Function Elitism() in Line 5 copies
the best chromosome of the current population to the new
population, so the best chromosome found can survive. Elitism
can very rapidly increase performance of GA, because it
prevents losing the best found solution. To create other new
offsprings, three basic operators including selection, crossover,
and mutation are applied as follows.

Selection in GA means how to select parents for crossover
or mutation. The main idea is to select the better parents
in hope that the better parents will produce better offspring.
Thus, function Selection() in the algorithm selects randomly
two chromosomes from the current population, evaluates their
fitness values, and finally returns the one which has the smaller
fitness value as one of parents. Another parent is selected in
the same way.
Cross Prob in Line 8 is the crossover probability which

states how often a crossover is performed. If there is a
crossover, two parents’ chromosomes are selected and off-
spring is made from their crossover. If there is no crossover,
offspring is the exact copy of a chromosome from the old
population. Due to Cross Prob, the new generation is a
mix of offsprings made by crossovers and chromosomes from
the old population. Although crossovers have the tendency to
improve chromosomes, it has been shown to be beneficial to
keep part of the old population.

Crossover selects genes from parents’ chromosomes and
creates a new offspring. There are different ways to make
a crossover. This algorithm chooses randomly two crossover
points and everything before the first point and after the second
point is copied from the first parent and the section between the
two crossover points is copied from the second parent. Figure
10 shows an example of crossover applied in this algorithm (|
denotes the crossover point).

After crossover, mutation is performed. Mut Prob in Line
16 is the mutation probability which states how often a
chromosome is mutated. If mutation is performed, parts of
chromosome are changed. If there is no mutation, the offspring

Application
- communication pattern
-TSPEC of f lows
- tagged flow

Architecture
- topology
- deterministic routing
- service curve of routers

Input Text File

End-To-End Delay Program

A program automatically derives
formulas for calculating end to endformulas for calculating end-to-end

delay bounds and obtains constraints.

Output Text File
Objective Function Constrains

Optimization Program

Output Text File
- Per flow end-to-end delay
bounds

- Weight Constrains

A program automatically solves
optimization problem based on

the different methods

Output
- Optimal/sub-optimal weights
- Per-flow delay bounds
- Minimal value for sum of end-

to-end delay bounds

Fig. 9. The flow chart of the developed toolCrossover

1011 101000 111010

1100 101001 110011

Chromosome 1:

Chromosome 2:

1011 101000 111010Offspring:

Mutation

1011101000 11010Offspring:

1010101001 11110Mutated Offspring:

Fig. 10. An example of crossover

is copied after crossover without any change. Mutation is
made to prevent an entire population being trapped in a local
optimum. Mutation in Algorithm 3 changes the new offspring
by randomly switching a few bits. It is worth mentioning that
the mutation should not occur very often, because then GA will
convert into a random search. Figure 11 shows an example of
mutation used in the algorithm.

Crossover

1011 101000 111010

1100 101001 110011

Chromosome 1:

Chromosome 2:

1011 101000 111010Offspring:

Mutation

1011101000 11010Offspring:

1010101001 11110Mutated Offspring:

Fig. 11. An example of mutation

This process repeats for a specified number of iterations.
As shown in Figure 9, we have developed a tool in C++,

divided into two main sub-tools including ”End-to-End Delay
Program” and ”optimization Program”. The former derives
per-flow worst-case bounds by applying the proposed for-
mal approach in Section V. The bounds are represented as
functions of weights in WRR policy. The latter optimizes
weights in WRR policy based on the optimization problem
formulated in Section VI. Input for the first sub-tool includes
an application communication graph, specification of flows,

237

f

PaddingVOP
memory

94

313Memory

Down sampling
&

context calculation

16

Reference
memory

Up
sampling

16
16

16
16

f3

f4
f6

f8

f7
f9

f

n1 n2 n3 n4

f1
f6

f10
f15

f16

f17

Stripe
memory

Up

VOP
reconstruction

300

313313
500

Context-based
Arithmetic
decoder

y
157

16

sampling

16
f1

f2

f5
f10

f11
f12

f13

n5 n6 n7 n8

n9 n10 n11 n12

f1

f2

f9
f11

f f
f18

f20
f21

Variable
length

decoder

70 Run-
length

decoder

362 Inverse
scan

362 AC/DC
prediction

362
iQuant

357
IDCT

4927

Up
sampling

353

decoder

f14

f15 f16 f17

f18 f19

f20 f21
n13 n14 n15 n16

f3f4 f5

f7 f8

f12

f13

f14

f19

Fig. 12. VOPD Application

topology graph, routing matrix, and characteristics of routers.
The outputs from the first sub-tool along with the set of system
constraints will be inputs for the second part.

IX. EXPERIMENTAL RESULTS

To evaluate the capability of our method, we applied it to
a real-time multimedia application with a random mapping to
the tiles of a 4 × 4 mesh on-chip network. Figure 12 shows
the task graph and flow mapping of a Video Object Plane
Decoder (VOPD) [33] in which each block corresponds to an
IP and the numbers near the edges represent the bandwidth (in
MBytes/sec) of the data transfer, for a 30 frames/sec MPEG-
4 movie with 1920 × 1088 resolution [34]. There are 21
communication flows characterized by TSPEC.

Hence, each flow i is characterized by (Li, pi, σi, ρi). We
assume Li and pi for all flows are the same and equal to 1 flit
and 1 flit/cycle, respectively. ρi is determined in flits/cycle
due to associated bandwidth with flow fi in Figure 12 and σi
varies between 8 and 128 flits for different flows. The length
of a round in WRR scheduling, LWR, is assumed to be 10
cycles.

A. Delay Optimization

As mentioned before, decision variables in the proposed
optimization problems are the weights on shared channels.
Due to shared channels in VOPD application, 20 weights are
formulated in the optimizations as a weight vector W defined
as below:

W =
(
w(6,3,0,4), w(10,2,0,0), w(14,0,0,2), w(13,3,0,2), w(12,0,0,2),

w(9,4,0,0), w(4,3,0,4), w(4,0,0,2), w(8,2,0,0), w(8,4,0,2),

w(6,2,0,4), w(10,4,0,0), w(14,3,0,2), w(13,1,0,2), w(12,3,0,2),

w(9,3,0,0), w(4,0,0,4), w(4,4,0,2), w(8,4,0,0), w(8,0,0,2)

)

(21)

The ”End-to-End Delay Program” calculates per-flow worst-
case bounds as functions of weights for each flow in VOPD
application and derives corresponding constraints. The ”Op-
timization Program” formulates Minimize-Delay problem and
derives weights for VOPD application.

To show how these weights affect the communication delay,
we consider four different schemes:

• Random Scheme: The weights are selected randomly.
• Round Robin Scheme: The weights have the same values

to represent round robin policy.
• Optimized Scheme: The weights are optimized based on

the optimization problem (13).
• Unoptimized Scheme: The weights are not optimized

and there are many unoptimized configurations. In this
scheme, we allocate weights so as to maximize the
optimization problem (13) instead of minimization.

Then, the total maximum delay are calculated for different
schemes and depicted in Table II. From this table, we can see
that the optimized scheme leads to about 15.4%, 48.8%, and
81.1% reduction in total maximum delay when compared with
Round Robin, Random, and Unoptimized schemes, respec-
tively. The results show that although WRR is able to make
better performance in terms of latency than RR scheduling,
if the weights are not allocated properly, it may be worse.
Therefore, an appropriate weight configuration makes WRR
able to reduce total and average maximum delay by balancing
the allocation of shared network bandwidth to different traffic
flows with respect to their specifications and contentions for

TABLE II
HOW GOOD ARE OPTIMIZED WEIGHTS?

Scheme Type Weight Vector

Total
Worst-case

Delay
(cycles)

Average
Worst-case

Delay
(cycles)

Optimized (2, 8, 8, 2, 6, 6, 4, 2, 3, 6,
8, 2, 2, 8, 4, 4, 6, 8, 7, 4)

3671 174

Round Robin (5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

4237 202

Random (1, 4, 2, 7, 2, 3, 9, 5, 8, 5,
9, 6, 8, 3, 8, 7, 1, 5, 2, 5)

7177 343

Unoptimized (1, 1, 1, 9, 1, 1, 9, 9, 9, 5,
9, 9, 9, 1, 9, 9, 1, 1, 1, 5)

19432 926

238

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

De
la

y
Bo

un
d

(c
yc

le
)

Flow Index

WRR Policy

RR Policy

Fig. 13. Maximum worst-case delay for every flow

shared resources.
To better understand the effects of the weights, per-flow

delay bounds for RR and WRR with Optimized scheme are
revealed in Fig 13. This figure shows that flows in WRR can
experience longer or shorter delays than RR scheme which
depends on their assigned weights leading to different service
levels (the amount of network bandwidth allocated to each
flow). However, from Table II, we can see that the total
and average worst-case delay are decreased in WRR with
Optimized scheme because the weights are assigned in a way
to minimize total delay, satisfy performance constraints, and
reduce contentions for shared resources leaving room for other
contention interfering flows. Therefore, WRR can be used to
control the per-flow delay bound by controlling its assigned
weight.

It is worth mentioning that if RR policy is better for flows
due to the defined optimization problem, the solution method
sets the weights equal to each other, namely makes WRR into
RR.

B. Multi-objective Optimization

In the multi-objective optimization minimizing delay and
variance, we have calculated two parameters: Total Worst-
case Delay and Variance listed in Table III. As can be
observed from Table III, Minimize-Delay problem guarantees
that weight allocation is carried out in favor of minimizing
total worst-case delay while there is no such guarantee for

TABLE III
HOW GOOD IS MULTIOBJECTIVE OPTIMIZATION?

Weight Vector

Total
Worst-case

Delay
(cycles)

Variance

Round
Robin

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

4237 59324.49

Minimize-
Delay

(2, 8, 8, 2, 6, 6, 4, 2, 3, 6,
8, 2, 2, 8, 4, 4, 6, 8, 7, 4)

3671 35416.67

Multi-
objective

(6, 9, 9, 1, 6, 7, 2, 1, 1, 6
4, 1, 1, 9, 4, 3, 8, 1, 1, 6)

4045 29320.71

the sum of variances over various flows. In contrast, the
Multi-objective optimization provides a trade-off between such
parameters.

Although we have assumed the same importance for total
delay and variance in the multi-objective problem by consid-
ering the same weighting coefficients in Equation (20), it is
possible for designers to change the value of the weighting
coefficients γ1 and γ2 to specify another relative importance
of objective functions.

C. Comparing with Other Solution Methods

As a comparative study, we implement three other meta-
heuristics, namely Pure Random Search (PRS) [15], Markov
Monotonous Search (MMS) [16], Adaptive Search (AS) [16]
to compare them with the genetic algorithm in terms of run-
time and efficiency. These algorithms belong to a category of
metaheuristics called trajectory-based methods. A trajectory-
based algorithm works on single solutions at any time, namely,
it starts from an initial state (initial solution) and follows a
trajectory to reach a successor solution which may or may not
belong to the neighborhood of the current solution. Population-
based metaheuristics, on the contrary, deal with a set (a
population) of solutions in each iteration and in turn provide
an intrinsic method for exploring the search space. The way
of manipulating the population has a significant impact on the
performance of these methods. Genetic algorithms belong to
this category. We also extend PRS, MMS, and AS to support
a population of solutions instead of a single solution. Hereby,
they produce m solutions in every iteration and select n
solutions for the next iteration. The extended versions of PRS,
MMS, and AS are called PRS (m + n), MMS (m + n), and
AS (m + n). Table IV presents the iteration number and run
time required for solving the optimization problem (Eq. 13).

The results show that all metaheuristics presented in this
table obtain the same solution for the problem. Therefore,
we can say with some confidence that the solution is of high
quality.

The table shows that the genetic algorithm has a shorter
execution time with fewer iterations. GA is no exhaustive
optimization method. However, as it is well known that GAs
provide an efficient and robust method for solving problems

TABLE IV
COMPARISON OF THE RUN TIME BETWEEN DIFFERENT METHODS

Optimal point obtained by the methods

Optimal Weight Vector Total Delay
(2, 8, 8, 2, 6, 6, 4, 2, 3, 6, 8, 2, 2, 8, 4, 4, 6, 8, 7, 4) 3671 cycles

Performance in different methods

Iteration# Time (sec)
PRS 100, 000 2.71
MMS 100, 000 2.8
AS 100, 000 2.85
PRS (10 + 10) 5, 000 13
MMS (10 + 10) 5, 000 13.37
AS (10 + 10) 5, 000 12.83
GA 250 1.05

239

in which the objective function is discontinuous, nondifferen-
tiable, or highly nonlinear and due to the results from table
IV, we believe that GA is a well suited solution method for
our problem.

X. CONCLUSIONS

In this work, we have extended our proposed analytical
methodology [4] for deriving per-flow delay bound under RR
policy to WRR scheduling and then compared them. We have
developed algorithms to automate analysis steps. It is notable
that the proposed methodologies for both RR and WRR do
not deal with the back-pressure, but we have calculated the
buffer size thresholds to make sure the back-pressure does not
occur in the network. Due to our proposed analytical models,
we have presented two optimization problems for weight
allocation in WRR scheduling, first one for minimizing total
worst-case delays, second one for minimizing both total worst-
case delays and their variance under performance requirements
to control per-flow delay bound. We have also demonstrated
that the proposed model exerts significant impact on commu-
nication performance. The algorithm for solving the proposed
minimization problems runs very fast. For the case study, the
optimized solution is found within about one second. In the
future, we intend to investigate other scheduling policies. We
also plan to extend the proposed analytical method in case
of back-pressure in the network. Zhao and Lu [35] propose
analytical models to derive worst-case bounds for constant bit
rate flows due to back-pressure in the network.

REFERENCES

[1] J. Y. L. Boudec and P. Thiran, ”Network Calculus: A Theory of De-
terministic Queuing Systems for the Internet”, Number 2050 in LNCS,
2004.

[2] F. Jafari, A. Jantsch, and Z. Lu, ”Output Process of Variable Bit-Rate
Flows in On-Chip Networks Based on Aggregate Scheduling”, in Proc.
the International Conference on Computer Design (ICCD), pp. 445-446,
2011.

[3] F. Jafari, A. Jantsch, Z. Lu, ”Worst-Case Delay Analysis of Variable Bit-
Rate Flows in Network-on-Chip with Aggregate Scheduling”, in Proc.
Design, Automation and Test in Europe Conference (DATE), pp. 538-
541, 2012.

[4] F. Jafari, Z. Lu, and A. Jantsch, ”Least Upper Delay Bound for VBR
Flows in Networks-on-Chip with Virtual Channels”, Submitted to ACM
Transactions on Design Automation of Electronic Systems (TODAES).

[5] C. Blum and A. Roli, ”Metaheuristics in combinatorial optimization:
Overview and conceptual comparison”, ACM Comput. Surv., Vol. 35, No.
3, pp. 268-308 , 2003.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An
architecture for differentiated services”, IETF RFC 2475, 1998.

[7] J.C.R. Bennett, K. Benson, A. Charny, W.F. Courtney, J.-Y. Le Boudec,
“Delay jitter bounds and packet scale rate guarantee for expedited
forwarding”, IEEE/ACM Transactions on Networking Vol. 10, No. 4, pp.
529-540, 2002.

[8] A. Charny and J.L. Boudec, “Delay Bounds in a Network with Aggregate
Scheduling”, in Proc. QofIS, pp.1-13, 2000,

[9] Y. Jiang, ”Delay bounds for a network of guaranteed rate servers with
FIFO aggregation”, Computer Networks, Vol. 40, No. 6, pp. 683-694,
2002.

[10] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, ”Tight end-to-
end per-flow delay bounds in fifo multiplexing sink-tree networks”,
Performance Evaluation, Vol. 63, No. 9, pp. 956-987, 2006.

[11] F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, ”Buffer Optimization
in network-on-Chip through Flow Regulation”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), Vol.
29, No. 12, pp 1973-1986, Dec. 2010.

[12] Y. Qian, Z. Lu, and Q. Dou, ”QoS Scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin”, in Proc. the 28th International
Conference on Computer Design (ICCD), pp. 52-59, 2010.

[13] J.D. Owens et al., ”Research Challenges for On-Chip Interconnection
Networks”, IEEE Micro, Vol. 27, No. 5, 2007, pp. 96-108.

[14] D. P. Bertsekas, ”Stochastic optimization problems with nondifferen-
tiable cost functionals”, Journal of Optimization Theory and Applications,
Vol. 12, No. 2, pp. 218-231, 1973.

[15] S. H. Brooks, ”A discussion of random methods for seeking maxima”,
The computer journal, Vol. 6, No. 2, 1958.

[16] R. White, ”A survey of random methods for parameter optimization”,
SIMULATION, Vol. 17, pp. 197-205, 1971.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ”Optimization by
Simulated Annealing”, Science, New Series, Vol. 220, No. 4598, pp. 671-
680, 1983.

[18] F. Glover, ”Future paths for integer programming and links to artificial
intelligence”, Computers and Operations Research, Vol. 13, No. 5, pp.
533-549, 1986.

[19] J. D. Farmer, N. H. Packard, and A. S. Perelson, ”The immune system,
adaptation, and machine learning”, Journal Physica D archive, Vol. 2,
No. 1-3, pp. 187-204, 1986.

[20] J.R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, (first ed.) The MIT Press, 1992.

[21] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine learning, Studies in Computational Intelligence, (first ed.) Addison-
Wesley Longman Publishing Co., 1989.

[22] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D.
Thesis, Politecnico di Milano, Italy, 1992.

[23] A. Walker, J. Hallam, D. Willshaw, ”Bee-havior in a mobile robot: the
construction of a self-organized cognitive map and its use in robot naviga-
tion within a complex, natural environment”, in Proc. IEEE International
Conference on Neural Networks (ICNN), Vol. 3, IEEE Service Center,
pp. 1451-1456, 1993.

[24] J. Kennedy, R. Eberhart, ”Particle swarm optimization”, in Proc. IEEE
International Conference on Neural Networks (ICNN), Vol. 4, pp. 1942–
1948, 1995.

[25] R.M. Storn, K.V. Price, ”Differential evolution a simple and efficient
heuristic for global optimization over continuous spaces”, Journal of
Global Optimization, Vol. 11, pp. 341-359, 1997.

[26] K.M. Passino, ”Biomimicry of bacterial foraging for distributed opti-
mization and control”, IEEE Control Systems Magazine, Vol. 22, pp. 52-
67, 2002.

[27] D. Simon, ”Biogeography-based optimization”, IEEE Transactions on
Evolutionary Computation, Vol. 12, pp. 702-713, 2008.

[28] J. Wroclawski. The Use of RSVP with IETF Integrated Services,
September 1997. RFC 2210, IETF.

[29] CA. Coello Coello, ”A comprehensive survey of evolutionary based
multiobjective optimization techniques”, Knowl Inform Syst: An Int J,
Vol. 3, pp. 269-308, 1999.

[30] S. Mardle and S. Pascoe, “An overview of genetic algorithms for
the solution of optimisation problems”, Computers in Higher Education
Economics Review, Vol. 13, No. 1, 1999.

[31] P. Bajpai and M. Kumar, ”Genetic Algorithm – an Approach to Solve
Global Optimization Problems”, Indian Journal of Computer Science and
Engineering, Vol. 1 No. 3, pp. 199-206.

[32] J. Guan, M. M. Aral, ”Progressive genetic algorithm for solution of
optimization problems with nonlinear equality and inequality constraints”,
Applied Mathematical Modelling, Vol.23, No. 4, pp. 329–343, 1999.

[33] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L.
Benini, G. De Micheli, ”NoC synthesis flow for customized domain
specific multiprocessor systems-on-chip”, IEEE Transaction on Parallel
and Distributed Systems, VOL. 16, NO. 2, February 2005 113-129

[34] E.B. van der Tol and E.G. Jaspers, “Mapping of MPEG4 Decoding on
a Flexible Architecture Platform”, SPIE, Vol. 4674, 2002,pp. 1-13.

[35] X. Zhao and Z. Lu. ”Per-flow Delay Bound Analysis Based on a For-
malized Micro-architectural Model”, in Proc. ACM/IEEE International
Symposium on Networks-on-Chip (NoCS’2013), Tempe Arizona, USA,
April 2013.

240

	Contents
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Introduction
	On-Chip Interconnection Networks
	QoS-aware Communication Management: A Major Research Challenge in NoC
	Contributions
	Thesis Organization

	Background and Related Works
	Quality-of-Service (QoS)
	Flow Control
	Switch-to-switch flow control mechanisms
	End-to-end flow control mechanisms

	NoC Performance Evaluation
	NoC Workloads
	Simulation-based Models
	Analytical Models

	Network Calculus Theory
	Basic Concepts of Network Calculus
	Network-calculus-based Models for Deriving Upper Delay Bounds

	Optimization Problems

	Contributions
	Communication management for BE traffic flows
	Utility-Maximization Problem [Paper 1]
	Delay-Minimization Problem [Paper 4]
	Implementation Aspects
	Where does the underlying idea come from?

	Communication management for real-time systems with guaranteed service
	Flow regulation and Performance analysis regardless of VC effects (Papers 8 and 12)
	Performance analysis of flows regarding VC effects in network based on aggregate scheduling (Papers 9, 10, and 13)
	Design optimization based on analytical performance models (Paper 14)

	Summary and Outlook
	Summary
	Outlook

	Bibliography

	Included Papers
	MASCOTS Paper
	ICCSA Paper
	IPDPS'8 Paper
	ISPAN Paper
	ICCS Paper
	IST Paper

	IPDPS'9 Paper

	DATE2010 Paper
	ICCD Paper
	DATE2012 Paper
	IJPEDS Paper

	TCAD Paper
	TODAES Paper
	TCAD Paper

