
IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 1

Non-blocking Testing for Network-on-Chip
Letian Huang, Member, IEEE, Junshi Wang, Student Member, IEEE, Masoumeh Ebrahimi, Member, IEEE,

Masoud Daneshtalab, Member, IEEE, Xiaofan Zhang, Guangjun Li, and Axel Jantsch, Member, IEEE

Abstract—To achieve high reliability in on-chip networks, it is necessary to test the network as frequently as possible to detect physical
failures before they lead to system-level failures. A main obstacle is that the circuit under test has to be isolated, resulting in network
cuts and packet blockage which limit the testing frequency. To address this issue, we propose a comprehensive network-level approach
which could test multiple routers simultaneously at high speed without blocking or dropping packets. We first introduce a reconfigurable
router architecture allowing the cores to keep their connections with the network while the routers are under test. A deadlock-free and
highly adaptive routing algorithm is proposed to support reconfigurations for testing. In addition, a testing sequence is defined to allow
testing multiple routers to avoid dropping of packets. A procedure is proposed to control the behavior of the affected packets during the
transition of a router from the normal to the testing mode and vice versa. This approach neither interrupts the execution of applications
nor has a significant impact on the execution time. Experiments with the PARSEC benchmarks on an 8×8 NoC-based chip
multiprocessors show only 3% execution time increase with four routers simultaneously under test.

Index Terms—Reconfigurable Router Architecture, Built-In Self-Test, On-chip interconnect, Single-chip multiprocessors

F

1 INTRODUCTION

N EW sources of faults in transistors and interconnects
are growing concern due to aggressive CMOS scaling

[1]. Hence, researchers have turned their attention to meth-
ods to develop reliable systems from unreliable components,
managing both design complexity and process uncertainty
[2] [3]. Many approaches have been proposed to tolerate
various types of faults in different components of NoCs [4]
[5] [6] [7] [8]. However, to take measures actively, detecting
and diagnosing faults is a precondition in activate tolerance
mechanisms.

Physical phenomena such as wear-out and process vari-
ation may cause circuit-level faults in different components
of the network. Most of these faults have serious impacts
on the network behavior and performance. For example,
a physical failure may lead to an illegal turn which may
form a cycle leading to a deadlock. Such situations are
difficult to detect and there are few attempts in literature
to address deadlock detection [9] [10]. In addition, the
entire network may crash already before the deadlock is
detected. Faults in the control path of a router introduce
complex patterns which are beyond the capability of error-
correcting codes (ECC). Common solutions such as End-to-
End retransmission significantly increase the packet latency
and the execution time of applications [11] in addition to the
need of a supporting infrastructure such as an Ack/Nack
protocol.

The “Incubation period” is defined as the period be-

• L. Huang, G. Li, J. Wang and X. Zhang are with the Universi-
ty of Electronic Science and Technology of China, Chengdu, Sichuan,
611731, P.R.China. e-mail: {huanglt,gjli}@uestc.edu.cn, {wangjsh,
zhangxf}@std.uestc.edu.cn

• M. Ebrahimi and M. Daneshtalab are with the Royal Institute of Technol-
ogy in Sweden. e-mail: {mebr,masdan}@kth.se

• A. Jantsch is with the Institute of Computer Technology, Vienna Univer-
sity of Technology, Vienna, Austria. e-mail: axel.jantsch@ict.tuwien.ac.at

• The first three authors have made the major contributions for this paper.

Manuscript received ; revised .

tween the occurrence of a physical failure and the obser-
vation of a fault on the network level. If physical failures
can be detected within the incubation period, the fault-
tolerant mechanisms such as a proper routing algorithm or
a redundancy technique can be applied to prevent network-
level faults. Thereby, suitable mechanisms are demanded to
detect and diagnose physical failures before they lead to
serious effects on the network.

Among previous works in the realm of fault tolerance,
some rely on off-line testing mechanisms [12] [13] [14].
These approaches are not scalable and they need additional
resources for the testing purposes. Moreover, faults caused
by environmental conditions such as thermals stress, IR-
drop, and wear-out can be hardly detected by off-line testing
due to the difficulty of creating similar working conditions
in a dynamic environment and designing a proper test-
ing mechanism for them. Other traditional error detection
mechanisms deal with faults in the data path (e.g. buffers,
crossbar unit, and link transmission) [15] [16] or control
path (e.g. virtual channel allocation, switch allocation, and
routing computation units) [17] [18] of a router. However,
these approaches alert long after circuit faults or network
failures have already occurred.

On top of the above mentioned mechanisms, built-in
self-test (BIST) is another common mechanism in digital
circuits to detect faults at run-time. The circuits under test
are driven by specific input sets in order to cover as many
potential faults as possible. The faults in the testing units can
be diagnosed based on the responses of the input patterns.
Multiplexers are used to isolate the circuit under test from
the remaining part during the testing period. On-line BIST
can be applied on both the data and control paths of a router.
The fault coverage can be improved by carefully choosing
the test patterns. More importantly, on-line BIST is able to
raise the alarm at real time, rendering enough time to apply
fault-tolerance techniques. Despite the advantages of BIST,
the unit under test should be disconnected from the network



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 2

using some wrappers during the testing procedure. Such
isolations will affect the network performance heavily. In
more details, the traditional methods mainly suffer from
three problems. First, by disabling a router, the network
connectivity and integrity will be disturbed which demands
an advanced routing algorithm to support such irregularity.
Second, the processing core will be disabled along with
the routers under test (RUT), blocking all packets sending
to/from this core or passing through the router. Third, the
underlying application will be halted because of cache co-
herence protocols or data dependencies between the cores.
Task migration may be a possible solution but it is a costly
approach since a testing procedure usually does not last
long.

In summary, to enhance the reliability of NoCs at real
time, on-line BIST mechanisms should be applied as fre-
quently as possible. This helps to detect and diagnose faults
early enough and subsequently allows taking countermea-
sures. In this paper, we propose a network-level approach
enabling BIST to be applied at real-time. The main contribu-
tions are as follows:

1) A reconfigurable router architecture is proposed
with bypassing channels to keep all processing cores
accessible from every other core in the network
despite the isolation of RUT. In other words, this
architecture guarantees the integrity between com-
putational units and memory blocks in many-core
systems.

2) An adaptive routing algorithm is proposed which
is able to limit the performance loss imposed by
disabled routers. This algorithm has the capability
to support multiple RUT without any packet drop
except some specific patterns of RUT. To prevent
any packet drop in the network, we introduce a
testing sequence where the unsupported patterns
are never taken.

3) A network-level testing approach is proposed to
control the affected packets in the transition phase
of the routers from normal to testing mode and vice
versa. Unlike traditional methods, the proposed ap-
proach does not block any packet during the testing
process. A finite-state machine (FSM) controls the
behavior of packets and allows them to be routed in
the network.

Combining these techniques a comprehensive approach
is obtained called TARRA where “T” stands for the network-
level Testing strategy, “AR” refers to Adaptive Routing and
“RA” represents the Reconfigurable Architecture.

The reminder of this paper is organized as follows. In
Section 2, related work on fault detection and reconfigurable
router architecture is reviewed. In Section 3, the proposed
reconfigurable router architecture is described. Section 4
introduces the adaptive routing algorithm on the proposed
router architecture. In Section 5, the network-level testing
approach is presented. Experimental results on synthetic
traffic profiles and PARSEC benchmarks are reported in
Section 6 while the summary and conclusion are given in
the last section.

2 RELATED WORK

Fault detection and testing mechanisms are two main as-
pects in the domain of design for test. The fault detection as-
pect has been studied and investigated in several works [15]
[16] [17] [18]. Among them, error detection codes (EDCs)
are widely used in NoCs because they are light-weight and
flexible [15] [16]. Hamming codes and parity check codes
are popular though their capabilities are limited. NoCAlert
which could be defined as assertion-based methods is pro-
posed in [17], employing some checkers to detect any of
the listed in variances. The checkers or monitors are light-
weight and significantly smaller than the units they check.
However, both EDCs and monitors could not pre-detect the
faults and can only detect physical failures which have been
triggered.

A typical BIST consists of different components in order
to generate test vectors and analyze the outputs of the
testing unit. BIST can be used both off-line and on-line.
The inputs of the units are controlled by multiplexers and
they are switched between normal packets or test packets
generated by the BIST circuit. A wrapper is formed by the
multiplexers used in each input and output along with the
control logic. A wrapper may isolate one or several compo-
nents inside a router [4] or it may cover an entire router in
addition to some components from the neighboring routers
[19] [20] [21] [22] [23]. A wrapper for an entire router based
on IEEE 1500 is presented in [19]. The presented wrappers
in [20] [21] and [22] cover the transmission link, the output
buffers, and the input buffers of the neighboring routers.
The presented wrapper in [23] includes the router along
with the output buffers of upstream routers. If the wrapper
only contains a small piece of the circuit within one router,
the test vectors can drive the input of this circuit directly like
the one in [4]. In most cases, test vectors are applied through
packets so that the test vectors are stored in the payload flits.
For detecting faults in the data path, the correctness of test
vectors should be examined. To detect faults in the control
path, the correct delivery of packets should be checked.

Different testing approaches have been proposed to
organize the testing procedures more efficiently in terms
of time, power consumption and hardware overhead. For
those detection and diagnoses methods where test vectors
are distributed through the network packets, it is vital to
design the testing packets efficiently in order to increase the
fault coverage.

In some works these packets are distributed all over
the network. For example, in [24], sixteen packets are used
to cover the maximal aggressor fault (MAF) on all links,
including network interfaces within a 4×4 mesh NoC. The
proposed idea in [12] is based on sending test packets
along straight-paths, turn-paths and resource-paths. The
suggested paths in [25] are made up of straight-paths,
turn-paths and U/Z-shape double-turn paths. Some other
choices are presented in [26] and [27] where the packets
containing the test vectors are transmitted within a 2×2
sub-network to detect the short circuit faults in both data
and control paths. The contention between data packets and
test packets in the network is the main shortcoming of the
aforementioned works. Another disadvantage is that they
cannot locate faults. Therefore, some of the presented ap-



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 3

proaches are based on sending test-vector packets between
neighbors [23]. In [23], the test procedure is divided into
nine phases with different selected paths. A multicast test-
vector transport based testing approach is discussed in [28],
which exploits the inherent parallelism of the data transport
mechanism to reduce the test time and the test cost. The
source and destination of test packets are chosen from the
neighboring routers or the network interface of RUT. The
work in [29] utilizes three different kinds of packets between
RUT and its neighbors to detect faults on communication
channels, output port arbiters and the routing units.

In traditional methods, to test a router, both the router
and the connected processing element are disconnected
from the network using a wrapper. The disabled part in-
terrupts the normal traffic flow in the network which causes
heavy traffic congestion. The testing approach in both [30]
and [23] is based on BIST with wrappers to disconnect the
testing parts. A token-based approach is used to determine
the testing sequence and only one router is chosen at a
time. In [30], there is no interval between testing two routers
because it is an off-line testing approach. In [23], however,
an interval of 10,000 flits is considered between each two
tests to retrieve the network from congestion before testing
another router.

The design of the reconfigurable router which could be
used for keeping connectivity of the whole system while
one or more routers are under test is the basis of non-
blocking online testing for network-on-chip. Unfortunately,
most works do not provide a proper solution. In [4], a bus is
shared by all input and output ports and is used to replace
the crossbar when it fails. Using this approach, cores can
access the network through the bus but the performance
would be largely affected. NoRD is proposed in [31] where
a separate virtual channel is used to connect all cores to
each other through a ring. The main shortcoming of NoRD
is that the ring will be very long and the performance will
significantly loss if the network scale is large.

In summary, even though a wide variety of testing
approaches has been proposed, in all of them the execution
of applications is interrupted. So, these approaches are not
suitable where frequent on-line testing is demanded. The
shortage is mainly caused by the incomplete connectivity of
the network which forces blocking or dropping packets.

3 RECONFIGURABLE ROUTER ARCHITECTURE

We have utilized the routing algorithm presented in [32]
which is able to keep the core in the network despite
connecting to a disabled router (either because of faults or
testing the router). When a router is disabled, it is recon-
figured and acted as a bypassing router, maintaining the
connectivity between the routers in horizontal and vertical
directions. In this paper, we improve the design of the
reconfigurable router and the routing algorithm based on
the idea of [32]. We first describe the reconfigurable router
architecture. In the next section, a proper routing algorithm
for this architecture is introduced.

3.1 Default Router Architecture
In the TARRA configuration, one and two physical chan-
nels are used along the X and Y dimension, respectively.

Fig. 1: The reconfigurable router with three different modes:
(a) A router using crossbar unit (b) default bypassing con-
nections (c) default bypassing connections of top borderline
routers

This is the minimum amount of channels to provide fully
adaptiveness in 2D mesh networks. As shown in Figure
1(a), each router has seven pairs of channels, i.e. Local(L),
East(E), West(W), North1(N1), North2(N2), South1(S1) and
South2(S2). By default, the input and output channels are
connected through a crossbar unit (Figure 1(a)).

TABLE 1: Default bypassing connections except top border-
line routers

Input channels L E W N1 N2 S1 S2
Output channels N1 W E S1 L S2 N2
Output channels S1 W E - - S2 L
of top border line

When a router is under test, the input channels are
directly connected to the output channels through bypass-
ing channels (Figure 1(b)). In this situation, the local core
delivers its packets through the north neighboring router
by utilizing the N1 channel (i.e. L-to-N1). The core receives
packets from the north neighboring router by using the N2
channel (i.e. N2-to-L). As shown in Table 1, the other static
connections are as: N1-to-S1, S2-to-N2, S1-to-S2, E-to-W and
W-to-E.

Bypassing connections are valid for all the routers except
the top borderline routers as they do not have any north
neighboring router to make a connection with. In this case,
the local core sends and receives packets through its south
neighboring router. Figure 1(c) shows the default connec-
tions of the top borderline routers, also listed in Table 1. The
bypassing connections are not only beneficial to keep the
integrity of the network when the router is under test but
also useful to reduce the latency. This is due to the fact that
the bypassing connections directly connect the neighboring
routers to each other without processing the packets in
RUT. The north or south neighbor of RUT, which helps the
packets to reach the core connected to RUT, is implicitly
called “ladder router”.

Figure 2 shows an example where three routers (i.e. at
locations 4, 7 and 14) are under test and the bypassing
connections are employed. The router 12 performs as the
ladder router to send and deliver packets to/from the core
7 while the router 9 is the ladder router of both the cores 4
and 14.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 4

Fig. 2: An example of three testing routers and use of
bypassing connections

3.2 General Rules Guranteeing Deadlock and Livelock
Freedom
In the TARRA routing algorithm, the network can be parti-
tioned into two disjoint subnetworks covering disjoint sets
of channels as: ((X+)(Y1+)(Y1-) and (X-)(Y2+)(Y2-), called as
subnetwork A (Figure 3(a)) and subnetwork B (Figure 3(b)),
respectively.

Fig. 3: Two disjoint subnetworks formed by dividing the
channels

A cycle cannot be formed within each subnetwork. This
is due to the fact that to form a cycle at least four directions
are needed (X+, X-, Y+ and Y-). However, each of the
subnetwork A and B cover three directions as (X+, Y1+ and
Y1-) and (X-, Y2+ and Y2-), respectively. Therefore, there
is no possibility of forming a complete cycle within each
subnetwork. It is also necessary to prove that subnetworks
are disjoint from each other, so a cycle cannot be formed
between subnetworks. As shown in Figure 3(a) and (b),
two subnetworks are completely disjoint from each other
and they do not share any channel with each other. As a
result, the network is deadlock free if packets are solely
belonging to either the subnetwork A or the subnetwork
B. To improve the routing flexibility, packets can also switch
between subnetworks, but only once. This will not lead to
a deadlock because no complete cycle can be formed. As
shown in Figure 3(c), in the TARRA algorithm, packets in
the subnetwork A can safely switch to the subnetwork B but
after the transition, packets are not able to take any channel
of the subnetwork A anymore.

The TARRA algorithm is livelock free as in the worst
case packets belonging to the subnetwork A reach the
easternmost column and continue routing by switching to
the subnetwork B. Since there is no chance of switching to
the subnetwork A again, the movement is limited and the
algorithm is livelock free.

4 FULLY ADAPTIVE ROUTING ALGORITHM

It is common that routing algorithms reorganize the traffic
on routers in the case of faults which results in a significant
performance loss. We propose a new routing algorithm for
TARRA based on the algorithm in reference [32] to improve
the performance. In this section, we first describe the prop-
agation of the router status, i.e. disabled or working, in
a 3 × 3 area. Each router should be informed about the
status of eight direct/indirect neighboring routers. In the
routing algorithm, the status of indirect neighboring routers
(Northeast, Northwest, Southeast and Southwest) are used
only when the destination router is under test and packets
should be routed to the ladder router.

In this section, the basic form of the TARRA algorithm
without any RUT is introduced first. After that, we inves-
tigate all situations where an intermediate router, a source
router or a destination router is under test. It will be shown
that, all situations are covered by the TARRA algorithm and
no packet is dropped in the network. The entire algorithm is
given in Pseudo code. Finally, the capability of the routing
algorithm to tolerate RUT is investigated.

4.1 Default Path Choices of the Routing Algorithm
In the TARRA routing algorithm, the east, south, northeast
and southeast-bound packets are routed in the subnetwork
A in which they can freely use any channels belonging
to this subnetwork including the E, N1 and S1 channels
(Figure 3(a)). The west, north, northwest and southwest-
bound packets are routed in the subnetwork B and they can
use any of the W, N2 and S2 channels (Figure 3(b)) without
any limitation. In addition, all packets in the subnetwork
A can switch to the subnetwork B but not vice versa. As
shown in Figure 4(a), the east, west, north and south-bound
packets route normally, respecting the channel assignment.
For example, the south-bound packets use the S1 channels
belonging to the subnetwork A while the north-bound pack-
ets use the N2 channels belonging to the subnetwork B.

Fig. 4: The default path choices of the routing algorithm (The
blue and green lines indicate the channels of the subnetwork
A and the subnetwork B, respectively)

As long as a packet has not reached the 3×3 area, a fully
adaptive routing algorithm is applied to deliver the packet
to the destination. The northeast, southeast, northeast and
southwest-bound packets also choose their routes from two
possible directions as X-axis or Y-axis according to the con-
gestion of two neighboring routers. For example, as shown



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 5

in Figure 4(b), a northwest-bound packet can choose its path
from north or west freely. All packets use these default paths
as long as they are outside of a 3 × 3 region with a router
under test in the center.

4.2 Tolerating a Intermediate Router under Test
In this subsection, we investigate the cases that RUT is
located in an intermediate router rather than the source or
destination one. Figure 5(a) shows examples where RUT
is simply bypassed by the east, west, north and south-
bound packets. Consistent with the router architecture of the
bypassing router, shown in Figure 1(b), north-bound packets
are able to bypass RUT using the N2 channel while south-
bound packets use S1 in order to bypass RUT. Figure 5(b)
shows an example where a northeast packet is delivered
from the source core 1 toward the destination core 20.
Along the path, at each intermediate router, an available
neighboring router is chosen for the packet (e.g. at the router
4 in Figure 5(b), the east neighbor is selected, and at the
router 8, the north neighbor is chosen) unless both routers
in minimal directions are under test (e.g. at the router 1).

Fig. 5: Different locations of an intermediate router under
test

In this case, the packet should be sent to the east di-
rection to bypass RUT. The reason for this choice is that, if
the north direction is selected, the packet has to be routed
through N2, meaning that the packet switches to the subnet-
work B. However, the subnetwork B does not cover the east
direction and thus the packet cannot reach the destination
from the router 11. Using the bypassing connections, the
packet should be sent to the east direction at the router
14. However, since the router 15 is under test, the packet
is sent to the north direction. Similar examples can be
used for the southwest, northwest and southwest packets.
In short, RUT can be ignored by selecting a functioning
neighbor along the path. If both neighbors in a minimal
path are under test, then the packet is routed through the
bypassing connections. This example shows that all packets
are able to reach from any source core to any destination
core regardless of an intermediate router under test.

4.3 Tolerating a Destination Router under Test
Figure 6 shows all situations where a packet is sent to a
core, i.e. connected to a destination router under test, from
any locations in the network. Figure 6(a) shows the cases
where a destination is located to the east and west of source
routers. The survived core is accessible through its south

neighboring router (using the N2 channel) when standing in
the top borderline, otherwise through the north neighboring
router (using the S2 channel). Westward packets belong to
the subnetwork B where the W, N2, and S2 channels can
be taken without any limitation. Eastward packets belong
to the subnetwork A where the E, N1, and S1 channels can
be freely taken. Packets must switch to the subnetwork B to
take N2 or S2 and access the destination core. As it has been
already discussed, switching from the subnetwork A to the
subnetwork B is allowable.

Figure 6(b) shows examples of northward and south-
ward packets. Southward packets, by default, are routed
through the S1 channel and they can bypass RUT using the
same channel. However, if the destination router is under
test, packets legitimately switch to the S2 channel which is
directly connected to the destination core. For northward
packets, by default, the N2 channel is used. Thereby if RUT
is in the top borderline, the packet can directly reach the
destination core. Otherwise, at first RUT is bypassed to
reach the ladder router and then the packet is forwarded
to the destination core.

As can be seen in Figure 6(c) and Figure 6(d), packets are
routed using a fully adaptive routing algorithm until they
reach the 3 × 3 area surrounding RUT. Upon reaching this
area, different routes are selected based on the position of
the packet regarding the faulty router.

If the packet reaches north, south, west and east neigh-
bors of the faulty destination, they can choose a path to the
ladder router as shown in Figure 6(a) and Figure 6(b). If the
packets reach the southwest and southeast neighbors of the
faulty destination (router 7 and router 9 in Figure 6(c)), they
can only choose the path to the south neighbor of RUT and
then reach the ladder router through the bypassing channel.
If the packets arrive at the northwest or northeast neighbors
of the faulty destination (router 12 and router 14 in Figure
6(d)) they can only choose the path to the ladder router.

This example shows that all packets are able to reach
from any source core to any destination core regardless of
the destination router under test and without violating any
rule.

The TARRA algorithm respects the general rules of chan-
nel assignments in all conditions without exception. This
guarantees that the algorithm is deadlock and livelock free.
In the other words, in all cases, packets are either belonging
to the subnetwork A or the subnetwork B. In addition,
packets belonging to the subnetwork A can switch to the
subnetwork B but not vice versa.

4.4 Tolerating a Source Router under Test

Figure 7 shows all cases to prove that a packet can reach
to any core in the network if delivered from a source core
connected to RUT. In all cases, the packet is delivered to
the ladder router. For this transmission, first the N1 or S1
channel is used which belongs to the subnetwork A. The
east, south, northeast, and southeast-bound packets contin-
ue in the subnetwork A to reach the destination router while
the west, north, northwest and southwest-bound packets are
routed in the subnetwork B. Thereby, all packets are able to
reach from any source core to any destination core regard-
less whether a source router is under test. The complete



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 6

Fig. 6: Different locations of a destination router under test

Fig. 7: Different locations of a source router under test

Pseudo-code of the TARRA routing algorithm is shown in
Figure 8.

4.5 Reliability Analysis of multiple routers under test

4.5.1 One router under test

We have already proved that all locations of a single router
under test are supported in the network without any packet
drop and by allowing all cores to function normally.

4.5.2 Two router under test

As it is shown in Figure 9, only four patterns are not
supported when two routers are under test at the same time.
In traditional methods, routers are tested one by one and
these patterns are never happened. However, when multiple
routers are tested simultaneously, there is a possibility that
these unsupported patterns occur. In this paper, a new test-
ing sequence is defined in Section 5 and these unsupported
patterns would never be selected according to this testing
sequence.

4.5.3 Three or more routers under test

The unsupported patterns with three or more routers under
test consist of the unsupported patterns with two routers
under test and any single router under test. These patterns
should be also avoided when multiple testing is applied,
covered by the defined testing sequence strategy.

5 NETWORK-LEVEL TESTING STRATEGY

5.1 Testing sequence of routers

We define TT as a testing cycle for single router and TIT
(Test Interval Time) as a complete testing cycle within which
all routers are tested, backing to the first router again (Figure
10). The time interval between the start of testing two
adjacent routers (e.g. router 0 and router 1 in Figure 10)
can be obtained by dividing TIT to the number of routers in
the network. If testing is applied more frequently, TIT might
become shorter than the overall testing cycle of all routers,
and thus the test of multiple routers is overlapped. The
number of overlapped RUT at one time can be calculated
as:

#overlapped RUT =

⌈
TT × #router

TIT

⌉
(1)

The range of TIT for k overlapped RUT is

TT × #router
k

≤ TIT <
TT × #router

k − 1
(2)

We propose the idea of testing multiple routers which is
supported by the proposed reconfigurable architecture and
its supportive routing algorithm.

In multiple RUT, it is essentially important that disabling
several routers does not lead to any packet drop which has
been guaranteed in the defined testing sequence strategy.

Each router contains a timer driven by the clock signal,
called “testing interval timer”. The timer may have different
initial values (TIV) for different routers and will be reset
when it overflows (Figure 10). The sequence of routers going



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 7

Fig. 8: The pseudo-code of the TARRA routing algorithm

Fig. 9: Unsupport patterns of two routers are under test at
the same time (a) diagonal-A (b) diagonal-B (c) columnar
(d) row-at-edge

to the test mode is controlled by this initial value. The initial
value can be measured by:

TIV (A) =
Seq(A)× TIT

#router
(3)

Fig. 10: Testing Control

in which, TIV (A) is the initial value of router A and Seq(A)
is the sequence number of router A in test sequence.

The test sequence determines the order of routers in
the testing cycle. Two common types of sequences are as
the natural sequence and ring sequence. In the natural se-
quence, ordering is simply obtained by reducing/increasing
the router number by 1 as shown in Figure 11(a).

Under a high testing frequency, multiple routers should
be tested together respecting the testing sequence strategy.
Thereby, some testing patterns such as testing two adjacent
routers (e.g. the router 0 and 1) may fall into the unsupport-
ed patterns similar to Figure 9(d) which in turn may lead to
dropping packets. In the ring sequence technique [23], the
testing order is shown in Figure 11(b).Based on this testing
sequence, some unsupported patterns similar to Figure 9(c)
and Figure 9(d) may be formed.

Considering the unsupported patterns in Figure 9, we
propose an odd-even sequence which allows multiple test-
ing without any packet drop. In the odd-even sequence, first
the routers with odd numbers are tested and then those with
even numbers. The proposed odd-even sequence is shown
in Figure 11(c). This testing sequence does not lead to any
unsupported patterns as long as the maximum number of
routers under test does not exceed a

2 in the a× b network.

5.2 Control over the transition phases of routers
In the normal functioning mode of a router, the crossbar unit
is used to deliver packets from an input port to an output
port while in the testing mode, default bypassing channels
are utilized. In the testing stage, the crossbar unit should
be disabled and the default bypassing connections should
be established. In our proposed method, the testing mode
involves three stages as Emptying, Testing and Recovering,
shown in Figure 13 and described as follows.

In the emptying stage, the crossbar unit functions nor-
mally. This stage includes two sub-steps as:

1) Routing completion of packets on fly: First, packets on
fly should be routed before any phase transition. Let
us assume that the router A is going to be tested and
thus it needs to be switched from the normal mode
to the bypassing mode. For this purpose, it sends
an empty-request signal to the neighboring routers.
Upon receiving this request, the neighboring router-
s temporarily stop sending any new packets to
this router (Figure 12(a)) but proceed to deliver all
packets which have already been partially delivered
(Figure 12(b)). By transferring all flits of incomplete



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 8

Fig. 11: Three different test sequence: (a) natural sequence (b) ring sequence (c) odd-even sequence

Fig. 13: Neighboring ports test state machine and control over the transition phases. The FSM of the router under test and
the neighboring routers are illustrated using blocks in the left and right side of the figure, respectively. The handshake
signals between the router under test and the neighboring ports are shown in the center.

packets, the neighboring router sends an empty-
acknowledge signal to the router A.

2) Delivering all packets already inside the router: Second,
packets which are partially/completely stored in
the buffers should be routed completely. The router
A requires to empty all its input buffers following
the selected routes (Figure 12(c), (d), and (e)). In
the situation of Figure 12(f), packets are already
transferred to the next router and thus they are not
affected by the transition phase. If the packets could
not be ejected to the neighboring router, they will
be blocked in the emptying router and wait tem-
porarily. As soon as the router A is emptied and all
empty-acknowledge signals are received from the
neighboring routers, the crossbar unit is disabled
and the bypassing links are activated.

When the router goes to the testing mode, it works as
a bypassing router where packets can be delivered in hori-
zontal and vertical directions, keeping the connectivity with

the processing unit as described in Section 3. Right after
establishing the bypassing links, the neighboring routers
start sending packets again, implying that the period of
blocking packets is very short and not affecting the network
performance.

To perform the actual test on the router in the testing
stage, a proper approach such as BIST should be applied.
The detail of such testing approaches is beyond the scope of
this paper.

In the recovering stage, when the router goes from the
testing mode to the normal mode, the default bypassing
connections should keep activated. For this purpose, all
incomplete packets in the corresponding ports of the neigh-
boring routers are completely delivered.

The router A sends empty-request signals to the neigh-
boring routers. The neighboring routers deliver all incom-
plete packets using the bypassing channels and stop sending
any new packets to RUT. When this action is performed, the
neighboring routers send empty-acknowledge signal to the



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 9

Fig. 12: Different types of packets during emptying and
recovery. (a)-(f) are packets during emptying phase; (g)-(i)
are packets during recovery phase; (H: head flit; B: body flit;
T: Tail flit)

router A. By receiving all empty-acknowledge signals at the
router A, it enters the normal mode where the crossbar unit
should be enabled and the bypassing connections should be
disabled.

Different types of packets during the recovering mode
are shown in Figure 12(g)-(i). In the situation of Figure 12(g)
packets should be temporarily blocked in the neighboring
routers until the transition is completed and the router backs
to its normal functioning mode. In Figure 12(h) packets
should be completely delivered using the bypassing chan-
nels. The packets of Figure 12(i) are already delivered to the
neighboring router and thus they are not affected by this
transition phase.

The whole procedure is shown in Figure 13. Testing
a router starts when the testing interval timer overflows
and thereby the router enters the emptying stage. Two
handshake signals, empty-request and empty-acknowledge
are used to synchronize between RUT and its neighboring
routers.

5.3 Testing of additional circuits

In TARRA, the additional components of testing such as
bypassing channels, testing interval timer, and finite-states
machine are also prone to fault. As these circuits are not
used during the normal functioning mode of a router, they
can be easily tested by BIST.

6 EXPERIMENT RESULTS AND DISCUSSION

6.1 Experiment Setup

To evaluate the efficiency and performance of TARRA, we
performed system simulations. We use SimpleScalar aug-
mented with POPNET simulating an 8×8 NoC-based CMP.
Sixty-four CPU cores are configured based on Alpha 21264.
Each processor node has a private 32KB L1 cache and 128KB
L2 cache (8MB shared distributed L2 for the entire system).
Each router in this network has seven physical ports (one
for each of the local, east and west ports and two for each
of the north and south ports) with a 12-flit buffer at each

physical port. Each packet has 5 flits. No virtual channel is
employed.

In [4], it takes 1000 cycles to test the data path of a
router and 150000 cycles to test the control path with 25000
patterns. In [23], the duration of testing procedure is about
1200 cycles for a different testing model. Thus, we ran
simulations based on two values for the testing period of
a single router:

1) 500 cycles: Based on these assumptions, an entire
testing period takes 32,000 clock cycles (=500×64
routers) without considering any timing interval
between two routers. If the frequency of testing in-
creases (TIT <32,000 clock cycles), multiple routers
have to be tested in parallel. On the other hand,
by decreasing the testing frequency (TIT >32,000
clock cycles), the testing interval time between two
router increases. To cover different cases, we chose
TIT range of 10,000 to 1 million for the entire testing
period where we consider both multiple RUT (from
2 to 4 routers simultaneously) and one RUT with
various timing intervals between each two routers.
The relationship between TIT and the number of
overlapped RUT is shown in Table 2.

2) 1000 cycles: In this case, an entire testing period
takes 64,000 clock cycles (= 1000×64 routers). There-
by, the range of 10,000 to 1 million clock cycles is a
reasonable assumption, covering all different cases
of multiple and single router(s) under test.

TABLE 2: Relationship between TIT and the number of
overlapped RUT

overlap
router(s)

test
cycle 500-cycle 1000-cycle

1 TIT ≥ 32000 TIT ≥ 64000
2 16000 ≥ TIT > 32000 32000 ≥ TIT > 64000
3 10889 ≥ TIT > 16000 21333 ≥ TIT > 32000
4 8000 ≥ TIT > 10889 16000 ≥ TIT > 21333

TARRA is compared with the baseline approach which
has been described in [23]. In the baseline method [23],
packets have to be blocked in the input buffers until the
testing period is ended. In the other words, packets are
blocked not only during the emptying and recovering phase
but also during the testing phase. This freezing period will
quickly result in blocking packets in the network, which will
be resolved when the router backs to its normal functioning
mode. All the other conditions are the same for the pro-
posed and the baseline method such as the applied testing
sequence.

The different synthetic traffic profiles which are used for
evaluation the latency are shown in Table 3. The latency is
obtained based on two different packet injection rates (PIR)
0.005 packets/cycle/router and 0.020 packets/cycle/router.

To evaluate the efficiency of TARRA and the baseline
method [23] on real applications, we measure the execu-
tion time on PARSEC benchmarks [33]. Applications are
executed for 100 million instructions. The execution time is
measured under the similar condition (i.e. the testing period
of one router and the range of total testing cycle) as in the
synthetic traffic profiles.



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 10

TABLE 3: Traffic profiles used in simulation

Uniform To each router chosen randomly.
Transpose1 (x,y)→ (7-y,7-x).
Transpose2 (x,y)→ (y,x).
BitReversal Destination id is the bit reversal of source id.

Suffle Destination id is the right loop shift of source
id.

Butterfly Get destination id by swaping the LSB and
MSB of source id.

6.2 Hardware Overhead

TABLE 4: Power and area analysis

TARRA Baseline [23]
Leakage Power 749.14µW 720.47µW
Dynamic Power 483.08µW 452.71µW
Area 50.74µm2 48.60µm2

*The area and power of BIST circuits are not considered in table.

To assess the area overhead and power consumption,
TARRA and [23] router architectures are synthesized using
Synopsys Design Compiler. For synthesizing, we use the
TSMC45nm technology at the operating frequency of 1GHz
and supply voltage of 0.9V. The overhead of the BIST circuit
is not included as the test circuit design is outside the scope
of this paper. The power consumption and area overhead
of TARRA and the baseline methods are comparable as re-
ported in Table 4. The small differences (3% leakage power,
6% dynamic power, and 4% area overhead) are because of
employing the bypassing connections in the TARRA archi-
tecture which have not been used in the baseline method.

6.3 Timing Penalty During Emptying and Recovering
Phases
As already described, packets affected by RUT are only
blocked in the emptying and recovering phases and are
routed in the other phases (normal and testing modes). We
argued that the emptying and recovering states are too short
to affect the network performance. In Table 5 and Table 6, we
reported the average number of cycle spent in these periods
under synthetic and PARSEC benchmarks, respectively. We
give out the maximum, average and minimum value among
different TIT. The maximum number of average cycles is
3.67 and 2.67 under the Transpose2 traffic profile when the
packet injection rate is 0.020 and 0.005 packet/cycle/router.
On average less than 2 cycles is spent on the emptying and
recovering periods.

Either emptying or recovery periods are much shorter
than TIT. So, the network would not be blocked and packets
are not dropped if the packet injection rate is not very high.
Comparing the emptying and recovery periods, it is obvious
that the emptying mode takes longer than the recovery
mode. The reason is that the emptying phase includes both
delivering the incomplete packets in the local router and
in the neighboring routers. The recovering phase, on the
other hand, only deals with the incomplete packets in the
neighboring routers as the local router is under test and
bypassed.

Regarding the packet injection rate (Table 5), a higher
PIR leads to a longer emptying and recovering phases.
This behavior can be explained by the queueing theory. A

TABLE 5: Number of cycles in the emptying and recovering
states under different traffic profiles

Traffic Empty Cycle (cycle) Recover Cycle (cycle)
Profiles Min Aver Max Min Aver Max

PIR = 0.005 packets/cycle/router
Uniform 1.00 1.40 1.47 1.00 1.24 1.67
Transpose1 1.16 1.44 2.00 1.00 1.20 1.50
Transpose2 1.13 1.59 2.67 1.00 1.15 1.33
BitReversal 1.33 1.54 2.17 1.00 1.20 1.50
Shuffle 1.00 1.32 1.47 1.00 1.16 1.42
Butterfly 1.00 1.27 1.45 1.00 1.07 1.13

PIR = 0.020 packets/cycle/router
Uniform 2.39 2.68 3.17 1.33 1.78 2.33
Transpose1 1.83 2.61 3.33 1.17 1.65 2.83
Transpose2 2.63 2.99 3.67 1.39 1.57 1.67
BitReversal 1.83 2.70 3.29 1.41 1.74 2.33
Shuffle 2.23 2.55 3.58 1.33 1.59 2.00
Butterfly 1.17 2.01 3.10 1.00 1.31 1.74

TABLE 6: Number of cycles in the emptying and recovering
states under PARSEC benchmarks

Empty Cycle (cycle) Recover Cycle (cycle)
Benchmark Min Aver Max Min Aver Max
blackscholes 1.00 1.22 1.32 1.03 1.10 1.19
caneal 1.46 1.57 1.69 1.13 1.22 1.27
dedup 1.06 1.09 1.12 1.00 1.03 1.06
fluidanimate 1.75 1.85 1.97 1.33 1.39 1.49
freqmine 1.00 1.01 1.01 1.00 1.00 1.00
raytrace 1.23 1.30 1.43 1.05 1.11 1.13
streamcluster 1.13 1.15 1.23 1.05 1.07 1.11
swaptions 1.00 1.01 1.01 1.00 1.00 1.01
vips 1.02 1.03 1.05 1.00 1.01 1.02

higher PIR leads to a more number of flits stored in buffers
which have to be completely delivered during emptying
and recovering phases.

6.4 Latency Measurement under Different Traffic Pro-
files
Figure 14 and Figure 15 illustrate the average latency under
different traffic profiles with the packet injection rate of 0.005
and 0.020 packet/cycle/router, respectively. The most im-
portant point in these figures is that on-line testing does not
affect performance when TARRA is applied. This includes
both single router under test with different timing intervals
and multiple routers under test up to four simultaneous
routers. For uniform traffic, the latency only increased by 0.1
cycle and 0.2 cycle at most with two PIRs respectively. The
main reason is that the bypassing approach enables packets
to be routed in the network during the testing period which
is in contrast with the baseline method where packets have
to be blocked in the neighboring buffers of RUT, resulting
in the network contention quickly.

Another observation is the significant negative effect
of the decreased testing period on the execution time of
the baseline approach. The on-line testing approach cannot
be applied in the baseline method when the entire testing
period is less than 50,000 and 100,000 cycles considering the
testing period of 500 and 1000 cycles for a single router,
respectively. This is far beyond the capability of testing
multiple routers. However, in our approach, the effect of
the testing period and TIT is negligible on the latency.

However, for TARRA, latency is not influenced sig-
nificantly by the testing process and TIT. On-line testing



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 11

Fig. 14: Average latency under different traffic profiles for the packet injection rate of 0.005 packet/cycle/router. 500 and
1000 represent the number of testing cycles at each router.

Fig. 15: Average latency under different traffic profiles for the packet injection rate of 0.02 packet/cycle/router. 500 and
1000 represent the number of testing cycles at each router.

process only introduced lower than 0.07 cycles deviation
when PIR is 0.005 packet/cycle/router comparing with the
latency without testing. If PIR is 0.020 packet/cycle/router,
the deviation is lower than 0.2 cycles. The small impact
on the performance is the result of the full connectivity of
the network during the testing phase. No packet is blocked
during the testing phase but they are temporarily blocked
(i.e. the average of blocking period is less than 2 cycles)
only in the periods of emptying and recovering which are
too short to affect the performance (see also in Section 6.3).

6.5 Execution time of the PARSEC benchmarks

The execution time of different applications within the
PARSEC benchmark is illustrated in Figure 16. Simulations
are performed on nine applications as Blackscholes, Caneal,
Dedup, Fluidanimate, Freqmine, Raytrace, Streamcluster,
Swaption and Vips. The execution time is normalized on
the case when there is no router under test.

As expected, the execution time of TARRA is affect-
ed neither by the duration of testing (e.g. 500 and 1000
cycles per router) nor the number of routers under test
(i.e. 1 to 4 routers). In some cases, the execution time is



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 12

Fig. 16: Execution time of different real application benchmarks normalized to the situation where no router is under test.
500 and 1000 represent the number of testing cycles at each router.

also reduced because of employing bypassing links and
shortening the path between the working routers. On the
other hand, the effect of the testing period on the execution
time of the baseline method is significant, particularly in the
Canneal, Dedup, Fluidanimate, Raytrace and Streamcluster
applications. This is mainly because of blocking the packets
during the testing period. The duration of the testing period
has a smaller effect on the execution time of Blackscholes,
Freqmine, and Swaption which is because of a looser data
dependency in these applications.

To quantitatively evaluate the effect of on-line testing on
the execution time of TARRA, the maximum and minimum
values of the normalized execution time are listed in Table
7. As shown in this table, the execution time has been
increased in some cases (> 1) while decreases in others
(< 1). The reason for this phenomenon is that the latency of
some packets is reduced because of applying the bypassing
channels and thus shortening some paths.

It can be obtained that TARRA can increase the testing
frequency with negligible positive/negative impact on the
execution time. In addition under the same testing interval
time, the execution time can be largely decreased. This
approach is essentially important in Multi-core System-on-
Chip (McSoC) because of its inherent data dependency.

TABLE 7: Normalized maximum and minimum execution
time of the PARSEC benchmarks

500-cycle test 1000-cycle test
Benchmark Maximum Minimum Maximum Minimum
blackscholes 1.0065 1.0001 1.0069 1.0002
caneal 1.0002 0.9879 0.9986 0.9933
dedup 1.0034 0.9948 1.0026 0.9941
fluidanimate 0.9848 0.9700 0.9895 0.9699
freqmine 0.9997 0.9985 0.9999 0.9985
raytrace 1.0287 0.9707 1.0204 0.9374
streamcluster 1.0290 0.9832 1.0116 0.9842
swaptions 0.9999 0.9985 0.9999 0.9989
vips 0.9618 0.8802 0.9466 0.8410

*Normalized by the application execution time without testing

7 CONCLUSION

We first proposed a reconfigurable router architecture which
allows the network to be fully connected when a router
enters the testing mode. The processing core connected
to the router under test performs normally without being
interrupted by the underlying on-line testing. This has been
achieved by using bypassing links and wrappers which
isolate the router from both the network and the core,
allowing the packets to bypass the router under test. We
then proposed a highly adaptive routing algorithm for this
reconfigurable architecture. This algorithm is able to work



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 13

with a single router under test without any packet drop.
With multiple routers under test, this algorithm can deliver
all packets successfully except a few patterns where some
packets may be dropped. To avoid any packet drop in the
network, we suggested an odd-even testing sequence which
avoids unsupported patterns. This routing algorithm along
with the reconfigurable architecture allows testing multiple
routers simultaneously, reducing the overall testing period
and its effect on the network performance and the applica-
tions. Finally, we described the whole process of testing with
the router switching from the normal to the testing mode
and back. During these transitions, all possible situations
of packets were considered in details. Experiments with
standard traffic profiles and the PARSEC benchmark show
that on-line testing can be applied without interrupting
applications and with negligible effect on the latency and
the execution time.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive and helpful suggestions and com-
ments. This paper was supported by the National Nat-
ural Science Foundation of China under grant (NSFC)
No.61176025, No.61006027, No.61534002, and the Oversea
Academic Training Funds (OATF), UESTC. This work is also
supported by VINNOVA-MarieCurie within the CUBRIC
and ERoT projects and Academy of Finland.

REFERENCES

[1] J. McPherson, “Reliability challenges for 45nm and beyond,” in
Design Automation Conference, 2006 43th ACM/IEEE. ACM/IEEE,
2006, p. 3.

[2] S. Mitra, K. Brelsford, Y. M. Kim, H.-H. Lee, and Y. Li, “Robust
system design to voercome cmos reliability challenges,” IEEE
Journal on Emerging and Selected Topics in Circuits and System, vol. 1,
no. 1, pp. 30–41, 2011.

[3] S. Borkar, “Designing reliable systems from unreliable compo-
nents: The chanllenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[4] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and
G. Chen, “A reliable routing architecture and algorithm for nocs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 5, pp. 726–739, 2012.

[5] M. Kakoee, V. Bertacco, and L. Benini, “Relinoc: A reliable network
for priority-based on-chip communication,” in Design, Automation
& Test in Europe Conference & Exhibition, 2011, pp. 1–6.

[6] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Cama-
cho, F. Silla, and J. Duato, “Addressing manufacturing challenges
with cost-efficient fault tolerant routing,” in Fourth ACM/IEEE
International Symposium on Networks-on-Chip (NOCS). ACM/IEEE,
2010, pp. 25–32.

[7] W. Song, D. Edwards, J. Nunez-Yanez, and S. Dasgupata,
“Adaptive stochastic routing in fault-tolerant on-chip networks,”
in 3rd ACM/IEEE International Symposium on Networks-on-Chip.
ACM/IEEE, 2009, pp. 32–37.

[8] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour, “Md:
Minimal path-based fault-tolerant routing in on-chip networks,”
in 18th Asia and South Pacific Design Automatic Conference (ASP-
DAC), 2013, pp. 35–40.

[9] Y.-R. Chen, Z.-R. Wang, P.-A. Hsiung, S.-J. Chen, and M.-H. Tsai,
“Backward probing deadlock detection for networks-on-chip,” in
7th IEEE/ACM International Symposium on Networks on Chip (NoCS).
IEEE, 2013, pp. 1–2.

[10] R. Al-Dujaily, T. Mak, F. Xia, A. Yakovlev, and M. Palesi, “Em-
bedded transitive closure network for runtime deadlock detection
in networks-on-chip,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 7, pp. 1205–1215, 2012.

[11] J. Collet, “A brief overview of the challenges of the multicore
roadmap,” in 21st International Conference Mixed Design of Integrated
Circuits & Systems (MIXDES). IEEE, 2014, pp. 22–29.

[12] J. Raik, V. Govind, and R. Ubar, “An external test approach for
network-on-a-chip switches,” in 15th Asian Test Symposium, 2006,
pp. 437–442.

[13] C. Concatto, P. Almeida, F. Kastensmidt, E. Cota, M. Lubaszewski,
and M. Herve, “Improving yield of torus nocs through fault-
diagnoisis-and-repair of interconnect faults,” in 15th IEEE Inter-
national On-Line Testing Symposium. IEEE, 2009, pp. 61–66.

[14] A. Amory, E. Briao, E. Cota, M. Lubaszewski, and F. Moraes,
“A scalable test strategy for network-on-chip routers,” in IEEE
International Test Conference. IEEE, 2005, pp. 1–9.

[15] Q. Yu and P. Ampadu, “A dual-layer method for transient and
permanent error co-management in noc links,” IEEE Transaction
on Circuits and System II, vol. 58, no. 1, pp. 36–40, 2011.

[16] L. Xie, K. Mei, and Y. Li, “Repair: A reliable partial-redundancy-
based router in noc,” in IEEE 8th International Conference on Net-
working, Architecture and Storage (NAS). IEEE, 2013, pp. 173–177.

[17] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “No-
calert: An on-lien and real-time fault detection mechanism for
network-on-chip architectures,” in 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. ACM/IEEE, 2012, pp.
60–70.

[18] Y. Zhang, N. Wu, Y. Wan, F. Ge, and F. Zhou, “Fault-tolerant
schemes for noc with a network monitor,” in 2010 International
Symposium on Communication and Information Technologies. IEEE,
2010, pp. 1083–1086.

[19] H. Yi and S. Kundu, “Core test wrapper design to rreduce test
application time for modular soc testing,” in IEEE International
Symposium on Defect and Fault Tolerant of VLSI System. IEEE, 2008,
pp. 412–420.

[20] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi, and
F. Pecheux, “On-the-field test and configuration infrastructure for
2-d-mesh nocs in shared-memory many-core architecture,” IEEE
Tramscations on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 6, pp. 1364–1376, 2014.

[21] N. Caselli, A. Strano, D. Ludovici, and D. Bertozzi, “Cooperative
built-in self-testing and self-diagnosis of noc bisynchronous chan-
nels,” in IEEE 6th Internal Symposium on Embedded Multicore SoCs.
IEEE, 2012, pp. 159–166.

[22] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “Bist for network-
on-chip interconect infrastructures,” in 24th IEEE VLSI Test Sym-
posium. IEEE, 2006, pp. 1–6.

[23] M. Kakoee, V. Bertacco, and L. Benini, “At-speed distributed
functional testing to detect logic and delay faults in nocs,” IEEE
Transactions on Computers, vol. 63, no. 3, pp. 703–717, 2014.

[24] M. Botelho, F. Kastensmidt, M. Lubaszewski, E. Cota, and L. Carro,
“A broad strategy to detect crosstalk faults in network-on-chip
interconnects,” in 18th IEEE/IFIP VLSI System on Chip Conference
(VLSI-SoC). IEEE/IFIP, 2010, pp. 298–303.

[25] Y. Zheng, H. Wang, S. Yang, C. Jiang, and F. Gao, “Accelerating
strategy for functional test of noc communication fabric,” in 19th
IEEE Asian Test Symposium. IEEE, 2010, pp. 224–227.

[26] E. Cota, F. Kastensmidt, M. Cassel, and M. Herve, “A high-fault-
coverage approach for the test of data, control, and handshake
interconnects in mesh networks-on-chip,” IEEE Transactions on
Computers, vol. 57, no. 9, pp. 1202–1215, 2008.

[27] M. Herve, P. Almeida, F. Kastensmidt, E. Cota, and M. Lubaszews-
ki, “Concurrent test of network-on-chip interconnects and router-
s,” in 11th Latin American Test Workshop. IEEE, 2010, pp. 1–6.

[28] C. Grecu, A. Ivanov, R. Saleh, and P. Pande, “Testing network-on-
chip communication fabrics,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 26, no. 12, pp. 2201–
2214, 2007.

[29] A. Strano, C. Gómez, D. Ludovici, M. Gavalli, M. Comez, and
D. Betozzi, “Exploiting network-on-chip structural redundancy
for a cooprative and schalable built-in self-test architecture,” in
Design, Automation & Test in Europe Conference & Exhibition. IEEE,
2011, pp. 1–6.

[30] X. Tran, Y. Thonnard, J. Durupt, V. Beroulle, and C. Robach,
“Design-for-test approach of an asynchronous network-on-chip
architecture and its associated test pattern generation and applica-
tion,” IET Computers & Digital Techniques, vol. 3, no. 5, pp. 487–500,
2009.

[31] L. Chen and T. Pinkston, “Nord: Node-router decoupling for
effective power-gating of on-chip routers,” in Microarchitecture,



IEEE TRANSACTIONS ON COMPUTERS, VOL. 13, NO. 9, SEPTEMBER 2014 14

2012 45th Annual IEEE/ACM International Symposium on. IEEE,
2012, pp. 270–281.

[32] M. Ebrahimi, J. Wang, L. Huang, M. Daneshtalab, and A. Jantsch,
“Rescuing healthy cores against disabled routers,” in IEEE In-
ternational Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). IEEE, 2014, pp. 98–103.

[33] the PASRC Benchmark Suite, http://parsec.cs.princeton.edu/.

Letian Huang was born in Sichuan Province,
China, in 1984. He received the B.S. and M.S.
degree from the University of Electronic Science
and Technology of China (UESTC), Chengdu,
where he is currently working toward the Ph.D.
degree in 2006 and 2009, in Communication
and Information System. He is also a Lecturer
of UESTC. His research interests include power
adaptive computing and communication,FPGA
based heterogeneous computing, signal pro-
cessing for communication, and mixed signal IC

design.His scientific work contains more than 30 publications including
books, journal articles and conference papers.

Junshi Wang was born in Liaoning, China in
1989. He received the B.S. degree in com-
munication engineering from the University of
Electronic Science and Technology of China
(UESTC), Chengdu in 2012. He is currently pur-
suing the Ph. D. degree with the Department
of Communication and Information Engineering,
UESTC. His research interests include reliability
of network-on-chip and many-core system.

Masoumeh Ebrahimi received her PhD degree
with honours from the University of Turku, Fin-
land. Currently, she is an Academy of Finland
fellow at the University of Turku, Finland. She
also holds an EU-VINNOVA-MarieCurie fellow-
ship, conducting her research at KTH Royal Insti-
tute of Technology, Sweden. Her scientific work
contains more than 70 publications including
book chapters, journal articles and conference
papers. The majority of works has been done in
the Networks-on-Chip domain as multicast com-

munication, congestion-aware techniques and fault-tolerant methods.
She actively acts as a guest editor, organizer, and program chair in
different workshops and conferences in the NoC-related areas.

Masoud Daneshtalab is currently a European
Marie Curie fellow in Department of Electronic
and Embedded Systems at KTH Royal Institute
of Technology, Sweden. has been appointed as
Associate Editors of Elsevier Journal of Com-
puters and Electrical Engineering (CAEE) along
with World Research Journal of Computer Archi-
tecture (JCA); and in the Editorial Board of The
Scientific World Journal, International Journal of
Distributed Systems and Technologies (IJDST),
International Journal of Adaptive, Resilient and

Autonomic Systems (IJARAS), International Journal of Embedded and
Real-Time Communication Systems (IJERTCS), and International Jour-
nal of Design, Analysis and Tools for Integrated Circuits and Systems
(IJDATICS). His research interests include on/off-chip interconnection
networks, many-core embedded systems, reconfigurable architectures,
and neuromorphic computing. He is a member of IEEE and has pub-
lished 1 book, 4 book chapters, and over 150 refereed international
journals and conference papers along with more than 80 different co-
authors. He is currently in a Technical Program Committee member of
different IEEE and ACM conferences, including NOCS, DATE, ASPDAC,
ESTIMedia, VLSI Design, SOCC, VDAT, DSD, PDP, ICESS, MCSoC,
CADS, EUC, DTIS, NESEA, CASEMANS, NoCArc, MES, HPIN, PACB-
B, MobileHealth, and JEC-ECC.

Xiaofan Zhang Xiaofan Zhang was born in
Guangzhou, China in 1990. He received the B.S.
degree in information engineering from the Uni-
versity of Electronic Science and Technology of
China (UESTC), Chengdu in 2013. He is current-
ly pursuing the M.S. degree with the Department
of Communication and Information Engineering,
UESTC. His research interests include reliability
of network-on-chip, parallel and heterogeneous
computing.

Guangjun Li received M.S. degree from the Uni-
versity of Electronic Science and Technology of
China (UESTC), Chengdu, in 1985. Since then,
he has been with UESTC. From 1991 to 1992, he
was a visiting scholar with RETH Aachen Univer-
sity, Aachen, Germany. He is currently the Chair
of the Communication Integrated Circuits and
Systems Engineering Center of UESTC. He has
published more than 60 publications including
book chapters, journal articles and conference
papers in the area of communication systems,

wireless communication networks, SoC and NoC for wireless communi-
cation systems.

Axel Jantsch received the Dipl. Ing. and Dr.
Tech. degrees from the Technical University of
Vienna, Vienna, Austria, in 1988 and 1992, re-
spectively. He was with Siemens Austria, Vien-
na, Austria, as a System Validation Engineer
from 1995 to 1997. Since 1997, he has been
an Associate Professor with the Royal Institute
of Technology (KTH), Stockholm, Sweden. Since
2000, has been a Docent, and since Decem-
ber 2002, a Full Professor of Electronic System
Design with the Department of Electronic Sys-

tems. He has published over 200 papers in international conferences
and journals. He has served on a large number of technical program
committees of international conferences, such as FDL, DATE, CODES
ISSS, SOC, NOCS, and others. and one book in the areas of VLSI
design and synthesis, system level specification, modeling and valida-
tion, HW/SW codesign and cosynthesis, reconfigurable computing, and
networks on chip. At KTH, he is heading a number of research projects
involving a total number of ten Ph.D. Students, in two main areas:
system modeling and networks-on-chip. Dr. Jantsch received the Alfred
Schrodinger Scholarship from the Austrian Science Foundation while a
Guest Researcher with KTH between 1993 and 1995. He has served
on a large number of technical program committees of international
conferences, such as FDL, DATE, CODES ISSS, SOC, NOCS, and
others. He has been the TPC Chair of SSDL/FDL 2000, the TPC Co-
Chair of CODES ISSS 2004, the General Chair of CODES ISSS 2005,
and the TPC Co-Chair of NOCS 2009. From 2002 to 2007, he was a
Subject Area Editor for the Journal of System Architecture.


