
i 

 

 

 

 

 

 

 

Performance Analysis and Design 
Space Exploration of On-Chip 

Interconnection Networks 

 
 
 
 
 
 
 
 
 

Abbas Eslami Kiasari 
 
 
 
 
 
 
 
 
 
 
 

 
 

Doctoral Thesis in Electronic and Computer Systems 
KTH Royal Institute of Technology 

Stockholm, Sweden 2013 
  

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TRITA-ICT/ECS AVH 13:21 
ISSN 1653-6363 
ISRN KTH/ICT/ECS/AVH-13/21-SE 
ISBN 978-91-7501-923-9 
 

KTH School of Information and 
Communication Technology,  
Department of Electronic Systems 
SE-164 40 Kista, SWEDEN 
 

 
 
Academic dissertation for the Degree of Doctor of Philosophy in Electronic and Computer 
Systems at KTH Royal Institute of Technology to be publicly defended on Wednesday, 
18 December 2013 at 13:00 in Sal D, Forum, Isafjordsgatan 39, Kista. 
 
 Abbas Eslami Kiasari, October 2013. 
 
Tryck: Universitetservice US AB 



iii 

 

Abstract 
 

The advance of semiconductor technology, which has led to more than one billion 
transistors on a single chip, has enabled designers to integrate dozens of IP (intellectual 
property) blocks together with large amounts of embedded memory. These advances, along 
with the fact that traditional communication architectures do not scale well have led to 
significant changes in the architecture and design of integrated circuits. One solution to these 
problems is to implement such a complex system using an on-chip interconnection network 
or network-on-chip (NoC). The multiple concurrent connections of such networks mean 
that they have extremely high bandwidth. Regularity can lead to design modularity providing 
a standard interface for easier component reuse and improved interoperability.  

The present thesis addresses the performance analysis and design space exploration of 
NoCs using analytical and simulation-based performance analysis approaches. At first, we 
developed a simulator aimed to performance analysis of interconnection networks. The 
simulator is then used to evaluate the performance of networks topologies and routing 
algorithms since their choice heavily affect the performance of NoCs. Then, we surveyed 
popular mathematical formalisms – queueing theory, network calculus, schedulability analysis, 
and dataflow analysis – and how they have been applied to the analysis of on-chip 
communication performance in NoCs. We also addressed research problems related to 
modelling and design space exploration of NoCs.  

In the next step, analytical router models were developed that analyse NoC performance. 
In addition to providing aggregate performance metrics such as latency and throughput, our 
approach also provides feedback about the network characteristics at a fine-level of 
granularity. Our approach explicates the impact that various design parameters have on the 
performance, thereby providing invaluable insight into NoC design. This makes it possible to 
use the proposed models as a powerful design and optimisation tool.  

We then used the proposed analytical models to address the design space exploration and 
optimisation problem. System-level frameworks to address the application mapping and to 
design routing algorithms for NoCs were presented. We first formulated an optimisation 
problem of minimizing average packet latency in the network, and then solved this problem 
using the simulated annealing heuristic. The proposed framework can also address other 
design space exploration problems such as topology selection and buffer dimensioning. 

 





v 

 

Acknowledgement  
 
I am happy that the day has come when I can write these lines. This dissertation is about packets 
(message) traversing communication networks. I am blessed to be surrounded by a great network 
and this is my stage to send out some messages. 

First and foremost, I would like to thank my advisor, Prof. Axel Jantsch, for being such a great 
mentor during all these years at KTH Royal Institute of Technology. It was really an honour for 
me to have an opportunity to be in his research team which has helped me greatly to learn new 
things both in research and life. Without his inspiration, patience, friendship and our stimulating 
discussions, this thesis would have never been possible. Besides my advisor, I would like to 
extend my sincere gratitude to Assoc. Prof. Zhonghai Lu for his support of my work in his role 
as secondary advisor. I would also like to thank Assoc. Prof. Ingo Sander for his kind and 
generous feedbacks for his role as the reviewer of my thesis.  

I am particularly indebted to my Masters advisor, Prof. Hamid Sarbazi-Azad of the Sharif 
University of Technology for being such a great source of inspiration. I also want to take the 
opportunity to thank all my teachers throughout the years. There are many whom I owe thanks.  

I wish to express my love and gratitude to all my family members, especially my father, for their 
encouragements and supports throughout all my studies from primary school to current level. My 
special thanks go to my beloved wife, Fahimeh Jafari, for the invaluable support she has given me 
during the last eleven years, and undoubtedly, without her support I could not continue my 
studies after the Bachelor’s degree. Thank you very much Fahimeh! Last, but not least, I would 
like to thank my friends at ICT school, especially Dr. Farzad Kamrani, for making my life better 
and sharing memorable times with me in Sweden. 
 
 





vii 

 

 
 
Dedicated to my first teacher,  

                                    Mr. Reza Mortazavi Kiasari,  

                                                                   who taught me to write. 

 
  
 





ix 

 

 

Table of Contents 
 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi 
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii 
List of Acronyms   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 
List of Publications  . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xx 
  

Part I: Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
  
1   Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
    1.1   Evolution of Digital Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
    1.2   Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
    1.3   Problems and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
    1.4   Thesis Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
  
2   Background and Related Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
     2.1. NoC Building Blocks . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .              7 
     2.2   Performance Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
            2.2.1   Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
            2.2.2   Analytic modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
     2.3   Mathematical Formalisms for Performance Evaluation . . . . . . . . .. . . . . . . . . . . . . . . 12 
            2.3.1   Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
            2.3.2   Network Calculus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
            2.3.3   Schedulability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
            2.3.4   Dataflow Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
            2.3.5   Comparison of Formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
  
3   Problem Description and Solution Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
  3.1   NoC Synthesis Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
           3.1.1   Application Modelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
           3.1.2   NoC Performance Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
           3.1.3   NoC Verification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
  3.2   Detailed Contribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
         3.2.1   Design Optimisation with Simulation Performance Models (Papers 1, 5, and 8)  26 
         3.2.2   Analytical Performance Models (Papers 2, 4, and 9) . . . . . . . . . . . . . . . . . . . . . . 27 
         3.2.3   Design Optimisation with Analytical Performance Models (Papers 3, 6, and 11)  28 
  
4   Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
     4.1   Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
     4.2   Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
  
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 
  
Part II: Included Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
  
Paper 1: A Performance and Power Analysis of WK-Recursive and Mesh Networks for 
Network-on-Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
Paper 2: A Markovian Performance Model for Networks-on-Chip . . . . . . . . . . . . . . . . . . . . . 53  



x 

 

Paper 3: PERMAP: A Performance-Aware Mapping for Application-Specific SoCs . . . . . . .  65 
Paper 4: Caspian: A Tunable Performance Model for Multi-Core Systems . . . . . . . . . . . . . . . 77 
Paper 5: Power-Efficient Routing Algorithm for Torus NoCs . . . . . . . . . . . . . . . . . . . . . . . . . 89 
Paper 6: A Framework for Designing Congestion-Aware Deterministic Routing . . . . . . . . . .  103 
Paper 7: Analytical Approaches for Performance Evaluation of Networks-on-Chip  . . . . . . .  119 
Paper 8: Power-Efficient Deterministic and Adaptive Routing in Torus Networks-on-Chip  125 
Paper 9: An Analytical Latency Model for Networks-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . 151 
Paper 10: Mathematical Formalisms for Performance Evaluation of Networks-on-Chip  . . . 175 
Paper 11: A Heuristic Framework for Designing and Exploring Deterministic Routing 
Algorithm for NoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . 

 
219 

 



xi 

 

List of Figures 
 
 
Figure 1.1 Evolution of application-specific and general purpose computing 

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Figure 2.1 An NoC with 6x6 mesh topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Figure 2.2 Structure of an interconnection network simulation engine . . . . . . . . . . . 9 
Figure 2.3 (a) Transpose, (b) bit-reversal, and (c) shuffle spatial traffic patterns in 

8x8 mesh network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Figure 2.4 Model of a queueing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
Figure 2.5 Leaky bucket (affine) arrival curve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
Figure 2.6 A latency-rate service curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
Figure 3.1 Two-state MMPP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Figure 3.2 Number of packets against time in the MMPP model for (a) k =1 

(Poisson model), (b) k =10, (c) k =20, (d) k =50, (e) k =100, (f) k =200 24 
Figure 3.3 NoC design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Figure 3.4 An alternative design flow approach for NoCs . . . . . . . . . . . . . . . . . . . . . 25 
Figure 3.5 The topology of WK(4,2) with 16 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Paper 1-Figure 1 The topologies of (a) Mesh(4x4) and (b) WK(4,2) with 16 nodes . . . . . . 45 
Paper 1-Figure 2 Message latency in WK(4,2) with PHop and FHop routing algorithms . . 46 
Paper 1-Figure 3 Hardware implementation of a node with a PE and a Router . . . . . . . . .  47 
Paper 1-Figure 4 Message latency in WK(4,2) and Mesh(4x4) with (a) 2 and (b) 4 virtual 

channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
Paper 1-Figure 5 The ratio of a packet transfer power dissipation for a WK(4,2) and 

mesh(4x4) as function of α for low traffic load . . . . . . . . . . . . . . . . . . . . .  48 
Paper 1-Figure 6 The ratio of packet transfer power dissipation in the mesh(4x4) and 

WK(4,2) for different values of α and ε in high traffic region . . . . . . . . .  51 
Paper 2-Figure 1 The topology of (a) 4x4 mesh and (b) 4x4 torus networks . . . . . . . . . . . . 56 
Paper 2-Figure 2 Markov process for occupying and releasing virtual channels associated 

with a physical channel at dimension Y . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
Paper 2-Figure 3 The average message latency predicted by the model against simulation 

results for a 4x4 and a 6x6 torus NoC with V=2 and 4 virtual channels 
and messages length M=32 and 64 flits . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Paper 2-Figure 4 Total power consumption of routers in analytical model and simulation 63 
Paper 3-Figure 1 Task graph of a Video Object Plane (VOP) decoder [15] . . . . . . . . . . . . 69 
Paper 3-Figure 2 Average packet latency (APL) of a video application for two different 

mapping configurations vs. packet generation rate . . . . . . . . . . . . . . . . . . 69 
Paper 3-Figure 3 (a) A general structure for a node in an SoC (b) A two hop path from 

node A to node C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
Paper 3-Figure 4 Queueing model of a channel of an arbitrary topology . . . . . . . . . . . . . . 70 
Paper 3-Figure 5 An SoC with (a) 4x4 mesh network and (b) its router structure . . . . . . . .  72 
Paper 3-Figure 6 An efficient mapping of the VOP decoder application which is found 

by the analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
Paper 4-Figure 1 A general structure for a node in a generic multi-core system . . . . . . . . .  79 
Paper 4-Figure 2 A two hop packet from node A to node C . . . . . . . . . . . . . . . . . . . . . . . . 82 
Paper 4-Figure 3 Queueing model of a channel of an arbitrary topology . . . . . . . . . . . . . . . 82 



xii 

 

Paper 4-Figure 4 Flow chart showing the strategy of the performance model tuning to 
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

Paper 4-Figure 5 The average packet latency predicted by the tuned model against 
simulation results for an H8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Paper 4-Figure 6 The average packet latency predicted by the tuned model against 
simulation results for (a) H10, and (b) 7x7 mesh network with hotspot 
traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

Paper 5-Figure 1 A 4x4 mesh NoC (left) and a 4x4 torus NoC (right) . . . . . . . . . . . . . . . . . 92 
Paper 5-Figure 2 Node structure in NoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 
Paper 5-Figure 3 Performance and power consumption of XY routing in a 4x4 mesh 

with one and two virtual channels and 4x4 torus with two virtual 
channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

Paper 5-Figure 4 The IRN Map and Graph for a 4x4 mesh using XY Routing . . . . . . . . . . 96 
Paper 5-Figure 5 The IRN Map and Graph for a sample routing in a 4x4 torus . . . . . . . . .  96 
Paper 5-Figure 6 A routing case in a 4x4 torus causing deadlock . . . . . . . . . . . . . . . . . . . . . 96 
Paper 5-Figure 7 IRN Map and IRN Graph for routing in a 6x6 torus . . . . . . . . . . . . . . . .  96 
Paper 5-Figure 8 Minimality factor for some routing methods in a 5x5 torus (left) and a 

6x6 torus (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 
Paper 5-Figure 9 IRN with optimality factors for different routing methods; (a) Non-

optimal in 6x6 torus, Opt=12 and (b) Optimal in a 4x4 torus, Opt=0 . . .  98 
Paper 5-Figure 10 The proposed IRN Map representing the TRANC routing algorithm in 

an nxn torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Paper 5-Figure 11 The average inter-node distance and diameter using TRANC and XY 

routing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
Paper 5-Figure 12 Pseudo code for TRANC routing algorithm . . . . . . . . . . . . . . . . . . . . .  100 
Paper 5-Figure 13 Performance, power consumption, and power-delay product of XY 

routing in the mesh and torus NoCs and TRANC routing algorithm in 
the torus NoC with radices 4 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

Paper 6-Figure 1 The flowchart of CAR framework.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
Paper 6-Figure 2 TG of a 4x4 mesh network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
Paper 6-Figure 3 CDG of 4x4 mesh network for minimal fully adaptive routing under (a) 

uniform and (b) transpose traffic patterns. . . . . . . . . . . . . . . . . . . . . . . . .  108 
Paper 6-Figure 4 Average packet latency under (a) uniform and bit-complement, (b) 

transpose, (c) bit-reversal, and (d) shuffle traffic patterns in 4x4 mesh 
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

Paper 6-Figure 5 Average packet latency under (a) uniform and bit-complement, (b) 
transpose, (c) bit-reversal, and (d) shuffle traffic patterns in 8x8 mesh 
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

Paper 6-Figure 6 Average packet latency of VOPD application for three different 
mapping configurations vs. offered load . . . . . . . . . . . . . . . . . . . . . . . . . .  113 

Paper 6-Figure 7 (a) The effect of mapping and routing on the performance of MMS 
application, (b) average packet latency for different mapping and 
routing schemes in the case of MMS workload, (c) the effect of 
mapping and routing on the performance of VOPD application, (d) 
average packet latency for different mapping and routing schemes in the 
case of VOPD workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 
 
 
 
114 

Paper 6-Figure 8 (a) A custom topology and (b) prohibited turns . . . . . . . . . . . . . . . . . . . .  115 
Paper 8-Figure 1 A 4x4 mesh NoC (left) and a 4x4 torus NoC (right) . . . . . . . . . . . . . . . . . 129 
Paper 8-Figure 2 Node structure in a mesh or trous NoC . . . . . . . . . . . . . . . . . . . . . . . . . .  129 
Paper 8-Figure 3 Performance and power consumption of XY routing in a 4x4 mesh 131 



xiii 

 

with 1 and 2 virtual channels and a 4x4 torus with 2 virtual channels . . .  
Paper 8-Figure 4 The IRN Map and Graph for a 4x4 mesh using XY Routing . . . . . . . . . .  132 
Paper 8-Figure 5 IRN Map and Graph for routing in a 4x4 torus NoC . . . . . . . . . . . . . . . . 132 
Paper 8-Figure 6 A routing case in a 4x4 torus causing deadlock . . . . . . . . . . . . . . . . . . . . .  133 
Paper 8-Figure 7 IRN Map and IRN Graph for routing in (a) a 5x5 torus and (b) a 6x6 

torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 
Paper 8-Figure 8 Minimality factor for some routing methods in a 5x5 torus (left) and a 

6x6 torus (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 
Paper 8-Figure 9 IRN with optimality factors for different routing methods; (a) Non-

optimal in 6x6 torus, Opt=12, (b) Non-optimal in a 4x4 torus, Opt=4, 
and c) Optimal in a 4x4 torus, Opt=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

Paper 8-Figure 10 The proposed IRN Map representing the TRANC routing algorithm in 
an nxn torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 

Paper 8-Figure 11 Different cases of movements when upgrading from radix n to n+1, a) 
0’ is not the start or end of any movement that causes deadlock, b) 0’ is 
the end for some of the movements that causes deadlock c) 0’ is the 
start of some of the movements that cause deadlock . . . . . . . . . . . . . . . .  138 

Paper 8-Figure 12 Pseudo code for TRANC routing algorithm . . . . . . . . . . . . . . . . . . . . .  139 
Paper 8-Figure 13 Pseudo code for XY routing algorithm in Mesh . . . . . . . . . . . . . . . . . . . .  140 
Paper 8-Figure 14 Pseudo code for West First routing algorithm in Mesh . . . . . . . . . . . . . .  140 
Paper 8-Figure 15 Pseudo code for TRANC West First Routing algorithm in Torus . . . . . . 141 
Paper 8-Figure 16 Pseudo code for Duato’s fully adaptive routing algorithm in Mesh . . . . .  142 
Paper 8-Figure 17 Pseudo code for TRANC Fully Adaptive Routing algorithm for 2-D 

Torus based on Duato’s fully adaptive algorithm . . . . . . . . . . . . . . . . . . .  143 
Paper 8-Figure 18 The average inter-node distance and diameter using TRANC and XY 

routing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 
Paper 8-Figure 19 Performance, power consumption, and power-delay product of XY 

routing in the mesh and torus NoCs and TRANC routing algorithm in 
the torus NoC with radices 4 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

Paper 8-Figure 20 Average latency for Real Applications (FFT on left and Ocean simulator 
on right) implemented on different topologies and routings . . . . . . . . . .  146 

Paper 8-Figure 21 Latency, power consumption, and power-delay product vs. message 
generation rate (left) for Mesh (4x4) with west-first and Torus (4x4) 
with TRANC west-first adaptive and (right) for Mesh with Duato’s fully 
adaptive routing and TRANV fully adaptive routing for Torus . . . . . . . . 147 

Paper 9-Figure 1 A typical priority queueing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
Paper 9-Figure 2 (a) A graph representation of a general NoC architecture, (b) Structure 

of a node in an NoC-based system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 
Paper 9-Figure 3 Delay of a one hop flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
Paper 9-Figure 4 A two-hops flow from IPS (source) to IPD (destination) . . . . . . . . . . . . . . 158 
Paper 9-Figure 5 Queueing model of a channel of an arbitrary topology . . . . . . . . . . . . . . . 159 
Paper 9-Figure 6 (a) A passing flow from RM, RN, and RO, (b) Some possible path for an 

entering flow to RN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
Paper 9-Figure 7 Flowchart of proposed analytical model . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
Paper 9-Figure 8 (a) The average packet latency of all flows against simulation results, (b) 

Some selected flows of uniform traffic in a 9x9 mesh network, (c) The 
average packet latency of the flows in Figure 8(b), predicted by the PQ 
model against simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
 
 
165 

Paper 9-Figure 9 Two-state MMPP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 
   



xiv 

 

Paper 9-Figure 10 Number of packets against time in the MMPP model for (a) k =1 
(Poisson model), (b) k =10, (c) k =20, (d) k =50, (e) k =100, (f) k =200  

 
167 

Paper 9-Figure 11 (a) The average packet latency of all flows in case of bursty traffic, (b) 
The average packet latency of each flow predicted by the PQ model 
against simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

Paper 9-Figure 12 (a) A custom topology, (b) The average packet latency of all flows . . . . . 169 
Paper 9-Figure 13 The average packet latency for a 16x16 mesh network and an 8-

dimensional hypercube network with dimension-order routing . . . . . . . . 169 
Paper 9-Figure 14 The execution time comparison of the PQ model and simulation for 

different size of mesh networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
Paper 10-Figure 1 Model of a queueing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 
Paper 10-Figure 2 (a) CDF and (b) pdf of an interarrival time with exponential distribution 179 
Paper 10-Figure 3 (a) The structure of a router in 2D mesh network, (b) Queueing model 

of the ejection channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181 
Paper 10-Figure 4 A two-hops flow from IPS (source) to IPD (destination) . . . . . . . . . . . . . . 184 
Paper 10-Figure 5 Backlog and virtual delay of a flow at time t. 186 
Paper 10-Figure 6 (a) Input function R(t) is constrained by an arrival curve a(t), (b) Leaky 

bucket (affine) arrival curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
Paper 10-Figure 7 (a) Definition of service curve, (b) A latency-rate service curve . . . . . . . . 187 
Paper 10-Figure 8 Maximum backlog and delay in a system with leaky bucket arrival curve 

and latency-rate service curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
Paper 10-Figure 9 (a) Server offers a service curve � to the aggregate of two flows, (b) The 

second flow receives leftover service curve �� = �����,	
��������� 	 . . . . . . 189 
Paper 10-Figure 10 Three basic contention patterns for a tagged flow: (a) nested, (b) 

parallel, and (c) crossed [Qian et al. 2010a] © IEEE 2010 . . . . . . . . . . . . 192 
Paper 10-Figure 11 (a) Dataflow network, (b) A synchronous dataflow (SDF) network . . . .  197 
Paper 10-Figure 12 An SDF graph with a large sample rate change. C's Input requires 

excessive memory [BUCK 1994] © IEEE 1994 . . . . . . . . . . . . . . . . . . . . 197 
Paper 10-Figure 13 Cyclo-static dataflow (Adapted from [Bilsen et al. 1996] © IEEE 1996) 197 
 
Paper 10-Figure 14 

 
The behaviour of SWITCH and SELECT actors for different input 
(Derived from [Buck 1994] © IEEE 1994) . . . . . . . . . . . . . . . . . . . . . . . . 

 
199 

Paper 10-Figure 15 Comparison of dataflow MoCs (Adapted from [Stuijk et al. 2011] © 
IEEE 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 

Paper 10-Figure 16 An SDF graph with execution time [Kumar et al. 2008] . . . . . . . . . . . . . . 201 
Paper 10-Figure 17 A task model with (a) one actor and (b) two actors [Wiggers et al. 

2007a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 
Paper 10-Figure 18 (a) Task graph of an application mapped on an (b) NoC platform . . . . .  202 
Paper 10-Figure 19 Network calculus model of the system in Figure 18.b . . . . . . . . . . . . . . . 205 
Paper 10-Figure 20 System model based on the leaky bucket arrival curves and latency-rate 

servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 
Paper 10-Figure 21 Simplified system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
Paper 10-Figure 22 Leftover service curve for flow f1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
Paper 10-Figure 23 (a) Latency-rate model and (b) dataflow model of the network for flow 

f1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 
Paper 10-Figure 24 A dataflow component that models a latency-rate server (Derived from 

[Wiggers et al. 2007a]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 
Paper 11-Figure 1 The flowchart of LAR framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
Paper 11-Figure 2 TG of a 4x4 mesh network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 



xv 

 

Paper 11-Figure 3 CG of a video object plane decoder (VOPD) application [24] . . . . . . . . . 224 
Paper 11-Figure 4 The CDG of 4x4 mesh network for minimal fully adaptive routing 

under (a) uniform and (b) transpose traffic patterns . . . . . . . . . . . . . . . . . 224 
Paper 11-Figure 5 Average packet latency under (a) uniform and bit-complement, (b) 

transpose, (c) bit-reversal, and (d) shuffle traffic patterns in 4x4 mesh 
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 

Paper 11-Figure 6 Average packet latency under (a) uniform and bit-complement, (b) 
transpose, (c) bit-reversal, and (d) shuffle traffic patterns in 8x8 mesh 
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230 

Paper 11-Figure 7 Two-state MMPP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 
Paper 11-Figure 8 The effect of mapping and routing on the performance of (a) MMS 

application and (b) VOPD application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 
Paper 11-Figure 9 (a) A custom topology and (b) prohibited turns . . . . . . . . . . . . . . . . . . . .  233 
 

 





xvii 

 

List of Tables 
 
 
 
Table 2.1 Calculated coefficient of variation for some confidence intervals and 

confidence levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
Table 2.2 The thesis author’s contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
Paper 3-Table 1 Minimum APL of some random mapping found by analytical model 

and corresponding APL obtained using simulation . . . . . . . . . . . . . . . . . .  74 
Paper 4-Table 1 Parameter notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
Paper6-Table 1 Number of cycles in CDG of mesh networks . . . . . . . . . . . . . . . . . . . . . . 108 
Paper6-Table 2 Improvement in maximum sustainable throughput of CAR as compared 

to DOR for different synthetic workloads . . . . . . . . . . . . . . . . . . . . . . . . .  111 
Paper6-Table 3 Improvement in maximum sustainable throughput of DyAD and CAR 

over DOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 
Paper6-Table 4 Improvement in maximum sustainable throughput of CAR as compared 

to DOR for realistic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 
Paper6-Table 5 Routing table for node 0 of topology in Figure 8.a . . . . . . . . . . . . . . . . . . 
Paper 9-Table 1 Parameter notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 
Paper 9-Table 2 CV of packet interarrival time for different values of k . . . . . . . . . . . . . . .  166 
Paper 9-Table 3 MMS application traffic requirement [7] . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
Paper 10-Table 1 Time properties of tasks in a real-time system . . . . . . . . . . . . . . . . . . . . . .  194 
Paper 10-Table 2 Description of traffic flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 
Paper 10-Table 3 Input model, node model and output of the mathematical formalisms . .  210 
Paper 10-Table 4 Advantages and disadvantages of the formalisms . . . . . . . . . . . . . . . . . . .  211 
Paper 11-Table 1 Number of cycles in CDG of mesh networks . . . . . . . . . . . . . . . . . . . . . .  225 
Paper 11-Table 2 Parameter notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
Paper 11-Table 3 Improvement in maximum sustainable throughput of LAR as compared 

to DOR for different synthetic workloads . . . . . . . . . . . . . . . . . . . . . . . . .  231 
Paper 11-Table 4 Improvement in maximum sustainable throughput of DyAD and LAR 

over DOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 
Paper 11-Table 5 MMS application traffic requirement [13] . . . . . . . . . . . . . . . . . . . . . . . . .  231 
Paper 11-Table 6 Routing table for node 0 of topology in Figure 8.a . . . . . . . . . . . . . . . . . . 234 

 

 





xix 

 

List of Acronyms 
 
 
ASIC Application-Specific Integrated Circuits  
APL Average Packet Latency 
AxD Average hop x standard Deviation 
BDF Boolean Dataflow 
CAR Congestion-Aware Routing 
CDF Cumulative Distribution Function 
CDG Channel Dependency Graph 
CG Communication Graph 
CM Cycle Mean 
CMP Chip Multiprocessor 
CSDF Cyclo-Static Dataflow 
CV Coefficient of Variation 
DDF Dynamic Dataflow 
DOR Dimension-Order Routing 
FCFS First-Come First-Serve 
FIFO First-In First-Out 
HSDF Homogeneous Synchronous Dataflow 
IP Intellectual Property 
LAR Latency-Aware Routing 
LCFS Last-Come First-Serve 

MCM Maximum Cycle Mean  
MMPP Markov-Modulated Poisson Process 
MMS Multimedia System 
MPSoC Multiprocessor System-on-Chip 
MoC Model of Computation 
NoC Network-on-Chip 
pdf Probability Density Function 
PE Processing Element 
PR Priority 

PSDF Parameterized Synchronous Dataflow 
RR Round Robin 
RS Random Service 
RTL Register Transfer Level 

SADF Scenario-Aware Dataflow  
SDF Synchronous Dataflow 
SoC System-on-Chip 
TG Topology Graph 
VOPD Video Object Plane Decoder 

VRDF Variable Rate Dataflow  



xx 

 

 
List of Publications 
 
 
 

• Conference Proceedings 
1. Dara Rahmati, Abbas Eslami Kiasari, Shaahin Hessabi, and Hamid Sarbazi-Azad, "A 

Performance and Power Analysis of WK-Recursive and Mesh Networks for Network-on-
Chips," In the Proceedings of the 24th IEEE International Conference on Computer Design (ICCD), 
pp. 142-147, San Jose, CA, USA, Oct. 2006. 
 

2. Abbas Eslami Kiasari, Dara Rahmati, Hamid Sarbazi-Azad, and Shaahin Hessabi, "A 
Markovian Performance Model for Networks-on-Chip," In the Proceedings of the 16th 
Euromicro International Conference on Parallel, Distributed and Network-Based Processing  (PDP), 
pp. 157-164, Toulouse, France, Feb. 2008. 
 

3. Abbas Eslami Kiasari, Shaahin Hessabi, and Hamid Sarbazi-Azad, "PERMAP: A 
Performance-Aware Mapping for Application-Specific SoCs," In the Proceedings of the 19th 
IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), 
pp. 73-78, Leuven, Belgium, Jul. 2008. 
 

4. Abbas Eslami Kiasari, Hamid Sarbazi-Azad,  and Shaahin Hessabi, "Caspian: A Tunable 
Performance Model for Multi-Core Systems," In the Proceedings of the 14th European 
Conference on Parallel and Distributed Computing (Euro-Par), Lecture Notes in Computer 
Science, vol. 5168, pp. 100-109, Canary Island, Spain, Aug. 2008. 
 

5. Dara Rahmati, Abbas Eslami Kiasari, Hamid Sarbazi-Azad, and Shaahin Hessabi, 
"Power-Efficient Routing Algorithm for Torus NoCs," In Proceedings of the International 
Conference on Contemporary Computing (IC3), pp. 211-220, Uttar Pradesh, India, Aug. 2008. 
 

6. Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu, "A Framework for Designing 
Congestion-Aware Deterministic Routing," In the Proceedings of the 3rd International Workshop 
on Network-on-Chip Architectures (NoCArc), Held in conjunction with the 43rd Annual 
IEEE/ACM International Symposium on Microarchitecture (MICRO-43), pp. 45-50, Atlanta, 
Georgia, USA, Dec. 2010. 

  



xxi 

 

 
 
 
 
 
 
 
 

• Tutorial 
7. Abbas Eslami Kiasari, Axel Jantsch, Marco Bekooij, Alan Burns, and Zhonghai Lu, 

"Analytical Approaches for Performance Evaluation of Networks-on-Chip," In the 
Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded 
Systems (CASES), pp. 211-212, Tampere, Finland, Oct. 2012. 
 

• Journal Papers 
8. Dara Rahmati, Hamid Sarbazi-Azad, Shaahin Hessabi, and Abbas Eslami Kiasari, 

"Power-efficient Deterministic and Adaptive Routing in Torus Networks-on-Chip," 
Microprocessors and Microsystems: Embedded Hardware Design, vol. 36, no. 7, pp. 571-585, Oct. 
2012. 
 

9. Abbas Eslami Kiasari, Zhonghai Lu, and Axel Jantsch, "An Analytical Latency Model for 
Networks-on-Chip," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 
21, no. 1, pp. 113-123, Jan. 2013. 
 

10. Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu, "Mathematical Formalisms for 
Performance Evaluation of Networks-on-Chip," ACM Computing Surveys, vol. 45, no. 3, 
article no. 38, Jun. 2013. 
 

• Book Chapter 
11. Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu, A Heuristic Framework for 

Designing and Exploring Deterministic Routing Algorithm for NoCs, M. Palesi and M. 
Daneshtalab, editors, Routing Algorithms in Networks-on-Chip, Springer, 2013, ISBN 
978-1-4614-8273-4. 

 

  



xxii 

 

  



1 

 

 
 

Part I 
 

Introduction 
 



2 

 

  



3 

 

Chapter 1 
 
Introduction 
 
 
 
This chapter presents the frame of this thesis work, namely the area of Network-on-Chip (NoC ). The design 
challenges of interconnection networks in many-core architectures motivate our focus on developing new analysis 
techniques for performance evaluation. At first, the evolution of digital systems is briefly reviewed and then design 
challenges and structure of NoCs are described. After that, the contribution of the thesis is highlighted. The chapter 
concludes by presenting the outline of the rest of the thesis. 
 
 
 
The last few years have witnessed the emergence of many and varied advanced computing 
systems. There has also been a shift from personal computers towards portable computing 
devices that offer uninterrupted internet access. Embedded systems, which were traditionally 
designed as application-specific integrated circuits, have become more versatile, scaled-down 
computing systems. 
 
1.1   Evolution of Digital Systems 

For the last few decades, general-purpose processors and application-specific integrated circuits 
(ASICs) have existed as separate parts of digital system design. Usually, application-specific 
systems are designed in order to efficiently implement a specific application and minimize the 
implementation costs of that application. An example of such a system is the digital camera. 
General-purpose computer systems, on the other hand, are primarily intended for the purpose of 
generality and, often, high performance. In the last few years, however, application-specific 
systems have increasingly focused on parallel processing, which has led to a movement from 
single core architectures to many-core architectures. The evolution of the two types is shown in 
Figure 1.1. 
 

 
Figure 1.1: Evolution of application-specific and general purpose computing systems 

Application-specific 

computing systems

General purpose 

computing systems

Transistors

Logic gates

RTL components

System-on-Chip (SoC)

Multiprocessor SoC (MPSoC)

Single-thread processors

Multithreaded processors

Chip Multiprocessors (CMP)

Many-core architectures

Single core architectures



4 

 

 
 
Originally, application-specific computing systems were small gate-level optimised circuits; over 
the years, they have evolved into complex embedded hardware platforms. Each subsequent 
generation of technology has enabled systems to become more complex than the last, which has 
led to calls for new design methodologies to reduce the costs of system design. Consequently, the 
basic components of ASICs have increased, both in size and complexity, from single transistors 
to gates and register transfer level (RTL) components, and most recently to pre-designed cores 
that may even be entire processors. This evolution can be seen on the left-hand side of Figure 
1.1. It is possible in the current era of System-on-Chip (SoC) design to create an entire system 
composed of pre-designed cores and then integrate the system on a single chip. A logical next 
step in this evolution, therefore, is to design multiprocessor SoCs (also known as MPSoCs) by 
adding more and more processing elements. This step makes it possible to meet the processing 
demands of future applications without a significant increase in the design effort and 
development costs. The emergence of MPSoCs has brought with it numerous new challenges 
related to parallel computing; at the same time, it has also led to application-specific system 
design converging with current trends in the design of general-purpose computer systems. 

In the search for high performance, general-purpose computer systems have exploited 
parallelism. Multiprocessor systems have been created by using an interconnection network to 
connect processors. At the same time, the evolution of technology has led to increasing transistor 
densities that have made it possible to integrate increasingly complex processor designs into a 
single chip. Because of this evolution, along with reduced returns from processor pipeline 
improvements, processor designs are no longer the single-threaded single core processors they 
once were and, as the right-hand side of Figure 1.1 shows, have become multithreading 
processors. This evolution has continued in recent years into chip multiprocessor (CMP), with 
the integration of multiple general purpose processor cores and caches into a single chip. CMPs 
have become the standard for general purpose systems and future systems are expected to have 
an increased number of on-chip processor cores.  
 
1.2   Design Challenges 

The evolution of digital systems along with the fact that shared-medium busses do not scale well 
or completely utilize the potentially available bandwidth, have led to significant changes in the 
architecture and design of integrated circuits. Shrinking feature sizes, combined with relative 
increases in overall chip size, have caused interconnects to start behaving like lossy transmission 
lines. Line delays have become much longer than gate delays, which has caused synchronization 
problems between cores. In long interconnects and in clocking networks, a significant amount of 
power is dissipated. This trend only gets worse with increased clock frequencies and decreased 
feature sizes. One solution to these problems is to implement SoCs using an on-chip 
interconnection network or network-on-chip (NoC) which was proposed as “an architecture for 
billion transistor era” in the beginning of the millennium [Hemani et al. 2000]. The multiple 
concurrent connections of such networks mean that they have extremely high bandwidth. 
Regularity can lead to design modularity, which provides a standard interface for easier 
component reuse and improved interoperability. The fact that the networking resources are shared 
helps increase overall performance and scalability. However, design automation faces new 
challenges as a result of the trend towards many-core architecture designs. This section describes 
some of these challenges, with particular focus on the early analysis tools related to 
communication infrastructure.  

Communication performance is an important design criterion, and the accurate prediction 
thereof is particularly important, as well as challenging, in the early design stages. Even for a 
design that has a register-transfer level (RTL) specification or a lower-level implementation, the 
sensitivity to variation in workloads means that it can still be difficult to estimate performance 



5 

 

accurately. In its early stages, a design may only consist of an interconnected set of components 
without an RTL embodiment. In such cases, estimates are often formed by scaling a detailed 
analysis of similar existing designs. The first stage of early analysis is a performance model, either 
analytic or simulation-based, that embodies a number of assumptions about the design 
architecture. The NoC must not only be modelled in a way that is sufficiently accurate to evaluate 
the communication performance, but it must also be fast enough to deal with the challenge of 
huge design space exploration; this can include finding an optimal network topology, a low 
congestion routing algorithm, efficient application mapping to processing cores, and sufficient 
configuration of buffers. 

 
1.3   Problems and Contributions 

In the present thesis, the author studied modelling, performance analysis and optimisation of 
NoC communication architectures, and presented novel design methodologies for NoCs design 
space exploration. The problems and contributions in the present thesis are divided into the 
following categories: 

1. Design optimisation with simulation performance models 
• Problem: Study a new topology and routing algorithms for NoCs 
• Contribution: Propose frameworks to design deadlock-free and balanced routing algorithms 

2. Analytical performance models 
• Problem: Evaluate the average end-to-end packet latency in NoCs 
• Contribution: Propose analytical models to estimate the latency 

3. Design optimisation with analytical performance models 
• Problem: Application mapping and routing problems in NoCs 
• Contribution: Propose mapping and routing algorithms that minimises the network 
congestion and latency 

 
More details and discussions about problems, contributions, and their limitations are provided in 
Chapter 3. 

 
1.4   Thesis Organization 

This Ph.D. thesis is a collection of papers presented with a general introduction to the topic in 
Part I. The next chapter surveys the related work and other background. The problem 
formulation and detailed contributions are introduced in Chapter 3. Chapter 4 draws conclusions 
and presents directions of future work. Part II of the thesis consists of published papers 
including 1 book chapter, 3 journal papers and 7 conference proceedings.  
 





7 

 

Chapter 2 
 
Background and Related Work 
 
This chapter is structured in three sections. The first section provides a background in NoC architecture details and 
the second section presents some of the concepts in the area of performance evaluation. Finally, the third section 
surveys related work in mathematical formalisms for performance evaluation of NoCs. 
 
 
 
2.1   NoC Building Blocks 

An on-chip network can be designed by breaking it down into its various building blocks; 
namely, its topology, flow control, routing, link architecture, and router microarchitecture.  
Topology: An NoC is made up of router nodes and channels. The logic connections between 
the network’s nodes and channels are determined by the network topology. Figure 2.1 shows an 
NoC with a 6x6 mesh topology. 
Routing: The routing algorithm determines the path that a message takes through the network 
to reach its destination. The ability of a routing algorithm to balance load directly impacts the 
performance of the network. 
Switching: Switching mechanism determines the way in which a network allocates resources to 
messages as they travel through the network. The switching mechanism allocates and de-allocates 
buffers and channel bandwidth to the packets that wait for them. While it is possible to allocate 
resources to packets in their entirety (this is done using store-and-forward and virtual cut-through 
switching), it is impractical to implement it in the NoCs because of the large buffer resources 
required. The most common method for on-chip networks is to handle flow control at the flit 
level. Allocating buffers and channel bandwidth on the smaller granularity of flits, as opposed to 
entire packets, makes it possible to design routers that have smaller buffers. 
Router microarchitecture: The following components comprise a generic router microarchitec-
ture: router state, input buffers, allocators, routing logic, and a crossbar (or switch). It is common 
to pipeline router functionality in order to improve throughput. The main contributor to 
communication latency is the delay in the on-chip network through each individual router. 
Because of this, researchers have made significant efforts to reduce router pipeline stages and 
improve throughput. 
Link architecture: All on-chip network prototypes to date have utilized conventional pipelined 
wires and full-swing logic. Pipelined wires utilize repeaters in order to increase signal reach, but 
studies are underway to identify alternative link architectures, such as optical networks.  
 
 



8 

 

 
Figure 2.1: An NoC with 6x6 mesh topology  

 
2.2   Performance Evaluation Methods 

When designing SoCs, performance is a key factor to take into account. Performance 
evaluation methods are generally divided into two main areas: performance measurement and 
performance modelling. Measurement has an advantage over modelling in that it obtains the 
performance of the real system rather than that of a model of the system. A system may contain 
interactions that affect performance and are difficult to capture in a model. If these interactions 
can be captured, perhaps in a detailed model, this model may take an extremely long time to 
program and run. Performance measurement, on the other hand, can be achieved once a system 
has been built and instrumented and is functional. This means that performance measurement 
cannot be used in the SoC design process, and modelling is required in order to predict 
performance. 

Performance modelling is divided into simulation modelling and analytic modelling. 
Consequently, performance models range widely, from simple analytically tractable models to 
extremely detailed trace-driven simulation models. Along with the quantitative predictions that 
are obtained, a principle benefit of performance modelling is the insight into the structure and 
behaviour of a system that developing a model can create. This insight can be especially valuable 
during system design and can result in the early discovery and correction of design flaws. Also, it 
is common to use performance measurement and both analytic and simulation performance 
models during a system’s life cycle. As more information about the design of a system becomes 
available, more detailed models can be developed. 

 
2.2.1   Simulation  

Simulation is a versatile and useful tool to use when evaluating SoC performance. Whereas 
there are limitations on the range of features that can be modelled using analytic techniques, a 
simulation model can be constructed to a level of detail that is almost arbitrary, which makes it 
possible to model extremely complex situations that are analytically intractable. In fact, validation 
of analytic models is one of the main applications of simulation. Two distinct types of simulation 
have become widespread in the performance evaluation of interconnection networks [Dally and 
Towles 2004]. The first of these, trace-driven workload simulation, simulates a deterministic model 
that is driven by a sequence – or trace – obtained from measurements of an existing system. The 
primary use of trace-driven simulations has been to study the performance of storage hierarchies 
and processor pipelines. Synthetic workload simulation typically simulates a queueing model driven by 
sequences of random or pseudorandom numbers that have user-specified distributions.  

 
 

Processor 

or Memory

Cache

Router



9 

 

 
Figure 2.2: Structure of an interconnection network simulation engine 

 
Figure 2.2 shows the structure of an interconnection network simulator. Traffic generator 

modules produce packet flows that form the synthetic workload in the network and input count 
and timing module records the number and timing properties of generated packets. Similarly, 
output count and timing module records the number and timing properties of received packets.  
By analysing these values, we can estimate the latency and throughput of flows in the system. 

Due to complexity of developing and controlling of trace-driven workloads, synthetic 
workloads are used frequently in NoCs simulation. Not only are synthetic workloads easy to 
design and manipulate, but they can also capture the most noticeable features of the realistic 
workloads [Dally and Towles 2004]. Synthetic workload is comprised of three independent 
distributions: temporal distribution, spatial distribution, and packet length distribution. Temporal 
distribution refers to the distribution of interarrival time of packets while spatial distribution 
represents the distribution of the destination of packets in the network. Some examples of 
temporal distributions are periodic process, Poisson process, and bursty process. In a periodic 
process, the packets interarrival times are fixed and known while Poisson process incorporates 
fluctuations in the interarrival times based on the exponential distribution. An example of bursty 
traffic modelling is given in Section 3.1.1. Uniform, transpose, bit-reversal, and shuffle traffic 
patterns are well-known examples of spatial distributions used in NoC simulations [Gratz and 
Keckler 2010]. Figure 2.3 shows these distributions in the 8x8 mesh topology. 

 
 

 

(a)                                                   (b)                                                   (c)  
Figure 2.3: (a) Transpose, (b) bit-reversal, and (c) shuffle spatial traffic patterns in 8x8 mesh 
network 

In
te

rco
n

n
e

ctio
n

 N
e

tw
o

rk

Source queue

Traffic generator

Input count 
and timing

Terminal instrumentation

Terminal instrumentation

. . . 

Output count 

and timing

Terminal instrumentation



10 

 

Usually, in a simulation process, resources are idle at the beginning, which results in error in the 
measurement of network performance metrics. For instance, early injected packets experience 
less contention and lower latency while later packets see more contention as buffers are starting 
to fill up gradually. During this warm-up period bias is inevitable in simulation results because initial 
observations are not completely representative of the steady state. The best way to eliminate initial 
observations is to discard them. Once the warm-up period has been completed, observations are 
considered to come from a steady-state process. 

The fact that the input processes that drive a simulation (such as packet size, service times, and 
interarrival times) are random variables means that the output of such simulations are also 
random. Estimates of system performance measures are only yielded from runs of the simulation 
– these are random variables themselves, which makes them subject to sampling error. Consider 
the example of a simulation experiment that produces observations of a random process ���, � = 1,2, … ,��, in which steady-state mean � = �[��] is expected. In such a case, an interval 
CI will exist such that � !"#"�$�%&�� ∈ ()� = (* , where CL is the confidence level and CI is the 
confidence interval.  

A number of analysis and data collection methods have been proposed in order to calculate 
both the CI and CL during steady-state simulation [Pawlikowski 1990]. A common method of 
estimating the steady-state mean and the variance of collected data with a given CI and CL and is 
batch means. This method involves dividing a series of steady-state observations, with a length N, 
into B contiguous and non-overlapping batches with size M +� = ,../ . The first batch 
comprises transient information, so once the first batch has been discarded, the next step is to 

calculate the global mean 0�1 = 23�2∑ �563�7� 8 , the batch mean for each of B-1 batches +��111, �9111,… , �31111/, and the variance of those batch means 0:;� = 23��∑ +�56 − �1/�3�7� 8. The next 

step is to construct a confidence interval with the form �1 ± �; where � is the confidence interval 

half-length provided by � = >?√3�2 %3��,AB , where %3��,AB   is the upper 01 − C�8 critical point of the 

student’s t distribution with B-2 degrees of freedom [Alexopoulos and Seila 1996]. Put another way, D !"#"�$�%&��1 − � ≤ � ≤ �1 + �� = 1 − G . By determining an upper bound for �		+� < I�1/  where I  is a pre-specified relative precision, the confidence interval will be J+1 −I/�1, +1 + I/�1K. In the present thesis, it is supposed that 10 batches (B =10) of M observations 
are collected. If the simulation results are not sufficiently accurate, the simulation will be repeated 

with larger values of M. Since � = 29 :;%L,C/�  and � < I�1  we have 
29 :;%L,C/� < I�1 , and 

therefore :;/�1 < 3I/%L,C/�. In other words, the coefficient of variation +:;/�1/ should be less than a 

pre-defined threshold. This threshold J3I/%L,C/�K is a function of CI and CL. Table 2.1 shows 
various coefficient of variation for some confidence intervals and confidence levels. In the 
experimental results of this thesis the confidence interval and the confidence level are assumed 
0.02 and 0.99 respectively.  In other words, the coefficient of variation is less than 0.0179. 

 
Table 2.1: Calculated coefficient of variation for some confidence intervals and confidence levels 
 

          CI 
   CL 

0.01 0.02 0.05 0.10 0.20 

0.999 0.0060 0.0119 0.0298 0.0595 0.1190 
0.99 0.0089 0.0179 0.0447 0.0894 0.1788 
0.98 0.0104 0.0207 0.0518 0.1036 0.2072 
0.95 0.0130 0.0260 0.0650 0.1301 0.2602 
0.90 0.0161 0.0323 0.0806 0.1613 0.3226 
0.80 0.0215 0.0429 0.1074 0.2147 0.4295 



11 

 

2.2.2   Analytic modelling  
Analytic performance modelling has become widely acknowledged as a cost-effective 

evaluation technique with which to estimate the performance of interconnection networks [Dally 
and Towles 2004]. The cost-effectiveness of analytic models stems from the fact that they are 
based on efficient solutions to mathematical equations. In order for such equations to have a 
tractable solution, however, it is necessary to make certain simplifying assumptions regarding the 
structure and behaviour of the queueing network model. Consequently, analytic models cannot 
capture all of the detail that can be built into simulation models. Nevertheless, the key resources 
and workload requirements for many types of systems can be modelled analytically with enough 
realism for them to provide insights into the bottlenecks and key parameters that affect system 
performance.  

There is a widely held belief that carefully constructed analytic models can estimate average job 
throughputs and device utilizations with up to 90 per cent accuracy and average response time 
with up to 70 per cent accuracy [Lazowska et al. 1984]. For a preliminary new system design, 
these levels of accuracy are usually sufficient. An analytic model can make it possible to 
understand the key factors that affect the performance of a proposed system, as well as helping 
to determine how sensitive performance is to parameter changes. An analytic model can help 
provide guidelines regarding the overall design of a system and also help develop more detailed 
simulation models as the design matures. For example, an analytic model could determine the 
areas to focus on when building a simulation model. If there is no issue with performance in a 
certain subsystem, this suggests that the subsystem does not need to be modelled in great detail.  

SoC designers often use performance models when making early architecture and design 
decisions. Engineers will typically construct a performance model and then compare future 
technology options based on performance model projections. With such a goal in mind, engineers 
will start by developing the application and architecture models separately, before mapping the 
application to the architecture and using a performance model to evaluate the selected 
application–architecture combination. This concept is discussed in detail in the following chapter.  

Most current performance models of NoCs tend to rely on simulations. NoC designers have 
used detailed simulations to explore the design space in order to address performance analysis. 
Simulation tools are accurate and flexible, but the complexity of modern SoCs limits what can be 
reasonably simulated. Simulation-based design processes are also disadvantaged by the non-linear 
behaviour of system performance, which makes it hard to draw conclusions from the simulation 
results in terms of how to adapt the system hardware or its programming. It can also be difficult 
to determine the SoC’s worst-case behaviour. Using simulation experiments increases the 
computational intensity of searching for efficient architectures, and does not scale well with the 
size of networks. As a result, the simulation simply cannot be used in optimisation loops.  

An alternative to the aforementioned approach is an analytical model that can estimate the 
desired performance metrics in much less time. Analytical models can reduce the large design 
space in a much shorter time than simulation can. Therefore, deriving accurate analytical models 
for performance prediction of NoCs is justified in order to eliminate the need for time-
consuming simulations. Engineers can use the information provided during the performance 
analysis step in any optimisation loop for NoCs, such as the topology selection, buffer allocation, 
and application mapping. While high-level models conceal many complex technological aspects, 
they also facilitate rapid exploration of the NoC design space. As well as providing the timing 
properties of the system, analytical models also provide useful feedback about the system’s 
behaviour. Accurate simulations can be set up at later steps of the design process, when the 
design space has been reduced to a small number of practical choices. In short, analytical models 
have earned a place alongside simulation in the analysis of NoC performance analysis and are 
likely to grow in importance as NoCs become increasingly complex and irregular.  

Latency is one of the most critical design challenges for on-chip interconnection network 
architectures [Owens et al. 2007]. Latency plays a significant role in the NoC-based system’s 



12 

 

performance since it is introduced to every communication pair within the system such as 
processor units, local memory, shared memory, and cache blocks. Furthermore, it has a direct 
effect on throughput and power consumption in NoCs. Latency is also the main design challenge 
in systems with critical timing demands such as real-time SoCs. Therefore, the present thesis 
assesses the performance in terms of packet latency. 

 
2.3   Mathematical Formalisms for Performance Evaluation  

Performance evaluation is important to NoC designers who aim to provide either the highest 
level of performance at a given cost or a minimum level of performance at the lowest possible 
cost. In both cases, a reliable measure of performance is indispensable. However, the former case 
typically focuses on average performance, while the main metric for the latter case is worst-case 
performance. The worst-case execution time is of particular concern in real-time systems, such as 
automotive or avionic applications. In such systems, it is important to know the amount of time 
that might be required in a worst-case scenario in order to guarantee that the task will always 
complete its jobs before the predetermined deadline. The downside of the worst-case-based 
design is that it results in resource over-dimensioning. Because of this, average-case-based design 
methods are usually used for non-time critical applications to increase the efficiency of the 
system. Below, the author of the present thesis reviews the basic concepts and applications of 
four analytical performance evaluation methods that are popular for average-case and worst-case 
performance analysis of NoCs: queueing theory, network calculus, schedulability analysis, and dataflow 
analysis.  
 
2.3.1   Queueing Theory 

Queueing theory is a branch of probability theory. Figure 2.4 shows a queueing system in which 
a population of customers enters a service facility that includes one or multiple servers. If a new 
customer arrives and all servers are busy, that customer will enter a queue and wait until a server 
becomes available. In order to analyse such a system, it is necessary to identify the arrival process, 
but also the structure and discipline of the service facility.  

 
Figure 2.4: Model of a queueing system. 

 
Queueing theory specifies the arrival process and service time probabilistically. In terms of the 

structure and discipline of the service facility, it is necessary to specify a range of additional 
quantities, including the amount of storage capacity available to handle waiting customers, the 
number of available service stations, and the queueing discipline. Along with distributions of 
interarrival and service times, queueing systems may vary in terms of the number of servers, the 
capacity of a queue (whether it is infinite or finite), and the service discipline.  

The Kendall notation briefly characterizes the queueing systems [Bolch et al. 2006]. One 
description of a queueing system description looks like A/B/m/K – S, where A denotes the 
distribution of the customer interarrival time, B the distribution of the service time, m the number 
of servers, K the maximum capacity of the queue in a finite case (if K = ∞, then this letter is 

arriving 

customers

server 1

server 2

server n

.

.

.

servers

queue
departed

customers



13 

 

omitted), and the S, which is optional, denotes the service discipline used. Omitting S always 
results in the service discipline being FCFS. For A, the following abbreviations are common: 
- M (Markov property): The exponential distribution with an average arrival rate of O 
customers/time unit. Put another way, the number of customers follows a Poisson distribution 
with an average of one customer per 1/O time unit. 

- D (Deterministic): The interarrival times are constant and have the same value. 
- G (General): General distribution, not specified further. At least the mean and the variance will 
be known in most cases. 
Similarly, these same notations (M, D, and G) are used to specify B to describe the distribution 

of service time. 
Having specified a queueing system, it is appropriate to identify the measures of performance 

and effectiveness that the analysis generates. The main variables of interest are the average 
waiting time for a customer, the number of customers in the queue, the length of the continuous 
interval during which the server is busy or idle, and the backlog of unfinished work expressed in 
units of time. Because these quantities are all random variables, we look for their complete 
probabilistic description, such as their distribution functions. In most applications, however, it is 
sufficient to calculate the first few moments (mean, variance, etc.). The scope of queueing theory 
applies when several servers are arranged in a network and customers move through the network 
to visit a number of different servers. 

 
Applications in NoCs 

Techniques for evaluating the performance of NoCs have been inherited from distributed and 
parallel processing research. A significant number of the previous analytical latency models used 
in off-chip networks have been formulated for a specific topology and traffic pattern [Kim and 
Das 1994; Kiasari et al. 2008]. One of the uses of queueing theory is in the estimation of average 
performance metrics, including average packet latency, average resource utilization, average 
energy and power consumption, and average throughput. System designers utilize metrics such as 
these when making decisions related to solving problems such as module placement, link 
capacity, routing decisions, and buffer configuration. 

The analytical model proposed by Guan et al. [1993] concerns a general topology with an 
exponential packet length distribution and features high complexity for high dimensional 
networks. Hu and Kleinrock [1997] used queueing theory in their presentation of a general 
analytical model for wormhole routing that estimates the average packet latency in 
interconnection networks. Kim et al. [2005] developed a queueing theory-based model in order to 
provide rapid performance estimates during the design cycle; this model quantifies the 
performance and energy behaviour of on-chip networks. Kim et al.’s model assumed that packet 
arrivals at all input channels have Markov property. Hu et al.’s [2006] study of M/M/1/K 
queueing models solved a series of nonlinear equations in order to analyse the current buffer size 
configuration in a timely manner and detect performance bottlenecks in the router channels. 
They then used this model in buffer sizing problems in packet-switched NoCs. Specifically, given 
the traffic characteristics of the target application and the overall budget of the available buffering 
space, Hu et al.’s proposed model automatically assigns the buffer depth for each input channel, 
in different routers across the chip, in such a way that minimizes the average packet latency in the 
system. Based on M/M/1 queueing model, Guz et al. [2007] proposed an analytical delay model 
for virtual channelled wormhole networks for link capacity allocation in NoC-based systems. This 
assignment algorithm allocates network resources efficiently in order to meet quality of service 
(QoS) and performance requirements.  

Hur et al.’s [2008] performance analysis of hard and soft on-chip networks for FPGAs applied 
Jackson’s [1957] queueing model to analyse the performance of a multiprocessor SoC. They also 
used Jackson’s model to analyse circuit-switched NoCs and show that hardwired networks 
perform significantly better than conventional soft NoCs. Foroutan et al. [2009] presented a case 



14 

 

study using an analytical method based on Markov chain stochastic processes for latency 
evaluation of an NoC that was arranged in a 2D mesh topology with a deterministic routing 
algorithm and a uniform traffic pattern. Foroutan et al. [2010] proposed a generic analytical 
model that estimates communication latencies and link-buffer utilizations that have a given 
application mapped on wormhole-switched NoCs. The present study correctly models the 
resulting interdependencies between the routers.  

Ogras et al. [2010] proposed an analytical performance model for wormhole-switched NoCs 
and used the M/G/1 queueing model to compute the average number of packets at each buffer. 
This model provides three performance metrics; average buffer utilization, network throughput, 
and average packet latency. Cheng et al. [2011] presented another analytical model with which to 
estimate the communication performance of wormhole-switched NoCs; their model supports 
arbitrary network topology with virtual channels. Cheng et al. used a routing path decomposition 
approach to generate a series of ordered link categories in order to resolve the inherent 
dependency of successive links occupied by a packet. They then used M/M/1 and M/M/1/K 
queueing models to derive the transmission latency of network components. Krimer et al.’s 
[2011] analytical model, which was inspired by industrial work-flow modelling techniques, 
introduced a packet-level static timing analysis for wormhole-switched NoCs with virtual 
channels. This model is reliant on a reduced Markov chain that represents the network state, 
including the occupancy of all buffers, and also handles any topology, link capacities, and buffer 
sizes and provides per-flow delay analysis. Wang et al.’s [2011] proposed performance analytical 
model uses a semi-Markov process to estimate the average packet latency in NoCs. The authors 
used the process to describe the behaviour of each link in the network and calculate the header 
flit delay.  

Varatkar and Marculescu [2004] showed that the traffic of some multimedia applications 
display a long-range dependent behaviour that has a considerable impact on queueing 
performance. Because of the inability of the traditional Poisson arrival process to capture such a 
traffic pattern, the performance properties of interconnection networks must be re-examined in 
the context of more realistic traffic models before practical implementations reveal their potential 
faults. With this in mind, Min and Ould-Khaoua’s [2004] proposed analytical queueing model was 
designed for wormhole-switched networks in the presence of self-similar traffic. However, their 
approach is limited to the k-ary n-cube networks and uniform traffic pattern. Their study showed 
that such networks suffer considerable performance degradation when they are subjected to self-
similar traffic; this finding emphasizes the need to improve network performance in order to 
ensure efficient support for traffic of this type.  

A queueing system can only be analysed if something is known about the laws governing the 
arrival pattern, the characteristics of the service facility, and the logic governing the behaviour of 
the queue. Queueing theory deals with the mathematical analysis of such systems subject to 
demands that have occurrences and lengths that, generally speaking, can only be specified 
probabilistically. 
 
2.3.2   Network Calculus 

Network calculus is a mathematical framework used to derive the worst-case bounds on 
maximum latency and backlog, both in a single node and a network of nodes. Accordingly, 
network calculus can be seen as a theory with which to analyse performance guarantees in 
computer networks. Network calculus was pioneered by Cruz [1991a; 1991b], based on which 
Chang [2000] and Le Boudec and Thiran [2001] further developed the network calculus theory 
and based it on min-plus algebra. The basic elements of this algebra are arrival curves and service 
curves as abstractions of application traffic and network elements, respectively. Like conventional 
system theory, a network calculus consists of an input function, a transfer function, and an 
output function. The difference between network calculus and a conventional system theory is 



15 

 

that the former uses min-plus algebra and replaces addition and multiplication with minimum and 
addition, respectively.  

In network calculus theory, the input function and output function are described by the 
cumulative functions R(t) and R*(t), respectively. These functions represent the number of bits 
(words, or packets) that can be seen on the input and output data flow in time interval [0, t]. 
Functions R and R* are, obviously, always monotonically increasing functions. System S, which 
receives input data and delivers the output data after a variable delay, could take the form of 
something like a single buffer served at a constant rate, a complex communication node, or even 
a complete network. 

The backlog is the number of bits held inside the system. In cases where the system is a single 
buffer, the backlog determines the queue length. In a more complex system, the backlog is the 
number of bits “in transit,” assuming that input and output can be observed simultaneously. 
Therefore, for a lossless system, the backlog at time t is  
 

                            b(t) = R(t) – R*(t).                                                  (2.1) 
 

The virtual delay at time t would be experienced by a bit that arrived at time t as long as all bits 
received before that bit are served first. Therefore, the virtual delay at time t is  
 P+%/ = infTUV�	W+%/ ≤ W∗+% + Y/�.                                               (2.2) 
 

The infimum of a set (inf) is similar to the minimum. The difference is that the minimum of a 
set is the smallest element of the set and is, naturally, in the set. The infimum of a set, on the 
other hand, is the greatest lower bound of the set, and does not need to be in the set. d(t) is the 
smallest value that satisfies R*(t + d(t)) = R(t). Network calculus theory refers to the input and 
transfer functions as the arrival curve and the service curve, respectively.  

By way of example, providing guarantees to traffic flows requires a specific form of support in 
the network to limit the traffic sent by sources. This support is provided using the concept of an 
arrival curve. Given an increasing function α(t) defined for t ≥ 0, we can say that an input flow 
R(t) is constrained by α(t) only if the following applies for all s ≤ t:  

R(t) − R(s) ≤ α(t − s).                                                           (2.3) 
A common arrival curve is the leaky bucket arrival curve (or affine arrival curve), which is defined 
by 

 G+%/ = Z�,[ = \% + ],								% ≥ 0.                                                        (2.4) 
where ρ is the rate of the flow (measured in units of data per time unit) and σ  limits the 
burstiness of the flow (in units of data). Such an arrival curve enables a source to send σ  bits at 
once, but no more than ρ bits/second over the long run. Cruz [1991a] was the first to propose 
the (σ , ρ) traffic characterization; Figure 2.5 shows the corresponding arrival curve. 
 



16 

 

                       
 

Figure 2.5: Leaky bucket (affine) arrival curve. 
 
The service curve represents the minimum service levels of network elements (router, channel, 
etc.) and often abstracts a scheduling policy. Consider the example of a system S and a flow-
through S with input and output functions R and R*. S can be said to offer a service curve β to 
the flow only if some s ≤ t exists for all t such that 
 

R*(t) ≥ R(s) + β(t-s).                                                                  (2.5) 
 
A well-defined service curve is the latency-rate function ��,	,  
 ��,	+%/ = W+% − `/
 = aW+% − `/,							% > `,										0,																				otherwise.		 j                                         (2.6) 
 
where R is the service rate and T is the maximum response delay of the node [Stiliadis and Varma 
1998]. Figure 2.6 below illustrates such a service curve, which is widely used to model the routers 
in a network. 

 
 

Figure 2.6: A latency-rate service curve. 
 
One use of network calculus is in determining the backlog and delay of a flow that is constrained 
by an arrival curve and traverses a system offering a known service curve. For instance, the 
maximum delay, maximum backlog, and output traffic characterization in a system with leaky 
bucket arrival curve and latency-rate service curve are as follows [Le Boudec and Thiran 2001]: 
 

0

1 0

2 0

3 0

0 5 1 0 1 5

d
a

ta
 v

o
lu

m
e

time 

σ

rate ρ

0

1 0

2 0

3 0

0 5 1 0 1 5

d
a

ta
 v

o
lu

m
e

time T

βR,T =R(t-T )
+

rate R



17 

 "klm = ] + \`,                                                                      (2.7) 
 Pklm = ` + ] W,⁄                                                                    (2.8) 
 G∗+%/ = Z�,[
�	 = \% + ] + \`.                                           (2.9) 

Applications in NoCs 
Zhang [1995] surveyed several of the service disciplines that have been proposed in the 

literature in an effort to provide per-connection end-to-end performance guarantees in packet-
switching networks. Zhang discussed a number of issues and trade-offs regarding the design of 
service disciplines for guaranteed performance service and presented a general framework for 
studying and comparing these disciplines. Zhang’s survey is an excellent overview of guaranteed 
service in networks that are potentially applicable to NoCs.  

Network calculus can help estimate worst-case flow delays and backlogs in a given system. 
Qian et al. [2009c] performed an investigation of per-flow flit and packet worst-case delay 
bounds in on-chip wormhole networks. They proposed certain analysis models for flow control 
and for link and buffer sharing; then, based on these analysis models, they obtained an open-
ended service analysis model that captured the combined effect of flow control and link and 
buffer sharing. Their service analysis model computed leftover service curves for individual 
flows, before deriving their flit and packet delay bounds.  

Lu et al.’s [2009] study defined a regulation spectrum for lossless flow regulation, which was 
then used to reduce delays and backlog bounds in SoC architectures. Based on the regulation 
spectrum, Jafari et al. [2010] formulated optimisation problems with which to minimize total 
buffers and buffer variations under QoS constraints, and also performed a regulation analysis for 
best-effort networks. Bakhouya et al. [2011] presented a methodology with which to analyse and 
evaluate on-chip interconnects in terms of a number of performance and cost metrics, including 
energy consumption, latency, and area requirements. They also used a given traffic pattern to 
compare spidergon, 2D mesh, and WK-recursive topologies, and found that the WK-recursive 
topologies outperformed the others in all considered metrics. Lu [2011] used network calculus to 
analyse and determine the delay and buffer bounds for TDM virtual circuits that crossed 
synchronous clock domains.   

Qian et al.’s [2009a] study applied network calculus to NoCs with the aim of analysing delay 
and backlog bounds for self-similar traffic. They showed that a deterministic arrival curve cannot 
constrain self-similar traffic, and then went on to prove that leaky bucket arrival curves can 
constrain self-similar traffic if an additional parameter – excess probability – is used to capture 
the burstiness of the traffic exceeding the arrival envelope. In Qian et al. [2010a], the worst-case 
delay bound was derived for an individual flow on packet-switched best-effort NoCs. The 
authors derived the leftover service curve for the flows by first constructing a contention tree [Lu et 
al. 2005] that captures the contention of each flow with other interfering flows along its routing 
path, and then proceeded to scan the tree. Tagged flows contend directly with interfering flows, 
and interfering flows may contend both with each other and then with the tagged flow again. In 
turn, this indirect contention may influence the performance of the tagged flow. In order to 
decompose a complex contention scenario, they identified three primitive contention patterns; 
they analysed these three scenarios and then derived their basic analytical models, with a focus on 
the derivation of the service curve provided by the tandem. The authors of the present study 
have assumed sufficiently large buffers in routers. [Qian et al. 2009b] and [Qian et al. 2010b] 
considered bounded buffers and virtual channels, respectively. 

Network calculus has emerged as a new theory with which to analyse performance bounds in 
network-based systems. Unlike queueing theory, network calculus deals with worst-case analysis 
rather than average-case analysis and has therefore becoming a promising formalism for analysing 
quality of service. Network calculus makes it possible to derive the worst-case bounds on 
backlog, maximum latency, and minimum throughput. 



18 

 

 
2.3.3   Schedulability Analysis 

Schedulability analysis is a mathematical formalism that investigates the timing properties of 
real-time systems. This technique was originally developed with the purpose of analysing 
computation systems [Liu and Layland 1973; Leung and Whitehead 1982; Lehoczky et al. 1989] 
and was then applied to such communication platforms as multicomputers [Li and Mutka 1994] 
and NoCs [Shi and Burns 2008]. Schedulability analysis usually involves modelling tasks with 
sporadic and periodic models. Periodic tasks are released at regular intervals, while sporadic tasks 
are released arbitrarily, albeit with specified minimum time intervals between releases. 
Schedulability analysis uses a scheduling policy, a given set of periodic and sporadic tasks, and 
their worst-case execution time to determine the possibility of scheduling these tasks in such a 
way that deadlines are never missed. The earliest results from schedulability analysis and real-time 
scheduling were obtained based on restrictive assumptions regarding the task in question and the 
underlying architecture. The task is comprised of a certain fixed number of independent tasks 
that are mapped on a single processor; these tasks each have a fixed period and are released 
periodically, while the deadlines equal the periods and the task execution times are fixed. The 
assumptions in later studies were more relaxed, including multiprocessor systems, deadlines that 
were less than or equal to the periods, data dependency relationships among the tasks, and 
sporadic tasks. 

Real-time systems are usually equipped with a schedulability test [Wu et al. 2010], the purpose of 
which is to determine whether each admitted task can meet its deadline. New tasks are not 
admitted unless they pass the schedulability test. Schedulability tests can either be direct or indirect. 
A direct schedulability test calculates the worst-case response time of the tasks, and a set task can 
only be schedulable if the worst-case response time of each separate task is less than or equal to 
its deadline. Although such tests are accurate, calculating the response times involves a high 
computing cost. The most common type of indirect schedulability test is a utilization-based test, 
which tests system resource utilization in order to determine task schedulability. A new task can 
only be admitted if its utilization is lower than a pre-derived bound. A task set for a utilization-
based schedulability test is schedulable when the task’s utilization is lower than a pre-derived 
bound. 
 
Application in NoCs 

It is essential that the SoC communication platform provides different levels of service for the 
different application components on the same network. There are stringent requirements for real-
time communication; the correctness relies on the communication result and also on the 
completion time bound. If a destination receives a data packet too late, that packet may be 
useless. The worst-case acceptable time metric is considered to be the deadline of the packet. If 
all the packets belonging to a set of real-time traffic flows over the network meet their deadlines 
regardless of the arrival order of the packet set, then these flows are considered schedulable. In 
systems like this, schedulability analysis investigates the schedulability of flows in the network and 
adopts an iterative approach that estimates, in the context of a network-based system, the 
maximum end-to-end latency of flows.  

Shi and Burns [2008] suggested an offline schedulability analysis approach that discusses real-
time on-chip communication with fixed-priority scheduling and wormhole switching. They 
proved the NP-hard nature of determining the precise schedulability of a real-time traffic flow 
over an on-chip network. However, by evaluating a diverse range of relationships among the 
traffic flows, they also provided a determinant upper bound on the schedulability of real-time 
traffic flows. They proposed a method that predicts a packet network’s latency based on direct 
contention and indirect contention from traffic flows with higher priority. Wormhole switching 
with fixed-priority pre-emption is one possible solution for real-time on-chip communication; 
however, the hardware implementation cost of such a solution is high. The solution proposed by 



19 

 

Shi and Burns [2009] involves utilizing a priority share policy that reduces the resource overhead 
while, at the same time, achieving the hard real-time service guarantees. However, the analysis 
process is complicated by the blocking that the priority share policy introduces. To counter this, 
Shi and Burns [2010] suggested an analysis scheme with a per-priority basis that would compute 
the total time window at each priority level rather than at each traffic flow. Shi and Burns 
efficiently determined schedulability by checking each flow’s release instance at the 
corresponding priority window. Furthermore, by building on this static analysis, for a given set of 
tasks and network topology, they also proposed a task-mapping and priority assignment 
algorithm that met the hard time bounds with reduced hardware overhead. 

Schedulability analysis focuses on real-time systems and determines whether or not a real-time 
system can meet its deadline; it also aims to assign priorities to tasks in order for each task to 
meet its deadline. 

 
2.3.4   Dataflow Analysis 

A dataflow graph is a model-of-computation (MoC) in which a number of concurrent 
processes use unbounded FIFO channels to communicate with each other [Lee and Parks 1995]. 
Writing to these channels is a non-blocking method, but reading from these channels is a 
blocking method [Jantsch and Sander 2005]. A dataflow program is a directed graph that consists 
of nodes (actors) that represent communication, and arcs representing ordered sequences 
(streams) of data units (tokens). Studies have shown that, for concurrent implementation on 
parallel hardware, dataflow graphs are valuable in digital signal processing applications (such as 
audio and video applications) [Jantsch and Sander 2005]. There are a range of dataflow MoCs, 
depending on the specifications regarding the firing rules, consumption, and production. These 
MoCs differ in terms of their analysability, their expressiveness and succinctness, and their implementation 
efficiency [Stuijk et al. 2011]. Among the dataflow models for streaming applications, the 
synchronous dataflow (SDF) model is the most popular and widely studied nowadays [Bekooij et 
al. 2005]. SDF places further restrictions on the general dataflow model, in that each process 
produces and consumes a fixed number of tokens for each individual firing [Lee and 
Messerschmitt 1987]. In the cyclo-static dataflow (CSDF) model [Lauwereins et al. 1994; Bilsen et 
al. 1996], the number of tokens that an actor consumes and produces varies cyclically. Each cycle 
has a fixed number of phases and each actor produces or consumes a fixed number of token in 
each phase, although behaviour may vary from one phase to another. Non-synchronous and 
data-dependent behaviour means that SDF and CSDF are not able to express some streaming 
applications [Buck 1994], although it is possible to address this problem by extending the SDF 
model to permit some actors with data-dependent behaviour. The SDF model can be further 
generalized using Boolean dataflow (BDF) [Buck 1993], in which the number of tokens that is 
produced and consumed will depend on the value of a token read from a dedicated control input. 
The dynamic dataflow (DDF) model [Lee and Parks 1995] is a Boolean dataflow model that has 
an additional variation; namely, the control actors mentioned in the BDF model can read multiple 
token values and, based on what the control actors read, the data actors can be fired 
conditionally. The incomplete knowledge at compile time means that BDF and DDF MoCs 
require a run-time scheduling mechanism in order to determine the point at which an actor 
becomes executable.  

 
Applications in NoCs 

Classical dataflow models are not timed. The timing properties of a system can be addressed by 
associating a worst-case execution time with each actor [Sriram and Bhattacharyya 2009]. This 
association makes it possible to assess aspects of the NoC-based system’s timing behaviour, such 
as its throughput and latency. Each actor has a worst-case execution time added to it, and the 
specified number of tokens is produced and consumed within that execution time. An actor’s 
self-edge is used to model the fact that the previous execution must be completed before starting 



20 

 

the next execution. It is possible to indirectly model scheduling policies by changing the worst-
case execution time into the worst-case response time [Bekooij et al. 2005]. 

In streaming applications, throughput is an important performance indicator that has been 
well studied in the literature on dataflow models [Dasdan and Gupta 1998; Dasdan 2004; 
Ghamarian et al. 2006]. All of those studies have focused on analysing HSDFs and can only be 
applied to SDFs by converting them to HSDF [Lee and Messerschmitt 1987; Sriram and 
Bhattacharyya 2009]. Next, the throughput is determined using maximum cycle mean (MCM) 
analysis. In order to determine the MCM, it is necessary to determine the maximum of the cycle 
means of all the simple cycles in the HSDF graph, where a cycle’s cycle mean (CM) c is the sum 
of the actors’ response times on c, divided by the number of initial tokens on cycle c. The 
maximum throughput of the graph that can be attained relates to 1/MCM. Another prominent 
performance metric is latency, although the research into this metric has been minimal. Sriram 
and Bhattacharyya [2009] studied the latency for the HSDFs. Although the latency of an SDF can 
be computed by converting it to a HSDF, this conversion can lead to an exponential increase in 
the number of nodes in the graph, which makes the prediction of performance metrics 
prohibitively expensive [Stuijk et al. 2006]. Moreira and Bekooij [2007] offered a closed-form 
expression of the latency of HSDF graphs, providing useful bounds on the maximum latency for 
jobs with periodic, bursty, and sporadic sources, in addition to a technique that checks latency 
requirements. Ghamarian et al.’s [2007] latency minimization technique, which works directly on 
SDFs, computes the minimal achievable latency for an SDF and provides an execution scheme 
that provides the minimal latency.  

Within the context of a real-time embedded multiprocessor system, Bekooij et al. [2005] 
utilized SDF models in order to derive the end-to-end temporal behaviour of jobs. Hansson et al. 
[2009] and Hansson and Goossens [2010] explained the method for constructing a CSDF model 
that conservatively models an NoC connection. They then used the proposed dataflow model to 
dimension the buffer size in network interfaces in order to guarantee the system’s performance, 
and they also showed that buffer sizes are determined using a run time that is comparable to that 
of analytical methods and results that are comparable to those of exhaustive simulation. Wiggers 
et al.’s [2007] proposed algorithm determines close-to-minimal buffer capacities for CSDF graphs 
in a way that satisfies the throughput requirement and constraints on maximum buffer capacities. 
They also demonstrated that a CSDF model can reduce resource requirements in comparison to 
an SDF model. 

 
2.3.5   Comparison of Formalisms   

These formalisms are compared based on the event model, the node model, and the analysis 

output of the formalisms.  

• The event model refers to the data packet representation. The event model in queueing 
theory is the probability distribution of the packets’ interarrival time. In network calculus, the 
events are modelled by an upper bound for the number of packets. Schedulability analysis 
models the events using periodic and sporadic models in which the minimum interarrival 
times represent a flow. As with queueing theory and network calculus, schedulability analysis 
does not involve any dependency between events. Dataflow analysis uses tokens that are 
produced and consumed by nodes to model events. In the output ports, the production of 
new tokens (events) is dependent on the availability of tokens in the input ports, which 
means that the only formalism that captures the dependency between the events is dataflow 
analysis.  

• The modelling of nodes is based on the nodes’ service time. Service time in queueing theory 
is specified probabilistically. Network calculus models nodes using a function that 
characterizes the minimum number of bits a node must transmit in a given time interval. 
Scheduling analysis models node based on their worst-case delay and on the scheduling policy. 
The worst-case node delay and scheduling policy represent a node in dataflow analysis.  



21 

 

• The analysis results differ among each of the four formalisms. The fact that queueing theory 
deals with probability models enables it to compute average-case performance metrics such as 
average throughput, average packet latency, average resource utilization, and average energy 
and power consumption. Network calculus computes worst-case packet latency and 
maximum backlog, while schedulability analysis estimates worst-case latency in order to 
determine whether the flow is schedulable. Finally, dataflow analysis determines worst-case 
latency and throughput.  

This chapter presented some background on networks-on-chip and performance evaluation 
methods. Then, the basic concepts and applications of four analytical performance evaluation 
methods that are popular for average-case and worst-case performance analysis of NoCs were 
reviewed.  

 





23 

 

 

Chapter 3 
 
Problem Description and Solution Overview 
 
 
This chapter is started by describing a generic synthesis flow for NoCs, from the application specification through to 
tape-out. The chapter then formulates the problem and reviews the contributions in this thesis 

 
 

3.1   NoC Synthesis Flow 
The flow starts with application modelling, followed by NoC performance analysis and, finally, 

NoC verification. The present thesis focuses on the second of these steps.  
 
3.1.1   Application Modelling 

NoCs target single-chip multicore systems that implement multiple applications. Such systems 
are complex, and this fact, along with strict requirements on power, performance, cost, and time-
to-market, places a high degree of pressure on the design team. Such situations are usually 
handled by developing the application and platform models separately [Lieverse et al. 2001]. The 
application models include all of the computation and communication tasks. Workload 
characterization is usually performed in order to obtain traffic models that can be used for 
analysis and optimisation. These application models must be sufficiently scalable and flexible for 
them to be analysed quickly. Also, in order to have confidence in the predicted results, it is 
essential that the key behaviour of the application in the model be captured. The workload has a 
significant influence on the performance of NoC-based systems. Performance evaluation follows 
the GIGO principle of “Garbage in Garbage out”. Evaluation of a system using incorrect 
workloads is likely to lead to incorrect results that cannot be relied upon. An application that has 
software components may require a code partitioning step [Ryoo et al. 2007]. This step is a 
crucial part of extracting as much parallelism from the application as possible. Only after this step 
is it possible to truly exploit the concurrency provided by the NoC architectures. Lastly, in 
situations where the NoC platform is either general-purpose or likely to accommodate a large set 
of applications, it is possible to use random traffic models such as uniform traffic as the 
application model. Flexible tools that can be used to exercise characteristics of the target NoC 
platform include traffic models or realistic traces.  

Many performance analyses of interconnection networks have used the Poisson model, and 
many papers in numerous application domains are based on this stochastic assumption [Hu et al. 
2006]. However, analysis of the multimedia applications in NoCs reveals bursty patterns of traffic 
over a range of time scales [Varatkar and Marculescu 2004]. Because the Poisson process is not 
able to accurately model the bursty traffic, the Markov-modulated Poisson process (MMPP) 
model [Fischer and Meier-Hellstern 1993] has been used in the present study to model the 
temporal burstiness of traffic in NoCs. Several studies have employed MMPP in order to model 
traffic burstiness in a temporal domain [Fischer and Meier-Hellstern 1993]. Figure 3.1 shows a 
two-state MMPP in which arrival traffic follows a Poisson process that has rates OV and O2. The 
transition rate from state 0 to 1 is r0, and the rate from state 1 to state 0 is r1.  



24 

 

 
Figure 3.1: Two-state MMPP model 

 
The present study uses the notation MMPP(k) for the two-state MMPP in which O2 = oOV. 

In Figure 3.2, the number of packet arrivals in a node against time is shown for varying values of 
traffic burstiness. Figure 3.2.a clearly shows that the Poisson process (k =1) is not able to model 
the traffic burstiness, while Figures 3.2.b through 3.2.f indicate that greater k will result in a 
greater intensity of packet burstiness.  

 

   
                             (a)                                            (b)                                            (c) 
 

   
                             (d)                                           (e)                                            (f) 
 
Figure 3.2: Number of packets against time in the MMPP model for (a) k =1 (Poisson model),  
(b) k =10, (c) k =20, (d) k =50, (e) k =100, (f) k =200. 

 
 

3.1.2   NoC Performance Analysis  
This phase aims to determine the NoC architecture and the mapping of the target application 

onto this architecture that meets the goals and constraints of the design. The application is first 
mapped onto the target architecture, and performance analysis is then conducted to determine 
whether the chosen application–architecture combination satisfies the imposed design 
constraints. The success of this methodology is heavily dependent on the availability of adequate 
performance analysis tools that can guide the overall design process. So far, performance 
evaluation of NoC designs has been based on simulation, as Figure 3.3 shows. However, 
simulation is a very time-consuming process and provides minimal insights into how various 
design parameters affect actual network performance. Accordingly, it is virtually impossible to 
use simulation for optimisation purposes.  

 

λ0 λ1

r0

r1

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(1)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(10)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(20)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(50)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(100)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(200)



25 

 

 
 

Figure 3.3: NoC design flow. 
 

The main goal of the present thesis is to develop an approach to NoC performance analysis 
that not only provides accurate performance figures, but also reveals the relationship among 
application mapping, network topology, buffer configuration, and routing algorithms. The 
resulting model is used to achieve accurate and fast performance estimates and also to guide the 
NoC design process in an optimisation loop.  

Figure 3.3 shows a simulation based design flow while Figure 3.4 presents an alternative 
approach. In order for the analysis to be used in an optimisation loop, it must be tractable and 
must also provide meaningful feedback to the designer. Time-consuming simulations can only be 
conducted later on, typically after the design space has already been reduced to a few practical 
choices. This makes it possible to conduct rapid design space exploration and to identify high-
quality solutions within a short and predictable period of time.  
 
 

 
 

Figure 3.4:  An alternative design flow approach for NoCs. 
 
3.1.3   NoC Verification 

Once a particular architecture–mapping pair has been selected, the subsequent and final phase 
involves implementing the NoC communication architecture by instantiating the components 
from a communication library and carrying out the synthesis process. This phase includes 
simulating and verifying the final design to meet user-defined design constraints and goals. 
Synthesis, layout generation, and floor-planning steps are performed at the end, just before tape-
out. 
 
3.2   Detailed Contribution 

This section summarizes the contributions in this thesis, which are divided into the following 
three main categories: 

Workload 

modeling

Architecture 

modeling

Mapping

Simulation

Selected solution

Application
Library 

of blocks

Workload 

modeling

Architecture 

modeling

Mapping

Analytical 

performance analysis

Application
Library 

of blocks

Simulation

Selected solution



26 

 

• Design optimisation with simulation performance models (Papers 1, 5, and 8) 
• Analytical performance models (Papers 2, 4, and 9) 
• Design optimisation with analytical performance models (Papers 3, 6, and 11) 

 
The author of the thesis is the second contributor to the simulation-based design optimisation 
and the main contributor to the analytical performance models and the main contributor to the 
design optimisation with analytical performance models. Here is a short list of publications. 

1. A Performance and Power Analysis of WK-Recursive and Mesh Networks for Network-
on-Chips, ICCD 2006. 

2. A Markovian Performance Model for Networks-on-Chip, PDP 2008. 
3. PERMAP: A Performance-Aware Mapping for Application-Specific SoCs, ASAP 2008. 
4. Caspian: A Tunable Performance Model for Multi-Core Systems, Euro-Par 2008. 
5. Power-Efficient Routing Algorithm for Torus NoCs, IC3 2008. 
6. A Framework for Designing Congestion-Aware Deterministic Routing, NoCArc 2010. 
7. Analytical Approaches for Performance Evaluation of Networks-on-Chip, CASES 2012. 
8. Power-efficient Deterministic and Adaptive Routing in Torus Networks-on-Chip, 

Microprocessors and Microsystems, 2012. 
9. An Analytical Latency Model for Networks-on-Chip, IEEE Transactions on VLSI, 2013. 
10. Mathematical Formalisms for Performance Evaluation of Networks-on-Chip, ACM 

Computing Surveys, 2013. 
11. A Heuristic Framework for Designing and Exploring Deterministic Routing Algorithm 

for NoCs, Springer, 2013. 
 
The full list of papers has been given on pages xx-xxi and the papers are included in Part II of the 
thesis. 
 
3.2.1   Design Optimisation with Simulation Performance Models (Papers 1, 5, and 8) 

The network characteristics are affected by various NoC topologies, including the average 
inter-node distance, communication flow distributions, and the total wire length. Researchers 
have proposed a number of new parallel computer architectures in recent years for building 
massively parallel computer systems that aim to increase computation speed. One significant 
drawback of such networks is the absence of any predefined modules for when fabricating the 
models onto a monolithic chip. This limitation is due to the fact that such networks are not truly 
expansible, while the irregularity of node degrees also makes them costly in terms of VLSI 
implementation.  

Vecchia and Sanges [1988] proposed recursively scalable network topologies for VLSI 
implementation, referred to as WK-recursive networks. They can be constructed recursively by 
grouping basic modules. Any d-node complete graph can serve as the basic module. WK(d,t) is 
used to denote a WK-recursive network of level t whose basic modules are some d-node 
complete graph, where d >1 and t ≥1. Each node of WK(d,t) is uniquely identified by a sequence 
of t numbers, and each of its edges is represented by a pair of nodes. The node set of WK(d,t) is 
denoted by {at at-1…a2 a1|ai∈[0,d-1] for 1≤ i ≤ t}. The adjacency is defined as follows: atat-1…a2a1 is 
adjacent to (1) at at-1…a2 b where 0 ≤ b ≤ d - 1 and b ≠ a1, and (2) at at-1 

… ai+1ai-1(ai)
i-1 if ai ≠ ai-1 and 

ai-1= ai-2= … = a2 = a1, where (ai)
i-1 represents i -1 consecutive ai’s. In WK(d,t), each node is of 

degree d, and there are totally d 
t nodes and d+d(d 

t - 1) / 2 edges. Figure 3.5 shows the topology of 
WK(4,2) network. 
 



27 

 

 
 

Figure 3.5:  The topology of WK(4,2) with 16 nodes. 
 
The WK-recursive networks offer a high degree of scalability, regularity, and symmetry, which 

helps them conform well to the implementation and modular design of distributed systems that 
involve many computing elements. Vecchia and Sanges [1988] described the VLSI 
implementation of the WK-recursive networks and developed a routing algorithm that defined 
which physical channels need to be traversed, but did not address the use of virtual channels. 
Usually, virtual channels are used to design deadlock-free routing algorithms and increase their 
performance. The author of the thesis proposed a deadlock-free routing algorithm to be applied 
to WK-recursive networks. The next step was to assess and compare performance factors of 
same-sized mesh with WK-recursive networks under similar working conditions. The results of 
the simulation showed that, for medium and low traffic loads, the WK-recursive network 
performed better the mesh topology. Paper 1 in Part II provides more detailed information 
regarding the results. 

The routing algorithm, like the network topology, has an important role to play in the design of 
high-performance NoCs. XY routing is the simplest most commonly used routing algorithm for 
mesh NoCs [Dally and Towles 2004]. However, deadlock may occur when XY routing is applied 
to the torus topology because of each dimension’s channel dependency between various packets 
that occurs as a consequence of added wrap-around links. Using multiple virtual channels 
provides flexibility in terms of designing new deadlock-free routing algorithms, although this 
comes at the cost of more complex hardware and greater area, which leads to increase power 
consumption [Banerjee et al. 2004]. A deadlock-free routing algorithm in the torus requires a 
minimum of two virtual channels for each physical channel in order to break the cycles within the 
channel dependency graph into spirals [Dally and Towles 2004]. Papers 5 and 8 present a new 
systematic approach to the design of routing algorithms for torus NoCs, based on which a 
deadlock-free deterministic routing algorithm is proposed. The new algorithm, which is named 
TRANC (Torus Routing Algorithm for NoCs), uses only one virtual channel for each physical 
channel. TRANC offers the low level of power consumption of a mesh NoC, while also 
providing performance comparable to that of a torus NoC by using XY routing that has two 
virtual channels for each physical channel. TRANC even produces better performance for light 
traffic thanks to a zero switching time between virtual channels compared to a torus NoC which 
uses two virtual channels and XY routing. As a secondary contributor of these papers, the author 
of the thesis proposed the minimality factor and an optimality factor to find routes that are 
deadlock-free and as optimal and minimal as possible. These parameters show the extent to 
which an algorithm can balance network traffic. In fact, a routing algorithm requires a measure 
that shows whether all the links are being utilized properly in terms of the distribution of the 
packet destination address. 
 
3.2.2   Analytical Performance Models (Papers 2, 4, and 9) 

As noted in Section 2.2, a suitable analytical model is able to predict the performance of an on-
chip network many times faster than a simulation. Therefore, it is logical to pursue models that 
accurately analyse the performance of popular NoCs. As the main contributor, the author of the 
thesis proposed three analytical models that estimate the average packet latency in NoCs. 

10 11

13 12

00 01

03 02

20 21

23 22

30 31

33 32



28 

 

 
Markovian model: In paper 2, the author of the thesis proposed a Markovian performance 
model which only supports wormhole-switched torus network with uniform traffic and Poisson 
arrival process. Using a queuing-based approach, the average delay due to path contention, virtual 
channel and crossbar switch arbitration is computed. The performance results from the analytical 
models are then validated against those obtained from the simulator. Comparison with simulation 
results indicates that the proposed analytical model is quite accurate and can be used as an 
efficient design tool by SoC designers.  
 
Caspian model: The author of the present thesis proposed the Caspian model in paper 4 which 
is the first analytical model to predict the average end-to-end packet latency in NoCs with bursty 
traffic. The model aimed to minimize prediction costs while providing prediction accuracy. This 
goal was accomplished using a G/G/1 priority queueing model that is used for wormhole-
switched networks under arbitrary traffic pattern. Although Caspian has a good degree of 
accuracy it is limited to networks with dimension-order routing algorithm and single flit buffers.  
 
PQ model: To overcome the limitations of Caspian model, the thesis author proposed PQ 
model (Performance Queueing model) in paper 9 as an extension to Caspian. Input for PQ 
model includes an application communication graph, a topology graph, buffer configuration, a 
mapping vector, and a routing matrix. PQ model then estimates the average packet latency and 
router blocking time. It works for arbitrary network topology under arbitrary traffic patterns. 
However, PQ model is limited to with deterministic routing algorithms. The author of the thesis 
also analysed the computational complexity of the algorithm and showed that the PQ model has 
time requirement O(n5/2) for 2D mesh networks.  
 
3.2.3   Design Optimisation with Analytical Performance Models (Papers 3, 6, and 11) 

In the next step, the analytical models in Section 3.2.2 are used for design space exploration of 
NoCs. The author of the present thesis is the main contributor of papers 3, 6, and 11.  

 
PERMAP: In paper 3, the author of the thesis used the Caspian model in an application 
mapping algorithm and presented PERMAP, a PERformance-aware MAPping algorithm that 
maps a task graph onto a generic NoC architecture in a way that minimizes the average 
communication delay. PERMAP is then used to map a video application onto a tile-based NoC, 
and experimental results show that the proposed mapping algorithm is fast and robust. The main 
limitation of the PERMAP is that the search space is explored randomly. 
 
CAR: In paper 6, the thesis author presented a system-level Congestion-Aware Routing (CAR) 
framework for designing minimal deterministic routing algorithms. CAR exploits the peculiarities 
of the application workload in order to spread the load evenly across the network. To this end, an 
optimisation problem of minimizing the level of congestion in the network is formulated and 
then the problem is solved by using the simulated annealing heuristic. The proposed framework 
ensures deadlock-free routing, even in networks without virtual channels. However, CAR 
calculates the level of congestion based on average traffic rate and does not consider the traffic 
burstiness. 
 
LAR: The thesis author presented Latency-Aware Routing (LAR) to support the traffic 
burstiness in NoCs in paper 11. To this end, the PQ analytical model is used to estimate the 
average packet latency. Experiments with both synthetic and realistic workloads show the 
effectiveness of the approach. The results show that maximum sustainable throughput of the 
network is improved for different applications and architectures. The main limitation of LAR is 
that it is a static approach and the traffic pattern must be known in the design time. 



29 

 

In paper 10, the author of the thesis reviewed four popular mathematical formalisms – 
queueing theory, network calculus, schedulability analysis, and dataflow analysis – and how they 
have been applied to NoC performance analysis. The paper also discusses the respective 
strengths and weaknesses of each formalism, their suitability for a specific purpose, and the 
attempts that have been made to bridge these analytical approaches. Furthermore, the author of 
the thesis and his advisor organized a tutorial on the same topic that is summarised in paper 7. 
Table 3.2 shows the thesis author contributions proposed in each paper along with the topic, 
role, problem and main limitations. 

In addition to above mentioned papers, papers 7 and 10 are also included in the present thesis. 
There is no novel research contribution in these papers and they review popular mathematical 
formalisms and their application to the performance analysis of NoCs. 
  



30 

 

Table 3.2: The thesis author’s contributions 
 

Topic 
My 
role 

Paper Problem My contribution Main limitation(s) 

Sim
ulation-based perform

ance analysis 

Secondary contributor 

Paper 1 
Study a new topology 
for NoCs 

Propose a deadlock-
free routing for WK-
recursive topology 

For large networks, 
the proposed routing 
algorithm requires a 
large amount of 
buffer. 

Paper 5 
Low power routing 
algorithm in NoCs 

Propose the minimality 
factor and the 
optimality factor to 
have a balanced load in 
the network 

The approach is 
limited to torus 
networks and 
deterministic routing. 

Paper 8 
Low power routing 
algorithm in NoCs 

Propose the minimality 
factor and optimality 
factor to find a 
balanced load in the 
network 

The approach is 
limited to torus 
networks. 

A
nalytical perform

ance analysis 

m
ain contributor  

Paper 2 
 

Evaluate the average 
latency and energy 
consumption in 
NoCs 

Propose a Markovian 
model for latency 
estimation 

It only supports torus 
network with 
uniform traffic and 
Poisson arrival 
process. 

Paper 4 
Evaluate the average 
end-to-end packet 
latency in NoCs 

Propose an analytical 
model to estimate the 
latency in case of 
bursty traffic 

It is limited to 
networks with 
dimension-order 
routing algorithm and 
single flit buffers. 

Paper 9 
Evaluate the average 
end-to-end packet 
latency in NoCs 

Propose an analytical 
model to estimate the 
latency in case of 
arbitrary topology and 
bursty traffic  

It only supports 
deterministic routing. 

D
esign space exploration 

Paper 3 
Application mapping 
to NoC architecture 

Use a queueing theory-
based model to map 
the application on NoC 

The search is done 
randomly and the 
model only considers 
the single flit buffers. 

Paper 6 
Congestion-aware 
routing 

Propose a routing 
algorithm that 
minimises the network 
congestion 

The solution does 
not consider the 
traffic burstiness. 

Paper 11 
Latency-aware 
routing 

Use an analytical model 
to find the optimised 
routes for traffic flows 

The traffic pattern 
must be known in the 
design time. 

Survey 

Paper 7 
and 
Paper 10 

There is no novel research contribution in these papers and they review 
popular mathematical formalisms and their application to the 
performance analysis of NoCs. 

 



31 

 

Chapter 4 
 
Summary and Outlook 
 
This chapter concludes the thesis by giving a summary of the previous chapters and an overview about future 
directions for research. 
 
 
 
4.1   Summary 

In the near future, the scaling down of semiconductor technology will enable implementations 
that include thousands of communicating IP blocks on a single chip. Successful integration of 
these blocks relies on the design of communication architectures that are truly scalable. To date, 
the most promising solution has been given by structured communication with an NoC. The 
present thesis studied the modelling, analysis, and optimisation of on-chip interconnection 
networks and presents novel design methodologies for NoC design. A summary of our work is 
provided below.  
• It is vital to have formal models for network architectures and on-chip routers in order to 

identify and solve key research problems. The author of the present thesis reviewed four 
popular mathematical formalisms – queueing theory, network calculus, schedulability analysis, 
and dataflow analysis – and how they have been applied to the analysis of on-chip 
interconnection networks.  

• The thesis author developed novel analytical models that analyse NoC communication 
performance. In addition to providing aggregate performance metrics such as latency and 
throughput, our approach also provides feedback about the network characteristics at a fine-
level of granularity. Our approach explicates the impact that various design parameters have on 
the performance, thereby providing invaluable insight into NoC design. This makes it possible 
to use the proposed approach as a powerful design and optimisation tool.  

• Using the proposed analytical models, system-level frameworks are presented that address 
application mapping and routing algorithms for NoCs. To this end, the author of the thesis 
first formulated an optimisation problem of minimizing average packet latency in the network, 
and then solved the problem. The proposed framework can also address other design space 
exploration problems such as topology selection and buffer dimensioning. 

 
4.2   Outlook 

As part of future direction, a number of worthy research challenges were identified. In what 
follows, we summarise these directions. 
 
Bridging the formalisms: Each of the reviewed formalisms has its own advantages and 
difficulties also differs somewhat in purpose; therefore, none of them can easily replace all of the 
others. Although each formalism has issues that require further study, the most urgent need is for 
research into integrated approaches to the problems of system performance analysis. Each 
formalism can be extended in certain directions; however, these extensions usually face problems 
of complex mathematics or are considered cumbersome and unnatural. Accordingly, the author 
of the thesis argues that the best solution would be comprehensive frameworks that combine two 
or more formalisms. For instance, queueing theory and network calculus could be combined to 
offer both worst-case and average-case analysis. The result of this combination could be merged 
with dataflow analysis in order to naturally model event dependencies and build a bridge to 



32 

 

simulation. However, there is a need to explore and understand the relations between these 
models, as well as the possible and useful transformations between them. 
 
Energy analysis: One of the major concerns regarding the design of multi-core chips is power 
consumption. Because of this, it is important to analyse the power–performance trade-off of an 
NoC design. Therefore, the proposed performance analysis tool can be extended for use with 
available power models [Kahng et al. 2012] and tools for NoC components [Soteriou et al. 2007] 
in order to achieve fast and accurate power/performance analysis. 
 
Reliability analysis: Fault-tolerance and reliability of NoCs is becoming a critical issue due to 
several artifacts of deep sub-micron technologies. Therefore, it is important for a designer to 
have access to fast methods for evaluating the performance and reliability of an on-chip network.  

 
Dynamic workload: The work in the present thesis addresses the performance analysis of NoCs 
for a given application. One direction for future work would be focus on exploring more 
dynamic workload variations and additional benchmarks. 



33 

 

 

 
 

Bibliography 
 
 
 
 
ALEXOPOULOS, C., SEILA, A. F. 1996. Implementing the Batch Means Method in Simulation 

Experiments. Winter Simulation Conference. 214-221.  
BAKHOUYA, M., SUBOH, S., GABER, J., EL-GHAZAWI, T. A., AND NIAR, S. 2011. Performance 

evaluation and design tradeoffs of on-chip interconnect architectures. Simulation Modeling 
Practice and Theory. 19, 6, 1496-1505. 

BANERJEE, N., VELLANKI, P., AND CHATHA, K. S. 2004. A Power and Performance Model for 
Network-on-Chip Architectures. In Proceedings of the Design, Automation and Test in Europe, 
(DATE-04), 1250-1255. 

BEKOOIJ, M. J. G., HOES, R., MOREIRA, O., POPLAVKO, P., PASTRNAK, M., MESMAN, B., MOL, J. 
D., STUIJK, S., GHEORGHITA V., AND VAN MEERBERGEN J. 2005. Dataflow analysis for real-
time embedded multiprocessor system design, chapter 15, Dynamic and robust streaming 
between connected consumer-elecronic devices, Kluwer Academic Publishers. 

BILSEN, G., ENGELS, M., LAUWEREINS, R., AND PEPERSTRAETE, J. 1996. Cyclo-static dataflow. 
IEEE Trans. Signal Process. 44, 2, 397-408. 

BOLCH, G., GREINER, S., DE MEER, H., AND TRIVEDI, K. S. 2006. Queueing Networks and Markov 
Chains: Modeling and Performance Evaluation with Computer Science Applications, 2nd Edition, John 
Wiley & Sons. 

BUCK, J. T. AND LEE, E. A. 1993. Scheduling dynamic dataflow graphs with bounded memory 
using the token flow model. In Proceedings of the IEEE International Conference on Acoustics, Speech, 
and Signal Processing: Plenary, Special, Audio, Underwater Acoustics, VLSI, Neural Networks - 
(ICASSP'93), vol. I. IEEE Computer Society, 429-432. 

BUCK, J. T. 1994. A dynamic dataflow model suitable for efficient mixed hardware and software 
implementations of DSP applications. In Proceedings of the 3rd international workshop on 
hardware/software co-design (CODES'94). IEEE Computer Society, 165-172. 

CHANG, C.-S. 2000. Performance Guarantees in Communication Networks. Springer-Verlag, London, 
UK. 

CHENG, A.-L., PAN, Y., YAN, X.-L., HUAN, R.-H. 2011. A general communication performance 
evaluation model based on routing path decomposition. J. Zhejiang Univ. - Sci. C (Comput. & 
Electron.) 12, 7, 561-573. 

CRUZ, R. L. 1991a. A calculus for network delay, part I: Network elements in isolation. IEEE 
Trans. Inf. Theory. 37, 1, 114-131. 

CRUZ, R. L. 1991b. A calculus for network delay, part II: Network analysis. IEEE Trans. Inf. 
Theory. 37, 1, 132-141. 

DALLY, W. J. AND TOWLES, B. 2004. Principles and Practices of Interconnection Networks, 
Morgan Kaufmann Publishers Inc., First edition. 

DASDAN, A. 2004. Experimental analysis of the fastest optimum cycle ratio and mean algorithms. 
ACM Trans. Des. Autom. Electron. Syst. 9, 4, 385-418. 



34 

 

DASDAN, A. AND GUPTA, R. 1998. Faster maximum and minimum mean cycle algorithms for 
system performance analysis. IEEE Trans. Computer-Aided Design Integr. Circuits Syst.17, 10, 889-
899. 

Fischer W. and Meier-Hellstern K. 1993. The Markov-Modulated Poisson Process (MMPP) 
Cookbook. Performance Evaluation, 18, 2, 149-171. 

FOROUTAN, S., THONNART, Y., HERSEMEULE, R., AND JERRAYA, A. 2009. Analytical computation 
of packet latency in a 2D-mesh NoC. In Proceedings of the Joint IEEE North-East Workshop on 
Circuits and Systems and TAISA Conference, 1-4. 

FOROUTAN, S., THONNART, Y., HERSEMEULE, R., AND JERRAYA, A. 2010. An analytical method 
for evaluating network-on-chip performance. In Proceedings of the 13th Conference on Design, 
Automation and Test in Europe (DATE'10).1629-1632. 

GHAMARIAN, A. H., GEILEN, M. C. W., STUIJK, S., BASTEN, T. THEELEN, B. D., MOUSAVI, M. R., 
MOONEN, A. J. M., AND BEKOOIJ, M. J. G. 2006. Throughput analysis of synchronous data 
flow graphs. In Proceedings of the 6th International Conference on Application of Concurrency to System 
Design (ACSD'06). IEEE Computer Society, 25-36. 

GHAMARIAN, A. H., STUIJK, S., BASTEN, T., GEILEN, M. C. W., AND THEELEN, B. D. 2007. 
Latency minimization for synchronous data flow graphs. In Proceedings of the 10th Euromicro 
Conference on Digital System Design Architectures, Methods and Tools (DSD'07). IEEE Computer 
Society, 189-196. 

GRATZ, P. V. AND KECKLER, S. W. 2010. Realistic workload characterization and analysis for 
networks-on-chip design , In Proceedings of the 4th Workshop on Chip Multiprocessor Memory Systems 
and Interconnects, Held in conjunction with the 16th IEEE International Symposium on High-Performance 
Computer Architecture (HPCA-16). 

GUAN, W., TSAI, W., AND BLOUGH, D. 1993. An analytical model for wormhole routing in 
multicomputer interconnection networks. In Proceedings of the International Parallel Processing 
Symposium, 650-654. 

GUZ, Z., WALTER, I., BOLOTIN, E., CIDON, I., GINOSAR, R., AND KOLODNY, A. 2007. Network 
delays and link capacities in application-specific wormhole NoCs. J. VLSI Design, 2007, article 
90941, 15 pages. 

HAMANN, A., JERSAK, M., RICHTER, K., AND ERNST, R. 2004. Design space exploration and 
system optimization with SymTA/S - symbolic timing analysis for systems. In Proceedings of the 
25th IEEE International Real-Time Systems Symposium (RTSS'04). IEEE Computer Society, 469-
478. 

HANSSON, A., WIGGERS, M., MOONEN, A., GOOSSENS, K., AND BEKOOIJ, M. J. G. 2009. 
Enabling application-level performance guarantees in network-based systems on chip by 
applying dataflow analysis. IET Comput. Digital Tech. 3, 5, 398 - 412. 

HANSSON, A. AND GOOSSENS, K. 2010. On-chip Interconnect with Aelite: Composable and Predictable 
Systems, Springer. 

Hemani, A., Jantsch, A., Kumar, S., Postula, A., Öberg, J., Millberg, M. And Lindqvist, D. 2000. 
Network on a Chip: An architecture for billion transistor era. Proceedings of the Norchip Conference. 

HU, P.-C. AND KLEINROCK, L. 1997. An analytical model for wormhole routing with finite size 
input buffers. In Proceedings of the 15th International Teletraffic Congress. 549-560. 

HU, J., OGRAS, U. Y. AND MARCULESCU, R. 2006. System-level buffer allocation for application-
specific networks-on-chip router design. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 
25, 12, 2919-2933. 

HUR, J. Y., GOOSSENS, K., AND MHAMDI, L. 2008. Performance analysis of soft and hard single-
hop and multi-hop circuit-switched interconnects for FPGAs. In Proceedings of the IFIP 
International Conference on Very Large Scale Integration, 224-229. 

JACKSON, J. R. 1957. Networks of waiting lines. Operations Research, 5, 518-521. 



35 

 

JAFARI, F., LU, Z., JANTSCH, A., AND YAGHMAEE, M. H. 2010. Buffer optimization in network-
on-chip through flow regulation. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 29, 12, 
1973-1986.   

JANTSCH, A., AND SANDER, I. 2005. Models of computation and languages for embedded system 
design. IEE Proceedings of Computers and Digital Techniques, 152, 2, 114-129. 

KAHNG, A. B., LI, B., PEH, L. S. SAMADI, K. 2012. ORION 2.0: A Power-Area Simulator for 
Interconnection Networks. IEEE Trans. VLSI Syst. 20, 1, 191-196. 

KIASARI, A. E., SARBAZI-AZAD, H., AND OULD-KHAOUA, M. 2008. An accurate mathematical 
performance model of adaptive routing in the star graph. Future Generation Computer Systems, 24, 
6, 461-474. 

KIM, J. AND DAS, C. R. 1994. Hypercube communication delay with wormhole routing. IEEE 
Trans. Comput. 43, 7, 806-814. 

KIM, J., PARK, D., NICOPOULOS, C., VIJAYKRISHNAN, N., AND DAS, C. R. 2005. Design and 
analysis of an NoC architecture from performance, reliability and energy perspective. In 
Proceedings of the ACM Symposium on Architecture for Networking and Communications Systems 
(ANCS'05). ACM Press, 173-182. 

KRIMER, E., KESLASSY, I., KOLODNY, A., WALTER, I., AND EREZ, M. 2011. Static timing analysis 
for modeling QoS in networks-on-chip. J. Parallel Distrib. Comput. 71, 5, 687-699. 

LAUWEREINS, R., WAUTERS, P., ADE, M., PEPERSTRAETE, J. A. 1994. Geometric parallelism and 
cyclo-static data flow in GRAPE-II. In Proceedings of the International Workshop on Rapid System 
Prototyping, 90-107. 

LAZOWSKA, E. D., ZAHORJAN, J., GRAHAM, G. S. AND SEVCIK, K. C. 1984. Quantitative System 
Performance - Computer System Analysis Using Queueing Network Models. Englewood 
Cliffs, NJ: Prentice-Hall. 

LE BOUDEC J.-Y. AND THIRAN, P. 2001. Network Calculus: A Theory of Deterministic Queuing Systems 
for the Internet. Springer-Verlag. 

LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Synchronous data flow. Proceedings of the IEEE, 75, 
9, 1235-1245. 

LEE, E. A. AND PARKS, T. M. 1995. Dataflow process networks. Proceedings of the IEEE, 83, 5, 773-
799. 

LEHOCZKY, J. P., SHA, L., AND DING, Y. 1989. The rate monotonic scheduling algorithm: exact 
characterization and average case behavior. In Proceedings of the IEEE Real-Time Systems 
Symposium, 166-171. 

LEUNG, J. Y. T. AND WHITEHEAD, J. 1982. On the complexity of fixed priority scheduling of 
periodic, real-time tasks. Performance Evaluation, 2, 4, 237-250. 

LI, J.-P. AND MUTKA, M. W. 1994. Priority based real-time communication for large scale 
wormhole networks. In Proceedings of the 8th International Symposium on Parallel Processing, IEEE 
Computer Society, 433-438. 

LIEVERSE, P., VAN DER WOLF, P. VISSERS K. AND DEPRETTERE, E. 2001. A methodology for 
architecture exploration of heterogeneous signal processing systems. Journal of VLSI Signal 
Processing Systems for Signal, Image and Video Technology, 29. 3, 197-207. 

LIU C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20, 1, 46-61. 

LIU, J. W. S. 2000. Real-Time Systems (1st ed.). Prentice Hall. 
LU, Z., JANTSCH, A., AND SANDER, I. 2005. Feasibility analysis of messages for on-chip networks 

using wormhole routing. In Proceedings of the Asia and South Pacific Design Automation Conference 
(ASP-DAC'05). ACM Press, 960-964. 

LU, Z., MILLBERG, M., JANTSCH, A., BRUCE, A., VAN DER WOLF, P., AND HENRIKSSON, T. 2009. 
Flow regulation for on-chip communication. In Proceedings of the Design, Automation and Test in 
Europe Conference (DATE'09). 578-581. 



36 

 

LU. Z. 2011. Cross clock-domain TDM virtual circuits for networks on chips. In Proceedings of the 
5th ACM/IEEE International Symposium on Networks-on-Chip (NoCS'11). ACM Press, 209-216. 

MIN, G. AND OULD-KHAOUA, M. 2004. A performance model for wormhole-switched 
interconnection networks under self-similar traffic. IEEE Trans. Comput. 53, 5, 601-613. 

MOREIRA, O. M. AND BEKOOIJ, M. J. G. 2007. Self-timed scheduling analysis for real-time 
applications. EURASIP J. Advances in Signal Processing, 2007, id: 083710. 

OGRAS, U. Y., BOGDAN, P., AND MARCULESCU, R. 2010. An analytical approach for network-on-
chip performance analysis. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 29, 12, 2001-2013. 

OWENS, J. D., DALLY, W. J., HO, R., JAYASIMHA, D. N., KECKLER, S. W., PEH L. S. 2007. Research 
Challenges for On-Chip Interconnection Networks. IEEE Micro. 27, 5, 96-108. 

PAWLIKOWSKI, K. 1990. Steady-State Simulation of Queueing Processes: A Survey of Problems 
and Solutions. ACM Computing Surveys, 22, 2, 123–170. 
QIAN, Y., LU, Z., AND DOU, W. 2009a. Applying network calculus for performance analysis of 

self-similar traffic in on-chip networks. In Proceedings of the 7th IEEE/ACM International 
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'09). ACM Press, 
453-460. 

QIAN, Y., LU, Z., AND DOU, W. 2009b. Analysis of worst-case delay bounds for best-effort 
communication in wormhole networks on chip. In Proceedings of the 3rd ACM/IEEE 
International Symposium on Networks-on-Chip (NOCS'09). IEEE Computer Society, 44-53.  

QIAN, Y., LU, Z., AND DOU, W. 2009c. Worst case flit and packet delay bounds in wormhole 
networks on chip. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 
Special Section on VLSI Design and CAD Algorithms, E92-A, 12, 3211-3220. 

QIAN, Y., LU, Z., AND DOU, W. 2010a. Analysis of worst-case delay bounds for on-chip packet-
switching networks. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 29, 5, 802-815. 

QIAN, Y., LU, Z., AND DOU, W. 2010b. QoS scheduling for NoCs: strict priority queueing versus 
weighted round robin. In Proceedings of the 28th International Conference on Computer Design 
(ICCD’10), 52-59. 

RYOO, S., UENG, S., CHRISTOPHER, I. R., KIDD, R. E., FRANK, M. I., AND HWU, W. W. 2007. 
Automatic discovery of coarse-grained parallelism in media applications. Transactions on High-
Performance Embedded Architectures and Compilers, 1, 1, 187-206. 

SHI, Z. AND BURNS, A. 2008. Real-time communication analysis for on-chip networks with 
wormhole switching. In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-
Chip (NOCS'08). IEEE Computer Society, 161-170. 

SHI, Z. AND BURNS, A. 2009. Real-time communication analysis with a priority share policy in on-
chip networks. In Proceedings of the 21st Euromicro Conference on Real-Time Systems (ECRTS). IEEE 
Computer Society, 3-12. 

SHI, Z. AND BURNS, A. 2010. Schedulability analysis and task mapping for real-time on-chip 
communication. Real-Time Systems. 46, 3, 360-385. 

SOTERIOU, V., EISLEY, N., WANG, H., LI, B. PEH, L.-S. 2007. Polaris: A System-Level 
Roadmapping Toolchain for On-Chip Interconnection Networks. IEEE Trans. VLSI Syst. 15, 
8, 855-868. 

SRIRAM, S., AND BHATTACHARYYA, S. S. 2009. Embedded Multiprocessors: Scheduling and 
Synchronization (2nd ed.). CRC Press. 

STILIADIS, D. AND VARMA, A. 1998. Latency-rate servers: a general model for analysis of traffic 
scheduling algorithms. IEEE/ACM Trans. Netw. 6, 5, 611-624. 

STUIJK, S., GEILEN, M. C. W., AND BASTEN, T. 2006. Exploring trade-offs in buffer requirements 
and throughput constraints for synchronous dataflow graphs. In Proceedings of the 43rd Annual 
Design Automation Conference (DAC'06). ACM Press, 899-904. 

STUIJK, S., GEILEN, M. C. W., THEELEN, B. D., AND BASTEN, T. 2011. Scenario-aware dataflow: 
modeling, analysis and implementation of dynamic applications. In Proceedings of the International 
Conference on Embedded Computer Systems, 404-411. 



37 

 

VARATKAR, G. V. AND MARCULESCU, R. 2004. On-chip traffic modeling and synthesis for 
MPEG-2 video applications. IEEE Trans. Very Large Scale Integr. Syst. 12, 1, 108-119. 

VECCHIA G. D. AND SANGES C. 1988. A recursively scalable network VLSI implementation. 
Future Generation Computer Systems, 4(3) 235-243. 

WANG, J., LI, Y., AND PENG, Q. 2011. A novel analytical model for network-on-chip using semi-
Markov process. Advances in Electrical and Computer Engineering, 11, 1, 111-118. 

WIGGERS, M. H., BEKOOIJ, M. J. G., AND SMIT, G. J. M. 2007. Efficient computation of buffer 
capacities for cyclo-static dataflow graphs. In Proceedings of the 44th Annual Design Automation 
Conference (DAC'07). ACM Press, 658-663. 

WU, J., LIU, J.-C., AND ZHAO, W. 2010. A general framework for parameterized schedulability 
bound analysis of real-time systems. IEEE Trans. Comput. 59, 6, 776-783. 

ZHANG, H. 1995. Service disciplines for guaranteed performance service in packet-switching 
networks. Proceedings of the IEEE, 83, 10, 1374-1396. 





39 

 

 

 
 
 
 
 
 
 
 
 

Part II 
 

Included Papers 





41 

 

 
 
 
 
 
 
 
A Performance and Power Analysis of 
WK-Recursive and Mesh Networks 
for Network-on-Chips  
 
 

Dara Rahmati 
Abbas Eslami Kiasari 
Shaahin Hessabi 
Hamid Sarbazi-Azad  
 
 

In the Proceedings of the 24th IEEE International 
Conference on Computer Design (ICCD), pp. 142-147, 
San Jose, CA, USA, Oct. 2006. 

 Paper 1 





43 

 

A Performance and Power Analysis of WK-Recursive and  
Mesh Networks for Network-on-Chips 

 
 

D. Rahmati1, A. E. Kiasari1,2, S. Hessabi1, H. Sarbazi-Azad1,2 
1 Department of Computer Engineering, 

Sharif University of Technology, 
Tehran, Iran 

2 School of Computer Science,  
Institute for Studies in theoretical Physics and Mathematics (IPM),  

Tehran, Iran 
 
 

Abstract 
Network-on-Chip (NoC) has been proposed as an attractive alternative to traditional dedicated 
wires to achieve high performance and modularity. Power efficiency is one of the most important 
concerns in NoC architecture design. The choice of network topology is important in designing a 
low-power and high-performance NoC. In this paper, we propose the use of the WK-recursive 
networks to be used as the underlying topology in NoC. We have implemented VHDL hardware 
model of mesh and WK-recursive topologies and measured the latency results using simulation 
with these implementation. We also propose a novel approach in high level power modeling 
based on latency for these topologies and show that the power consumption of WK-recursive 
topology is less than that of the equivalent mesh on a chip. 
 

Index Terms—System-on-chips, Network-on-chips, Mesh, WK-Recursive mesh, Routing, Power, 
Performance. 
 
1. Introduction 

With the advance of the semiconductor technology, the enormous number of transistors 
available on a single chip allows designers to integrate dozens of IP (Intellectual Property) 
blocks together with large amounts of embedded memory. Such IPs can be CPU or DSP cores, 
video stream processors, high-bandwidth I/O, etc. Shared-medium busses do not scale well, and 
do not fully utilize potentially available bandwidth. As the feature sizes shrink, and the overall 
chip size relatively increases, the interconnects start behaving as lossy transmission lines. Line 
delays have become very long as compared to gate delays causing synchronization problems 
between cores. A significant amount of power is dissipated on long interconnects and in 
clocking network. This trend only worsens as the clock frequencies increase and the features 
sizes decrease. Lowering the power supply voltage and designing low swing circuits decrease the 
overall power consumption at the cost of higher data errors. 

One solution to these problems is to treat systems on a chip implemented using micro-networks, 
or Networks on Chips (NoCs). Networks have a much higher bandwidth due to multiple 
concurrent connections. Regularity enables design modularity, which in turn provides a standard 
interface for easier component reuse and better interoperability. Overall performance and 
scalability increase since the networking resources are shared. Scheduling of traffic on shared 
resources prevents latency increases on critical signals.  

Power efficiency is one of the most important concerns in NoC architecture design. Consider a 
10×10 tile-based NoC, assuming a regular mesh topology and 32 bit link width in 0.18um 
technology and minimal spacing, under 100Mbit/s pair-wise communication demands, 



44 

 

interconnects will dissipate 290W of power  [4]. Thus, reducing the power consumption on global 
interconnects is a key factor to the success of NoC designs. 

The choice of network topology is important in designing a low-power NoC. Different NoC 
topologies can dramatically affect the network characteristics, such as average inter-IP distance, 
total wire length, and communication flow distributions. These characteristics in turn determine 
the power efficiency of NoC architectures. In recent years, several new parallel computer 
architectures have been proposed in the literature for building massively parallel computer 
systems to increase computation speed. A major drawback for these networks is that there are 
not predefined modules existent for them when they are fabricated onto a monolithic chip. The 
reason is that they are not truly expansible. In addition, the irregularity of node degrees also 
makes them costly for VLSI implementation. 

The WK-recursive networks  [7] are a class of recursively scalable networks with many desirable 
properties. They offer a high degree of regularity, scalability, and symmetry, which very well 
conform to a modular design and implementation of distributed systems involving a large 
number of computing elements. In  [7], a VLSI implementation of the WK-recursive networks is 
described, and a routing algorithm is developed. This algorithm defines the physical channels 
which must be traversed, but does not address the use of virtual channels. Virtual channels are 
usually used to increase performance and to design deadlock free routing algorithms. In this 
paper we propose a new virtual channel selection policy for WK-recursive network which results 
in a deadlock-free routing algorithm. 

In this research, we compare the two most important performance factors (latency and power) 
of the same size mesh and WK-recursive networks for NoC implementation. To this end, we 
have implemented a hardware model using VHDL for accurate simulation of the networks in 
question. A routing algorithm for the WK-recursive network has been proposed and the 
performance of the two networks under similar working conditions has been assessed and 
compared. We also develop a high level power consumption model to compare the candidate 
networks with their energy requirements. 

 
2. WK-recursive network structure 

The WK-recursive networks can be constructed recursively by grouping basic modules. Any d-
node complete graph can serve as the basic module. Throughout this paper, we use WK(d,t) to 
denote a WK-recursive network of level t whose basic modules are some d-node complete graph, 
where d >1 and t ≥1. Each node of WK(d,t) is uniquely identified by a sequence of t numbers, 
and each of its edges is represented by a pair of nodes. We define WK(d,t) formally as follows: 
 

Definition 2.1. The node set of WK(d,t) is denoted by {atat-1…a2a1|ai∈[0,d-1] for 1≤ i ≤ t}. The 
adjacency is defined as follows: atat-1…a2a1 is adjacent to (1) atat-1…a2b where 0 ≤ b ≤ d - 1 and b ≠ 
a1, and (2) atat-1 

… ai+1ai-1(ai)
i-1 if ai ≠ ai-1 and  ai-1= ai-2= … = a2 = a1, where (ai)

i-1 represents i -1 
consecutive ai’s. Besides, an open edge is incident to atat-1 … a2a1 if al= … = a2 = a1. Each edge of 
WK(d,t) is assigned a label as follows: 0 if it is of type(l ) ,  i - 1 if it is of type (2), and t if it is an 
open edge. The edges of type (1) are referred to as substituting edges, and the edges of type (2) are 
referred to as flipping edges. 

In Fig. 1, the topologies of 16-node WK(4,2) and mesh(4x4) are shown. In WK(d,t), each 
node is of degree d, and there are totally d 

t nodes and d+d(d 
t - 1) / 2 edges. In  [2], it has been 

shown that the diameter of WK(d,t) depends on d and equal to 2t -1. 
 
Definition 2.2. For any two nodes U and V in WK(d,t), we define U =i V if they belong to the 
same subnetwork of level i in WK(d,t), and U ≠i V if they belong to two distinct subnetworks of level i 
in WK(d,t). 



45 

 

                      
                             (a)                                                     (b) 

Fig. 1.  The topologies of  (a) Mesh(4x4) and (b) WK(4,2) with 16 nodes. 
 

Definition 2.3. For each i, 1≤ i ≤ t, a node S = atat-1…a2a1 in WK(d,t) is called an i-frontier, if S = 
atat-1…ai+1(ai)

i. 
Remarks. Two nodes connected by a flipping edge of label i are i-frontiers. Also, by definition, if a 
node is an i-frontier, it is also a j-frontier for 1≤ j < i. 
 
2.1. Routing algorithms 

Each wormhole routing algorithm includes two important parts: (1) physical channel selection 
rule and (2) virtual channel selection rule. Physical channel selection rule chooses the next 
physical channel to route the message and virtual channel selection rule chooses the proper 
virtual channel in selected physical channel by considering of deadlock avoidance conditions. 
 
2.2. Physical channel selection rule 

Suppose S and T are the source node and destination node in WK(d,t), respectively. A routing 
path between them can be constructed as follows  [1]. 
 

S ≠ i-1 T. This can be easily done by examining the identifiers of S and T from the left, and 
finding the first position where they differ. 
Step 2. Determine the flipping edge, say (W,X), such that S ≠ i-1 W and X ≠ i-1 T. The flipping edge 
is the bridge between the two sub-networks of level i-1 where S and T reside. The nodes W and 
X are (i-1)-frontiers, and they can uniquely be determined by examining the identifiers of S and 
T. 
Step 3. Determine the routing path from S to W, and the routing path from X to T, recursively. 
The routing path from S to T is the concatenation of the routing path from S to W, the flipping 
edge (W,X), and the routing path from X to T. 
 
2.3. Virtual channel selection rule 

After selection of next physical channel according to the algorithm in previous section, suitable 
virtual channel must be selected in this physical channel by considering deadlock avoidance 
conditions. 

 
2.3.1. The Positive-hop (PHop) policy 

In the PHop policy  [1], a message is placed in a virtual channel of class 0 in the source node 
upon injection into the network. During routing, a message is placed in the virtual channel of 
class i in an intermediate node if it has already completed i hops. Since the maximum number of 
hops a message can take equals the diameter of the network, the maximum number of virtual 
channel classes required in each node equals the diameter of the network; for WK(d,t), this 
number equals 2t -1. 
 
 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 32

10 11

13 12

00 01

03 02

20 21

23 22

30 31

33 32



46 

 

2.3.2. The Flipping-hop (FHop) policy 
We now propose a novel virtual channel selection rule for WK-recursive networks which has 

less requirements than PHop policy. In PHop policy, the virtual channel class number is 
incremented in each hop but in FHop policy a message is placed in a virtual channel of class 0 in 
the source node and in an intermediate node, and the virtual channel class number is 
incremented if the selected physical channel is corresponding to a flipping edge. Since the 
maximum number of flipping edges in a path equals the half of diameter of the network  [2], the 
maximum number of virtual channel classes required in each node equals the half of the 
diameter; for WK(d,t), this number equals 2 t-1. 
 
2.4. Performance of PHop and FHop 

To compare the performance of these routing algorithms, we have developed a VHDL based 
cycle accurate model for evaluating the latency and power of NoC based interconnection 
architectures. The design is parameterized on (i) size of packets, (ii) length and width of physical 
links, (iii) number and depth of virtual channels. This simulation model can be used for the WK-
recursive networks of any size with wormhole switching. We compare the performances of 
PHop and FHop wormhole routing algorithms. We have simulated these routing algorithms for 
WK(4,2). Also we have considered fixed length messages of 32 flits. Nodes generate traffic 
independently of each other, and which follows a Poisson process. For the destination address of 
each message, we have considered the uniform traffic pattern. 

In Fig. 2, the average message latency is plotted against message generation rate for WK(4,2) 
network with FHop routing algorithm and with 32-flit messages. In WK(4,2), we need 3 and 2 
virtual channel classes for PHop and FHop routing algorithms and we have also used 2 and 3 
virtual channels in each class, respectively. Therefore, there are 6 virtual channels per physical 
channel in both networks that can ensure a fair comparison under almost equal hardware cost. 
Also in our simulation experiments all virtual channels are of 1-flit depth. As you see in Fig. 2, 
for low and medium traffic loads, these routing algorithms have the same latency, but they begin 
to behave differently for high traffic loads and around the saturation region. The FHop routing 
algorithm has better performance than PHop routing algorithm. Therefore, from now on, we use 
the FHop routing algorithm for message routing in WK-recursive networks. 

 

 
Fig. 2.  Message latency in WK(4,2) with PHop and FHop routing algorithms. 

 
 
3. Mesh and WK-recursive hardware model and latency comparison 

The top most shared component in this hardware model is the NoC node, in which PE 
(Processing Element) and router are the main components. The PE is a module that injects/ejects 

WK-recursive

50

100

150

200

0.015 0.02 0.025

Message generation rate (λλλλ )

A
v
er

a
g
e 

m
es

sa
g
e 

la
te

n
cy

 (
cy

cl
es

)

PHop

FHop



47 

 

the generated/receiving packets based on a traffic model like uniform, hotspot, etc. Routers 
receive packets on their input channels and after routinga packet based on the routing algorithm 
and destination address, the packet is sent to the selected output channel. Fig. 3 shows internal 
structure of a node. A router consists of several different parts such as Address Extractor which 
determines and manipulates the packet headers and buffers some flits of the packet, Multiplexer 
and De-Multiplexer which handle the virtual channel operations, Selector unit which applies the 
virtual channel selection rule, Crossbar switch which directly connects each input channel to each 
unoccupied output channel, Reservator unit which controls the crossbar switch and other related 
sub-modules. When a specific topology like mesh or WK-recursive is supposed to be modeled 
by such components, a top-level wrapper module is implemented that connects several nodes of 
this type to each other based on the structure of the specified topology. We have simulated the 
hardware models of the mesh and WK-recursive networks to extract accurate quantities, e.g. 
latency values. 

 
Fig. 3.  Hardware implementation of a node with a PE and a Router. 

 
In Fig. 4, the average message latency is plotted as a function of average message generation 

rate at each node for a 4x4 mesh interconnection network with XY routing algorithm  [3] and a 
WK(4,2) network with FHop routing algorithm. In WK(4,2), we need 2 virtual channel classes 
for FHop routing algorithm. For low traffic loads, the WK-recursive provides a better 
performance compared to the mesh network, but they begin to behave differently near high 
traffic regions. It is notable that a usual advice on using any networked system is “not take the 
network working near saturation region”. Having considered this and also the fact that most of 
networks rarely enter such traffic regions, we can conclude that the WK-recursive network can 
outperform its equivalent mesh network when average message latency is considered. 

 

           
                                        (a)                                                                     (b) 
 

Fig. 4.  Message latency in WK(4,2) and Mesh(4x4) with (a) 2 and (b) 4 virtual channels. 

 

PE 

 

Cross Bar 

Switch 

 

Reservator 
 

Addr.Ext. 

Addr.Ext. 

Addr.Ext. 

Addr.Ext. 

Addr.Ext. 

Addr.Ext. 

Addr.Ext. 

Addr.Ext. 

A
d

d
r.E

x
t. 

A
d

d
r.E

x
t. 

Router 

Mesh vs.WK-Recursive

40

140

240

340

440

0.002 0.007 0.012 0.017

Message generation rate (λ)

A
v
e
ra

g
e
 m

e
s
sa

g
e
 la

te
n
c
y
 (
c
y
cl

e
s
)

Mesh (M=32)

Mesh (M=64)

WK (M=32)

WK (M=64)

Mesh vs.WK-Recursive

0

100

200

300

400

500

0 0.005 0.01 0.015 0.02

Message generation rate (λ)

A
v
e
ra

g
e
 m

e
s
s
a
g
e
 la

te
n
c
y

Mesh (M=32)

Mesh (M=64)

WK (M=32)

WK (M=64)



48 

 

 

4. Mesh and WK-recursive power modeling and comparison 
Reducing power consumption is required in today’s semiconductor designs. Silicon technology 

advances have made it possible to pack millions of transistors switching at high clock speeds on 
a single chip. While these advances bring unprecedented performance to electronic products, 
they pose difficult power dissipation and distribution problems  [5]. These problems must be 
addressed, because consumers demand longer battery life in addition to lower cost in computers, 
battery-operated systems, medical devices, telecommunications equipment and many high-
volume consumer products. In this section, we propose a novel high level approach for 
modeling the power consumption of mesh and WK-recursive NoCs. The model computes 
power dissipation for a packet crossing the network, thus static and dynamic powers are both 
included in our analysis. 

We first introduce some assumptions and definitions used in our analysis. 
• The average distance of the mesh and WK-recursive networks are defined as 

meshD and 

wkD . 

• The uniform traffic pattern is used for message destination address. 
• The length of wire between two switches is fixed. 
• The power consumption is calculated for two different operating regions of the NoC, 

namely the low and high traffic regions. The low traffic region in a NoC is the region that 
there is no packet contention or the contention is rare. Also the high traffic is defined as a 
region that packet blocking is frequently occurred but there is no packet deadlock and 
network does not enter the saturation region. Let λ be the packet generation rate at a node 
and λs be the value of λ at the saturation point (the point from where the saturation region 
starts). Let the low traffic load be defined as λ ≤ 0.6λs and the high traffic region be defined 
as 0.6λs< λ < λs.  

As defined in  [6] [8], the average energy consumed for transferring a packet between two 
nodes is as follows: 

 
EP : Total energy dissipated for packet transfer 
EB : Energy dissipated for packet buffering  
ES : Switching energy dissipated for packet transfer 
EW : Energy dissipated in wires for packet transfer 
EP = EB + ES + EW 
 

We have  
 
EBS = EB + ES , EP = EBS +  EW                                                                  (1) 

 
We consider both the buffering and switching (router) energy in a single parameter EBS. Also we 
define EC

W as average wiring energy which is dissipated between two switches for a packet 
transfer, EC

BS, Low is average buffering and switching energy which is dissipated in a switch for a 
packet transfer in low traffic and EC

BS, High for the high traffic. Eblocking is the average blocking 
energy which is dissipated for a packet transfer in high traffic. This parameter represents the 
extra buffering energy which is dissipated in switch buffers during packet blocking. We estimate 
this parameter in the next section where we calculate the energy dissipation for high traffic mode 
of operation. At last we define 
 
α = EC

W / EC
BS, Low                                                                                                                     (2) 



49 

 

in order to simplify the calculations. It shows the relation of wiring and router energy dissipation 
for a packet transfer.  
 
4.1. Low traffic modeling 

In low traffic region, packets are transferred across the network with no contention or 
negligible contention.  Using equation (1) and (2), the average total energy dissipated for a packet 
transfer in the mesh and WK-recursive network topologies can be computed as:  

 
EP, WK, Low = (DWK +1). EC

BS, Low+ DWK . E
C
W 

 

and the same formula for mesh network:  
 
   EP, Mesh, Low = (DMesh+1). EC

BS, Low+ DMesh. E
C
W 

 
Therefore, we define K as follows: 

1)1(

1)1(

,,

,,

++

++
==

Mesh

WK

LowMeshP

LowWKP

D

D

E

E
K

α

α                                                                                                    (3) 

 
where α is the parameter in equation (2) and K shows the ration of the energy dissipated for 
Mesh and WK-recursive in low traffic region for a packet transfer. For Mesh (4x4) and WK(4,2), 
we have DWK =2.21, DMesh =2.67 and thus 

67.367.2

21.321.2

+

+
=

α

α
K   

 
 
Fig. 5.  The ratio of a packet transfer power dissipation for a WK(4,2) and mesh(4x4) as function 
of α for low traffic load. 

 
Depending on all values of α, the power consumption ratio may vary from 0.83 to 0.88 as is 

shown in Fig. 5. This means that the WK-recursive consumes lower amount of energy than its 
mesh counterpart in low traffic. 
 
4.2. High traffic modeling 

Near and in high traffic regions, the energy consumption is heavily affected by the packet 
contention.  In this case a large amount of the dissipated energy comes from packet blocking 
(energy consumed for buffering). The other forms of energy dissipation in wires, switching 
hardware, and general buffering is almost the same for low traffic load.  

Power consumption ratio

for low traffic load

0.83

0.84

0.85

0.86

0.87

0.88

0 2 4 6 8 10
Wire and router pow er consumption ratio (α )

T
o
ta

l p
o
w

e
r 

c
o
n
s
u
m

p
tio

n
 r

a
tio

 (
K

)



50 

 

Let us define two parameters TMesh and TWK representing the average blocking time of a packet 
when crossing the network. The energy dissipated for a packet transfer can be written as 

 
EP, WK, High = EP, WK, Low  + Eblocking, WK  

             
      

                                                                            (4) 
EP, Mesh, High = EP, Mesh, Low  + Eblocking, Mesh         
 
also, the average energy consumed due to the message blocking is proportional to its average 
blocking time and also the average number of switches it traverses, i.e. Eblocking, WK  ∝ TWK .(DWK  

+1) and Eblocking, Mesh ∝ TMesh .(DMesh +1). By using a constant we can write 
Eblocking, WK = C .TWK .(DWK  +1), 
Eblocking, Mesh = C .TMesh .(DMesh +1). 
 

Note that since the hardware components used in both topologies are almost equal, we have 
used one constant for both equations. Considering C =ε .EC

BS, Low we have 
 

EP, WK, High = DWK (1+α +ε TWK) + ε . TWK +1      
                                                                           (5) 

EP, Mesh, High = DMesh (1+α +ε TMesh) + ε .  TMesh +1 
 
Thus the energy consumption ratio in this case equals 
 

, ,

, ,

p wk high

p mesh high

E
K

E
=  or  

 
(1 ) 1

(1 ) 1

wk wk wk

mesh mesh mesh

D T T
K

D T T

α ε ε

α ε ε

+ + × + × +
=

+ + × + × +
                                                                                            (6) 

 
Again, for the sake of present discussion, let us consider specific cases of 16-node mesh and 
WK-recursive networks. 
To calculate the value of 

wkT and 
meshT , we use the average message latencies shown in Fig. 4. It 

is clear that TWK and TMesh can be calculated by reducing the average message latency in low traffic 
load from that in high traffic load. Thus, from Fig. 4(b), we have TWK=63 and Tmesh=57, we  
can write  
 

202 2.21 3.21

209 2.67 3.67
K

ε α

ε α

+ +
=

+ +
. 

 
Fig. 6 shows the K as a function of α and ε. As can be seen in the figure, the values for the case 
of ε = 0 is the same as Fig. 5 in low traffic region and as the value of ε increases (blocking power 
increases), power dissipation in the two networks tend to be equal. For smaller values of α, this 
trend happens quicker. 



51 

 

 
Fig. 6. The ratio of packet transfer power dissipation in the mesh(4x4) and WK(4,2) for different 
values of α and ε in high traffic region. 
 
5. Conclusion and future works 

Mesh topology has been used in a variety of interconnection network applications especially 
for NoC design. However, the WK-recursive network has not been studied yet as the underlying 
topology for NoCs. In this paper, we proposed a latency and power consumption comparative 
analysis for these two topologies (mesh and WK-recursive) and showed that the latency of the 
WK-recursive network for low traffic loads is superior to the mesh topology. The power 
consumption in the WK-recursive is also less than that of the mesh network for low traffic loads 
while the power consumption in the two networks is almost equal for high traffic loads. We also 
proposed a high level approach for modeling the power consumption of the two topologies 
based on the latency parameters. This approach can be applied to other topologies for NoC 
designs. 

Our next objective is to develop a combined accurate analytical model of power consumption 
and performance of NoCs and validating it for different network topologies under different 
working conditions. 

 
References 
[1] R. V. Boppana and S. Chalasani, “A framework for designing deadlock-free wormhole 

routing algorithms”, IEEE Transactions on Parallel and Distributed Systems (TPDS), 7(2): 169-
183, 1996. 

[2] D. R. Duh and G. H. Chen, “Topological properties of WK-recursive networks,” Journal of 
Parallel and Distributed Computing (JPDC), 23(3): 468-474, 1994. 

[3] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” Proceedings of the International  
Symposium on Computer Architecture (ISCA), pp. 278-287, 1992. 

[4] Y. Hu, H. Chen, Y. Zhu, A. A. Chien and C. Cheng, “Physical synthesis of energy-efficient 
networks-on-chip through topology exploration and wire style optimizations,” Proceedings of 
the International Conference on Computer Design (ICCD), pp. 111-118,  2005. 

[5] D. L. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI chips”, IEEE 
Journal of Solid-State Circuits (JSSC), 29(6): 663-670, 1994. 

[6] M. Naderi, B. Javadi, H. Pedram, A. Afzali-Kusha, and M. K. Akbari, "An asynchronous 
viterbi-decoder for low-power applications", Proceedings of the Power and Timing Modeling, 
Optimization and Simulation (PATMOS), pp. 471-480, 2003. 

[7] G. D. Vecchia and C. Sanges, “A recursively scalable network VLSI implementation,” Future 
Generation Computer Systems, 4(3) 235-243, 1988. 

[8] T. T. Ye,"On-chip multiprocessor communication network design and analysis," Ph.D. 
dissertation, Stanford University, 2003. 





53 

 

 
 
 
 
 
 
 
 
A Markovian Performance Model for 
Networks-on-Chip 
 
Abbas Eslami Kiasari 
Dara Rahmati 
Hamid Sarbazi-Azad 
Shaahin Hessabi 
 
In the Proceedings of the 16th Euromicro International 
Conference on Parallel, Distributed and Network-Based 
Processing (PDP), pp. 157-164, Toulouse, France,  
Feb. 2008. 

 Paper 2 





55 

 

 

A Markovian Performance Model for Networks-on-Chip 
 

A. E. Kiasari †,‡, D. Rahmati ‡, H. Sarbazi-Azad ‡,†, and S. Hessabi ‡ 

                 † IPM School of Computer Science             ‡ Sharif University of Technology 
                          Tehran, Iran                                                Tehran, Iran 

kiasari@ipm.ir, d_rahmati@ce.sharif.edu, azad@ipm.ir, hessabi@sharif.edu 
 

 
Abstract 
Network-on-Chip (NoC) has been proposed as a solution for addressing the design challenges of 
future high-performance nanoscale architectures. Thus, it is of crucial importance for a designer 
to have access to fast methods for evaluating the performance of on-chip networks. To this end, 
we present a Markovian model for evaluating the latency and energy consumption of on-chip 
networks. We compute the average delay due to path contention, virtual channel and crossbar 
switch arbitration using a queuing-based approach, which can capture the blocking phenomena 
of wormhole switching quite accurately. The model is then used to estimate the power 
consumption of all routers in NoCs. The performance results from the analytical models are 
validated with those obtained from a synthesizable VHDL-based cycle accurate simulator. 
Comparison with simulation results indicate that the proposed analytical model is quite accurate 
and can be used as an efficient design tool by SoC designers. 

 
1. Introduction 

The International Technology Roadmap for Semiconductors (ITRS) predicts that chips with 
over 4 billion transistors operating at 10 GHz speeds will be commercialized before the end of 
the decade  [1]. Assuming these predictions, within a few years they will bring about a significant 
change to the architecture and design of integrated circuits. The current design methodologies are 
not expected to cope with such multi-billion transistor design challenges. To meet the design 
productivity and signal integrity challenges of next-generation designs, packet switched NoC 
architectures  [2] [3] [6] have been proposed as a solution to the global interconnect problems. 

It is not clear which NoC-based architecture is best suited for a specific application. The trade-
off in average message latency versus power consumption of an interconnection network is also 
an open question. The trade-off analysis can be performed by varying the following design 
parameters: topology, physical links bandwidth, buffer allocation scheme, switching technique 
and routing algorithm. Many studies, e.g. Dally and Towles’s  [6], have investigated the 2D torus 
NoC architecture (as shown in Figure 1.b). The Torus architecture is basically the same as a 
regular mesh (Figure 1.a); the only difference is that the switches at the edges are connected to 
the switches at the opposite edge through wraparound channels. Every switch has five ports, one 
connected to the local IP and the others connected to the closest neighboring switches.  

Owning to its low buffering requirement wormhole switching has been widely employed in 
multicomputers. Another advantage of wormhole switching is that, in the absence of blocking, 
message latency is almost independent of the distance between source and destination nodes. In 
this switching technique, messages are broken into flits, each of a few bytes, for transmission and 
flow control. The header flit, containing routing information, is used to govern routing and the 
remaining data flits follow in a pipelined fashion. If the header is blocked, the other flits are 
blocked in situ. The advantage of this technique is that it reduces the impact of message distance 
on the latency under light traffic. Yet, as network traffic increases, messages may experience large 
delays to cross the network due to the chain of blocked channels. To overcome this, the flit 
buffers associated with a given physical channel are organised into several virtual channels, each 
representing a “logical” channel with its own buffer and flow control logic. Virtual channels are 
allocated independently to different messages and compete with each other for the physical 



56 

 

bandwidth. This decoupling allows messages to bypass each other in the event of blocking, using 
network bandwidth that would otherwise be wasted. 

 

              
(a)                              (b) 

Figure 1: The topology of (a) 4x4 mesh and (b) 4x4 torus networks. 
 
Routing algorithms establish the path between the source and destination nodes. Routing can 

be deterministic or adaptive. With adaptive routing, the path taken by a message is affected by the 
traffic on network channels. In deterministic routing, messages with the same source and 
destination always traverse the same path. This form of routing results in a simpler router 
implementation  [9] and has been used in many practical systems. In this research for deadlock 
free routing, a restricted virtual channel allocation scheme, in the context of deterministic routing, 
is enforced. In this scheme, the V virtual channels of a given physical channel are split into two 
sets: VC1 ={v3, v4, …,vV} and VC2 ={v1, v2}. A message at node address C=xcyc and destined to 
node D =xdyd, can choose any of the V-2 virtual channels in VC1 of dimension X (and then Y). If 
all these virtual channels are busy, the message uses v1 when xc<xd (or yc<yd), otherwise it crosses 
v2  [9]. In some of physical channels either v1 or v2 is never used and we can use V-1 virtual 
channels in VC1 for more adaptivity  [9]. 

Simulation is an approach to evaluate the performance of an interconnection network for a 
specific configuration. But, depending on the complexity of the interconnection network and 
resources available, this technique may be too time-consuming to perform. Another approach is 
utilization of an analytical model of the system. An appropriate analytical model can predict the 
performance of a specific on-chip network in a fraction of the time that simulation would take. 
Thus, it is justified to be in pursuit of accurate analytical models for the performance of popular 
NoCs such as the torus.  

The rest of the paper is organized as follows. Section 2 reviews related work and highlights our 
contributions. Section 3 proposes a mathematical performance model for wormhole-switched 
NoCs. In Section 4, a simple model for power consumption of routers in torus-based NoCs is 
presented. Validation of the proposed performance and power models are realized in Section 5 
using the results obtained from simulation experiments. Finally, Section 6 concludes the paper.  

 
2. Related Work and Novel Contribution 

The design of NoCs is commonly formulated as a constrained optimization problem 
[13][17][19]. Therefore, performance analysis techniques that can be used in optimization loops 
are extremely important. Traditional work on performance evaluation in parallel computing uses 
either time-consuming simulation (e.g.,  [5] and  [10]) or provides analytical models.  

The authors in  [14] consider the buffer sizing problem and present a performance model 
based on an M/M/1/K queuing model. However, the approach is not applicable to wormhole 
switched networks. Related work about analysis techniques for wormhole routing comes mainly 
from parallel computing and macro-network research communities. Many studies target specific 
network topologies such as k-ary n-cubes  [7] [22] and hypercubes  [23]. The study presented in  [11] 
is not restricted to a particular topology, but it assumes an exponential message length 
distribution and it has a very high complexity for high dimensional networks. A more general 

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3



57 

 

analytical model for wormhole routing is presented in  [15]. The model provides average packet 
latency estimates using a sophisticated analysis. 

The main contribution of the work herein is a novel performance model for on-chip routers 
which can be used to develop a thorough performance analysis for torus network topology with 
deterministic routing and wormhole switching under Poisson arrival process and uniform traffic 
pattern. Then, we propose a high level approach for modeling the power consumption of routers 
for different values of basic NoC parameters. Hence, it can be invoked in any fast and accurate 
power and performance estimations. 
 
3. The Latency Model 
 
3.1. Model Assumptions 

The following assumptions are made when developing the proposed performance model. 
These assumptions have been widely used in the literature  [4] [12] [16] [18] [20]: 

• Messages are broken into some packet of fixed length of M flits which are the unit of 
switching.  

• Message destinations are uniformly distributed across the network nodes. 
• Nodes generate traffic independently of each other, and follow a Poisson process, with a 

mean rate of λg messages/cycle/node. 
• V virtual channels per physical channel are used. These virtual channels are used according to 
XY routing algorithm. 

• The local queue in the source node has infinite capacity. Moreover, messages at the 
destination node are transferred to the local processing element (PE) as soon as they arrive to 
their destinations. 

 
3.2. Model Description 

The model computes the mean message latency as follows. First, the mean network latency, S , 
that is the time to cross the network is determined. Then, the mean waiting time seen by a 

message in the source node to be injected into the network, s
W , is evaluated. Finally, to model 

the effect of virtual channels multiplexing, the mean message latency is scaled by a factor, V , 
representing the average degree of virtual channels multiplexing that takes place at a given 
physical channel. Therefore, the mean message latency can be written as 

( )
s

Latency S W V= + .                                                                                                         (1) 
In the 2-D torus network with a uniform traffic pattern, the average number of hops that a 

message traverses before reaching its destination is equal to / 2d k=   [8], where k is the number 
of nodes in each dimension. Consequently, the average rate at which messages enter nodes of the 
network is equal to d  times the message generation rate. On the other hand, since the four 
output channels of each node are equally utilized, the arrival rate of messages to any network 

channel, denoted λc, is equal to / 4
g

dλ .  

Since the torus interconnection network is symmetric, averaging the network latencies seen by 
the messages generated by only one node for all other nodes gives the mean message latency in 
the network. Let Sij be the network latency of a message which should traverse i hops in 
dimension X and then j hop in dimension Y. The network latency, Sij, seen by the message 
consists of two parts: one is the delay due to the actual message transmission time, and the other 
is due to the blocking time in the network. Therefore, Sij can be written as 

( ) ( 1)( )
x yij w r s w B x B y

S i j t i j t t Mt iP W jP W= + + + + + + + + ,                                                  (2) 



58 

 

where M is the message length, 
xB

P  and 
yB

P are the probabilities of a message being blocked at a 

hop of dimension X and Y , and xW  and 
y

W  are the average waiting time for acquiring a virtual 

channel in dimension X and Y , respectively. Also tr, ts and tw are the routing time of a message, 
crossing time of a flit over the crossbar switch and transfer time of a flit across a physical 
channel, respectively. 

Averaging message latencies for all the possible destination nodes for a typical message yields 
the mean network latency as 

ij ij

i j

S P S=∑∑ ,                                                                              (3) 

where Pij is the probability of  a message traverses i hops in dimension X and j hops in dimension 
Y. It is easy to see that Pij = Nij/(k2-1) where Nij is the number of nodes that can be the 
destination of a (i+j)-hop message. Obviously when k is odd, Nij maybe equal to 2 or 4 and when 
k is even Nij maybe equal to 1, 2, or 4 for different values of i and j.  

The XY routing algorithm results in a different service times on the channels of X and Y 
dimension. Therefore determination of the network latency starts at the ejection channel and 
works backward to the source channel of the message. In the steady state, the rate of messages 
that exit the network through ejection channels is equal to the injection rate of messages, which is 
equal to the generation rate λg. Utilization of the ejection channel (in each node) is therefore equal 
to Mtwλg. Given that messages are of fixed length, there is no variance in service time. By using an 
M/G/1 queueing model  [18], we can calculate the waiting time at an ejection channel as 

( )
2

/ 2(1 )ej w g w gW Mt Mtλ λ= − .                                                                            (4) 

When a message needs to traverse one of the hops of dimension Y, it is delayed an average 
amount of time 

yW  before acquiring a virtual channel. The probability of v virtual channels of a 

hop in dimension Y being busy is denoted by Py,v . 
Considering the scheme used for virtual channel allocation which is described before, the 

probability of a message being blocked at a hop of dimension Y is given by 
, , 1 /

yB y V y V
P P P V−= +  in 

which two cases are considered. The first expression, Py,V, corresponds to the case where all the 
virtual channels are busy and the second, to where all but v1 or v2 (the one not corresponding to 
the direction of the message) are busy. If a message is blocked at a hop, the message is delayed by 
as much time as it takes all the flits of a blocking message to finish traversing that hop. If none of 
the messages occupying the virtual channels terminate after traversing that hop, the blocked 
message will additionally be delayed by the average waiting time encountered by a blocking 
message in the rest of its path to its destination. 

When a message passes a channel in dimension Y and reaches to a router, it may choose 
ejection channel with probability 2/( / 2 1)y ejP k→ = +    for the next hop. Therefore, the probability 

of a message being blocked at a hop of dimension Y and none of the blocking messages 
terminating after traversing that hop, can be denoted as 

, , 11 1

,(1 ) (1 ) (1 )
y

y V y VV V V

d y ej y ej y ej y V y ej

P P
P P P P P P

V V

−− −

→ → → →= − + − + − ,                                                        (5) 

in which three cases are considered, each corresponding to one of the products. Enumerated 
from left to right, the first product corresponds to the case when V virtual channels are busy, but 
the message allocating one of them (v1 or v2, such that it can not be traversed by the blocked 
message) does terminate in the following node. The second and third cases correspond, 
respectively to when V and V-1 virtual channels are busy and none of the messages allocating 
these virtual channels terminate in the following node. 

�
yW , the average waiting time of a blocked message to acquire a virtual channel at a hop of 

dimension Y, when it is considered that no other message is blocked at that hop, can be obtained 
as the product of the aggregate of the average waiting time of blocking messages in each of the 



59 

 

hops of the remainder of their paths, and the conditional probability that none of the blocking 
messages terminate after traversing the channel, given that the channel is already known to be 
blocked (resulting in /

y yd B
P P ), plus the average length of a message times the channel cycle time, tw 

(to account for the time it takes for the flits of a message to be transmitted over a single channel). 
This is expressed in the following equation: 

( / 2)
y

y

d

y y y y ej w

B

P
W P W W M t

P
→= + +

)

,                                                                             (6) 

in which  
y

W  is the average blocking time at a hop of dimension Y when it is considered that 

other messages may be blocked at the same hop and 
y yP →

 is the probability of a message 

traversing dimension Y given that it has already traversed a hop in dimension Y. By considering 
the topology of torus network and deterministic routing algorithm, the value of 

y yP →
 compute as 

( ) ( )/ 2 1 / / 2 1k k− +       . If freed virtual channels are granted to blocked messages on a first-come-

first-serve basis (which is usually the case), y
W can be calculated as 

ˆ
y y y

W W N= ,                                                                                           (7) 

in which 
y

N  is the average number of waiting messages at a hop of  dimension Y. Therefore, the 

meaning of this is that, the actual average blocking time at a channel of dimension Y is equal to 
the average waiting time of a blocked message to acquire a virtual channel at that hop when 
considering that no other message is blocked at that hop, times the average number of blocked 
messages at the channel. By considering Eq. (6) and (7) we can write 

( / 2)

1/ /
y y

ej w

y

y d y y B

W M t
W

N P P P→

+
=

−
.                                                                                                     (8)  

The average network latency of messages that traverse their first hop in dimension Y, 
excluding the blocking delay of the first hop, 

y
S , is defined as the sum of the average blocking 

delay that messages face at the other hops of dimension Y, the transfer time of all the flits of a 
message over a channel (Mtw) and the waiting time at the ejection channel 

ej
W . Thus, 

y yf y y ej w
S P W W Mt→= + + ,                                                                                                    (9)  

where 
yf yP →

 is the probability of a message traversing dimension Y given that it has started its 

journey from dimension Y and equal to 1 1/ / 2k−    . 

Similarly, the average service time of a message that traverses dimension X as its first route, 

xS , includes the blocking delay that the message faces at subsequent hops in dimension X and 
the ejection channel, and the actual transmission time. When a message passes a channel in 
dimension X and reaches to a router, it can choose one of three following paths for its next hop: 

- ejection channel with probability         ( )( )2 / / 2 1
x ej

P k k→ = +   ,                           (10) 

- dimension Y with probability ( ) ( )( )2 1 / / 2 1
x y

P k k k→ = − +   ,                                      (11) 

- dimension X with probability ( ) ( )/ 2 1 / / 2 1
x x

P k k→ = − +       .               (12) 

By using the same approach used for dimension Y we have: 

 ( ) ( / 2)x

x

d

x x x x x y y ej w

B

P
W P W P W W M t

P
→ →= + + +

)

                                                                                (13) 

for dimension X. Therefore, 
 
 



60 

 

/ ( / 2)

1/ /

x x

x x

d x y y B ej w

x

x d x x B

P P W P W M t
W

N P P P

→

→

+ +
=

−
                                                                                       (14) 

and  

x xf x x xf y y ej w
S P W P W W Mt→ →= + + + .                                                                         (15) 

 
where 

xf xP →
 is the probability of a message traverses dimension X if it has passed its first hop in 

dimension X and equal to 1 1/ / 2k−     and xf y
P →  is the probability of a message traverses 

dimension Y given that it has started its journey from dimension X and equal to  ( ) ( )1 / / 2k k k−    .  

The probability Py,v, that v (0 )v V≤ ≤  virtual channels are busy at a physical channel in 

dimension Y, can be determined using a Markovian model shown in Figure 2. State πv, 
corresponds to v virtual channels being requested. The transition rate out of state πv to state πv +1 
is λc while the rate out of state πv to state πv-1 is 1 /

y
S  (

y
S is given by Eq. (9)) 

The probability that v virtual channels are busy, 0 v V≤ < , is the probability of being in state v, 
i.e. Py,v=Pr(πv). However, the probability that V virtual channels are busy is the summation of the 

probabilities of being in states v ( )V v≤ < ∞  i.e. 
, Pr( )y V kk V

P π
∞

=
=∑ . The steady-state solution of the 

Markovian model yields the probability Py,v to be 

,

(1 )( ) ,      0 ,

( ) ,                    .     

v

c y c y

y v v

c y

S S v V
P

S v V

λ λ

λ

 − ≤ <
= 

=
                                                                               (16) 

In a similar manner Px,v can be determined by using a similar Markov chain while the rate out 

of state πv to state πv-1 is 1/ xS . 
The average number of waiting messages at a hop of dimension X and Y can be computed as 

1

1

( )
Pr( )

1

V

c x

x V kk

c x

S
N

S

λ
π

λ

+
∞

+=
= =

−
∑ ,                                                                           (17) 

1( )

1

V

c y

y

c y

S
N

S

λ

λ

+

=
−

.                                                                             (18) 

A message originating from a given source node sees a network latency of S  (given by Eq. (3)). 
Modeling the local queue in the source node as an M/G/1 queue, with the mean arrival rate 

/g Vλ  (recalling that a message in the source node can enter the network through any of the V 

virtual channels) and service time S  with an approximated variance ( )
2

S M−  yields the mean 

waiting time seen by a message at source node as  [8] 

( ) ( )( )
( )( )

22

/

2 1 /

g

s

g

V S S M

W
V S

λ

λ

+ −

=
−

.                                                                                       (19) 

When multiple virtual channels are used per physical channel they share the bandwidth in a time 

multiplexed manner. The average degree of multiplexing of virtual channels that take place at a 

physical channel in dimension X, can be estimated by  [18] ( ) ( )2

, ,1 1
/

V V

x x v x vv v
V v P vP

= =
= ∑ ∑  and similarly 

for dimension Y is ( ) ( )2

, ,1 1
/

V V

y y v y vv v
V v P vP

= =
= ∑ ∑ . Therefore, the average degree of virtual channel 

multiplexing for a physical channel becomes ( ) / 2
x y

V V V= + . 

 
 



61 

 

 
 
Figure 2: Markov process for occupying and releasing virtual channels associated with a physical 
channel at dimension Y. 

 
 

4. Router Power Model 
In this section, we propose a simple high level approach for modeling the power consumption 

of torus network for different values of basic NoC parameters. Our proposed model considers 
both dynamic and static power consumption. Static power is related to the leakage current of 
transistors in steady state, while dynamic power is related to switching activity (the changing of 
internal logic levels) and the associated charging of internal load capacitances. 
 There are two different types for the case of energy consumption in an NoC router. First, the 
router dissipates energy during message movement and second energy dissipation of a quiet 
router. Quiet router is a router with no messages or blocked messages. In other words, when 
there is not any transition in the router, we have a quiet router. Therefore the dissipated energy in 
the quiet network is only static energy while message movement dissipates both static and 
dynamic energy. Let Ps and Pd be the static and dynamic power dissipated in a buffer for one flit 
data. In torus network  there are k2 routers and each router has 5 input channels (4 channels from 
neighbor routers and one injection channel) and each channel has V buffers (virtual channels). 
Therefore, static power consumption of all routers is 5k2VPs. Since a message has M flits and on 
average, a message traverses 1d +  routers to reach its destination, the dynamic power 

consumption of one message is ( 1) dM d P+ . Also according to the assumptions given in Section 

3.1., on average, λg messages reaches to a router in one cycle. Therefore dynamic power 
consumption of all messages is ( 1)

g d
M d Pλ + . Note that due to the limitation of routing resources 

(switches and interconnect wires), accepted traffic will saturate at a certain value of the injection 
load λs where λs is the peak data rate sustainable by the network which has found by the 
Markovian model described in previous section. Now we can model total power consumption as  
 

2

s

2

s

5 ( 1) ,        < ,

5 ( 1) ,        .

s d g g

total

s d s g

k VP M d P
P

k VP M d P

λ λ λ

λ λ λ

 + +
= 

+ + ≥
                                                             (20) 

 
This simple analytical model shows that power consumption has a linear relation to the packet 

injection rate. Ps and Pd are constant and depend on system voltage, frequency and fabrication 
technology. These power numbers are obtained from the synthesized VHDL designs. 

 
5. Validation of the Model 

 The proposed analytical model has been validated through a VHDL-based cycle accurate 
simulator. To achieve a high accuracy in the simulation results, we use the batch means 
method  [21] for simulation output analysis. There are 10 batches and each batch includes up to 
70000 messages depending on the traffic injection rate and network size. Statistics gathering was 
inhibited for the first batch to avoid distortions due to the startup transient. The standard 
deviation of latency measurements is less than 2% of the mean value. The simulator uses the 
same assumptions as the analysis. Numerous validation experiments have been performed for 

π0 π1

λc

…π2 πV-1 πV

λc λc

1/ yS 1/
y

S

πV+1

λc

1/ yS

…

1/
y

S



62 

 

several combinations of network sizes, message lengths, and number of virtual channels to 
validate the model. 

Figure 3 depicts latency results predicted by the model explained in the previous section, 
plotted against those provided by the simulator for the 4x4 and 6x6 torus NoCs with V=2 and 4 
virtual channels per physical channel, and two different message lengths M=32 and 64 flits. The 
horizontal axis in the figure shows the traffic generation rate at each node while the vertical axis 
shows the mean message latency. The figures reveal that in all cases the analytical model predicts 
the mean message latency with high degree of accuracy in the steady state regions. Moreover, the 
model predictions are still good even when the network operates in the heavy traffic region, and 
when it starts to approach the saturation region. However, some discrepancies around the 
saturation point are apparent. These can be accounted for by the approximations made to ease 
the derivation of different variables, e.g. the approximation made to estimate the variance of the 
service time distribution at an injection channel (Eq. (19)). Such an approximation greatly 
simplifies the model as it allows us to avoid computing the exact distribution of the message 
service time at a given channel, which is not a straightforward task due to interdependencies 
between service times at successive channels as wormhole routing relies on a blocking 
mechanism for flow control. 

 

   
                (a) 4x4 torus with 2 virtual channels           (b) 4x4 torus with 4 virtual channels 

 

   
         (c) 6x6 torus with 2 virtual channels                 (d) 6x6 torus with 4 virtual channels 

 
Figure 3: The average message latency predicted by the model against simulation results for a 4x4 
and a 6x6 torus NoC with V=2 and 4 virtual channels and messages length M=32 and 64 flits. 

4-ary 2-cube (V=2)

50

100

150

200

250

300

0 0.005 0.01 0.015

Traffic generation rate (message/cycle/node)

A
v

e
ra

g
e

 m
e

s
s

a
g

e
 l
a

te
n

c
y

 (
c

y
c

le
s

)

Simulation

Model (M=32)

Model (M=64)

4-ary 2-cube (V=4)

50

100

150

200

250

300

0 0.005 0.01 0.015

Traffic generation rate (message/cycle/node)

A
v

e
ra

g
e

 m
e

s
s

a
g

e
 l
a

te
n

c
y

 (
c

y
c

le
s

)

Simulation

Model (M=32)

Model (M=64)

6-ary 2-cube (V=2)

50

100

150

200

0 0.002 0.004 0.006 0.008 0.01

Traffic generation rate (message/cycle/node)

A
v

e
ra

g
e

 m
e

s
s

a
g

e
 l
a

te
n

c
y

 (
c

y
c

le
s

)

Simulation

Model (M=32)

Model (M=64)

6-ary 2-cube (V=4)

50

100

150

200

250

0 0.002 0.004 0.006 0.008 0.01 0.012

Traffic generation rate (message/cycle/node)

A
v

e
ra

g
e

 m
e

s
s

a
g

e
 l
a

te
n

c
y

 (
c

y
c

le
s

)

Simulation

Model (M=32)

Model (M=64)



63 

 

 
Power consumption of each router is determined by modeling the design in VHDL and using 

Synopsys Power Compiler  [2]. This tool does not include the long wires between the logic blocks. 
Figure 4 compares power consumption results from the analytical model and simulation 
experiments. The simulation environment is the same as in Section 3.1. As can be seen in the 
figure, the results from the proposed analytical model closely match the experimental ones. 

 

 
Figure 4: Total power consumption of routers in analytical model and simulation 

 
 
6. Conclusion and Future Work 

In this paper, we first proposed an analytical model to predict the average message latency of a 
wormhole-switched 2D torus NoC with deterministic routing. Also a simple high level model for 
predicting the power consumption of routers in NoCs was presented. Both models capture the 
effect of virtual channel multiplexing on the average message latency and power consumption. 
Simulation experiments have revealed that the proposed models predict message latency and 
power consumption of on-chip torus networks quite accurate. 

We plan to advance this research in several directions. One possible direction is to extend this 
approach to the other network-on-chip topologies. Another important extension is to 
accommodate this analytical model with various channel buffer depth. We are also working on a 
G/G/1 queueing model (instead of M/G/1 model) which is applicable to NoCs with arbitrary 
arrival process and arbitrary traffic pattern. The main challenge comes from the difficulty 
involved in the calculation of the packets interarrival time for each channel. 

 
Refrences 
[1] International Technology Roadmap for Semiconductors (ITRS), 2005 edition, 

http://www.itrs.net/. 
[2] Synopsys Power Compiler User Guide, Synopsys Inc., 2005, http://www.synopsys.com/. 
[3] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm," IEEE Computer, 

pp. 70–78, 2002. 
[4] X. Chen and L. Peh, “Leakage Power Modeling and Optimization in Interconnection 

Networks," In Proceedings of the International Symposium on Low Power Electronics and Design, pp. 
90–95, 2003. 

[5] G. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” IEEE Transaction on Parallel and 
Distributed Systems, Vol. 11, No. 7, pp. 729–738, 2000. 

Power

8

12

16

20

24

0 0.005 0.01 0.015

Traffic generation rate (message/cycle/node)

A
v

e
ra

g
e

 p
o

w
e

r 
c

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Simulation

Torus 4x4, V=2, M=32

Torus 4x4, V=2, M=64

Torus 6x6, V=2, M=32

Torus 6x6, V=2, M=64



64 

 

[6] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Networks," 
In Proceedings of the Design Automation Conference, pp. 683–689, 2001. 

[7] W.J. Dally, “Performance Analysis of k-ary n-cube Interconnection Networks," IEEE 
Transactions on Computers, Vol. 39, No. 6, pp. 775–785, 1990. 

[8] J.T. Draper and J. Ghosh, “A Comprehensive Analytical Model for Wormhole Routing in 
Multicomputer systems," Journal of Parallel and Distributed Computing, Vol. 23, No. 2, pp. 202–
214, 1994. 

[9] Duato J., Yalamanchili S., and Ni L., Interconnection Networks: An Engineering Approach, Morgan 
Kaufmann, 2002. 

[10] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing," In Proceedings of the 
International Symposium on Computer Architecture, pp. 441–450, 1998. 

[11] W. Guan, W. Tsai, and D. Blough, “An Analytical Model for Wormhole Routing in 
Multicomputer Interconnection Networks," In Proceedings of International Parallel Processing 
Symposium, pp. 650–654, 1993. 

[12] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Efficient Link Capacity 
and QoS Design for Network-on-Chip," Design, Automation, and Test in Europe, pp. 9–14, 2006. 

[13] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for regular NoC 
architectures," IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, Vol. 
24, No. 4, pp. 551–562, 2005. 

[14] J. Hu, U.Y. Ogras, and R. Marculescu, “System-Level Buffer Allocation for Application-
Specific Networks-on-Chip Router Design," IEEE Transaction on Computer-Aided Design of 
Integrated Circuits and Systems, Vol. 25, No. 12, pp. 2919-2933, 2006. 

[15] P. Hu and L. Kleinrock, “An Analytical Model for Wormhole Routing with Finite Size Input 
Buffers," In Proceedings of the International Teletraffic Congress, 1997. 

[16] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C.R. Das, “Design and Analysis of an 
NoC Architecture from Performance, Reliability and Energy Perspective," In Proceedings of the 
Symposium on Architecture for Networking and Communications Systems, pp. 173–182, 2005. 

[17] S. Murali and G. De Micheli, “Bandwidth-constrained Mapping of Cores onto NoC 
Architectures," In Proceedings of the conference on Design, Automation and Test in Europe, Vol. 2, pp. 
896–901, 2004. 

[18] H.H. Najaf-abadi and H. Sarbazi-Azad, “An Accurate Combinatorial Model for Performance 
Prediction of Deterministic Wormhole Routing in Torus Multicomputer Systems," In 
Proceedings of the International Conference on Computer Design, pp. 548–553, 2004. 

[19] U.Y. Ogras and R. Marculescu, “‘It’s a small world after all’: NoC performance optimization 
via long-range link insertion," IEEE Transaction on VLSI, Vol. 14, No. 7, pp. 693 – 706, 2006. 

[20] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance Evaluation and 
Design trade-offs for Network-on-Chip Interconnect Architectures," IEEE Transactions on 
Computers, Vol. 54, No. 8, pp. 1025 – 1040, 2005.  

[21] K. Pawlikowski, “Steady-State Simulation of Queueing Processes: A Survey of Problems and 
Solutions," ACM Computing Surveys, Vol. 22, No. 2, pp. 123–170, 1990. 

[22] H. Sarbazi-Azad, M. Ould-Khaoua, and L.M. Mackenzie, “Analytical Modeling of 
Wormhole-Routed k-Ary n-Cubes in the Presence of Hot-Spot Traffic," IEEE Transaction on 
Computers, Vol. 50, No. 7, pp 623-634, 2001. 

[23] H. Sarbazi-Azad, M. Ould-Khaoua, and L. M. Mackenzie, “Communication Delay in 
Hypercubes in the Presence of Bit-Reversal Traffic," Parallel Computing, Vol. 27, No. 13, pp. 
1801-1816, 2001.



65 

 

 
 
 
 
 
 
PERMAP: A Performance-Aware 
Mapping for Application-Specific 
SoCs 
 
Abbas Eslami Kiasari 
Shaahin Hessabi 
Hamid Sarbazi-Azad 
 
In the Proceedings of the 19th IEEE International 
Conference on Application-specific Systems, 
Architectures and Processors (ASAP), pp. 73-78,  
Leuven, Belgium, Jul. 2008. 

 Paper 3 





67 

 

 

PERMAP: A Performance-Aware Mapping 
for Application-Specific SoCs 

 
A. E. Kiasari†,‡, S. Hessabi†, and H. Sarbazi-Azad†,‡ 

†Sharif University of Technology  ‡IPM School of Computer Science 
     Tehran, Iran           Tehran, Iran 

kiasari@ipm.ir, hessabi@sharif.edu, azad@ipm.ir  
 
 

Abstract 
Future System-on-Chip (SoC) designs will need efficient on-chip communication architectures 
that can provide efficient and scalable data transport among the Intellectual Properties (IPs). 
Designing and optimizing SoCs is an increasingly difficult task due to the size and complexity of 
the SoC design space, high cost of detailed simulation, and several constraints that the design 
must satisfy. For efficient design of SoCs, an efficient mapping of IPs onto Networks-on-Chip 
(NoCs) is highly desirable. Towards this end, we have presented PERMAP, a PERformance-
aware MAPping algorithm which maps the IPs onto a generic NoC architecture such that the 
average communication delay is minimized. This is accomplished by a performance analytical 
model which can be used for any arbitrary network topology with wormhole routing. The 
algorithm is used for mapping a video application onto a tile-based NoC and experimental results 
show that PERMAP is fast and robust. 
 
1. Introduction 

The International Technology Roadmap for Semiconductors (ITRS) predicts that chips with 
over 4 billion transistors operating at 10 GHz speeds will be commercialized before the end of 
the decade  [1]. With the advance of the semiconductor technology, the enormous number of 
transistors available on a single chip allows designers to integrate dozens of IP (Intellectual 
Property) blocks together with large amounts of embedded memory. Such IPs can be CPU or 
DSP cores, video stream processors, high-bandwidth I/O controllers, etc. 

Shared-medium busses do not scale well, and do not fully utilize potentially available 
bandwidth. As the feature sizes shrink, and the overall chip size relatively increases, the 
interconnects start behaving as lossy transmission lines. Line delays have become very long as 
compared to gate delays, causing synchronization problems between cores. A significant amount 
of power is dissipated on long interconnects and in clocking network. This trend only worsens as 
the clock frequencies increase and the feature sizes decrease. Lowering the power supply voltage 
and designing low swing circuits decrease the overall power consumption at the cost of higher 
data errors. 

One solution to these problems is to implement System-on-Chip (SoC) using micro-networks, 
or Networks-on-Chip (NoCs) [2][4][8]. Networks have a much higher bandwidth due to multiple 
concurrent connections. Regularity enables design modularity, which in turn provides a standard 
interface for easier component reuse and better interoperability. Overall performance and 
scalability increase since the networking resources are shared. Scheduling of traffic on shared 
resources prevents latency increases on critical signals.  

To exploit this regular architecture, the design flow needs the following steps: First, the 
application needs to be divided into a graph of concurrent tasks. The task may be, for example, a 
software task to be executed in an embedded processor, a hardware task to be executed in an 
embedded FPGA or a co-processor, or an input/output operation. This task graph is a directed 
graph, where each vertex represents one selected IP, and each directed arc represents the 
communication volume from source IP to destination IP. Then, the designer needs to decide to 



68 

 

which network node each selected IP should be mapped such that the metrics of interest are 
optimized. More precisely, given the assigned task graph, this last phase determines the 
topological placement of these IPs onto different network nodes. The feasible placements are 
evaluated according to a specific cost function, as area fragmentation, power consumption, 
packet latency or link usage, in order to get the best performance. 

The mapping phase (that is, the topological placement of the IPs onto the on-chip tiles) 
represents a problem, especially in the context of the regular architecture, as it significantly 
impacts the performance metrics of the system. The overall objective of this research is mapping 
IPs on to a network architecture. In particular, we consider mesh topology, and the mapping of 
IPs to their cross-points. We describe a mapping scheme called PERMAP (PERformance-aware 
MAPping) that minimizes the average communication delay. 

To this end, we first show the impact of IPs mapping on the communication performance of a 
given system. An efficient analytical model is then proposed to predict the communication 
performance of an SoC. Finally, the proposed model is used as a powerful tool with the goal of 
finding a legal mapping which has an acceptable performance.  

 
2. Related Work 

Hu and Marculescu  [9] presented a static mapping heuristic. The main goal of the approach is 
to reduce the overall power consumption by decreasing the consumed energy on communication. 
The authors proposed a mapping approach named Communication Weighted Model (CWM), 
modeling applications as graphs, where the vertices are the tasks and the edges are the 
communications between tasks. The weight of each edge corresponds to the number of bits 
exchanged between tasks.  

Another mapping algorithm is presented in  [11] for satisfying the bandwidth constraints of a 
mesh NoC and minimizing the average delay. The average hop count is used to approximate the 
average packet latency. This metric, however, ignores the queuing delays and network contention. 

Authors in  [10] present an approach that uses a genetic algorithm to map an application, 
described as a parameterized task graph, on a mesh-based NoC architecture so as to minimize the 
execution time. 
 
3. Motivation 

In 2006, the National Science Foundation initiated a workshop to identify the on-chip 
communication challenges. Workshop members did agree that latency and power are the two 
most critical crosscutting design challenges for on-chip interconnection network 
architectures  [12]. 

To show that the IP mapping heavily affects the communication latency, we consider two 
different IP mapping of a video application to the tiles of a 4x4 mesh on-chip network. As an 
example of a video processing application, the task graph of a Video Object Plane (VOP) 
decoder  [15] is shown in Figure 1. Each block in the figure corresponds to an IP and the 
numbers near the edges represent the bandwidth (in MBytes/sec) of the data transfer, for a 30 
frames/sec MPEG-4 movie with 1920×1088 resolution  [15]. Then, the system is simulated for 
these mapping configurations and the corresponding average packet latency (APL) values are 
plotted against packet generation 



69 

 

 
 

Figure 1: Task graph of a Video Object Plane (VOP) decoder  [15]. 
 
 

 
 
Figure 2: Average packet latency (APL) of a video application for two different mapping 
configurations vs. packet generation rate. 
 
rate in Figure 2. As can be seen in the figure, the communication performance of a system is 
dependent on how the IPs of the task graph are assigned to the tiles of the network.  

Unfortunately, the mapping problem is NP-hard  [6]. The search space of the problem increases 
factorially with the system size. Even for a system with 4x4 tiles, there can be 16! (≈ 2x1013) 
mappings which are almost impossible to enumerate. In the following section, we propose an 
efficient analytical model which can be used to find nearly optimal solutions in reasonable time. 
 
4. Performance Analysis 

If the performance is measured in terms of average packet latency, then maximizing the 
performance means, in fact, minimizing the end-to-end packet latency. In this section, we derive 
an analytical performance model for on-chip networks using a G/G/1  [3] priority queueing 
model. It can be used for any arbitrary network topology with wormhole routing under any 
arbitrary traffic pattern. 

Variable 

length
decoder

70 Run-

length
decoder

362
Inverse 

scan

362
AC/DC 

prediction

362
iQuant

357
IDCT

Stripe 
memory

4927

Up 

sampling

VOP 
reconstruction

PaddingVOP 
memory

353

300

313

94

313
500

Context-based 

Arithmetic 
decoder

Memory

Down sampling 
&

context calculation

157

16

16

Reference 
memory

Up 
sampling

16

16

16

16

16

IP0 IP1 IP2 IP3

IP4

IP5 IP6

IP7

IP8

IP10

IP9

IP15

IP11IP12

IP14

IP13

Variable 

length
decoder

70 Run-

length
decoder

362
Inverse 

scan

362
AC/DC 

prediction

362
iQuant

357
IDCT

Stripe 
memory

4927

Up 

sampling

VOP 
reconstruction

PaddingVOP 
memory

353

300

313

94

313
500

Context-based 

Arithmetic 
decoder

Memory

Down sampling 
&

context calculation

157

16

16

Reference 
memory

Up 
sampling

16

16

16

16

16

IP0 IP1 IP2 IP3

IP4

IP5 IP6

IP7

IP8

IP10

IP9

IP15

IP11IP12

IP14

IP13

70

100

130

160

190

0 0.01 0.02 0.03 0.04 0.05 0.06

Packet generation rate (packets/cycle)

A
v
e
ra

g
e
 p

a
c
k
e
t 
la

te
n

c
y
 (
c
y
c
le

s
)

Mapping I

Mapping II



70 

 

                    
 
                                        (a)                             (b) 
Figure 3:  (a) A general structure for a node in an SoC (b) A two hop path from node A to node 
C. 
 
 
4.1. Assumptions and Notations 

We consider input buffered routers with 1p +  input channels, 1q +  output channels, and target 
wormhole flow control under deterministic routing algorithms. The structure of a single node is 
depicted in Figure 3.a. Each node contains a router and an IP capable of generating and/or 
receiving packets.  

Packets are injected into the network on input port p (injection channel) and leave the network 
from output port q (ejection channel). Generally, each channel connects output port j of node N 

to input port i of node M. So, we denote this channel N

j
OC  (jth output channel of router N) or 

M

i
IC  (ith input channel of router M). Messages are broken into some packets of fixed length of M 

flits. The routing decision delay for a packet, crossing time of a flit over the crossbar switch, and 
transfer time of a flit across a wire between two neighboring routers are tr, ts, and tw, respectively. 
Also the transfer time of a flit across the injection and ejection channels are considered to be tw. 

Let S D
P

→  be the probability of the packet transmitted from the source node at router S ( S
R ) 

to the destination node at router D ( D
R ). Likewise, the traffic arrival rate of the header flits from 

N

i
IC  to N

j
OC  is given by N

i j
λ

→
 packets/cycle. Also we assume that the packet injection process to 

the router RN has a general distribution with mean value of α N packets/cycle. The average packet 
latency (L) is used as the performance metric. We assume that the packet latency spans the 
instant when the packet is created, to the time when the packet is delivered to the destination 
node, including the queuing time spent at the source. We also assume that the packets are 
consumed immediately once they reach their destination nodes. 

 

 
 

Figure 4: Queueing model of a channel of an arbitrary topology. 
 
 
 
 
 

Router

p

p -1

1

0

…
.

IP

q

1

0

…
.

injection 

channel

ejection 

channel

in
p

u
t ch

a
n

n
els

o
u

tp
u

t ch
a

n
n

els

q -1

Router

p

p -1

1

0

…
.

IP

q

1

0

…
.

injection 

channel

ejection 

channel

in
p

u
t ch

a
n

n
els

o
u

tp
u

t ch
a

n
n

els

q -1

A
i

B
k

C

j

l

…..

…
..

N

j
OC

0

N

j
λ →

N

p j
λ →

from IP

…
..

1

N

p jλ − →

from adjacent

nodes

…..

…
..

N

j
OC

0

N

j
λ →

N

p j
λ →

from IP

…
..

1

N

p jλ − →

from adjacent

nodes



71 

 

4.2. Analytical Model 

In Figure 3.b consider a packet which is generated in IPA, and reaches its destination (IPC ) after 

traversing RA
, R

B, and RC. The latency of this packet ( A C
L

→ ) consists of two parts: the latency of 
header flit ( A C

h
L

→ ) and the latency of body flits (Lb). In other words 
A C A C

h bL L L
→ →= +                                                                                                                 (1) 

A C

hL
→  is the time from when the packet is created in IPA, until when the header flit is reached to 

the IPC, including the queueing time spent at the source node and intermediate nodes. In Figure 
3.b, A C

h
L

→  can be computed as: 

( )3 4A C A B C

h r s w p i j k l q
L t t t W W W

→

→ → →= + + + + +  

where N

i j
W

→
 is the mean waiting time for a packet from N

iIC  to N

j
OC . Since the body flits follow 

the header flit in a pipelined fashion, Lb is given by ( ) ( )1
b s w

L M t t= − + . The only unknown 

parameter for computing the latency is N

i j
W

→
. The value of N

i j
W

→
 can be calculated in a 

straightforward manner using a queuing model. The basic element in the model is a G/G/1 
priority queue (the customer interarrival time and server's service time follow general 
distributions and queues have one server to provide the service). A router is primarily modeled 
based on nonpreemptive priority queuing system  11.  

Now, let us consider, for instance, the jth output channel of RN ( N

j
OC ). As can be seen in 

Figure 4, this channel is modeled as a server in a priority queueing system with 1p +  classes (
0

N
IC  

to N

p
IC ), the arrival rate ( ) 0N

i j
i pλ → ≤ ≤ , served by one server ( N

j
OC ) of service rate N

j
µ . Note that 

since all incoming packets are similar, the service times of all packets are equal. Both interarrival 
and service times are independent and identically distributed with arbitrary distributions.  

Since the input channels (except injection channel) have one flit rooms, we should compute the 
average waiting time for the head of class i. Using a technique similar to that employed in 
literature for priority queues  [3] 11, we can write 

 

( )

1 2

1

1

/ 1 ,                        ,

1
,    0 .

1

N N

j p j

N
N N

i j
i j i j N

i jN

i j

R i p

W
W i p

ρ

ρ σ

σ

→

→ + → + →

+ →

+ →

 − =


=  + −
≤ <

−

                                                                      (2) 

where N

j
R  is the residual service time of  

N

j
OC  seen by an incoming header flit and 

1pN N

i j i jk i
σ ρ

+

→ →=
= ∑ . In a G/G/1 queueing system, N

j
R  is approximated by  [3] 

2 2

0 2

N N
i j jp A BN N

j i j Ni
j

C C
R ρ

µ
→

→=

+
≈∑                                                                                                         (3) 

Since we do not have enough insight about the first and second moments of interarrival time, we 
suppose that N

i jA
C

→

 is constant for all input channels in the network and equal to the coefficient 

of variation (CV) of the arrival process to network (
N
i j

AA
C C

→

= ). So, we can rewrite Eq. (3) as: 

( ) ( )2
2 21

2
N
j

N N N

j j j A B
R b C Cλ≈ +                                                                                                     (4) 



72 

 

Therefore, to compute N

i j
W

→
 we must calculate the average arrival rate over 

N

j
OC  ( N

jλ ), and also 

first and second moments of the service time of 
N

j
OC . Assuming the network is not overloaded, 

the arrival rate over 
N

j
OC  can be calculated using the following general equation: 

N S S D

j

S D

Pλ α →

∀ ∀

= × ×∑∑ R ( ), N

j
S D OC→                                                                                          (5) 

In Eq. (5), the routing function R ( ), N

jS D OC→ equals 1 if the packet from IPS to IPD passes 

through 
N

j
OC ; it equals 0 otherwise. Note that we assume a deterministic routing algorithm, thus 

the function of R ( ), N

j
S D OC→  can be predetermined. 

 

                        
                        (a)                                    (b) 

Figure 5: An SoC with (a) 4x4 mesh network and (b) its router structure. 
 

Although N

jλ  can be computed exactly for all topologies by Eq. (5),  service time moments of 

the output channels cannot be computed in a direct manner by a general formula for any 
topology and any routing algorithm. To compute the moments of the service time of the output 
channels we first divide the channels into some groups based on their routing order and then an 
index is assigned to the groups opposite of the routing order, from ejection channel to injection 
channel. Then, we estimate the first two moments of the service time for the output channels. 
Determination of the channel service time moments starts at the ejection channel and works 
backward to the source of the packets. Therefore, the contention delay from lower numbered 
groups can then be thought of as adding to the service time of packets on higher numbered 
groups. In other words, to determine the waiting time of channels in group k, we must calculate 
the waiting time of all channels in group 1k − . This approach is dependent to the topology and 
routing algorithm. Here we derive an analytical performance model for XY routing  [7] in a mesh 
network. Due to the popularity of the mesh network, our analysis focuses on this topology but 
the modeling approach used here can be equally applied for other topologies after few changes in 
the model.  

We consider a system which is composed of 4x4 tiles interconnected by a 2D mesh network as 
shown in Fig 5.a. Also a typical on-chip router for a 2D mesh is shown in Figure 5.b. The five 
input channels of each router are represented with in (injection), n (north), e (east), s (south), and 
w (west). Also these channels are assigned to priority classes from index 5 (the highest priority) to 
1 (the lowest priority), respectively. ej is representing the ejection channel.  

In XY routing, the injected packets into the network traverse in the row of the source up to the 
column of the destination, and then go straight through to the destination. Finally, it is fed to the 
destination node via ejection channel. We divide the output channels of the mesh network into 4 
groups based on their routing order: (1) ejection channels, (2) north and south channels, (3) east 
and west channels, and (4) injection channels. In the ejection channel of RN the header flit and 
body flits are accepted in tw and Lb cycles, respectively. So, we can write N

ej w b
b t L= +  and since all 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Router

in

n

s

w

IP

e

ej

n

s

w

eRouter

in

n

s

w

IP

e

ej

n

s

w

e



73 

 

packets have the same service time, there is not any variation in the service times. In other words 

0N
ejB

C = . Now, we can determine the value of N

i ejW →
 where i∈{n,e,s,w}.  

After determination of the service time moments  in group 1, in the next step, we should 
determine the first two moments of service time of channels in group 2, north and south 
channels. The moments of the service time for a north output channel is obtained by tracing each 
of paths from this channel to the network outputs (ejection channels). The service time along 
each path is a random variable; however, each is only a fraction of the packet length for all packet 
rates that can be sustained on the mesh network. Hence, the service time through a path is 
assumed to be a constant equal to the sum of the mean waiting times along the path plus Lb. 
Since each of these paths is not equally probable, the service time moments are weighted mean of 
all paths service times.  

For example, consider the north output channel of R9 ( 9

nOC ) in Figure 5.a. One possible path 

from 9

n
OC  to a network output is directly to ejection channel of the adjacent node R5, for an 

average service time of 5

5 2 →= + + + +r s w s ej bL t t t W L  where 5

s ejW →
 was already computed. The 

second path from 9

n
OC  to a network output is through north channel of R5 and ejection channel 

of R1, for an average service time of ( ) 5 1

1 2 3 → →= + + + + +r s w s n s ej bL t t t W W L  where 1

s ejW →
 was 

already computed and 5

s nW →
 can be computed with the same approach. Packets are routed under 

XY routing algorithm; therefore, all passing packet through 9

nOC  are generated in IP8, IP9, … IP15 

and destined to IP1 and IP5 with the probability of  ( )15 15 151 1 5

8 8 8
/i i i

i i i
P P Pα → → →

= = =
= +∑ ∑ ∑  and  1 α− , 

respectively. So, the first and second moments of the service time can be estimated as 

( )9

5 11
n

b L Lα α= + − , and ( ) ( )
2

9 2 2

5 11nb L Lα α= + − , respectively. Now, we are able to calculate the 

coefficient of variation of the service time in 9

nOC , ( ) ( )9

2
2

2 9 9
/ 1

n

n nB
C b b= − , and then the mean 

waiting time for the north channel of R9 seen by other channels ( 9

i nW →
) can be computed by Eq. 

(2). After computing the mean waiting time of all channels in group 2, the mean waiting time for 
other output channels (east, west and ejection channels) can be calculated using the same 
approach. Now, we can calculate the packet latency between any two nodes in the network by 
Eq. (1). The average packet latency is the weighted mean of these latencies as: 

15 15

0 0

s d s d

s d
L P L→ →

= =
= ×∑ ∑                                                                                               (6) 

   
5. Experimental Results 

This section reports on the accuracy and run time of the proposed approach. To evaluate the 
capability of our method for real applications, we applied it to the VOP decoder application  [15] 
which is mapped to a 4×4 2D mesh network. We used two-state Markov Models  [5] as stochastic 
traffic generators to model the bursty nature of the application traffic, with average 
communication bandwidth matching the applications’ average communication bandwidth (shown 
in Figure 1). The average packet latencies obtained using the proposed method are compared 
against those obtained with a cycle-accurate flit-level simulator. Both the simulator and the 
analytical model are implemented in C++. Throughout the experiments, we consider an SoC 
with 128 byte packets, 32 bit flits, 4 cycle router delay (routing decision and switching delay are 3 
cycles and 1 cycle, respectively), and 1 cycle wire delay. To achieve a high accuracy in the 
simulation results, we use the batch means method  [13] for simulation output analysis. There are 
10 batches and each batch includes up to 20,000 packets, depending on the traffic injection rate 
and network size. Statistics gathering was inhibited for the first batch to avoid distortions due to 
the startup transient. The standard deviation of latency measurements is less than 2% of the 
mean value. 



74 

 

Next, we assess the accuracy of our approach for different application mappings. We performed 
experiments for 1000 random mappings. For each mapping, the average packet latency is 
computed by using the proposed approach and by simulation, at 0.03 packets/cycle injection rate 
(see Figure 2). According to the simulation results, the best among all 1000 mappings is the 
mapping with ID 534, with an average latency of 88.81 cycles. The analytical model however 
reports the best mapping to be ID 264 with average latency of 97.24 cycles. The latency for 
mapping ID 264 found by simulation is 90.73 cycles. As such, the analysis approach selects a 
mapping whose latency is within 3% of the best one found by simulation. But, the analysis finds 
the best mapping more than 100,000 times faster. Thus, much more mappings can be explored 
within the same time budget using the proposed analytical technique. 

 
 

Table 1: Minimum APL of some random mapping found by analytical model and corresponding 
APL obtained using simulation. 

Number 
of  

random 
vectors 

APL 
(Model) 

APL 
(Sim.) 

Error 
(%) 

Model 
run 
time 
(sec) 

10 115.08 125.96 8.64 ≈ 0 
100 98.52 97.50 1.05 0.015 
1000 97.24 90.73 7.18 0.14 

10,000 90.99 90.60 0.43 1.25 
100,000 89.86 88.68 1.33 14.17 

1,000,000 88.20 88.24 0.05 242.20 
 
We used our analytical method to find the APL of 10 to one million different mappings and 

selected the best mapping (minimum APL among all mapping configurations). Then the APL of 
this mapping is calculated by simulation. Table 1 shows the APL of the best mapping which is 
found by our proposed approach and corresponding APL obtained using simulation. Also the 
relative error and analytical model run time of each set of random vectors are reported in Table 1. 
The best mapping configuration among 1 million different mapping vectors is shown in Figure 6. 

Therefore, the proposed method can be used to prune the large design space in a very short 
time compared to simulation. Experiments performed on larger networks show several orders of 
magnitude achievable speed-up compared to a single simulation run. Considering that many 
simulations are needed to obtain high confidence intervals, the overall speed-up of the analytical 
approach is impressive. Moreover, the simulation runtime grows faster for heavier traffic, while 
the run-time of the analytical approach remains pretty much the same. 
 
6. Conclusions 

In this paper, we addressed the mapping problem for application specific SoC architectures. An 
efficient queueing-based model is used for performance prediction of an SoC. PERMAP uses this 
analytical model to map the IPs onto a generic NoC architecture such that the average 
communication delay is minimized. The model is used for mapping a video application onto tile-
based NoCs. Experimental results show that we can generate high quality solutions with 
significantly less computational time. Although in this paper we focused on the tile-based 
architecture interconnected by a 2D mesh network with XY routing, our method can be adapted 
to other network topologies and routing schemes. 

 



75 

 

 
 
Figure 6: An efficient mapping of the VOP decoder application which is found by the analytical 
model. 
 
References 
[1] International Technology Roadmap for Semiconductors (ITRS), 2007 edition, 

http://www.itrs.net/. 
[2] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE Computer, 

2002, pp. 70–78. 
[3] G. Bolch, S. Greiner, H. De Meer, and K.S. Trivedi, Queueing Networks and Markov Chains: 

Modeling and Performance Evaluation with Computer Science Applications, 2nd Edition, John Wiley 
and Sons, 2006. 

[4] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Networks”, 
In Proceedings of the DAC, 2001, pp. 683–689. 

[5] W. Fischer and K. Meier-Hellstern, “The Markov-Modulated Poisson Process (MMPP) 
Cookbook”, Performance Evaluation, Vol. 18, No. 2, 1993, pp. 149-171. 

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979. 

[7] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing”, In proceedings of the ISCA, 
1992, pp. 278-287. 

[8] P. Guerrier and A. Greiner, “A Generic Architecture for on-chip Packet-Switched 
Interconnections”, In proceedings of the DATE, 2000, pp. 250-256. 

[9] J. Hu and R. Marculescu, “Energy- and Performance-Aware Mapping for Regular NoC 
Architectures”, IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, Vol. 
24, No. 4, 2005, pp. 551-562. 

[10] T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping Task Graphs to a 
Network on Chip Architecture”, In Proceedings of the Euromicro Symposium on Digital Systems 
Design, 2003, page 180, 2003. 

[11] S. Murali and G. De Micheli, “Bandwidth-Constrained Mapping of Cores onto NoC 
Architectures”, In Proceedings of the DATE, 2004, pp. 896- 901. 

[12] J.D. Owens et al., “Research Challenges for On-Chip Interconnection Networks”, IEEE 
Micro, Vol. 27, No. 5, 2007, pp. 96-108.   

[13] K. Pawlikowski, “Steady-State Simulation of Queueing Processes: A Survey of Problems and 
Solutions”, ACM Computing Surveys, Vol. 22, No. 2, 1990, pp. 123-170. 

[14] H. Takagi, Queueing analysis, Vol. 1: Vacation and priority systems, Amsterdam, North-Holland, 
1991. 

[15] E.B. van der Tol and E.G. Jaspers, “Mapping of MPEG-4 Decoding on a Flexible 
Architecture Platform”, SPIE, Vol. 4674, 2002, pp. 1-13. 

IP5 IP7 IP6 IP15

IP4 IP8 IP9 IP10

IP3 IP14 IP11 IP2

IP0 IP12 IP13 IP1

IP5 IP7 IP6 IP15

IP4 IP8 IP9 IP10

IP3 IP14 IP11 IP2

IP0 IP12 IP13 IP1





77 

 

 
 
 
 
 
 
 
 
Caspian: A Tunable Performance 
Model for Multi-Core Systems 
 

Abbas Eslami Kiasari 
Hamid Sarbazi-Azad 
Shaahin Hessabi 
 
In the Proceedings of the 14th European Conference on 
Parallel and Distributed Computing (Euro-Par), Lecture 
Notes in Computer Science, vol. 5168, pp. 100-109, 
Canary Island, Spain, Aug. 2008.

 Paper 4 





79 

 

 

Caspian: A Tunable Performance Model for 
Multi-Core Systems 

 
Abbas Eslami Kiasari1,2, Hamid Sarbazi-Azad2,1, and Shaahin Hessabi2  

1IPM School of Computer Science, Tehran, Iran 
2Sharif University of Technology, Tehran, Iran 
kiasari@ipm.ir, {hessabi, azad}@sharif.edu  

 
 
 

Abstract 
Performance evaluation is an important engineering tool that provides valuable feedback on 
design choices in the implementation of multi-core systems such as parallel systems, 
multicomputers, and Systems-on-Chip (SoCs). The significant advantage of analytical models 
over simulation is that they can be used to obtain performance results for large systems under 
different configurations and working conditions which may not be feasible to study using 
simulation on conventional computers due to the excessive computation demands. We present 
Caspian1, a novel analytic performance model, aimed to minimize prediction cost, while providing 
prediction accuracy. This is accomplished by using a G/G/1 priority queueing model which is 
used for arbitrary network topology with wormhole routing under arbitrary traffic pattern. The 
accuracy of this model is examined through extensive simulation results. 
 
Keywords: Performance evaluation, Analytical model, Multi-core systems, G/G/1 queueing 
model. 

 
1    Introduction 

Multi-core system designers are constantly confronted with the challenge of designing high 
performance system while simultaneously meeting constraints such as communication latency, 
network throughput and design costs [4]. The problem of identifying multi-core system 
configurations is further exacerbated for the following reasons. First, multi-core systems are 
evolving into increasingly complex systems with a large number and type of components such as 
processors, memories, routers, and queues. As a consequence, designers must deal with a large 
architectural design space consisting of several interacting parameters. Furthermore, new 
workloads are composed of a large spectrum of programs with widely differing characteristics. 
System designers have addressed these problems in the past by exploring the design space using 
detailed simulations. However, this approach has high simulation costs due to the low speed of 
cycle-accurate simulators.  

                            
Figure 1: A general structure for a node in a generic multi-core system 

  

                                                           
1 The Caspian Sea is the largest enclosed body of water on Earth by area, variously classed as the world's largest lake or a 

full-fledged sea. It lies between the southern areas of the Russian Federation and northern Iran [Wikipedia]. 

Router

p+1

p

2

1

…
.

PE

0

2

1

…
.

injection 

channel

ejection 

channel

in
p

u
t c

h
an

n
e
ls

o
u

tp
u

t ch
a
n

n
els

q



80 

 

Performance models are frequently employed by multi-core system vendors in their design of 
future systems. Typically, engineers construct a performance model for one or two key 
applications, and then compare future technology options based on performance model 
projections. An analytical model that accurately characterizes the relationship between multi-core 
system performance and various implementation parameters would, in theory, obviate the need 
for detailed, expensive, and time consuming simulations. As an alternative to analytical models, in 
this research a tunable analytical modeling technique for multi-core system performance has been 
proposed and evaluated. The proposed approach, which is developed for wormhole flow control, 
provides buffer utilization, channels throughput, achievable throughput of the network, average 
waiting time for each channel, and average packet latency. These metrics can be conveniently 
used for design and optimization purposes, as well as obtaining quick performance estimates. 

The main contribution of the work is a novel performance model, Caspian, for multi-core 
systems which can generalize the traditional delay models. Finally, the proposed model provides 
not only aggregate performance metrics, such as average latency and throughput, but also useful 
feedback about the network behavior. Hence, it can be invoked in any optimization loop for 
multi-core systems for fast and accurate performance estimations. 

 
2    Performance Analysis 
If the performance is measured in terms of average packet latency, then maximizing the 
performance is equivalent to minimizing the end-to-end packet latency. In this section, we derive 
an analytical performance model for multi-core systems using a G/G/1 [2] priority queueing 
model. It can be used for any arbitrary network topology with wormhole routing under any 
arbitrary traffic pattern. 

 

2.1   Assumptions and Notations 
We consider input buffered routers with 1p +  input channels, 1q +  output channels, and target 
wormhole flow control under deterministic routing algorithm. This form of routing results in a 
simpler router implementation and has been used in many practical systems [3]. So in this 
research we use the deterministic routing for deadlock free routing. The structure of a single 
node is depicted in Figure 1. Each node contains a router and a Processing Element (PE) capable 
of generating and/or receiving packets.  

Packets are injected into the network on input port p+1 (injection channel) and leave the 
network from output port 0 (ejection channel). Generally, each channel connects output port j of 

node N to input port i of node M. So, we denote this channel N

j
OC  (jth output channel of router 

N) or M

i
IC  (ith input channel of router M).  Messages are broken into some packets of fixed 

length of M flits, as listed in Table 1 along with other parameters. The routing decision delay for 
a packet, crossing time of a flit over the crossbar switch, and transfer time of a flit across a wire 
between two neighboring routers are tr, ts, and tw, respectively. Also the transfer time of a flit 
across the injection and ejection channels are considered to be tw. 

Let S D
P

→  be the probability of packet transmission from the source node at router S ( S
R ) to 

the destination node at router D ( D
R ). Likewise, the traffic arrival rate of the header flits from 

N

i
IC  to N

j
OC  is given by N

i j
λ

→
 packets/cycle. Also we assume that the packet injection process to 

the router RN has a general distribution with mean value of α N packets/cycle. The average packet 
latency (L) is used as the performance metric. Similar to previous works [1], [7], [8], we assume 
that the packet latency spans the instant when the packet is created, to the time when the packet 
is delivered to the destination node, including the queuing time spent at the source. We also 
assume that the packets are consumed immediately once they reach their destination nodes. 
 

 

 



81 

 

Table 1: Parameter notation. 
 

 
 

2.2   Analytical Model 

In Figure 2 consider a packet which is generated in IPA, and reaches its destination (IPC) after 

traversing RA
, R

B, and RC. The latency of this packet ( A C
L

→ ) consists of two parts: the latency of 
header flit ( A C

h
L

→ ) and the latency of body flits (Lb). In other words 
A C A C

h bL L L
→ →= +                                     (1) 

A C

hL
→  is the time from when the packet is created in IPA, until when the header flit is reached to 

the IPC, including the queueing time spent at the source node and intermediate nodes. In Figure 
2, A C

h
L

→  can be computed as 

tr Spent time for packet routing decision (cycles) 
P

la
tfo

rm
 sp

ecific
 p

a
ra

m
eters 

ts Delay of crossbar switch (cycles) 

tw Spent time for transmitting a flit between two adjacent router (cycles) 

M The size of a packet (flits) 

L The average packet latency (cycles) 

R Routing function 

R
N
 The router located at address N 

PE
N
 The processing element located at address N 

N

i
IC  The ith input channel of router R

N
 

N

j
OC  The jth output channel of router R

N
 

N

j
S  set of all source nodes for packets which pass through 

N

j
OC  

N

j
D  set of all destination nodes for packets which pass through 

N

j
OC  

 

S D
P

→
 The probability of a packet generated by PE

S
 to be delivered to PE

D
 

A
p

p
lica

tio
n

 sp
ecific p

a
ra

m
eters 

α N The average packet injection rate of PE
N
 (packets/cycle) 

N

i jλ →
 The average packet rate from 

N

i
IC  to 

N

j
OC  (packets/cycle) 

N

j
λ  The average packet rate to 

N

j
OC  (packets/cycle) ( )N N

j i ji
λ λ →=∑  

N

j
µ  The average service rate of 

N

j
OC  (packets/cycle) 

N

jb  The average service time of 
N

j
OC  (cycles) ( )1/N N

j j
b µ=  

( )
2

N

j
b  The second moment of the service time of 

N

j
OC   

N
jB

C  The CV (coefficient of variation) for service time of the 
N

j
OC   

N
i jA

C
→

 The CV for interarrival time of packets from 
N

i
IC  to 

N

j
OC  

N

i jρ →
 The fraction of time that the 

N

j
OC  is occupied by packets from 

N

i
IC  

N

i jW →
 The average waiting time for a packet from 

N

i
IC  to 

N

j
OC  (cycles) 

 



82 

 

1

0

  

  

A C A

h p i w r s

B

w r j k s

C

w r l s w

L W t t t

t t W t

t t W t t

→

+ →

→

→

= + + +

+ + + +

+ + + + +

 (2) 

where N

i j
W

→
 is the mean waiting time for a packet from N

iIC  to N

jOC . Note that in Figure 2 the 

channel between B and C can be addressed with B

k
OC  or C

l
IC . Since the body flits follow the 

header flit in a pipelined fashion, Lb is given by  

( ) ( )1
b s w

L M t t= − +  (3) 

The only unknown parameter for computing the latency is N

i j
W

→
. This value can be calculated 

in a straightforward manner using a queuing model. The basic element in the model is a G/G/1 
priority queue (the customer interarrival time and server's service time follow general 
distributions and queues have one server to provide the service). A router is primarily modeled 
based on nonpreemptive priority queuing system [11]  

Now, let us consider, for instance, the jth output channel of RN ( N

j
OC ). As can be seen in 

Figure 3, this channel is modeled as a server in a priority queueing system with 1p +  classes (
1

N
IC  

to 
1

N

p
IC

+
), with arrival rates ( ) 1 1N

i j
i pλ → ≤ ≤ + , served by one server ( N

j
OC ) of service rate N

jµ . Note 

that since all incoming packets are similar, the service times of all packets are equal. Both 
interarrival and service times are independent and identically distributed with arbitrary 
distributions.  

 

                      
    Figure 2: A two hop packet from                   Figure 3: Queueing model of a channel of  
   node A to node C                                        an arbitrary topology 

 
 

Since the input channels (except injection channel) have one flit rooms, we should compute the 
average waiting time for the head of class i. Using a technique similar to that employed in 
literature for priority queues [2], [11] we can write 

( )

1 2

1

1

/ 1 ,                   1,

1
,    1 .

1

N N

j i j

N
N N

i j
i j i j N

i jN

i j

R i p

W
W i p

ρ

ρ σ

σ

→

→ + → + →

+ →

+ →

 − = +


=  + −
≤ ≤

−

 (4) 

where N

j
R  is the residual service time of  

N

j
OC  seen by an incoming header flit and 

1pN N

i j i jk i
σ ρ

+

→ →=
= ∑ . In a G/G/1 queueing system, N

j
R  is approximated by [2]: 

2 2

0 2

N N
i j jp A BN N

j i j Ni
j

C C
R ρ

µ
→

→=

+
≈∑  (5) 

A i B
k

Cj l

…..

…
..

N

jOC

1

N

j
λ →

1

N

p j
λ + →

from IP

…
..

N

p jλ →

from adjacent

nodes



83 

 

Since we do not have enough insight about the first and second moments of interarrival time, we 
suppose that N

i jA
C

→

 is constant for all input channels in the network and equal to the coefficient 

of variation (CV) of the arrival process to network (
N
i j

AA
C C

→

= ). So, we can rewrite Eq. (5) as 

( ) ( )
2

2 21

2
N
j

N N N

j j j A B
R b C Cλ≈ +  (6) 

Therefore, to compute N

i j
W

→
 we must calculate the average arrival rate over 

N

j
OC  ( N

jλ ), and 

also first and second moments of the service time of 
N

j
OC . Assuming the network is not 

overloaded, the arrival rate over 
N

j
OC  can be calculated using the following general equation 

N S S D

j

S D

Pλ α →

∀ ∀

= × ×∑∑  R ( ), N

j
S D OC→  (7) 

In Eq. (7), the routing function R ( ), N

jS D OC→  equals 1 if the packet from PES to PED 

passes through 
N

j
OC ; it equals 0 otherwise. Note that we assume a deterministic routing 

algorithm, thus the function of R ( ), N

j
S D OC→  can be predetermined. 

Although N

jλ  can be computed exactly for all topologies by Eq. (7),  service time moments of 

the output channels cannot be computed in a direct manner by a general formula for any 
topology and any routing algorithm. To compute the moments of the service time of the output 
channels we first divide the channels into some groups based on their routing order and then an 
index is assigned to the groups opposite of the routing order, from ejection channel to injection 
channel. Then, we estimate the first two moments of the service time for the output channels. 
Determination of the channel service time moments starts at the ejection channel and works 
backward to the source of the packets. Therefore, the contention delay from lower numbered 
groups can then be thought of as adding to the service time of packets on higher numbered 
groups. In other words, to determine the waiting time of channels in group k, we must calculate 
the waiting time of all channels in group 1k − . This approach is dependent to the topology and 
routing algorithm. Here we derive an analytical performance model for for e-cube routing [4] in a 
hypercube network. Due to the popularity of the hypercube network for multicomputer vendors 
[4], our analysis focuses on this topology but the modeling approach used here can be equally 
applied for other topologies after few changes in the model.  

We consider a system which is composed of 2n processing cores interconnected by an n 
dimensional hypercube (Hn). Packets are injected into the network on crossbar input port 1n +  
and leave on output port 0. A dimension-i channel connects output port i of a node to input port 
i of another node that differs only in the ith bit of its address. (In this paper, the least significant 
bit is bit 1). The 1n +  input channels of each router are represented with 1n +  (injection channel) 
and 1 to n (dimension 1 to n). Also these channels are assigned to priority classes from index 1n +  
(the highest priority) to 1 (the lowest priority), respectively. It is assumed that a static total 
ordering of input channel priorities exists. The packet arriving on the higher priority input 
channel will receive use of the crossbar output first. E-cube routing specifies that a packet sent 
between two nodes be first routed in the most significant dimension in which the addresses 
differ, then in the next most significant dimension in which they differ, etc. Finally, it is fed to the 
destination node via ejection channel. By restricting the order in which the dimensions may be 
traversed, the possibility of cycles is removed, eliminating deadlock.  

We divide the output channels of the hypercube network into 2n +  groups based on their 
dimension numbers. Injection and ejection channels are located in group 1n +  and 0, respectively, 
and physical channels are located in groups 1 to n.  In the ejection channel (group 0) of RN the 
header flit and body flits are accepted in tw and Lb cycles, respectively. So, we can write 

0

N

w b
b t L= +  



84 

 

and since all packets have the same service time, there is not any variation in the service times. In 

other words 
0

0NB
C = . Now, we can determine the value of 0

N

iW →  where 1 i n≤ ≤ .  

The moments of service time for N

j
OC , j > 0, are obtained by tracing each of the 1

2
j − paths 

from output j to the network outputs (ejection channels). Since each of these paths is not equally 

probable, the service time moments are weighted mean of each path service time. If N

j
S  and N

j
D  

be the sets of all possible source and destination nodes for a packet which passes through N

j
OC , 

respectively, a passing packet through N

j
OC  are destined to N

j
M D∈  with the probability of 

/N N N

j j j

S M S D

S S S S D D
P P

→ →

∀ ∈ ∀ ∈ ∀ ∈
∑ ∑ ∑ . The contention delays along each path are random variables; 

however each is only a fraction of the packet length for all packet rates that can be sustained on 
the hypercube.  

For example, consider the output channel in dimension 2 of R0 ( 0

2
OC ) in an 

n-dimensional hypercube. One possible path from 0

2
OC  to a network output is directly to ejection 

channel of the adjacent node R2, for an average service time of ( )1

2
2 0w r s w bL t t W t t L→= + + + + +  

where 2

2 0
W

→
 was already computed. The second path from 0

2
OC  to a network output is through 

dimension 1 of R2 and ejection channel of R3, for an average service time of 

( ) ( )2

2 3
2 1 1 0w r s w r s w bL t t W t t t W t t L→ →= + + + + + + + + +  where 3

1 0
W

→
 was already 

computed and 2

2 1
W

→
 can be computed with the same approach. So, the first and second moments 

of the service time can be estimated as 

0 0
2 2

0 0 0 0
2 2 2 2

2 3

0

2 1 2

S S

S S S S

S D S D

S S D D S S D D

P P
b L L

P P

→ →

∀ ∈ ∀ ∈

→ →

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

= +
∑ ∑

∑ ∑ ∑ ∑
 

and 

( )
0 0
2 2

0 0 0 0
2 2 2 2

2 3

2
0 2 2

2 1 2

S S

S S S S

S D S D

S S D D S S D D

P P
b L L

P P

→ →

∀ ∈ ∀ ∈

→ →

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

= +
∑ ∑

∑ ∑ ∑ ∑
 

Now, we are able to calculate the coefficient of variation of the service time in 
0

2
OC , 

( ) ( )0

2

2
2

2 0 0

2 2
/ 1

B
C b b= − , and then the mean waiting time for 0

2
OC  seen by other channels  

(
0

2,  2iW i→ > ) can be computed with Eq. (4). After computing the mean waiting time of all 

channels in group 2, the mean waiting time for other output channels (channels in groups 3, 4, 
…, 1n + ) can be calculated using the same approach. Now, we can calculate the packet latency 
between any two nodes in the network by Eq. (1). The average packet latency is the weighted 
mean of these latencies as 

                       
2 1 2 1

0 0

n n
S D S D

S D
L P L

− − → →

= =
= ×∑ ∑                                                                       (8) 

 
3. Model Validation 
The proposed analytical model has been validated through a discrete-event simulator that mimics 
the behavior of the network at the flit level. To achieve a high accuracy in the simulation results, 
we use the batch means method [9] for simulation output analysis. There are 10 batches and each 
batch includes up to 500,000 packets depending on the traffic injection rate and network size. 
Statistics gathering was inhibited for the first batch to avoid distortions due to the startup 
transient. The standard deviation of latency measurements is less than 2% of the mean value.  



85 

 

For the destination address of each packet, we have considered the uniform and hotspot traffic 
patterns [10]. Packets are transferred to the local PE through the ejection channel as soon as they 
arrive at their destinations. Nodes generate packets independently of each other, and which 
follows a Poisson process. It means that the time between two successive packet generations in a 
PE is distributed exponentially, so for the first time we run the model program with 1

A
C = . The 

Poisson model simplicity made it widely used in many performance analysis studies, and there are 
a large number of papers in very diverse application domains that are based on this stochastic 
assumption [5]. 

Using the proposed performance model, the CV of the interarrival time (CA) can be adjusted 
to account for conformity between model and simulation results. Figure 4 shows the flow chart 
used for tuning of the performance model. The model is run with various CA until the predicted 
latency by the model is matched to its corresponding simulated value. The tuning procedure is 
run for the H8 with tr= ts= tw=1 and CA = 1.0498 is obtained for average packet generation rate of 
λ = 0.045 packets/cycle and packet length of M = 32 flits. Result of this tuned model has been 
presented in Figure 5. The horizontal axis in the figure shows the traffic generation rate 
(packets/cycle) at each node while the vertical axis shows the mean packet latency (cycles). Tuned 
CA is shown to give good quantitative agreement of model to simulation for a wide range of 
packet generation rate and packet length.  

 

           

                 
Figure 6(a) illustrates average packet latency predicted by the tuned model, plotted against 

simulation results for H10 network. (CA = 1.0035). Furthermore to verify the model accuracy for 
other topologies and non-uniform traffic pattern, we have modeled a 7x7 mesh network under 
hotspot traffic [10]. According to hotspot traffic pattern, there is a hot node in the network to 
receive the packets.  Each node sends packets to the hot node with probability h, and sends 
packets to other nodes with probability 1− h. In our experiments, we consider the node 24 in the 
center of the network as a hot node with hotspot rate h = 0.1. The comparison results is shown 
in Figure 6(b) (CA = 0.8653).  

In [6], we have used Caspian and presented a performance-aware mapping algorithm which 
maps the IPs onto a generic System-on-Chip architecture such that the average communication 
delay is minimized. 
 
 

CA = Coefficient of variation 
of injection process

Start

Run the model

CA = CA + step

End

|model – simulation|
<error

Compare model 
and simulation

CA = CA – step

model – simulation
< – error

model – simulation
> error

H8 (tr = 1, ts = 1, tw = 1)

50

200

350

500

650

0 0.001 0.002 0.003 0.004 0.005 0.006

Packet generation rate (packets/cycle/node)

A
v
e
ra

g
e
 p

a
c
k
e
t 
la

te
n
c
y
 (
c
y
c
le

s
)

Simulation

Model (M = 32)

Model (M = 64)

Model (M = 128)

Figure 5. The average packet latency 

predicted by the tuned model against 
simulation results for an H8. 

Figure 4: Flow chart showing the 

strategy of the performance model 
tuning to simulation. 



86 

 

                  
                                        (a)                                     (b) 
Figure 6: The average packet latency predicted by the tuned model against simulation results for 
(a) H10, and (b) 7x7 mesh network with hotspot traffic. 

 
 

4. Conclusions and Future Work 
A novel methodology for predicting the communication performance of multi-core systems was 
proposed. The choice of the hypercube and mesh networks as the underlying interconnection 
architecture serves mostly as an example. In fact, our methodology can be modified to arbitrary 
topologies by adapting the analytical models accordingly to the target topology. Moreover, 
although we have evaluated our algorithm only for multi-core systems with dimension order 
routing, the approach is general enough to be applied to other deterministic and oblivious routing 
schemes. 

We plan to advance this research in several directions. One possible direction is to extend this 
approach to multi-core systems with realistic workloads. Another important extension is to 
accommodate interconnection networks that support adaptive routing. The main challenge 
comes from the difficulty involved in the calculation of the arrival rate for each channel as 
multiple routing paths are possible in adaptive routing. Finally, we are extending this work for 
routers with finite size buffers. 
 
References 
1. Aljundi, A.C., Dekeyser, J., Kechadi, M.T., Scherson, I.D.: A Universal Performance Factor 

for Multi-criteria Evaluation of Multistage Interconnection Networks, Future Generation 
Computer Systems Vol. 22, No. 7, pp. 794-804, (2006) 

2. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains: 
Modeling and Performance Evaluation with Computer Science Applications, 2nd Edition. 
John Wiley and Sons, (2006) 

3. Duato, J.: Why Commercial Multicomputers Do Not Use Adaptive Routing. IEEE 
Technical Committee on Computer Architecture Newsletter, pp. 20-22, (1994) 

4. Duato, J., Yalamanchili, C., Ni, L.: Interconnection Networks: An Engineering Approach. 
IEEE Computer Society Press, (2003) 

5. Hu, J., Ogras, U.Y., Marculescu, R.: System-level Buffer Allocation for Application-Specific 
Networks-on-chip Router Design. IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, Vol.25, No.12, pp. 2919-2933, (2006) 

6. Kiasari, A.E., Hessabi, S., Sarbazi-Azad, H.: PERMAP: A Performance-Aware Mapping for 
Application-Specific SoCs.  Proceedings of the Application-specific Systems, Architectures 
and Processors, (2008) 

H10 (tr = 2, ts = 2, tw = 1)

100

300

500

700

900

0 0.001 0.002 0.003 0.004

Packet generation rate (packets/cycle/node)

A
v

e
ra

g
e

 p
a

c
k

e
t 

la
te

n
c

y
 (

c
y

c
le

s
)

Simulation

Model (M = 32)

Model (M = 64)

Model (M = 128)

Mesh 7x7 (tr = 2, ts = 1, tw = 1)

50

200

350

500

0 0.001 0.002

Packet generation rate (packets/cycle/node)

A
v

e
ra

g
e

 p
a

c
k

e
t 

la
te

n
c

y
 (

c
y

c
le

s
)

Simulation

Model (M = 32)

Model (M = 64)

Model (M = 128)



87 

 

7. Kiasari, A.E., Rahmati, D., Sarbazi-Azad, H., Hessabi, S.: A Markovian Performance Model 
for Networks-on-Chip. In Proceedings of the Euromicro International Conference on 
Parallel, Distributed and Network-Based Processing, pp. 157-164, (2008) 

8. Najafabadi, H.H., Sarbazi-Azad, H., Rajabzadeh, P.: Performance Modelling of Fully 
Adaptive Wormhole Routing in 2D Mesh-connected Multiprocessors, In Proceedings of the 
International Symposium on Modelling, Analysis, and Simulation of Computer and 
Telecommunication Systems, pp. 528-534, (2004) 

9. Pawlikowski, K.: Steady-State Simulation of Queueing Processes: A Survey of Problems and 
Solutions. ACM Computing Surveys, Vol. 22, No. 2, pp. 123-170, (1990) 

10. Sarbazi-Azad, H., Ould-Khaoua, M., Mackenzie, L.M.: Analytical Modeling of Wormhole-
Routed k-Ary n-Cubes in the Presence of Hot-Spot Traffic. IEEE Transaction on 
Computers, Vol. 50, No. 7, pp 623-634, (2001) 

11. Takagi, H.: Queueing analysis, Vol. 1: Vacation and Priority Systems. Amsterdam, North-
Holland, (1991) 

 





89 

 

 
 
 
 
 
 
 
 
Power-Efficient Routing Algorithm 
for Torus NoCs 
 
Dara Rahmati 
Abbas Eslami Kiasari 
Hamid Sarbazi-Azad 
Shaahin Hessabi 
 
In Proceedings of the International Conference on 
Contemporary Computing (IC3), pp. 211-220,  
Uttar Pradesh, India, Aug. 2008. 

 

 Paper 5 





91 

 

 

Power-Efficient Routing Algorithm for Torus NoCs 
 

D. Rahmati1, A. E. Kiasari1,2, H. Sarbazi-Azad1,2, S. Hessabi1  
1 Computer Engineering Dept., Sharif University of Technology 

2 IPM School of Computer Science  
Tehran, Iran 

{d_rahmati, kiasari}@ce.sharif.edu, {azad, hessabi}@sharif.edu 

 
 
Abstract 
Modern System-on-Chip (SoC) architectures use Network-on-Chip (NoC) for high-speed inter-
node communication. NoC with torus interconnection topology is now popular due to its low 
dimension and simple structure. Torus NoC is very similar to the mesh NoC from a structural 
point of view, but has rather smaller diameter that makes it a suitable choice for NoCs. For a 
routing algorithm to be deadlock-free in a torus NoC at least two virtual channels should be 
used to avoid channel dependency, while mesh NoC can handle deadlock freedom using only 
one virtual channel. In this paper, we propose a novel approach on designing routing algorithms 
for mesh and torus NoCs. Also a deadlock free routing algorithm is proposed for Torus NoC 
that uses only one virtual channel per physical channel resulting in lower power consumption 
because of reduced hardware complexity and with no significant performance degradation. The 
algorithm works within a dimension and is applied to all dimensions individually for XY routing 
and various turn based deterministic routing algorithms like west first, north last and negative 
first. We have proved efficiency of the algorithm using simulation results obtained from 
synthesis of our implemented VHDL Register Transfer Level (RTL) model of NoC. 
 
Keywords: SoC, NoC, Torus, Mesh, Performance, Power Consumption, Routing, Virtual 
Channel, Deadlock, VHDL RTL model. 
 
1. Introduction 

The simplest and hence widely used routing algorithm for the mesh NoCs is XY routing 
[1,2,3,8]. In this algorithm the packet is routed across the X axis and then across the Y axis until 
it reaches the destination node as shown in Fig.1. Since there are no wraparound links to 
connect the first and last nodes in each dimension, XY routing algorithm is deadlock free using 
only one virtual channel.  

However, applying XY routing for the torus NoC may cause deadlock as a result of the 
channel dependency in each dimension between different messages [8]. By using more than one 
virtual channel there will be the flexibility of designing different deadlock free routing 
algorithms in the cost of hardware complexity, more area, and thus higher power consumption. 
Power consumption is the most important factor in the design and implementation of NoC 
architectures, while performance (network latency and throughput) is the key factor in 
multicomputer networks.In order to have a deadlock-free routing algorithm in the torus NoC, 
there should be at least two virtual channels to break the cyclic channel dependency, caused by 
wraparound links, into a spiral [4, 8, 10]. This is not the case when mesh NoCs are used without 
wrap-around links and thus requiring only one virtual channel. It is also shown that the number 
of virtual channels has a crucial effect on power consumed by the NoC [5, 6, 12].  

In this paper, we first introduce IRN (Interconnection Routing Notation), a map-based 
systematic approach on designing routing algorithms for mesh and torus NoCs. This notation is 
also extendable for other interconnection topologies. We then use IRN and propose a deadlock 
free routing algorithm called TRANC (Torus Routing Algorithm for NoC) for the torus NoC 
that uses only one virtual channel.   



92 

 

 

The proposed routing algorithm enjoys the low power consumption of a mesh NoC while 
possessing a good performance (near a torus NoC). It even exhibits better performance for light 
traffic because of a zero switching time between virtual channels compared to a torus NoC 
using two virtual channels to implement XY routing. There is a slight decrease in the 
performance of TRANC for heavy traffics and near the saturation point of the NoC when 
compared to XY routing in the trous NoC. However, as mentioned before, power consumption 
is a dominant factor when comparing routing algorithms in NoCs, since the network rarely 
works near its saturation point of operation.  

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

IP IP IP IP

IP IP IP IP

IP IP IP IP

IP IP IP IP

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

IP IP IP IP

IP IP IP IP

IP IP IP IP

IP IP IP IP

 
Fig. 1. A 4x4 mesh NoC (left) and a 4x4 torus NoC (right). 

 
2. Routing in the Mesh and Torus NoCs 

An n × n mesh or torus NoC consists of n2 nodes arranged in a two-dimensional grid 
structure. Each node is addressed using an (x,y) tuple and has a neighboring node in the 
increasing and decreasing directions (positive and negative directions) in each dimension. The 
first node and the last node of each dimension are linked using a wraparound link in the torus 
NoC, while such a wraparound link does not exist in the mesh NoC. Fig. 1 shows a 4x4 mesh 
NoC and a 4x4 torus NoC. Each node in the network consists of two parts: IP and Router. 
Usually, the whole system (called SoC) except for the IPs is called the NoC. 

 
2.1. Node structure in mesh and torus NoCs 

A cycle accurate and synthesizable VHDL hardware model for NoCs has been implemented 
and several different topologies like mesh and torus have been tested based on it. The top most 
shared component in this hardware model is the NoC node in which IP and router are its main 
components. Fig. 2 shows the node structure in the implemented model. 

 



93 

 

 

 
Fig. 2. Node structure in NoC 

 
The IP can be a processor with some local memory, or any other module that can 

send/receive packets over the network. In our implementation it generates packets based on a 
traffic model like uniform distribution for packet destinations. Also each IP generates packets 
on intervals based on a Poisson distribution. 

The router has five input and five output channels. A node uses four inputs and four output 
channels to connect to its neighboring nodes; two per dimension, one in each direction. The 
remaining channels are used by the IP to inject/eject messages to/from the network, 
respectively. Messages generated by the IP are injected into the network through the injection 
channel. Messages that arrive at the destination node are transferred to the IP through the 
ejection channel. The bandwidth of each channel is shared among a number, say V, of virtual 
channels. The hardware implementation of the router consists of several different units such as 
Address Extractor which determines and manipulates the packet headers and contains some 
buffer (of few flits) for each incoming virtual channel. It should be noted that the more the 
number of virtual channels is, the structure of the node is more complex. There are Multiplexer 
and De-Multiplexer units which handle the virtual channel operations, Selector unit which applies 
the virtual channel selection rule, Crossbar switch that can simultaneously connect multiple input 
channels to multiple output channels given that there is no contention over the output channels. 
Reservator unit which controls the crossbar switch and other related sub-modules. When a 
specific topology like mesh or torus is supposed to be modeled by such components, a top-level 
wrapper module is implemented that connects several nodes of this type to each other based on 
the structure of the specified topology. Based on this hardware model, different cases of mesh 
and torus topologies have been simulated and synthesized to extract accurate quantities, e.g. 
average message latency and power consumption values. 

 
2.2. Routing in mesh and torus NoCs 

Examples of XY-routing are also shown in Fig. 1 for torus and mesh networks (the route is 
indicated as dashed lines). The XY routing for mesh NoCs is straight forward: a message (or 
packet) first traverses its route towards its destination across X axis and then across Y axis. It is 
easy to see that such a routing algorithm prevent cyclic dependency in reserving and using 
network channels by the messages. The case is however different for the torus NoCs as where 
wraparound links can clearly make cyclic channel dependency resulting in deadlock situation. 
The straight forward deadlock free XY routing algorithm for this case needs at least two virtual 
channels per physical channel. In XY routing algorithm in the torus, the packet traverses first X 
dimension and then Y dimension (as in mesh NoCs); it uses the first virtual channel before 
reaching a wraparound link, thereafter it uses the second virtual channel until it reaches the 

Reservator

Addr. Ext.

Addr. Ext.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
xt

.

A
d

d
r.

 E
x
t.

 x
        Crossbar
          Switch

Addr. Ext.

Addr. Ext.
From X 

+

From Y 
+

From Y 
_

From X 
_

To X 
+

To Y 
+

To Y 
_

To X 
_

In
je
ct

io
n 

ch
an

ne
l

A
ddr. E

xt.

A
ddr. E

xt.

Ejection channel

IP

Reservator

Addr. Ext.

Addr. Ext.

Addr. Ext.

Addr. Ext.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
xt

.

A
d

d
r.

 E
x
t.

 x
        Crossbar
          Switch

Addr. Ext.

Addr. Ext.
From X 

+

From Y 
+

From Y 
_

From X 
_

To X 
+

To Y 
+

To Y 
_

To X 
_

In
je
ct

io
n 

ch
an

ne
l

A
ddr. E

xt.

A
ddr. E

xt.

Ejection channel

IP



94 

 

 

destination node. Thus, XY routing in the mesh NoCs requires one virtual channel per physical 
channel while it requires 2 virtual channels per physical channel in torus NoCs. 

 
2.3. Performance and power consumption results  

Fig. 3 shows the performance and power consumption of XY routing for a 4x4 mesh NoC 
with one and two virtual channels and a 4x4 torus NoC with two virtual channels.  In the figure, 
horizontal axis shows the message generation rate at each node and the vertical axis shows 
either the average message latency (an important measure of NoC performance) or the energy 
consumed. The simulated topologies are of 4x4 nodes, message length of 32 flits (4 flits for the 
header and 28 data flits), and buffer size of 4 flits for each virtual channel. The figure shows that 
the torus exhibits a better performance compared to the mesh topology with one and 2 virtual 
channels per physical channel. This is because of the lower diameter and average inter-node 
distance in the torus NoC compared to its equivalent mesh network. The figure also shows that 
the number of virtual channels mainly determines the power consumption of the network and 
the torus NoC with two virtual channels has a larger amount of dissipated power due to the 
complexity of the switch and higher buffering requirement and extra wraparound links. 

 

 
Fig. 3. Performance and power consumption of XY routing in a 4x4 mesh with one and 
two virtual channels and 4x4 torus with two virtual channels. 

 
3. Interconnection Routing Notation (IRN) 

We propose a new notation to extract new routing algorithms for torus and mesh NoCs. This 
notation can also be extended to other interconnection topologies. By using this notation, it is 
possible to have better understanding and formulation of routing algorithms for interconnection 
networks. Consider the XY routing algorithm for the 4x4 mesh network with one virtual 
channel per physical channel (as shown in Fig. 1). The IRN Map and IRN Graph for this 
algorithm are shown in Fig. 4. In XY routing algorithm, a packet first traverses the X axis and 
then continues its journey towards its destination along Y axis. The IRN notation only explores 

50

60

70

80

90

0 0.003 0.006 0.009 0.012 0.015 0.018

Message Generation Rate (λ)

A
v

e
ra

g
e

 M
e

s
s

a
g

e
 L

a
te

n
c

y
 (

c
y

c
le

s
) Torus4x4-2vi-Det

Mesh4x4-1vi-Det

Mesh4x4-2vi-Det

4

5

6

7

8

9

10

11

12

13

0 0.003 0.006 0.009 0.012 0.015 0.018

Message Generation Rate (λ)

P
o

w
e

r 
(m

w
)

Torus4x4-2vi-Det

Mesh4x4-1vi-Det

Mesh4x4-2vi-Det

50

60

70

80

90

0 0.003 0.006 0.009 0.012 0.015 0.018

Message Generation Rate (λ)

A
v

e
ra

g
e

 M
e

s
s

a
g

e
 L

a
te

n
c

y
 (

c
y

c
le

s
) Torus4x4-2vi-Det

Mesh4x4-1vi-Det

Mesh4x4-2vi-Det

4

5

6

7

8

9

10

11

12

13

0 0.003 0.006 0.009 0.012 0.015 0.018

Message Generation Rate (λ)

P
o

w
e

r 
(m

w
)

Torus4x4-2vi-Det

Mesh4x4-1vi-Det

Mesh4x4-2vi-Det



95 

 

 

the rule of movement through one axis (current axis or dimension). First row of the IRN Graph 
shows that if the source and destination nodes for a packet are adjacent across a dimension, 
then the packet moves towards the destination node directly with one step. The other rows 
show the direction of movements for distances more than one hop, individually for all node 
locations at a dimension. Corresponding to the IRN Graph, the IRN Map in each row shows 
the direction that the packet should traverse when it is in a specified location to cross the 
network to get closer to the destination. As shown in the figure, all the movements over the 
diameter of the map (or matrix), which means the packet should go from a smaller index to a 
bigger index, have a '+' sign. This sign indicates movement in the positive direction of that 
dimension; similarly the '-' sign is used in the lower part of the map. 

Fig. 5 shows the notation for the proposed routing algorithm in the torus network but with 
only one virtual channel. At the first row of the IRN Graph the wraparound link is shown. 
Because of using wrap around links, a packet may reach its destination using positive or negative 
directions; but for a routing algorithm to be deadlock free only one of the directions should be 
selected. The plus and minus symbols with the circles refer to movements on the first row of 
IRN map in which it is not reasonable to select the opposite direction to reach the destination. 
Therefore, we suppose these moves are always unchangeable, and only the signs without the 
circle are selectable. It should be noted that there are 4 selectable moves that can make up 16 
different routing algorithms some of which are deadlock free and some others are not. The goal 
is to find the best selection (being deadlock-free and as minimal and optimal as possible, which 
will be explored using minimality and optimality factors in next section). Here, the only change 
to the mesh XY routing is that the first and last nodes in a dimension can use the wraparound 
link for a one step movement. For example, in the case of 4x4 torus, nodes 0 and 3 can 
communicate with each other using the wraparound links. 

 
3.1. The Rules 

In order to complete the IRN Map, the following rules should be applied: In each column 
there should not be sign changing for more than once. This is because it may cause a livelock in 
the network. For the sake of minimality and optimality it is better to have equal number of '+' 
and '-' signs for the selectable area. The same case applies to the number of '+' and '-' in a row. 
Also there should not be more than one sign changes in a row. Fig. 6 shows a case for the 4x4 
torus in which deadlock may occur. Deadlock is caused because of a loop between movements 
in positive or negative directions. There should be one row with all selectable '-' movements and 
also one row with all selectable '+' movements for the algorithm to be deadlock free. After 
filling these two rows, the other rows should be filled using the previous rules. Example for 
applying these rules is shown in Fig. 7 for the 6x6 torus NoC. 

 



96 

 

 

 

  

Fig.4. The IRN Map and Graph for a 4x4 mesh using XY Routing.

 
 

Fig.5. IRN Map and Graph for routing in a 4x4 torus NoC. 

 

 

  

Fig.6. A routing case in a 4x4 torus causing deadlock. 

 
 

 
 

3.2. Optimality and Minimality 
Minimality Factor (M): For a packet which traverses the network from the source to destination 
node, there is always a minimum number that determines the shortest path for the packet. 
Because of the limitations that the routing algorithm poses on the packet, the routing algorithm 
might not be always minimal. 
As can be seen in Fig. 8, the selectable area of the IRN Map determines whether the proposed 
routing algorithm for a dimension is minimal or not. The fact is that for the dimensions with 
radix n>4 in the torus, there is not a minimal algorithm in which all the paths are the shortest 
possible ones. The shaded boxes in the figure show a subset of the selectable areas for odd and 
even values of n in which the minimality parameter is applicable. 
 

0 1 2 3To

From

0

1

2

3

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

v

0 1 2

4

4

4

4

4

4

3

3

3

3

3

3

4

4 v

5

5 v

5

5

5

5

5

5

0 1 2 4 53

From 0

From 1

From 2

From 3

Adjacent 
Moves

From 5

From 4



97 

 

 

 
 

A number is displayed in the top corner of the shaded boxes: it is 0 if the packet takes a 
direction with the shortest distance and other numbers show the extra steps that should be 
taken. When n is odd, all movements of the selectable area are shaded and when n is even this 
parameter is not applicable to the movements with distance n/2 from the source nodes, since 
both directions result in equal distance. At last for a specific dimension if we calculate the sum 
of all minimal path lengths when comparing different routing algorithms, the algorithm with the 
minimum total sum will be the best one (or here called the minimal one).  
Optimality Factor (Opt): Although in some references in the area of interconnection networks, 
an optimal algorithm is known to be a balanced algorithm, here we propose a quantitative 
approach as a parameter based on IRN notation to measure the quality of traffic balance or 
optimality factor. This parameter describes how good an algorithm can balance the network traffic. 
In fact for a routing algorithm we need a measure that indicates if all the links are utilized 
properly with respect to the packet destination address distribution. For the case of uniform 
traffic, the links should be utilized equally. With uniform traffic pattern, it is supposed that all 
nodes send a packet to any other network nodes with equal chance, and therefore all the links 
should be utilized evenly.  As shown in Fig. 9, some numbers have been presented on adjacent 
movements with the shaded boxes. Note that these movements are the representatives of their 
corresponding links and if we consider the sum of '+' ('-') signs for positive (negative) 
movements in their corresponding rows and columns (considering wraparounds), the result 
shows the number of times this link has been utilized. The numbers have been shown in lower 
corner of the shaded boxes and as discussed they should have the same value in order to have 
optimal routing; therefore the variance (Opt) of all the numbers is a good candidate to represent 
the optimality of routing algorithms: the smaller the Opt is, the more optimal the algorithm is. 
As shown in the figure, two different algorithms have been proposed for the 4x4 torus in which 
one of the algorithms is optimal since all the optimality numbers are equal to 2, therefore Opt is 
0. The other algorithm is not optimal, although both algorithms are minimal. 
 



98 

 

 

 
 
4. The TRANC Routing Algorithm 

In this section, we introduce a new routing algorithm that is deadlock free and requires only 
one virtual channel per physical channel (i.e. no extra virtual channel to the existing physical 
channel is required). The algorithm uses an incremental approach based on the IRN notation in 
an n×n torus NoC. 
 
4.1. Proposed Algorithm for any radix n 

As shown in Fig. 10, the IRN Map for radix n is generated by adding a row and a column to 
the IRN Map of radix n-1, starting from n=4. The algorithm is straight forward for the 4x4 
torus; for higher radices it is enough to add a row and a column as shown in Fig. 10. In order to 
complete the new row it is enough to fill the right most two boxes with '-' signs and others with 
'+' signs. Again for completing the new column it is enough to fill the two lower boxes with '+' 
signs and others with '-' signs. When two or more of the moves described in IRN Graph happen 
simultaneously, they may form a situation where some of the packets are waiting for other ones 
to free the path. In this situation, there is a packet contention. When the contention starts from 
a packet and lasts with the same packet, such that no activity is possible for the packets, it is said 
that a deadlock situation has occurred. A routing algorithm that never causes a deadlock 
situation is called a deadlock free routing algorithm. 



99 

 

 

 
 

The TRANC algorithm is a deadlock free routing algorithm. The intuitive justification that it 
is deadlock free is extracted from the IRN Map and Graph in Fig. 7. As discussed before, there 
is not a positive movement of more than one step from node 3, and therefore the positive loop 
is broken in the network. The same is correct for negative movements, as there are not any 
negative movements of more than one step from node 4 to other nodes and therefore the 
negative loops also are broken. There is mathematical justification that TRANC is deadlock free, 
that we do not present it here. Furthermore the justification is also supported by the extensive 
simulation experiments we have realized for different scenarios. As discussed before for the 
dimensions with radix n>4, TRANC is not fully optimal and fully minimal but with good 
optimality and minimality factors for different radices. The reason is that each packet traverses 
the shortest possible path to reach the destination which ignores deadlock, not the shortest 
physical path which potentially causes a deadlock. Also the usage of wraparound links is not 
balanced compared to other links because of the rules that have been applied to the algorithm. 
It is possible to use a different approach for different radices based on IRN that may result in 
better optimality and minimality factors but justification of deadlock freedom for each radix 
should be done separately. We ignore this approach for the sake of present discussion. 

In Fig. 12, a pseudo code for TRANC algorithm is given. As can be seen in the code, the 
complexity of the hardware that utilizes this algorithm compared to the classic XY routing 
algorithm includes the extra comparisons that should be done with n-1, n-2 and n-3 and since n 
is a constant number (when a fixed radix is implemented in hardware), only some comparison 
operations with some constant numbers are added to the code. Such simple comparisons do not 
require considerable power and do not impose noticeable delay in routing as will be shown later 
in the simulation results. 

 
5. Simulation Results 
We have implemented a VHDL cycle accurate and synthesizable hardware model for mesh and 
torus NoCs using both XY routing and TRANC with the possibility of using different number 
of virtual channels. To evaluate the performance and power dissipation for the proposed 
routing algorithm in comparison to XY routing two different network sizes (4x4 and 6x6 nodes) 
are considered. The message size is considered to be fixed and equal to 32 flits (or phits) and the 
destination of the messages is chosen uniformly over the network nodes. Messages are 
generated and entered into the network following a Poisson distribution. The VHDL 
implementation has been used for both performance evaluation using simulation tools and also 
power estimation using Power Compiler CAD tool [7, 12, 13]. 
 



100 

 

 

 
Fig.  11. The average inter-node distance and diameter using TRANC and XY routing 
algorithms. 

 
A primarily evaluation of the TRANC using a simple C++ program shows that TRANC 

slightly increases the maximum and the average inter-node distance in the network (or message 
path length) compared to XY routing in the torus NoC. This is shown in Fig. 11 for different 
network radices. Note that for popular and current network sizes used in practice today (i.e. 
NoC with up to 6x6 nodes) the difference between the average and maximum inter-node 
distances for the two routing algorithms in torus NoCs is small. Therefore, the lower complexity 
of the router in TRANC (due to the fewer virtual channels used) can improve the performance 
and reduce the power dissipation in the network. 

 

 
Fig. 12. Pseudo code for TRANC routing algorithm 

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

4 5 6 7 8 9 10

Radix (n)

A
v
e
ra

g
e
 D

is
ta

n
c
e

Torus(n x n): TRANC Routing

Torus(n x n): XY Routing

0

1

2

3

4

5

6

7

8

9

10

4 5 6 7 8 9 10

Radix (n)

D
ia

m
e

te
r

Torus(n x n): TRANC Routing

Torus(n x n): XY Routing

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

4 5 6 7 8 9 10

Radix (n)

A
v
e
ra

g
e
 D

is
ta

n
c
e

Torus(n x n): TRANC Routing

Torus(n x n): XY Routing

0

1

2

3

4

5

6

7

8

9

10

4 5 6 7 8 9 10

Radix (n)

D
ia

m
e

te
r

Torus(n x n): TRANC Routing

Torus(n x n): XY Routing



 

 

 
 
 
Fig. 13 shows the simulation results for XY routing in mesh and torus NoCs and for TRANC 

routing algorithm in torus NoCs (for 4x4 and 6x6 
horizontal axis shows the traffic generation rate at each node while the vertical axis shows the 
average message latency (or dissipated power) in the network. As can be seen in the figure, the 
performance of TRANC routing (
(using 2 virtual channels) while the power consumption is near that of a mesh NoC and much 
less than that of XY-routed torus (using 2 virtual channels). To have a unique measure to assess 
the suitability of the proposed algorithm for torus NoCs we have also used the product of 
average message latency and power consumption. Simulation results show that the proposed 
routing algorithm for the torus NoC using one virtual channel is superior to the equ
using XY routing (using one virtual channel) and equivalent torus NoC using XY routing with 2 
virtual channels. 

 

Fig. 13. Performance, power consumption, and power

routing algorithm in the torus NoC with radices 4 and 6.

Fig. 13 shows the simulation results for XY routing in mesh and torus NoCs and for TRANC 
routing algorithm in torus NoCs (for 4x4 and 6x6 wormhole-switched networks). The 
horizontal axis shows the traffic generation rate at each node while the vertical axis shows the 
average message latency (or dissipated power) in the network. As can be seen in the figure, the 
performance of TRANC routing (with one virtual channel) is slightly better than XY routing 
(using 2 virtual channels) while the power consumption is near that of a mesh NoC and much 

routed torus (using 2 virtual channels). To have a unique measure to assess 
tability of the proposed algorithm for torus NoCs we have also used the product of 

average message latency and power consumption. Simulation results show that the proposed 
routing algorithm for the torus NoC using one virtual channel is superior to the equ
using XY routing (using one virtual channel) and equivalent torus NoC using XY routing with 2 

 

 

 

 

Fig. 13. Performance, power consumption, and power-delay product of XY routing in the mesh and torus NoCs and 

routing algorithm in the torus NoC with radices 4 and 6. 

101 

Fig. 13 shows the simulation results for XY routing in mesh and torus NoCs and for TRANC 
switched networks). The 

horizontal axis shows the traffic generation rate at each node while the vertical axis shows the 
average message latency (or dissipated power) in the network. As can be seen in the figure, the 

with one virtual channel) is slightly better than XY routing 
(using 2 virtual channels) while the power consumption is near that of a mesh NoC and much 

routed torus (using 2 virtual channels). To have a unique measure to assess 
tability of the proposed algorithm for torus NoCs we have also used the product of 

average message latency and power consumption. Simulation results show that the proposed 
routing algorithm for the torus NoC using one virtual channel is superior to the equivalent mesh 
using XY routing (using one virtual channel) and equivalent torus NoC using XY routing with 2 

 

 

 

delay product of XY routing in the mesh and torus NoCs and TRANC 

 



102 

 

 

6. Conclusions 
Current SoC designs have popularly employed point-to-point NoCs for inter-IP 

communication. The most popular NoCs are the mesh and torus networks. The mesh topology 
enjoys its simple structure and possibility of using XY routing with only one virtual channel. 
However, when wraparound links are used, in the torus NoCs, Two virtual channels should be 
used to ensure deadlock freedom for XY routing. On the other hand, adding virtual channels 
increases power dissipation, although performance is increased (compared to the mesh NoC) as 
a result of lower inter-IP distance caused by wraparound links in the torus.In this paper, a new 
network routing notation, IRN, and based on it a new routing algorithm for the torus NoCs 
(called TRANC) were presented.  The TRANC routing algorithm for the torus NoC uses only 
one virtual channel and thus consumes lower energy compared to XY routing that requires 2 
virtual channels. Note that simplicity of the router (less buffering and switching hardware 
complexity) can well compensate for the slightly increased inter-IP distance (compared to the 
XY routed torus NoC with 2 virtual channels) and result in a slightly higher performance. Our 
next objective is to design partially and fully-adaptive routing algorithms for torus NoCs with a 
minimum virtual channel requirement. 

 
References 

1. W. J. Dally, B. Towles, “Route packets, not wires: on-chip interconnection networks”, Proc. 
DAC, pp. 684–689, June 2001. 

2. R. V. Boppana, S. Chalasani, “A framework for designing deadlock-free wormhole routing 
algorithms”, IEEE Transactions on Parallel and Distributed Systems (TPDS), 7(2): 169-183, 
1996. 

3. C. J. Glass, L. M. Ni, “The turn model for adaptive routing”, Proceedings of the 
International Symposium on Computer Architecture (ISCA), pp. 278-287, 1992. 

4. A. Singh, W. J. Dally, A. K. Gupta, B. Towles, “GOAL: A Load-balanced Adaptive Routing 
Algorithm for Torus Networks”, in Proc. of the International Symp. on Comp. Arch., pp. 
194-205, June, 2003. 

5. Terry T. Ye, Luca Benini, Giovanni De Micheli, ”Analysis of Power Consumption on 
Switch Fabrics in Network Routers”, In Proceedings of DAC, 2002. 

6. H-S Wang, L-S Peh, S. Malik, ”Orion: A Power-Performance Simulator for Interconnection 
Network”, In International Symposium on Microarchitecture, Istanbul, Turkey, November 
2002. 

7. D. L. Liu, C. Svensson, “Power consumption estimation in CMOS VLSI chips”, IEEE 
Journal of Solid-State Circuits, 29(6): 663-670, 1994. 

8. W. J. Dally, H. Aoki, “Deadlock-Free Adaptive Routing in Multicomputer Networks Using 
Virtual Channels”, IEEE ransactions on Parallel and Distributed Systems, 4(4):466–475, 
April 1993. 

9. Jae H. Kim, Ziqiang Liu, Andrew A. Chien, “Compressionless Routing: A Framework for 
Adaptive and Fault-tolerant Routing”, IEEE Transactions on Parallel and Distributed 
Systems 1996. 

10. W.J. Dally, C.L. Seitz, “Deadlock-free message routing in multiprocessor interconnection 
networks”, IEEE Transactions on Computers, vol. C-36, no. 5, pp. 547-553, May 1987. 

11. W. J. Dally, C. Seitz, “The torus routing chip”, In Distributed Computing, pages 187 196, 
1986. 

12. N. Banerjee, P. Vellanki, K. S. Chatha, “A Power and Performance Model for Network-on-
Chip Architectures”, In Proceedings of DATE, Paris, France, February 2004. 

13. K. Srinivasan, K. S. Chatha, “ISIS : A Genetic Algorithm based Technique for Custom On-
Chip Interconnection Network Synthesis”, In Proceedings of the 18th International 
Conference on VLSI Design (VLSID’05) 



103 

 

 

 
 
 
 
 
 
 
 
A Framework for Designing 
Congestion-Aware Deterministic 
Routing 
 
Abbas Eslami Kiasari 
Axel Jantsch 
Zhonghai Lu 
 
In the Proceedings of the 3rd International Workshop on 
Network-on-Chip Architectures (NoCArc), Held in 
conjunction with the 43rd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO-43),  pp. 45-50, 
Atlanta, Georgia, USA, Dec. 2010. 

 Paper 6 





105 

 

 

 

A Framework for Designing Congestion-Aware 
Deterministic Routing 

 
Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu 

Royal Institute of Technology (KTH), Sweden 
{kiasari, axel, zhonghai}@kth.se 

 
 
ABSTRACT 

In this paper, we present a system-level Congestion-Aware Routing (CAR) framework for 
designing minimal deterministic routing algorithms. CAR exploits the peculiarities of the 
application workload to spread the load evenly across the network. To this end, we first 
formulate an optimization problem of minimizing the level of congestion in the network and 
then use the simulated annealing heuristic to solve this problem. The proposed framework 
assures deadlock-free routing, even in the networks without virtual channels. Experiments with 
both synthetic and realistic workloads show the effectiveness of the CAR framework. Results 
show that maximum sustainable throughput of the network is improved by up to 205% for 
different applications and architectures. 
 
Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Network communications 
 
General Terms 
Algorithms, Design, Performance 
 
 
1. INTRODUCTION 
Thanks to high performance and low power budget of ASICs (application specific integrated 
circuits), they have been common components in the design of embedded systems-on-chip. 
Advances of semiconductor technology facilitate the integration of reconfigurable logic with 
ASIC modules in embedded systems-on-chip. Reconfigurable architectures are used as new 
alternatives for implementing a wide range of computationally intensive applications, such as 
DSP, multimedia and computer vision applications  [1]. In the beginning of the current 
millennium, network-on-chip (NoC) emerged as a standard solution in the on-chip architectures 
[7][8]. In network-based systems, the performance of the communication infrastructure is critical, 
as it can represent the overall system performance bottleneck. The performance of networks 
depends heavily on the routing algorithm effectiveness, since it impacts all network metrics such 
as latency, throughput, and power dissipation.  

Routing algorithms are generally categorized into deterministic and adaptive. A deterministic 
routing algorithm is oblivious of the dynamic network conditions and always provides the same 
path between a given source and destination pair. In contrast, in adaptive routing algorithms, 
besides source and destination addresses, network traffic variation plays an important role for 
selecting channels to forward packets. However, adaptive routing may cause packets to arrive 
out-of-order since they may be routed along different paths. The re-order buffers needed at the 
destination for ordering the packets impose large area and power on system  [13]. Deterministic 
routers not only are more compact and faster than adaptive routers  [4], but also guarantee in-
order packet delivery. Therefore, it is not surprising that designers would like to use deterministic 
routing algorithms in the NoCs which suffer from limited silicon resources. However, in 
deterministic routing a packet cannot use alternative paths to avoid congested channels along its 



106 

 

 

route; this leads to degraded performance of the communication architecture at high levels of 
network throughput.  

A well-designed routing algorithm utilizes the network resources uniformly as much as possible 
and avoids the congested channels, even in the presence of non-uniform traffic patterns, which 
are usual in the embedded systems. In this paper, we propose a system-level Congestion-Aware 
Routing (CAR) framework for designing minimal deterministic routing algorithms for network-
based platforms. Especially, CAR is appropriate for reconfigurable embedded systems-on-chip 
which host several applications with high computational requirements and static workloads. 
Before the execution of a new application, the routing tables are configured with pre-computed 
routes, as well as other components in the system. After selecting the route and adding it to the 
packet, no further time is needed on routing at the intermediate nodes along the path. Due to 
advantages of table-based routing, it is one of the most widely used routing methods for 
implementing deterministic routing algorithm, e.g., IBM SP1 and SP2  [4]. 

To calculate the expected load on various channels in the network, CAR uses off-line analysis 
based on the global knowledge of application traffic. The results obtained from simulation 
experiments confirm that the proposed routing framework can find efficient routes for various 
networks and workloads.  

The rest of the paper is organized as follows. We start by reviewing previous studies in Section 
2. The CAR framework is proposed in Section 3. Experimental results in Section 4 show that our 
proposed approach can improve the system performance. Finally, concluding remarks are given 
in Section 5. 

 
2. RELATED WORK 

Turn model for designing partially adaptive routing algorithms for mesh and hypercube 
networks was proposed in  [7]. Prohibiting minimum number of turns breaks all of the cycles and 
produces a deadlock-free routing algorithm. Turn model was used to develop the Odd-Even 
adaptive routing algorithm for meshes  [3]. This model restricts the locations where some turns 
can be taken so that deadlock is avoided. In comparison with turn model, the degree of routing 
adaptivity provided by the Odd-Even routing is more even for different source-destination pairs. 

DyAD routing scheme, which combines deterministic and adaptive routing, is proposed in  [9] 
for NoCs, where the router works in deterministic mode when the network is not congested, and 
switches to adaptive mode when the network becomes congested. In  [17] the authors extend 
routers of a network to measure their load and to send appropriate load information to their 
direct neighbours. The load information is used to decide in which direction a packet should be 
routed to avoid hot-spots. Recently, the authors in  [14] present APSRA, a methodology to 
develop adaptive routing algorithms for NoCs that are specialized for an application or a set of 
concurrent applications. APSRA exploits the application-specific information regarding pairs of 
cores that communicate and other pairs that never communicate in the NoC platform to 
maximize communication adaptivity and performance. 

Since all of these approaches are based on adaptive routing, they suffer from out-of-order 
packet delivery. Our proposed routing framework overcomes this problem while it spreads the 
load more evenly across the network. 

Also, an application-aware oblivious routing is proposed in  [11] that statically determines 
deadlock-free routes. The authors presented a mixed integer-linear programming approach and a 
heuristic approach for producing routes that minimize maximum channel load. However, in case 
of realistic workload, they did not study the effect of task mapping on their approach.  

 
3. CAR FRAMEWORK 

The CAR framework consists of 5 steps as its flowchart is shown in Figure 1. At first, we 
represent the architecture and application using topology graph (TG) and communication graph (CG), 
respectively. Then we construct the channel dependency graph (CDG) based on TG and CG. In the 



107 

 

 

third step, an acyclic CDG is extracted by deleting some edges from CDG to guarantee the 
deadlock freedom. After that, we find all possible shortest paths for each flow to create the 
routing space. Finally, we formulate an optimization problem over the routing space and solve it. 
In the following subsections, each step is described in detail. 

 

  
 

Figure 1: The flowchart of CAR framework 
 
3.1   Model Architecture and Application 

In order to characterize the network performance, a network model is essential. As shown in 
Figure 2, a directed graph, which is called topology graph (TG), can represent the topology of 
network architecture. Vertices and edges of TG show nodes and links of the network, 
respectively. Every node in TG contains a core and a router. Such a core is a local computing or a 
storage region. 

An application can be modelled by a graph called communication graph (CG). CG is a directed 
graph, where each vertex represents one selected task, and each directed arc represents the 
communication volume from source task to destination task.  

 
3.2   Construct Channel Dependency Graph 

Dally and Seitz simplified designing deadlock-free routing algorithms with a proof that an 
acyclic channel dependency graph 

 
Figure 2: TG of a 4x4 mesh network 

 
(CDG) guarantees deadlock freedom  [5]. Each vertex of the CDG is a channel in TG. For 
instance, vertex 01 in Figure 3 corresponds to the channel from node 0 to node 1 in Figure 2. 
There is a directed edge from one vertex in CDG to another if a packet is permitted to use the 
second channel in TG immediately after the first one. To find the edges of a CDG, we use the 
Dijkstra’s algorithm to find all shortest paths between source and destination of any flows in 
corresponding TG. CDG of a 4x4 mesh network (Figure 2) under minimal fully adaptive routing 
is shown in Figure 3.a, when any two nodes have the need to communicate such as in the 
uniform traffic pattern.  

 

Construct CDG
Model architecture 

and application

Remove cycles 
from CDG

Create 
routing space 

Routing tables 
construction

Routing space 
exploration

1 2

34

5

0 1 2 3

4 5 6 7

8 9 A B

C D E F



108 

 

 

                 
 
                                   (a)                                                                          (b) 
Figure 3: CDG of 4x4 mesh network for minimal fully adaptive routing under (a) uniform and 
(b) transpose traffic patterns 
 
3.3   Remove Cycles from CDG 

Traditional routing algorithms, such as dimension-order routing (DOR) and turn model, extract an 
acyclic CDG by systematically removing some edges from CDG regardless of the traffic pattern. 
This may result in poor performance of routing algorithm due to prohibition of unnecessary 
turns. For instance, as shown in Figure 3.b, there is no cycle in CDG of 4x4 mesh network under 
transpose traffic pattern, which the node in row i and column j sends packets to the node in row j 
and column i. However, traditional routing algorithms conservatively remove some edges from 
CDG.  

We modify the depth-first-search (dfs) algorithm to find cycles in a given CDG. Since we want to 
remove minimum number of edges, we delete an edge from CDG which is shared among more 
cycles. Note that, this edge is removed if the reachability of all flows is guaranteed. For example, 
in a CDG of 4x4 mesh network, shown in Figure 3.a, there are 6,982,870 cycles and the edge 
from vertex 40 to vertex 01 is shared among 5,041,173 cycles. Thus by removing this edge from 
CDG, the number of cycles is considerably reduced to 1,941,697. These steps are repeated again 
while there is a cycle in CDG. Table 1 shows the numbers of cycles found by CAR in CDG of 
different mesh networks. As it can be vividly seen, number of cycles is exponentially grown with 
the size of TG and it takes a long time to find all cycles in the CDG. Hence, we find cycles in 
CDG till certain number of cycles, and then remove an edge from CDG which is shared among 
more cycles.  

 
Table1: Number of cycles in CDG of mesh networks. 

 

TG 
Number of cycles in 
corresponding CDG 

Mesh (2x2) 2 
Mesh (2x3) 8 
Mesh (3x3) 292 
Mesh (3x4) 14,232 
Mesh (4x4) 6,982,870 
Mesh (4x5) 3,656,892,444 

 
 

45

10

5104

54

01

1540

56

21

62

65

12

26

67

32

73

76

23

37

89

9548

98

5984

9A

A6

A9

6A

AB

B7

BA

7B

CD

D98C

DC

9DC8

DE

EA

ED

AE

EF

FB

FE

BF

45

10

5104

54

01

1540

56

21

62

65

12

26

67

32

73

76

23

37

89

9548

98

5984

9A

A6

A9

6A

AB

B7

BA

7B

CD

D98C

DC

9DC8

DE

EA

ED

AE

EF

FB

FE

BF



109 

 

 

3.4   Create Routing Space (RS) 
In this step, we apply Dijkstra’s algorithm to the acyclic CDG to find all shortest paths 

between source and destination of flows in corresponding TG and create a set of f flows Wp =�q2, q�, … , qr�  where f is the number of all flows in the system. q� = +O�, s� , D� 	/, where  O� and s�  are the packet generation rate and the number of available shortest paths for flow i, 
respectively. Also, D� is itself a set and includes all s� routes for flow i.  

Usually more than one shortest path is available between two nodes +s� > 1/ in the routing 
space RS, so it is reasonable to choose a path such that the load is evenly spread across the 
network. In the next subsection, we formulate an optimization problem over RS to find a suitable 
route for each flow and then use the simulated annealing heuristic to solve this problem. 

 
3.5   Routing Space Exploration 

In this subsection, we define an optimization problem to explore the routing space of RS. It is 
essential to define decision variables and objective functions in formulating the optimization problem. 
As previously mentioned, our goal is to select a path for flow i +1 ≤ � ≤ t/ among s� available 
paths. Therefore, we define � = uv2, v�, … , vrw as decision variables in the space of RS where v� 
refers to a path number for flow i +1 ≤ v� ≤ s�/. A routing algorithm prevents congestion in the 
network by balancing the load over network channels, so the standard deviation of channels 
throughput can be used as a criterion for load balance in the network. The more balanced the 
channel load, the smaller the standard deviation of channels throughput. Hence, we consider 
standard deviation of channels throughput as an objective function. 

Assuming the network is not overloaded, the throughput of channel c in TG, xy  , can be 
calculated using the general equation 

 xy = ∑ O� × W+�, {/r�72                                                                                                           (1) 
where the W+�, {/ is a Boolean function and equals 1 if the flow i passes through channel c and 
equals 0 otherwise. Note that we assume a deterministic routing algorithm, thus the function of W+�, {/ can be predetermined, regardless of topology and routing algorithm. After computing xy 
for all channels in the TG, the standard deviation of channels throughput can be calculated using 
the following equation ] = |2}∑ +x� − x̅/�}�72                                                                                                               (2) 

where L is the number of channels in the network and x̅  is the average throughput of all 
channels. If the load is completely balanced over the channels, then ] = 0. CAR framework uses 
the simulated annealing heuristic to minimize the objective function +]/ as described briefly in 
the following.  

The name and inspiration of simulated annealing algorithm come from physical annealing 
technique in metallurgy. To simulate the physical annealing process, simulated annealing 
algorithm will randomly choose a neighbour solution to replace the current solution. As we 
mentioned before, � = uv2, v�, … , vrw  is the set of decision variables where v�  is the path 

number for flow i +1 ≤ v� ≤ s�/. To choose a neighbour of X, we generate a random number r 
where 1 ≤  ≤ t  to choose a flow, and then generate another random number v����  where 1 ≤ v���� ≤ s� and v���� ≠ v� to choose another path for flow r. The new solution is accepted 
based on an equation that depends on the difference of the objective function values between the 
two states. We follow the Metropolis algorithm  [2] as the acceptance criterion which accepts all 
downhill moves (from higher value to lower value) and probabilistically accepts uphill moves 
(from lower value to higher value). The acceptance of uphill moves allows saving the method 
from becoming stuck at a local minimum. Detailed information about simulated annealing 
approach can be found in  [12]. 

 



110 

 

 

4. Experimental Results 
To evaluate the capability of CAR framework, we developed a discrete-event simulator that 

mimics the behaviour of routing algorithm in the networks at the flit level. Due to the popularity 
of the mesh network in NoC domain, our analysis focuses on this topology but CAR framework 
can be equally applied for other topologies without any change. We compare the performance of 
CAR with DOR which becomes XY routing algorithm in 2D mesh networks.  

To achieve a high accuracy in the simulation results, we use the batch means method  [13] for 
simulation output analysis. There are 10 batches and each batch includes 1000 up to 1,000,000 
packets depending on the workload type, packet injection rate, and network size. Statistics 
gathering was inhibited for the first batch to avoid distortions due to the startup transient. The 
standard deviation of latency measurements is less than 1.8% of the mean value. As a result, the 
confidence level and confidence interval of simulation results are 0.99 and 0.02, respectively. 

For the sake of comprehensive study, numerous validation experiments have been performed 
for several combinations of workload types and network size. In what follows, the capability of 
CAR will be assessed for both synthetic and realistic traffic patterns. Since their applications 
differ starkly in purpose, these classes of NoC have substantially different traffic patterns. 

 
4.1   Synthetic Traffic 
Synthetic traffic patterns used in this research include uniform, transpose, shuffle, bit-complement, and 
bit-reversal  [4]. After developing models describing spatial traffic distributions, we should use an 
appropriate model to model the temporal traffic distribution. In the case of synthetic traffics, we 
use the Poisson process for modelling the temporal variation of traffic. It means that the time 
between two successive packet generations in a core is distributed exponentially. The Poisson 
model widely used in many performance analysis studies, and there are a large number of papers 
in many application domains that are based on this stochastic assumption. 
The average packet latencies in the 4x4 and 8x8 mesh networks are plotted against offered load 
in the network in Figure 4 and Figure 5, respectively. We observe that under uniform and bit-
complement traffic patterns CAR converges to DOR, because in such traffic patterns the 
standard deviation of channels throughput is minimum for DOR. This result is consistent with 
other results reported in  [3] [7] [9] [14]. The main reason is that the DOR distributes packets evenly 
in the long term  [7]. Previous works, Odd-Even  [3], turn model  [7], DyAD  [9], and APSRA  [14] 
indicate that in the case of uniform traffic, their proposed approaches underperform DOR. 
However, as can be seen in Figure 4.a and 5.a, our proposed framework has the same 
performance as DOR for different traffic loads. 

Figure 4.b and 4.c compare the latency of DOR and CAR in 4x4 mesh network under 
transpose and bit-reversal workloads, respectively. It can be vividly seen that CAR considerably 
outperforms DOR. In these cases, CAR can find routes for flows such that the standard 
deviation of channels throughput equals zero. This means that the load is completely balanced 
across the network channels. Also, in the case of 8x8 mesh network, CAR has better 
performance than DOR as shown in Figure 5.b and 5.c. Figure 4.d and 5.d reveal that under 
shuffle traffic pattern CAR slightly outperforms DOR.  

 
 
 



111 

 

 

                 
                 (a)                                                                                (b) 

 

                  
     (c)                                                                                (d) 

Figure 4: Average packet latency under (a) uniform and bit-complement, (b) transpose, (c) bit-
reversal, and (d) shuffle traffic patterns in 4x4 mesh network 
 

Table 2 shows the maximum sustainable throughput of the network for each workload and for 
each routing algorithm in 4x4 and 8x8 mesh networks. It also shows the percentage 
improvement of CAR over DOR and reveals that on average CAR outperforms DOR. The 
maximum load that the network is capable of handling using CAR is improved by up to 205%.  
Also, the performance of CAR framework is compared against DyAD routing scheme  [9] which 
combines deterministic and adaptive routing algorithms. We simulate the uniform and transpose 
workloads on the similar architecture (6x6 mesh network) and compare their improvement over 
DOR. Table 3 shows the percentage improvement of DyAD and CAR over DOR. In case of 
uniform workload, DyAD underperforms DOR while CAR has the same performance as DOR. 
In case of transpose traffic pattern, DyAD and CAR give about 62% and 56% improvement over 
DOR, respectively. This means that our deterministic routing policy can compete with adaptive 
routing policies (DyAD switches to adaptive mode under high traffic load) and meanwhile 
guarantees in-order packet delivery.  

  
Table 2: Improvement in maximum sustainable throughput of CAR as compared to DOR for 
different synthetic workloads. 
 

Workload 
4x4 mesh network 8x8 mesh network 
DOR CAR Impr. DOR CAR Impr. 

Uniform 7.4 7.4 0 15.9 15.9 0 
Transpose 3.8 11.6 205% 7.7 10.3 34% 
Bit-comp. 5.6 5.6 0 8.8 8.8 0 
Bit-rev. 3.8 11.6 205% 7.6 9.0 18% 
Shuffle 6.6 6.9 5% 12.2 13.1 7% 

30

90

150

210

270

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR

Bit complement - CAR

Uniform - DOR

Uniform - CAR

30

90

150

210

270

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR

CAR

30

90

150

210

270

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR

CAR

30

90

150

210

270

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR

CAR



112 

 

 

 

                  
                 (a)                                                                                          (b) 

 

                  
              (c)                                                      (d) 

 
Figure 5: Average packet latency under (a) uniform and bit-complement, (b) transpose, (c) bit-
reversal, and (d) shuffle traffic patterns in 8x8 mesh network 
 

 
Table 3: Improvement in maximum sustainable throughput of DyAD and CAR over DOR. 
 

Workload 
Improvement over 

DOR 
DyAD CAR 

Uniform  -21% 0 
Transpose  62% 56% 

 
4.2   Realistic Traffic 

In case of realistic traffic, we consider two virtual channels for links to show the consistency of 
proposed framework with multiple virtual channel routing. As realistic communication scenarios, 
we consider a generic multimedia system (MMS) and the video object plane decoder (VOPD) 
application. MMS includes an H.263 video encoder, an H.263 video decoder, an mp3 audio 
encoder, and an mp3 audio decoder  [10]. The communication volume requirements of this 
application are summarized in  [10]. VOPD is an application used for MPEG-4 video decoding 
and its communication graph is available in  [18].  Several studies reported the existence of bursty 
packet injection in the on-chip interconnection networks for multimedia traffic  [16] [19]. Poisson 
process is not the appropriate model in case of bursty traffic; consequently, we used two-state 
Markov modulated process as stochastic traffic generators to model the bursty nature of the 
application traffic  [4]. The two states represent an “on” and ”off” mode for injection process 
with average communication bandwidth matching the applications’ average communication 
bandwidth. 

50

100

150

200

250

300

0 5 10 15

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR

Bit complement - CAR

Uniform - DOR

Uniform - CAR

50

100

150

200

250

300

0 2 4 6 8 10

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR

CAR

50

100

150

200

250

300

0 3 6 9

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR

CAR

30

120

210

300

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s
)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR

CAR



113 

 

 

Since in such systems, there are various types of cores with different bandwidth requirements, 
placement of tasks on a chip has strong effect on the system performance. To find a suitable 
mapping of these applications, we formulate another optimization problem to prune the large 
design space in a short time and then again use the simulated annealing heuristic to find a suitable 
mapping vector. 

 

 
Figure 6: Average packet latency of VOPD application for three different mapping 
configurations vs. offered load  
 

An efficient mapping tries to balance load over channels (minimizes the standard deviation of 
channels throughput) and also keeps the average hop count as small as possible. However, 
minimizing the standard deviation and minimizing the average hop are not always in the same 
direction. Therefore, to improve load balance, we have to increase the average path length  [4]. To 
show how these parameters, average hop and standard deviation of channels throughput, affect 
the communication latency, we consider three different task mappings of VOPD application to 
the tiles of a 4x4 mesh on-chip network. Then, the system is simulated for these mapping 
configurations and the corresponding average packet latency values are plotted against offered 
load in Figure 6. Although the average hop in mapping A (1.76) is about half of the average hop 
in mapping B (3.48), mapping A underperforms mapping B. This is due to more balanced load in 
mapping B (the standard deviation of channels throughput in mapping B (0.027) is less than the 
standard deviation in mapping A (0.068)). On the other hand, the load in mapping B is more 
balanced in comparison to mapping C. However, due to smaller average hop in mapping C, it 
outperforms mapping B for all levels of network throughput. Thus, we define a new criterion 
named AxD (Average hop x standard Deviation) and use it as the objective function in the 
optimization problem of congestion-aware mapping (similar to congestion-aware routing).  

Initially, we map task i to node i and then try to minimize the AxD through the simulated 
annealing approach. Figure 7.a shows that in the case of MMS application and DOR, for the 
initial mapping M1, AxD equals 0.57 and after a certain number of tries, the mapping vector 
converges to the mapping M4 with AxD = 0.04. Furthermore, AxD values for mappings M2 and 
M3, which are two local minimum points in simulated annealing process, are shown in the figure.  

After the mapping phase, we apply the CAR framework to these four mapping vectors. Figure 
7.a reveals that in case of mapping M1, CAR can significantly reduce the AxD from 0.57 to 0.24. 
This great difference is due to the unbalanced load of DOR. However, for more efficient 
mapping vectors (M2, M3, and M4), we achieve less improvement. Specially, in the case of best 
mapping (M4), AxD is reduced insignificantly from 0.0397 to 0.0395. It is reasonable that DOR 
is congestion-aware for the best mapping, because during the mapping problem solving process, 
we fix the routing policy to DOR and strive to minimize AxD for this routing policy. Figure 7.b 
shows that the simulation results confirm this conclusion. In the case of mapping M1, CAR 
significantly outperforms DOR, but in the case of M4, the latency is the same for both DOR and 

30

60

90

120

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

VOPD Application

Mapping A

Avg = 1.76
Dev = 0.068
AxD = 0.120

Mapping B

Avg = 3.48
Dev = 0.027
AxD = 0.094

Mapping C

Avg = 1.22
Dev = 0.040
AxD = 0.049



114 

 

 

CAR. Likewise, as shown in Figure 7.c and 7.d, for the VOPD application, the analysis result is 
the same as MMS application.   
Figure 7.b and 7.d reveals that in case of application-specific traffic patterns, the improvement in 
the performance of the routing schemes highly depends on how the application tasks are mapped 
to the topology. This fact was not considered in the related works such as  [11]. Also, Table 4 
reports the maximum acceptable traffic for different mapping vectors under MMS and VOPD 
workloads. The better mapping vector results in smaller improvement in the saturation point. 

Nowadays, in embedded systems-on-chip there are several different types of cores including 
DSPs, embedded DRAMs, ASICs, and generic processors which their places are fixed on the 
chip. On the other hand, such a system hosts several applications with completely different 
workload. Furthermore, modern embedded devices allow users to install applications at run-time, 
so a complete analysis of such systems is not feasible during design phase. As a result, it is not 
feasible to map all applications such that the load is balanced for all of them with specific routing 
algorithm and we should balance the load in routing phase. 

 
 

                      
                            (a)                                                                                 (b) 

 

                             
                              (c)                                                                                   (d) 
 
Figure 7: (a) The effect of mapping and routing on the performance of MMS application, (b) 
average packet latency for different mapping and routing schemes in the case of MMS workload, 
(c) the effect of mapping and routing on the performance of VOPD application, (d) average 
packet latency for different mapping and routing schemes in the case of VOPD workload  
 

 
 
 
 

DOR

CAR

0

0.2

0.4

0.6

M1
M2

M3
M4

0.57

0.42

0.23

0.04

0.24

0.20

0.16

0.04

A
x
D

 

Mapping & Routing Effect on Performance

30

60

90

120

0 1 2 3 4 5

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

MMS Application

M1, DOR
M1, CAR
M4, DOR
M4, CAR

AxD = 0.57

AxD = 0.24

AxD = 0.04

DOR

CAR

0

0.1

0.2

0.3

0.4

M1
M2

M3
M4

0.36

0.24

0.15

0.05

0.17

0.10
0.10

0.05

A
x
D

Mapping & Routing Effect on Performance

30

60

90

120

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

VOPD Application

M1, DOR
M1, CAR
M4, DOR
M4, CAR

AxD = 0.36

AxD = 0.17

AxD = 0.05



115 

 

 

Table 4: Improvement in maximum sustainable throughput of CAR as compared to DOR for 
realistic applications. 
 

Mapping 
MMS application VOPD application 
DOR CAR Impr. DOR CAR Impr. 

M1 1.8 3.6 100% 2.9 4.9 69% 
M2 2.1 3.9 86% 3.5 5.2 49% 
M3 3.2 4.3 34% 5.1 6.4 25% 
M4 4.7 4.7 0 6.7 6.7 0 

 
In this section we used the CAR framework to find low congestion routes in the mesh 

network. Due to simplicity, regularity, and low cost merits of 2D mesh topology, it is the most 
popular one in the field of NoC. However, for large and 3D NoCs, which will be popular in the 
future, the communication in mesh architecture takes a long time. In the next subsection we use 
CAR to find deadlock-free paths in an arbitrary topology. 

 
 

4.3   Find Routes in an Arbitrary Topology 
To show the capability of CAR framework to find deadlock-free routes in an arbitrary 

topology, we consider the topology shown in Figure 8.a. CAR reports that under uniform traffic 
pattern there are 2 cycles in the corresponding CDG and by prohibiting turns 52 to 21 and 87 to 
73 (shown in Figure 8.b) the deadlock-freedom is guaranteed.  

 

                  
                                               (a)                                                        (b) 

Figure 8: (a) A custom topology and (b) prohibited turns 
 
Table 5 shows the routing table for node 0 of the topology in Figure 8.a. Each route in the 

table specifies a path from node 0 to a given destination as channels name. SE, SW, and EJ 
specify South East, South West, and ejection channels, respectively. To route a packet, the 
routing table is indexed by destination address to look up the pre-computed route by CAR. This 
route is then added to the packet. Since there are 7 channels in this network (E, S, NE, NW, SE, 
SW, and EJ), they can be encoded as 3-bit binary numbers. Also, there are techniques to reduce 
the size of routing tables  [4] [14]. 

 
Table 5: Routing table for node 0 of topology in Figure 8.a. 

 

dst. route   dst. Route 
0   No packet  5   SE, SE, EJ 
1   SW, EJ  6   SW, SW, SW, EJ 
2   SE, EJ  7   SE, SW, SW, EJ 
3   SW, SW, EJ  8   SW, SE, SE, EJ 
4   SW, SE, EJ  9   SE, SE, SE, EJ 

0

1 2

3 4 5

7 8 96

0

1 2

3 4 5

7 8 96



116 

 

 

5. Conclusion 
On-chip packet routing is extremely crucial because it heavily affects performance and 

power.  This calls for a great need of routing optimization. However, due to the diverse 
connectivity enabled by a network and the interferences in sharing network buffers and 
links, determining good routing paths, which are minimal and deadlock free for traffic flows, is 
nontrivial. In this paper, we have addressed the congestion-aware routing problem. With the 
analysis technique, we first estimate the congestion level in the network, and then embed this 
analysis technique into the loop of optimizing routing paths so as to quickly find deterministic 
routing paths for all traffic flows while minimizing the congestion level. Our experiments with 
both synthetic and realistic workloads show that we can extract high quality solutions with small 
computational time.  

The proposed framework is appropriate for reconfigurable embedded systems-on-chip which 
run several applications with regular and repetitive computations on large set of data, e.g., 
multimedia and computer vision applications. CAR can not only design minimal and 
deterministic routing, but also can implement non-minimal and deadlock-free fully adaptive 
routing without virtual channels in arbitrary topology. 

 
Reference 
[1] K. Bondalapati and V.K. Prasanna, “Reconfigurable Computing Systems,” Proceedings of the 

IEEE, 90(7):1201-1217, 2002. 
[2] O. Catoni, “Metropolis, Simulated Annealing, and Iterated Energy Transformation 

Algorithms, Theory and Experiments,” Journal of Complexity 12(4):595-623, 1996. 
[3] G.-M. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” IEEE Transactions on 

Parallel and Distributed Systems, 11(7):729-738, 2000. 
[4] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan 

Kaufmann Publishers Inc., First edition, 2004. 
[5] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in Multiprocessor 

Interconnection Networks,” IEEE Transactions on Computers, 36(5):547-553, 1987. 
[6] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,” Journal of the Association for 

Computing Machinery, 41(5):874-902, 1994. 
[7] P. Guerrier and A. Greiner, “A Generic Architecture for on-chip Packet-Switched 

Interconnections,” Proceedings of the Design, Automation, and Test in Europe, pp. 250-256, 2000. 
[8] A. Hemani, et. al., “Network on a Chip: An Architecture for Billion Transistor Era,” 

Proceedings of the IEEE NorChip, pp. 166-173, 2000. 
[9] J. Hu and R. Marculescu, “DyAD - Smart Routing for Networks-on-Chip,” Proceedings of the 

Design Automation Conference, pp. 260-263, 2004. 
[10] J. Hu and R. Marculescu, “Energy- and Performance-Aware Mapping for Regular NoC 

Architectures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
24(4):551-562, 2005. 

[11] M. A. Kinsy, et. al., “Application-Aware Deadlock-free Obli- vious Routing,” Proceedings of the 
ISCA, pp. 208-219, 2009. 

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing,” 
Science, 220(4598):671–680, 1983. 

[13] S. Murali, et. al., “Analysis of Error Recovery Schemes for Networks on Chips”, IEEE Design 
and Test of Computers, 22(5): 434-442, 2005. 

[14] M. Palesi, et. al., “Application Specific Routing Algorithms for Networks on Chip,” IEEE 
Transactions on Parallel and Distributed Systems, 20(3):316-330, 2009. 

[15] K. Pawlikowski, “Steady-State Simulation of Queueing Processes: A Survey of Problems and 
Solutions,” ACM Computing Surveys, 22(2):123-170, 1990. 

[16] V. Soteriou, H. Wang, L.-S. Peh, “A Statistical Traffic Model for On-Chip Interconnection 
Networks,” Proceedings of the MASCOTS, pp. 104-116, 2006. 



117 

 

 

[17] W. Trumler, et. al., “Self-optimized Routing in a Network-on-a-Chip,” IFIP World Computer 
Congress, pp. 199-212, 2008. 

[18] E.B. van der Tol and E.G. Jaspers, “Mapping of MPEG-4 Decoding on a Flexible 
Architecture Platform,” SPIE, vol. 4674, pp. 1-13, 2002. 

[19] G. Varatkar and R. Marculescu, “Traffic Analysis for On-chip Networks Design of 
Multimedia Applications,” Procee- dings of the Design Automation Conference, pp. 795-800, 2002. 





119 

 

 

 
 
 
 
 
 
 
 
Analytical Approaches for Performance 
Evaluation of Networks-on-Chip 
 
Abbas Eslami Kiasari 
Axel Jantsch 
Marco Bekooij 
Alan Burns 
Zhonghai Lu 
 
In the Proceedings of the International Conference on 
Compilers, Architectures and Synthesis for Embedded 
Systems (CASES), pp. 211-212, Tampere, Finland, Oct. 2012. 

 Paper 7 





121 

 

 

 

Analytical Approaches for Performance Evaluation 
of Networks-on-Chip 

 
Abbas Eslami Kiasari 

KTH Royal Institute of 
Technology, Sweden 

kiasari@kth.se 

Axel Jantsch 
KTH Royal Institute of 
Technology, Sweden 

axel@kth.se 

 

Marco Bekooij 
University of Twente, 

The Netherlands 
marco.bekooij@nxp.com 

 
Alan Burns 

University of York, 
United Kingdom 

alan.burns@york.ac.uk 

Zhonghai Lu 
KTH Royal Institute of 
Technology, Sweden 
zhonghai@kth.se 

 
 

 
  ABSTRACT 

This tutorial reviews four popular mathematical formalisms – dataflow analysis, schedulability analysis, 
network calculus, and queueing theory – and how they have been applied to the analysis of Network-on-
Chip (NoC) performance. We review the basic concepts and results of each formalism and provide 
examples of how they have been used in on-chip communication performance analysis. The tutorial 
also discusses the respective strengths and weaknesses of each formalism, their suitability for a 
specific purpose, and the attempts that have been made to bridge these analytical approaches. 
Finally, we conclude the tutorial by discussing open research issues. 
Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design studies, Modeling techniques, Performance attributes 
General Terms 
Design, Performance  
Keywords 
System-on-Chip, Network-on-Chip, Design methodology, Performance evaluation, Analytical 
modeling 
 
1.   INTRODUCTION 

In modern system-on-chip (SoC), the on-chip communication infrastructure or network-on-chip 
(NoC) is a dominant factor for design, validation and performance analysis. SoC designers are 
interested in NoC performance evaluation since their goal is either to provide a minimum level of 
performance at lowest possible cost, or to provide the highest performance at a given cost. In both 
cases a reliable measure of performance is indispensible. However, in the first case the focus is 
typically on worst-case performance, while in the latter case the average-case performance is the main metric  [8]. 
In real-time systems such as automotive or avionic applications, the worst-case execution time is of 
particular concern since it is important to know how much time might be needed in the worst-case to 
guarantee that the task will always finish its jobs before the predetermined deadline. However, the 
worst-case-based design results in resource over-dimensioning. Therefore, the average-case-based 
design methods are usually used for non-time critical applications to have a more efficient system. 

Performance estimation tools can be classified in simulation models and analytical models. SoC 
designers have tackled performance analysis by exploring the design space using detailed 
simulations. Simulation tools are flexible and accurate, but often have to be complemented by an 
analytical performance modeling approach. In particular, analytical models can analyze the worst-
case. An appropriate analytical model can estimate very early in the design phase the desired 
performance metrics in a fraction of time that simulation would take. Although the use of high-level 
models conceals a lot of complex technological aspects, it facilitates fast exploration of the NoCs 



122 

 

 

design space. Also, the analytical models provide not only the timing properties of the system, but 
also useful feedback about the system behavior. Hence, it can be invoked in any optimization loop 
for NoCs for fast and accurate performance estimations.  
 
2.   OVERVIEW OF THE TUTORIAL 

This tutorial reviews the applicability and the application of dataflow models, schedulability 
analysis, network calculus, and queueing theory to NoC performance analysis. The key message of 
each presentation is described in the following subsections. 
 
2.1   Dataflow Models (Marco Bekooij) 

Timed dataflow models have been successfully applied to the derivation of the minimum 
throughput and maximum latency of network-on-chips  [5]. Furthermore, these models are used to 
compute trade-offs between allocated bandwidth of the network connections and the required 
capacity of the buffers in the network  [11]. Flow-control on the network connections results in 
cyclic dependencies in these dataflow models. However, such cyclic dependencies do not 
complicate dataflow analysis significantly. Also, the effects of starvation free arbitration are included 
in the dataflow models  [13]. 

Dataflow models of networks can be created at different levels of abstraction depending on the 
required conciseness and accuracy of the model. Conservativeness of these levels of abstraction can 
be shown by making use of the earlier-the-better refinement relation and its transitivity property  [4]. 
This refinement relation also implies that for proving the temporal requirements of a network, it 
suffices to show that an admissible schedule exists that adheres to these requirements. 
Approximation algorithms have been developed that compute these admissible schedules in 
polynomial time  [12]. These algorithms are based on convex programming. 

 
2.2   Schedulability Analysis (Alan Burns) 

Scheduling analysis (SA) is a mathematical formalism used to confirm that all deadlines will be 
met in a real-time system. SA is usually applied to application tasks running on one or more 
CPUs/cores; but it is a general framework that allows the worst-case behavior of systems to be 
evaluated. Usually within SA, tasks are repetitive and are either released periodically or sporadically. 
Tasks can also suffer release jitter.   

In this section we introduce a form of SA known as Response-Time Analysis (RTA) for 
analyzing resources that are scheduled by the common fixed priority dispatching policy. We then 
show how this analysis can be applied to determine the worst-case latencies for messages on a SoC. 
The analysis is then used to minimize the number of priority levels (and hence virtual channels) 
needed to deliver a system in which all messages are delivered by their deadlines. Background on the 
techniques to be introduced in this section can be found in standard textbooks  [1]. The application 
of RTA to NoC message scheduling is described in  [10]. 
 
2.3   Network Calculus (Zhonghai Lu) 

Network calculus dealing with queuing systems is a formalism for design, analysis and 
implementation of performance guarantees in communication networks. The research was 
pioneered by Cruz in his seminal paper  [3]. Chang systematically studied this subject  [2]. In  [6], 
stochastic network calculus generalizes the deterministic network calculus. Network calculus has 
been very successful when applied to achieve per-node and end-to-end QoS guarantees in 
Asynchronous Transfer Mode (ATM) networks, and Internet for both differentiated and integrated 
services. Recently it is applied to embedded real-time systems, off-chip networks such as wireless 
sensor networks, and on-chip networks  [9]. 

This tutorial introduces the basics of network calculus within the context of on-chip networks. 
We begin by introducing the basic concepts such as arrival and service curves of network calculus to 
uncover the foundation for its elegance. Afterwards, we explain how closed-form formulas for 
calculating packet delay and backlog bounds can be obtained. With a clear-box approach on an 



123 

 

 

example, we then orient our attention to its application to on-chip networks, analyzing service 
curves of an on-chip router and a concatenation of routers and further deriving per-flow end-to-end 
delay bound formula. Finally we give a short summary, reviewing its strength and pointing out 
future perspectives. 
 
2.4   Queueing Theory (Abbas Eslami Kiasari) 

Queueing theory is a branch of probability theory which is concerned with the mathematical 
modeling and analysis of systems that provide service to stochastic demands. Typically, a queueing 
model represents a system by probability models of customers’ arrival time and service time. Since 
queueing theory deals with probability models, it is used to compute average-case performance 
metrics such as average packet latency, average throughput, average energy and power consumption, 
and average resource utilization. 

This section starts with an introduction to queueing theory which demonstrates how to model 
events and resources in packet-switched networks. Then, we continue the tutorial by briefly 
reviewing related research where queueing theory is used for performance evaluation and 
optimization of NoCs. Using a state-of-the-art queueing model  [7], we give a numerical example to 
estimate the average latency of packets in NoCs. 

 
2.5   Bridging the Formalisms (Axel Jantsch) 

The general trade-off between abstraction and accuracy can be observed in the comparison 
between these four formalisms. Since each of the reviewed formalisms has different advantages and 
difficulties, and since they also partially differ in purpose, none of them can easily replace all others. 
There are definitely point problems for each formalism that are worthy for further studies, but 
research on integrated approaches to the problems of system performance analysis is most urgent. 
Although each formalism can be extended in various directions, these extensions typically run into 
problems of complex mathematics or they are perceived to be unnatural and cumbersome. 
Therefore, we believe that comprehensive frameworks that combine two or more formalisms would 
be most desirable.  
 
3.   REFERENCE 
[1] A. Burns and A. Wellings. Real-Time Systems and Programming Languages. Addison-Wesley, 4th Ed., 

2009. 
[2] C. S. Chang. Performance Guarantees in Communication Networks. Springer-Verlag, 2000. 
[3] R. L. Cruz. A calculus for network delay, part I: network elements in isolation; part II: network 

analysis. IEEE Transactions on Information Theory, 37(1):114-141, 1991. 
[4] M. Geilen, S. Tripakis, and M. Wiggers. The earlier the better: a theory of timed actor interfaces. 

In Proceedings of the ACM International Conference on Hybrid Systems: Computation and Control, pages 
23-32, 2011.   

[5] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling application-level 
performance guarantees in network-based systems on chip by applying dataflow analysis. IET 
Computers & Digital Techniques, 3(5):398- 412, 2009.  

[6] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer, 2008. 
[7] A. E. Kiasari, Z. Lu, and A. Jantsch. An analytical latency model for networks-on-chip. IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, Jan. 2012. doi: 10.1109/TVLSI.2011.2 
178620 

[8] A. E. Kiasari, A. Jantsch, and Z. Lu. Mathematical formalisms for performance evaluation of 
networks-on-chip. Accepted for publication in the ACM Computing Surveys. 

[9] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds for on-chip packet-switching 
networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(5):802-
815, 2010. 

[10] Z. Shi and A. Burns. Real-time communication analysis for on-chip networks with wormhole 
switching. In Proceeding of the IEEE International Symposium on Networks-on-Chip (NoCS), pages 
161-170, 2008. 



124 

 

 

[11] M. Wiggers, M. Bekooij, M. Geilen, and T. Basten. Simultaneous budget and buffer size 
computation for throughput constraint task graphs. In Proceedings of the Design, Automation and 
Test in Europe Conference and Exhibition (DATE), pages 1669-1672, 2010. 

[12] M. Wiggers, M. Bekooij, and G. Smit. Efficient computation of buffer capacities for cyclo-static 
dataflow graphs. In Proceedings of the Design Automation Conference (DAC), pages 658-663, 2007. 

[13] M. Wiggers, M. Bekooij, and G. Smit. Monotonicity and run-time scheduling. In Proceedings of the 
International Conference on Embedded Software, pages 177-186, 2009. 



125 

 

 

 
 
 

 
 
 
 
 
 
 
Power-Efficient Deterministic and 
Adaptive Routing in Torus  
Networks-on-Chip 
 
Dara Rahmati 
Hamid Sarbazi-Azad 
Shaahin Hessabi 
Abbas Eslami Kiasari 
 

Microprocessors and Microsystems: Embedded Hardware 
Design, vol. 36, no. 7, pp. 571-585, Oct. 2012. 

 Paper 8 





127 

 

 

 

Power-Efficient Deterministic and Adaptive Routing in 
Torus Networks-on-Chip 
 
Dara Rahmati a, Hamid Sarbazi-Azad a, Shaahin Hessabi a, Abbas Eslami Kiasari b 
a Department of Computer Engineering, Sharif University of Technology, Iran 

b School of Information and Communication Technology, KTH, Sweden 

 

Abstract 
Modern SoC architectures use NoCs for high-speed inter-IP communication. For NoC 
architectures, high-performance efficient routing algorithms with low power consumption are 
essential for real-time applications. NoCs with mesh and torus interconnection topologies are 
now popular due to their simple structures. A torus NoC is very similar to the mesh NoC, but 
has rather smaller diameter. For a routing algorithm to be deadlock-free in a torus, at least two 
virtual channels per physical channel must be used to avoid cyclic channel dependencies due to 
the warp-around links; however, in a mesh network deadlock freedom can be insured using only 
one virtual channel. The employed number of virtual channels is important since it has a direct 
effect on the power consumption of NoCs. In this paper, we propose a novel systematic 
approach for designing deadlock-free routing algorithms for torus NoCs. Using this method a 
new deterministic routing algorithm (called TRANC) is proposed that uses only one virtual 
channel per physical channel in torus NoCs. We also propose an algorithmic mapping that 
enables extracting TRANC-based routing algorithms from existing routing algorithms, which can 
be both deterministic and adaptive. The simulation results show power consumption and 
performance improvements when using the proposed algorithms.    
 
Keywords:  SoC, NoC, Torus, Mesh, Performance evaluation, Power consumption, Routing, 
Adaptive, Deterministic, Virtual channel, Deadlock, VHDL.  
 
1. Introduction 

There is a large body of work on performance evaluation and design tradeoffs of 
multicomputer interconnection networks and NoC architectures [1-18]. Although performance 
(e.g. network latency and throughput) is the key factor in designing multicomputer 
interconnection networks, in the design and implementation of NoC architectures, power 
consumption is the most important factor while performance is the second important measure. 
There have been several works reported to design performance-power efficient NoCs [19-24].  
Chiu, in [15], introduces a new turn model based routing algorithm, named Odd-Even, for 
designing adaptive wormhole routing algorithms for meshes without virtual channels. The model 
restricts the locations, where some turns can be taken due to the state of the packet, to an even or 
an odd numbered column. This way, the proposed routing algorithm avoids deadlock. In [22], 
the effect of traffic localization on energy dissipation in NoC-based interconnects is investigated 
through system level simulation. Authors show that energy reduction of up to 50% can be 
achieved by exploiting communication locality. In [24], authors compare mesh and torus 
topologies under different routing algorithms and traffic models for their performance and power 
consumption.  

The simplest and hence widely used routing algorithm for the mesh NoCs is XY routing 
[11,16,17,25]. In XY routing algorithm, the packet is first routed across X axis and then across Y 
axis until it reaches the destination node (as shown in Fig.1). However, applying XY routing for 
the torus topology may cause deadlock due to the channel dependency in each dimension 
between different messages [11] as a result of added wrap-around links (with respect to the mesh 
topology). By using more than one virtual channel, there will be the flexibility of designing 



128 

 

 

different deadlock-free routing algorithms for the cost of extra hardware complexity, more area, 
and thus higher power consumption.  

In order to have a deadlock-free routing algorithm in the torus, there should be at least two 
virtual channels per physical channel to break cycles in the channels dependency graph into 
spirals [11, 13, 18]. This is not the case when a mesh is used that requires only one virtual channel 
to prevent deadlocks. However, it is shown that the number of virtual channels plays a crucial 
role in power consumption [26, 27, 30].  

In this paper, we introduce IRN (Interconnection Routing Notation), a novel map-based 
systematic approach to design routing algorithms for mesh and torus NoCs. This notation can 
also be extended for other interconnection topologies. We then use IRN and propose a 
deadlock-free deterministic routing algorithm, called TRANC (Torus Routing Algorithm for 
NoCs), for a torus NoC that uses only one virtual channel per physical channel. The TRANC 
routing algorithm enjoys low power consumption level of a mesh NoC while providing a 
comparable performance to a torus NoC using XY routing with 2 virtual channels per physical 
channel. It even exhibits better performance for light traffic because of a zero switching time 
between virtual channels compared to a torus NoC using 2 virtual channels implementing XY 
routing. There is a slight decrease in the performance of TRANC for heavy traffics (and near the 
saturation point) when compared to XY routing in the torus.  

We have significantly extended our previous work [33] by proposing a new mapping method 
that extracts a new TRANC-based routing algorithm. In this method, existing routing algorithms 
for mesh networks can be easily converted to their counterpart TRANC algorithms for torus 
networks. As an example of using this method, we have added partial and full adaptivity to 
TRANC in a torus (called Adaptive-TRANC). The simulation results show the efficiency of the 
new algorithms compared to their original counterparts. Our analysis considers real application 
traffic patterns,  in addition to synthetic loads, and thus verifying the efficiency of the proposed 
algorithms in different working scenarios. 
2. Routing in the Mesh and Torus NoCs 
An n × n mesh or torus NoC consists of n2 nodes arranged in a two-dimensional grid structure. 
Each node is addressed as (x,y) where x indicates the position of the node along X dimension 
and y indicates its position along Y dimension. A node can have a neighboring node in the 
increasing and decreasing directions (positive and negative directions) in each dimension. The 
first node and the last node (border nodes) in each dimension are linked using a wrap-around link 
in the torus NoC, while such wrap-around links do not exist in the mesh NoC. Fig. 1 shows a 
4x4 mesh NoC and a 4x4 torus NoC. Each node in the network consists of two parts: IP 
(intellectual property) and Router.  



129 

 

 

 
 
2.1. Node structure in mesh and torus NoCs 

A cycle accurate and synthesizable VHDL hardware model for mesh and torus NoCs has been 
implemented and several different topologies have been designed and tested based on it. The top 
most shared component in this hardware model is the NoC node where IP and router are the main 
components. Fig. 2 shows the node structure in the implemented model. 

 

 
   Figure 2. Node structure in a mesh or trous NoC  

 
The IP can be a processor with some local memory, a memory module in a shared memory 

architecture, or any other module that can send/receive packets over the network. In our 
implementation, an IP generates packets based on a traffic model, such as uniform distribution, 
for  determining packet destinations. Also, each IP generates packets on intervals based on a 

 

 

                              

Figure 1. A 4x4 mesh NoC (left) and a 4x4 torus NoC (right). 

Reservator

Addr. Ext.

Addr. Ext.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
xt

.

 x
       Crossbar
         Switch

Addr. Ext.

Addr. Ext.
From X 

+

From Y 
+

From Y 
_

From X 
_

To X 
+

To Y 
+

To Y 
_

To X 
_

In
je
ct

io
n 

ch
an

ne
l

A
ddr. E

xt.

A
ddr. E

xt.

Ejection channel

IP

Reservator

Addr. Ext.

Addr. Ext.

Addr. Ext.

Addr. Ext.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
x
t.

A
d
d
r.

 E
xt

.

 x
       Crossbar
         Switch

Addr. Ext.

Addr. Ext.
From X 

+

From Y 
+

From Y 
_

From X 
_

To X 
+

To Y 
+

To Y 
_

To X 
_

In
je
ct

io
n 

ch
an

ne
l

A
ddr. E

xt.

A
ddr. E

xt.

Ejection channel

IP



130 

 

 

Poisson distribution when working with synthetic workloads or the exact generation time 
indicated by real application traffic loads. 

The router has five input and five output ports or channels. A node uses four input and four 
output channels to connect to its neighboring nodes, two per dimension, one in each direction. 
The remaining channels are used by the IP to inject/eject messages to/from the network, 
respectively. Messages generated by the IP are injected into the network through the injection 
channel. Messages that arrive at a destination node are transferred to the local IP through ejection 
channel. The bandwidth of each channel is shared among a number of virtual channels. The 
hardware implementation of the router consists of several different units such as Address Extractor 
which determines and manipulates the packet headers and contains some buffer (of few flits) for 
each incoming virtual channel. It should be noted that the more the number of virtual channels 
is, the more complex the node structure is. There are Multiplexer and De-Multiplexer units which 
handle the virtual channel operations, Selector unit which applies the virtual channel selection rule, 
Crossbar switch that can simultaneously connect multiple input channels to multiple output 
channels given that there is no contention over the output channels. Reservator unit which 
controls the crossbar switch and other related sub-modules. When a specific topology like mesh 
or torus is supposed to be modeled by such components, a top-level wrapper module is 
implemented that connects several nodes of this type to each other based on the structure of the 
specified topology. Based on this hardware model, different cases of mesh and torus topologies 
have been synthesized and simulated to extract accurate quantities, e.g. average message latency 
and power consumption values. 

 
2.2. Routing Algorithms 

Fig. 1 shows the topological structure of a 4x4 mesh and a 4x4 torus. Examples of XY routing 
are also shown in each network (the route is indicated as dashed lines). The XY routing for mesh 
NoCs is straightforward: a message (or packet) first traverses its route towards its destination 
across X axis and then across Y axis. It is easy to see that such a routing algorithm prevents cyclic 
dependency in reserving and using network channels by messages [17]. The case is however 
different for the torus NoCs, where wraparound links can clearly make cyclic channel 
dependency resulting in deadlock situation. The straightforward deadlock-free XY routing 
algorithm for this case needs at least two virtual channels per physical channel. In XY routing 
algorithm for the torus, the packet first traverses X dimension and then Y dimension (as in mesh 
NoCs) using two virtual channels; it uses the first virtual channel before reaching a wraparound 
link, thereafter it uses the second virtual channel until it reaches the destination node. Thus, XY 
routing in the mesh NoCs requires one virtual channel per physical channel while it requires 2 
virtual channels per physical channel in torus NoCs. 



131 

 

 

Figure 3. Performance and power consumption of XY routing in a 4x4 mesh with 1 and 2 virtual 
channels and a 4x4 torus with 2 virtual channels. 
 
2.3. Performance and power consumption results  

Fig. 3 shows the average message latency (as the main performance measure) and power 
consumption of XY routing in a 4x4 mesh NoC with one and two virtual channels, and in a 4x4 
torus NoC with two virtual channels.  In this figure, horizontal axis shows the message 
generation rate at each node and the vertical axis shows either the average message latency or the 
power consumption. The message length is of 32 flits length (4 flits for the header and 28 data 
flits), and buffer size of 4 flits for each virtual channel. As physical implementation suggests [34-
36], the wire length for the torus is considered twice the length of the link in its mesh 
counterpart. Also a 2 GHz clock frequency with NVT type transistor and 65 nm VLSI 
technology is considered to extract power consumption values. The figure shows that the torus 
exhibits a better performance compared to the mesh topology with one and 2 virtual channels 
per physical channel for low traffic regions and better performance than the mesh with one 
virtual channel and marginally worse than the mesh with 2 virtual channels in high traffic region. 
This is because of the lower diameter and average inter-node distance in the torus NoC for low 
traffic loads and the dominant factor of inefficient bandwidth allocation compared to its 
equivalent mesh network in high traffics. The figure also shows that the number of virtual 
channels is the main factor to determine power consumption of the NoC; a mesh with two 
virtual channels, in average, has a dissipated power of near twice the power consumption of the 
mesh with 1 virtual channel. This is because of the complexity of switches and higher buffering 
requirements in the network with 2 virtual channels.  A torus NoC has even more power 
consumption (compared to the mesh with 2 virtual channels) due to its extra wrap-around links. 

 
3. Interconnection Routing Notation  

We propose a new notation, called Interconnection Routing Notation (IRN), to extract new 
routing algorithms for torus and mesh NoCs. This notation can also be extended to other 
interconnection topologies. By using this notation, it is possible to have better understanding and 
formulation of routing algorithms for NoCs. Consider the XY routing algorithm for the 4x4 
mesh network with one virtual channel per physical channel (as illustrated in Fig. 1). The IRN 
Map and IRN Graph for this algorithm are shown in Fig. 4. In XY routing algorithm, a packet 
first traverses the X axis and then continues its journey towards its destination along Y axis. The 

  

 



132 

 

 

IRN notation only explores the rule of movement through one axis (current axis or dimension). 
First row of the IRN Graph shows that if the source and destination nodes for a packet are 
adjacent across a dimension, then the packet moves towards the destination node directly with 
one step. The other rows show the direction of movements for distances more than one hop, 
individually for all node locations at a dimension. Corresponding to the IRN Graph, the IRN 
Map in each row shows the direction that the packet should traverse when it is in a specified 
location to cross the network to get closer to the destination. As shown in the figure, all the 
movements over the diameter of the map (or matrix), which means the packet should go from a 
smaller index to a larger index, have a '+' sign. This sign indicates movement in the positive 
direction of that dimension; similarly the '-' sign is used in the lower part of the map. 

 

 

Figure 4. The IRN Map and Graph for a 4x4 mesh using XY Routing. 

 
Fig. 5 shows the notation for the proposed routing algorithm in the torus network with only 

one virtual channel. At the first row of the IRN Graph the wrap-around link is shown. Because 
of using wrap-around links, a packet may reach its destination using positive or negative 
directions, but for a routing algorithm to be deadlock-free only one of the directions should be 
selected. The ‘+’ and ‘-‘ symbols in circles refer to movements on the first row of IRN map 
where it is not reasonable to select the opposite direction to reach the destination. Therefore, we 
suppose these moves are always unchangeable, and only the signs without a circle are selectable. 
It should be noted that there are 4 selectable moves that can make up 16 different routing 
algorithms some of which deadlock-free and some with deadlock. The goal is to find the best 
selection (being deadlock-free and as minimal and optimal as possible, which will be explored 
using minimality and optimality factors discussed in the next section). Here, the only change to 
the mesh XY routing is that the first and last nodes in a dimension can use the wrap-around link 
for a one-step movement. For example, in case of 4x4 torus, nodes 0 and 3 can communicate 
with each other using the wrap-around links. 
 

              

Figure 5. IRN Map and Graph for routing in a 4x4 torus NoC. 



133 

 

 

 
3.1. The Rules 
In order to extract the IRN Map, the following rules should be applied: in each column, there 
should exist more than one sign change. Otherwise, it may cause livelock. For the sake of 
minimality and optimality it is much better to have equal number of '+'s and '-'s for the selectable 
area. The same case applies to the number of '+' and '-' symbols in a row. Also, there should not 
be more than one sign change in a row. Fig. 6 shows a case for the 4x4 torus in which deadlock 
may occur. Deadlock is caused because of a loop between movements in positive or negative 
directions. There should be one row with all selectable '-' movements and also one row with all 
selectable '+' movements for an algorithm to be deadlock-free. After filling these two rows, the 
other rows should be filled using the previous rules. Examples of applying these rules are shown 
in Fig. 7 for a 5x5 torus and a 6x6 torus. 
 
 

 
3.2. Optimality and Minimality 
3.2.1. Minimality Factor (M) 

For a packet which traverses the network from the source node to destination node, there is 
always a minimum number that determines the shortest path taken by the packet. Because of the 
limitations that the routing algorithm makes for the packet, the routing algorithm might not be 
always minimal. As can be seen in Fig. 8, the selectable area of the IRN Map determines whether 
the proposed routing algorithm for a dimension is minimal or not. In fact for the dimensions of 
radix n>4 in the torus, there is no a minimal algorithm where all the paths are the shortest 
possible ones. The shaded boxes in the figure show a subset of the selectable areas for odd and 
even values of n in which the minimality parameter is applicable. A number is displayed in the top 
corner of the shaded boxes: it is 0 if the packet takes a direction with the shortest distance and 
other numbers show the extra steps that should be taken. When n is odd, all movements of the 
selectable area are shaded and when n is even this parameter is not applicable to the movements 
with distance n/2 from the source nodes, since both directions result in equal distance. At last, 
for a specific dimension, if we calculate the sum of all minimal path lengths when comparing 
different routing algorithms, the algorithm with the minimum total sum will be the best one (here 
called the minimal one).  
 

 

Figure 6. A routing case in a 4x4 torus causing deadlock. 



134 

 

 

 

 
 

 
 

 

Figure 8. Minimality factor for some routing methods in a 5x5 torus (left) and a 

6x6 torus (right). 

 (a) 

 (b) 
 

Figure 7. IRN Map and IRN Graph for routing in (a) a 5x5 torus and (b) a 6x6 torus. 



135 

 

 

3.2.2. Optimality Factor (Opt) 
Although in some references in the area of interconnection networks, an optimal algorithm is 

known to be a balanced algorithm, here we propose a quantitative approach as a parameter based 
on IRN notation to measure the quality of traffic balance or optimality factor. This parameter 
describes how good an algorithm can balance the network traffic. In fact for a routing algorithm, 
we need a measure that indicates if all the links are utilized properly with respect to the packet 
destination address distribution. For the case of uniform traffic, the links should be utilized 
equally. With uniform traffic pattern, it is supposed that all nodes send a packet to all other 
network nodes with equal chance, and therefore all the links should be utilized evenly.  As shown 
in Fig. 9, some numbers have been presented on adjacent movements with shaded boxes. Note 
that these movements are the representatives of their corresponding links and if we consider the 
number of '+' ('-') signs for positive (negative) movements in their corresponding rows and 
columns (considering wrap-arounds), the result shows the number of times this link is used. The 
numbers are shown in lower corner of the shaded boxes and as discussed they should have the 
same value in order to have optimal routing; therefore, the variance (Opt) of all numbers is a good 
candidate to represent the optimality of routing algorithms. That is, the smaller the Opt, the more 
optimal the algorithm is. As shown in the figure, two different algorithms are proposed for a 4x4 
torus. One of the algorithms is optimal since all optimality numbers are equal to 2; therefore, Opt 
is 0. The other algorithm is not optimal, although both algorithms are minimal. 

 
4. Deterministic TRANC Routing Algorithm 

In this section, we introduce a new deterministic routing algorithm for the torus NoC 
(TRANC) that is deadlock-free and requires only one virtual channel per physical channel. Also, 
in the following section, we describe how to extend the algorithm to support adaptive routing 
algorithms based on TRANC. The algorithm uses an incremental approach based on the IRN 
notation in an n×n torus NoC. 

 
4.1. The proposed algorithm for an arbitrary radix n 
As shown in Fig. 10, the IRN map for a radix n ring is generated by adding a row and a column 
to the IRN map of radix n-1 ring, starting from n=4. The algorithm is straight forward for the 
4x4 torus; for higher radices it is enough to add a row and a column as shown in Fig. 10.  

 



136 

 

 

 
 
 

 
In order to complete the new row, it is enough to fill the right most two boxes with '-' signs and 
others with '+' signs. Again for completing the new column, it is enough to fill the two lower 
boxes with '+' signs and others with '-' signs. When two or more of the moves described in the 
IRN graph happen simultaneously, they may form a situation where some of the packets are 

 

Figure 10. The proposed IRN Map representing the TRANC routing algorithm in 

an nxn torus. 

 

Figure 9. IRN with optimality factors for different routing methods; (a) Non-optimal in 6x6 

torus, Opt=12, (b) Non-optimal in a 4x4 torus, Opt=4, and c) Optimal in a 4x4 torus, Opt=0. 



137 

 

 

waiting for other ones to free the path. In this situation, there is a packet contention. When the 
contention starts from a packet and lasts with the same packet, such that no activity is possible 
for the packets, it is said that a deadlock situation has occurred. A routing algorithm that never 
causes a deadlock situation is called a deadlock-free routing algorithm.  

The TRANC routing algorithm is a deadlock-free. The intuitive justification that the algorithm 
is deadlock-free is extracted from the IRN map and graph in Fig. 7.b. As discussed before, there 
is not a positive move of more than one step from node 3, and therefore positive cyclic 
dependencies are broken in the network. The same is correct for negative movements, as there is 
not any negative movement of more than one step from node 4 to other nodes, and therefore 
negative cyclic dependencies are also broken.  

For a more analytical justification let us propose the following rules: 
Rule 1: A one-step movement in the IRN in which the source and destination nodes are adjacent 
never causes a deadlock situation. 
Rule 2: Suppose there are two movements m1 and m2, where movement m1 is a subset of 
movement m2. If movement m1 causes a deadlock then movement m2 may cause the same 
deadlock. 
Rule 3: For the case of the IRN, the deadlocks from positive movements are not corresponded 
to the deadlocks from the negative movements. Thus, they can be processed separately. 
As discussed earlier the algorithm for higher radices can be extracted from smaller radices. For 
the case of a 4x4 torus, it can be easily seen that the algorithm is deadlock-free. Now, we show 
that if algorithm is deadlock-free for radix n then it is also deadlock-free for radix n+1. To do so, 
we suppose the claim is not true and thus at least there is a case where the algorithm is deadlock-
free for radix n but is not deadlock-free for radix n+1. We show that it is impossible. 
Fig. 11 shows the different cases of movements for radix n with node index from 0 to n-1 and 
also the added node 0’ for radix n+1. Considering the routing algorithm in Fig. 10, if we suppose 
there is a deadlock situation for radix n+1, it should be one of these 3 different following cases 
(here, without loss of generality, we only consider the positive movements; negative movements 
can be processed in the same manner using rule 3): 
Case 1: Node 0’ is not the start or end point of none of the movements that have caused 

deadlock (Fig. 11.a). If we eliminate this node, we should find the routing algorithm for radix n. 
In this case, it can be seen that the algorithm for radix n has deadlock. 
Case 2: We suppose 0’ is the end of some movements that may cause a deadlock in radix 

n+1(Fig. 11.b). From rule 1, rule 2 and also Fig. 10, it can be seen that all the '+' signs in the 
newly added row for radix n+1 either represent a one-step movement or has a superset 
movement in radix n; therefore, by eliminating these positive movements, we will have the case 
of radix n, but this is a deadlock situation for radix n. 
Case 3: We suppose 0’ is the start of some movements that have caused deadlock in radix n+1 

(Fig. 11.c). From rule 2 and also Fig. 10, it can be seen that the two '+' signs in the newly added 
column for radix n+1 have a superset ‘+’ sign in radix n; therefore, by eliminating this positive 
movements, we will end up with the case of radix n in a deadlock situation. 

Considering all above cases, we can conclude that TRANC is deadlock-free. This is also 
approved through the extensive simulation experiments we have realized for different scenarios. 
As discussed before for the dimensions of radix n>4, TRANC is not fully optimal and fully 
minimal but has good optimality and minimality factors for different radices. The reason is that 
each packet traverses the shortest possible path to reach the destination that prevent deadlocks, 
not the physically shortest paths that may cause deadlocks. Also, the use of wrap-around links is 
not balanced compared to other links because of the rules that have been applied to the 
algorithm. It is possible to use a different approach for different radices based on the IRN that 
can result in better optimality and minimality factors, but justification of deadlock freedom for 
each radix should be done separately. 

 



138 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 12, a pseudo code for the TRANC routing algorithm is shown. As can be seen in the 

figure, the complexity of the hardware that runs this algorithm compared to the classic XY 
routing algorithm includes some extra comparisons that should be done with n-1, n-2 and n-3 and 
since n is a constant number (when a fixed radix is implemented in hardware), only some 
comparison operations with some constant numbers are added to the code. Such simple 
comparisons do not require considerable power and do not impose noticeable delay in routing as 
will be shown later in simulation results.  

 
5. Adaptive-TRANC Routing Algorithm 

As described in previous sections, (deterministic) TRANC routing algorithm utilizes the extra 
wrap-around links independently in each dimension of a torus network, compared to its 
counterpart mesh network with XY-routing and outperforms the performance without the need 
of adding extra virtual channels. In order to extend TRANC to support adaptive routing, we 
consider the basic XY routing algorithm for the mesh network in Fig. 13 and compare it to 
(deterministic) TRANC routing algorithm in Fig. 12. It is obvious that we can consider a 
mapping for dimension k (x, y or others in multi-dimensional networks) to extract TRANC from 
XY routing. That is: 

 
(K_offset > 0) ↔ TRANC_K_Plus 
 

where 
TRANC_K_Plus := (K_offset =1) or (K_offset = -n+1) or  (((K_dest = n-2) and (K_current=n-
4)) or  

  (K_current=n-2)) or (K_dest -2>= K_current) 
and 
 (K_offset < 0) ↔ TRANC_K_Minus 
 

where 
 TRANC_K_Minus := (K_offset = -1) or (K_offset = n-1) or (((K_dest = n-3) and (K_current=n-1)) or  

    (K_current=n-3)) or ((K_current-2>= K_dest) or (K_dest =n-2)). 
 

Figure 11. Different cases of movements when upgrading from radix n to n+1, a) 0’ is not the 

start or end of any movement that causes deadlock, b) 0’ is the end for some of the movements 

that causes deadlock c) 0’ is the start of some of the movements that cause deadlock. 

0’ 0 1 j i n-1... ... ...

0’ 0 1 j i n-1... ... ...

0’ 0 1 j n-2 n-1... ...

)(a

)(b

)(c



139 

 

 

 
 
 
Fig. 14 shows the WEST-FIRST adaptive routing algorithm for a mesh network [32]. Using the 
condition mapping approach described above, it is possible to modify the algorithm to be used 
for the torus. Fig. 15 shows the resulted algorithm. In the new algorithm, “X-“ movement 
correctly describes west direction packet forwarding in a 2-D torus except for the wrap-around 
link at the left most nodes of the network. In these nodes, “X-“  translates to go to the right most 
node in the current Y dimension. The same approach is applied for “X+”,”Y-” and “Y+” packet 
forwarding. This is also correct for fully adaptive routing algorithms. As an example, Fig.16 
shows Duato’s fully adaptive routing for the 2-D mesh network and Fig. 17 shows its 
corresponding algorithm for the 2D torus, based on TRANC algorithm. In these algorithms Xa 
and Ya are the set of adaptive virtual channels and Xb and Yb are the set of deterministic virtual 
channels. Select() function returns the first input argument in order of appearance, which is the 
index of a virtual channel and is not currently occupied [32]. 

 

Algorithm TRANC for 2-Dimensional Torus NoCs.  
       Inputs: Coordinates of current node (Xcurrent, Ycurrent),  

                    destination node (Xdest, Ydest), and radix n; 

       Output: Selected output Channel 

Begin 
Xoffset := Xdest − Xcurrent;   Yoffset :=Ydest −Ycurrent; 

 
if (Xoffset=0) and (Yoffset =0) then  return Ejection Channel;           

else   

   {   
      if (Xoffset =1) or (Xoffset = -n+1) or  

          (((Xdest = n-2) and (Xcurrent=n-4)) or (Xcurrent=n-2)) or  

          (Xdest -2>= Xcurrent)   

       then  return X+; 

 

       if (Xoffset = -1) or (Xoffset = n-1) or 

           (((Xdest = n-3) and (Xcurrent=n-1)) or (Xcurrent=n-3)) or 

           ((Xcurrent-2>= Xdest) or (Xdest =n-2))   

       then  return X-; 

 

       if (Yoffset =1) or (Yoffset = -n+1) or  

           (((Ydest = n-2) and (Ycurrent=n-4)) or (Ycurrent=n-2)) or  

           (Ydest -2>= Ycurrent)   

       then  return Y+; 

 

       if (Yoffset = -1) or (Yoffset = n-1) or 

           (((Ydest = n-3) and (Ycurrent=n-1)) or (Ycurrent=n-3)) or 

           ((Ycurrent-2>= Ydest) or (Ydest =n-2))   

       then  return Y-; 

    } 

End 

Figure 12. Pseudo code for TRANC routing algorithm 



140 

 

 

 
 
 

 

Algorithm West-First for 2-Dimensional Mesh NoCs.  
       Inputs: Coordinates of current node (Xcurrent, Ycurrent),  

                    destination node (Xdest, Ydest), and radix n; 

       Output: Selected output Channel 

Begin 
Xoffset := Xdest − Xcurrent;   Yoffset :=Ydest −Ycurrent; 

 
if (Xoffset=0) and (Yoffset =0) then  return Ejection Channel;           

else   

   {   
      if (Xoffset < 0)   then  

 return X-; 

      if (Xoffset > 0 and Yoffset < 0)   then  

 return (Select (X+,Y-)); 

      if (Xoffset > 0 and Yoffset > 0)   then  

return (Select (X+,Y+)); 

      if (Xoffset > 0 and Yoffset = 0)   then  

 return X+; 

      if (Xoffset = 0 and Yoffset < 0) then 

return Y-; 

      if (Xoffset = 0 and Yoffset > 0) then 

return Y+; 

    } 

End. 

 
Figure 14. Pseudo code for West First routing algorithm in Mesh 

Algorithm XY for 2-Dimensional Mesh NoCs.  
       Inputs: Coordinates of current node (Xcurrent, Ycurrent),  

                    destination node (Xdest, Ydest), and radix n; 

       Output: Selected output Channel 

Begin 

Xoffset := Xdest − Xcurrent;   Yoffset :=Ydest −Ycurrent; 

 
if (Xoffset=0) and (Yoffset =0) then  return Ejection Channel;           

else   

   {   

      if (Xoffset > 0)   then  return X+; 

      if (Xoffset < 0)   then  return X-; 

      if (Yoffset > 0)   then  return Y+; 

      if (Yoffset < 0)   then  return Y-; 
    } 

End. 

Figure 13. Pseudo code for XY routing algorithm in Mesh 



141 

 

 

 

Algorithm TRANC West-First for 2-Dimensional Torus NoCs.  

       Inputs: Coordinates of current node (Xcurrent, Ycurrent),  

                    destination node (Xdest, Ydest), and radix n; 

       Output: Selected output Channel 

Begin 

Xoffset := Xdest − Xcurrent;   Yoffset :=Ydest −Ycurrent; 

 

if (Xoffset=0) and (Yoffset =0) then  return Ejection Channel;           

else   

   {   

      if (TRANC_X_Minus)   then  

 return X-; 

      if (TRANC_X_Plus and TRANC_Y_Minus)   then  

 return (Select (X+,Y-)); 

      if (TRANC_X_Plus and TRANC_Y_Plus)   then  

return (Select (X+,Y+)); 

      if (TRANC_X_Plus and Yoffset = 0)   then  

 return X+; 

      if (Xoffset = 0 and TRANC_Y_Minus) then 

return Y-; 

      if (Xoffset = 0 and TRANC_Y_Plus) then 

return Y+; 

    } 

End. 
 

Figure 15. Pseudo code for TRANC West First Routing algorithm in Torus 



142 

 

 

 
 

Algorithm Duato’s Fully Adaptive Algorithm for 2-Dimensional Mesh NoCs.  

 
       Inputs: Coordinates of current node (Xcurrent, Ycurrent),  

                    destination node (Xdest, Ydest), and radix n; 

       Output: Selected output Channel 

 

Begin 
Xoffset := Xdest − Xcurrent;   Yoffset :=Ydest −Ycurrent; 

 
if (Xoffset=0) and (Yoffset =0) then  return Ejection Channel;           

else   

   {   
if (Xoffset < 0 and Yoffset< 0) then 

      return (Select(Xa−, Ya−, Xb−)); 

endif 
if (Xoffset < 0 and Yoffset > 0) then 

      return ( Select(Xa−, Ya+, Xb−)); 

endif 
if  (Xoffset < 0 and Yoffset = 0) then 

       return ( Select(Xa−, Xb−)); 

endif 
if  (Xoffset > 0 and Yoffset < 0) then 

       return ( Select(Xa+, Ya−, Xb+)); 

endif  
if  (Xoffset > 0 and Yoffset > 0) then 

       return ( Select(Xa+, Ya+, Xb+)); 

endif 
if  (Xoffset > 0 and Yoffset = 0) then 

       return ( Select(Xa+, Xb+)); 

endif 
if  (Xoffset = 0 and Yoffset < 0) then 

       return ( Select(Y a−, Yb−)); 

endif 
if  (Xoffset = 0 and Yoffset > 0) then 

        return ( Select(Y a+, Yb+)); 

endif 

    } 

End. 
 

 

 

 

Figure 16. Pseudo code for Duato’s fully adaptive routing algorithm in Mesh 



143 

 

 

 
 
 
 
 

Algorithm TRANC  Fully Adaptive Algorithm for 2-Dimensional Torus NoCs.  
       Inputs: Coordinates of current node (Xcurrent, Ycurrent),  

                    destination node (Xdest, Ydest), and radix n; 

       Output: Selected output Channel 

Begin 
Xoffset := Xdest − Xcurrent;   Yoffset :=Ydest −Ycurrent; 

 
if (Xoffset=0) and (Yoffset =0) then  return Ejection Channel;           

else   

   {   
if (TRANC_X_Minus and TRANC_Y_Minus) then 

      return (Select(Xa−, Ya−, Xb−)); 

endif 
if (TRANC_X_Minus and TRANC_Y_Plus) then 

      return ( Select(Xa−, Ya+, Xb−)); 

endif 
if  (TRANC_X_Minus and Yoffset = 0) then 

       return ( Select(Xa−, Xb−)); 

endif 
if  (TRANC_X_Plus 0 and TRANC_Y_Minus) then 

       return ( Select(Xa+, Ya−, Xb+)); 

endif  
if  (TRANC_X_Plus and TRANC_Y_Plus) then 

       return ( Select(Xa+, Ya+, Xb+)); 

endif 
if  (TRANC_X_Plus and Yoffset = 0) then 

       return ( Select(Xa+, Xb+)); 

endif 
if  (Xoffset = 0 and TRANC_Y_Minus) then 

       return ( Select(Y a−, Yb−)); 

endif 
if  (Xoffset = 0 and TRANC_Y_Plus) then 

        return ( Select(Y a+, Yb+)); 

endif 

    } 

End. 

 

 

 

 

Figure 17. Pseudo code for TRANC Fully Adaptive Routing algorithm for 

 2-D Torus based on Duato’s fully adaptive algorithm. 



144 

 

 

The same mapping approach can be used also for other adaptive routing algorithms like Linder-
Harden partially adaptive, opt-y  fully adaptive, Disha [32]. 
 
6. Experimental Results 
A primarily evaluation of the TRANC using a simple C++ program shows that TRANC slightly 
increases the maximum and the average inter-node distance in the network when compared to 
XY routing in the torus. This is shown in Fig. 18 for different network radices. Note that for 
popular and current network sizes used in practice (i.e. NoC with up to 6x6 nodes) the difference 
between the average and maximum inter-node distances for the two routing algorithms in torus 
NoCs is small. Therefore, the lower complexity of the router in TRANC (due to the less virtual 
channels used) can improve the performance and reduce the power dissipation in the network. 

 

 
 
A cycle accurate and synthesizable VHDL model for the mesh and torus NoCs has been 
implemented. XY, TRANC and Adaptive-TRANC routing algorithms with the possibility of 
using different number of virtual channels per physical channel are implemented. The VHDL 
implementation is used for both performance evaluation and power estimation using Power 
Compiler CAD tool [28, 30, 31]. 
To evaluate the performance and power dissipation for the proposed routing algorithm 
compared to XY routing in the first scenario, two different network sizes (4x4 and 6x6 NoCs) are 
considered. The destination of the messages is chosen uniformly over the network nodes. 
Messages are generated and entered into the network following a Poisson distribution. Fig. 19 
shows the simulation results for XY routing in mesh and torus NoCs and for (deterministic) 
TRANC routing algorithm in torus NoCs (for 4x4 and 6x6 wormhole-switched networks). The 
horizontal axis shows the traffic generation rate at each node while the vertical axis shows the 
average message latency (or dissipated power) in the network. As can be seen in the figure, the 
performance of TRANC routing (with one virtual channel) is better than XY routing in the mesh 
(using one virtual channel) and almost equal to the torus XY routing (using 2 virtual channels) for 
radix 4 and slightly worse for radix 6, while the power consumption is near that of a mesh NoC 
and much less than that of the XY-routed torus (using 2 virtual channels). To have a unique 
measure to assess the suitability of the proposed algorithm for torus NoCs, we have also used the 
product of average message latency and power consumption. Simulation results show that the 
proposed routing algorithm for the torus NoC using one virtual channel is superior to its 
equivalent mesh using XY routing (with one virtual channel) and equivalent torus NoC using XY 
routing with 2 virtual channels for low and medium traffic loads (as can be seen in Fig. 19). 
 

 

Figure 18. The average inter-node distance and diameter using TRANC and XY routing algorithms. 

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

4 5 6 7 8 9 10

Radix (n)

A
v
e
ra

g
e
 D

is
ta

n
c
e

Torus(n x n): TRANC Routing

Torus(n x n): XY Routing

0

1

2

3

4

5

6

7

8

9

10

4 5 6 7 8 9 10

Radix (n)

D
ia

m
e
te

r

Torus(n x n): TRANC Routing

Torus(n x n): XY Routing



145 

 

 

 
As the second simulation scenario, to verify the efficiency of the algorithm on a real world 
application, streams of packets from some real applications fft calculation and ocean simulation from 
splash benchmark [37],  have been generated and Fig. 20 shows the average packet latency for the 
implementation of the algorithms in the mesh network with XY-routing using one virtual 
channel, the torus network with (deterministic) TRANC routing algorithm using one virtual 
channel and the torus NoC with classic deterministic routing using two virtual channels, for 4x4 
and 6x6 network configurations. As the figure shows, the TRANC in the torus outperforms XY 

  

  

  

Figure 19. Performance, power consumption, and power-delay product of XY routing in the mesh and 
torus NoCs and TRANC routing algorithm in the torus NoC with radices 4 and 6. 

 



146 

 

 

routing in the mesh and although TRANC has only one virtual channel compared to the torus 
with two virtual channels, its latency is close to the latter. The differences are more evident in the 
case of 4x4 network configuration, due to the smaller network size, the operating region of the 
network is closer to the saturation capacity of the network. Thus, in the 6x6 network, as the same 
amount of traffic is generated and the network is larger, the operation bias point is not close to 
the saturation region, and thus differences are less. This again describes that TRANC is more 
efficient when the network operates near the saturation region. 
 
 

Figure  20: Average latency for Real Applications (FFT on left and Ocean simulator on right) 
implemented on different topologies and routings 
 
 
The third simulation scenario, shown in Fig. 21, depicts the average latency, power consumption 
and power-delay product for partially adaptive West-First routing algorithm (Fig. 14) for the 
mesh, adaptive TRANC West-First for torus (Fig. 15), Duato’s fully adaptive routing algorithm 
for the mesh with 2 virtual channels (Fig. 16) and TRANC fully adaptive routing algorithm with 
two virtual channels (Fig. 17) (extracted directly from Duato’s algorithm). As the figure shows, 
power-delay product of the TRANC-based algorithms outperforms their counterparts for both 
partially and fully adaptive scenarios, which is a direct consequence of using wrap-around links 
and the features of the TRANC algorithm.   
 
7. Conclusions 
Current SoC designs have popularly employed point-to-point NoCs for inter-IP communication. 
The most popular NoCs employ mesh and torus topologies. The mesh topology enjoys its simple 
structure and the possibility of using XY routing algorithm with only one virtual channel per 
physical channel. However, when wrap-around links are used to form a torus NoC, two virtual 
channels should be used to ensure deadlock freedom to implement XY routing. On the other 
hand, adding virtual channels increase power dissipation, although performance is increased 
(compared to the mesh NoC) as a result of lower inter-IP distance due to wrap-around links in 
the torus. 
In this paper, a new network routing notation and, based on it, a new deterministic and adaptive 
routing algorithms for torus NoCs were introduced.  The TRANC routing algorithm can be 
easily implemented on a torus NoC for deterministic, partially and fully adaptive routing 
algorithms that traditionally were implemented on meshes, to utilize wrap-around links. The 
resulted algorithms consume lower energy compared to their counterpart algorithms by reducing 
the required number of virtual channels and better utilization of network resources. Also, the 
simplicity of the router (less buffering and switching hardware complexity) could well 
compensate for the slightly increased inter-IP distance and result in a slightly lower performance 
when compared to the torus counterparts. They also outperform their mesh-based counterparts 
in terms of performance while consuming almost the same power. 

0

20

40

60

80

100

120

140

FFT - 4x4 FFT - 6x6

FFT-Mesh-1vi

FFT-TRANC-1vi

FFT-Torus-2vi

0

20

40

60

80

100

120

140

Ocean - 4x4 Ocean - 6x6

Ocean-Mesh-1vi

Ocean-TRANC-1vi

Ocean-Torus-2vi



147 

 

 

 
 
 

 
References 
[9] S. Meraji, A. Nayebi and H. Sarbazi-Azad, "Simulation-Based Performance Evaluation of 

Deterministic Routing in Necklace Hypercubes," IEEE/ACS Int. Conference on 

  

  

  

Figure  21: latency, power and power-delay product vs. message generation rate (left) for Mesh (4x4) 
with west-first and Torus (4x4) with TRANC west-first  adaptive routings and (right) for Mesh with 
Duato’s fully adaptive routing and TRANC fully adaptive routing for Torus  

 



148 

 

 

Computer Systems and Applications, AICCSA '07, pages 343-350, Amman, Jordan, May, 
2007. 

[10] H. Hashemi-Najafabadi, H. Sarbazi-Azad, and P. Rajabzadeh, “An accurate performance 
model of fully adaptive routing in wormhole-switched two-dimensional mesh 
multicomputers, “ Journal of Microprocessors and Microsystems, vol. 31, no. 7, pages 445-
455, 2007. 

[11] P. Shareghi, H. Sarbazi-Azad, “The stretched network: properties, routing, and 
performance, “ Journal of Information Science and Engineering 24, pages 361-378, 2008. 

[12] P. Abad, V. Puente, and J. A. Gregorio, “Mrr: Enabling fully adaptive multicast routing for 
cmp interconnection networks, ” In Int. Symp. On High Performance Computer 
Architecture, HPCA, pages 355-366, 2009. 

[13] W.J. Dally and C.L. Seitz, “Deadlock-free message routing in multiprocessor 
interconnection networks,” IEEE Trans. On Computers, vol. C-36, no. 5, pages 547-553, 
1987. 

[14] A. Khonsari, “Performance Modelling and Analysis of Deadlock Recovery Routing 
Algorithms in Multicomputer Interconnection Networks,” PhD Thesis, Computing Science 
Department, Glasgow University, 2003. 

[15] M. Ould-Khaoua, “A performance model for Duato’s fully adaptive routing algorithm in k-
ary ncubes, “ IEEE Trans. on Computers, vol.  48, no. 12, pages 1297-1304, 1999. 

[16] H. Sarbazi-Azad, “Performance Analysis of Wormhole Routing in Interconnection 
Networks, “ PhD Thesis, Compting Science Department, Glasgow University, 2001. 

[17] L. Schwiebert and D. N. Jayasimha, “Optimal Fully Adaptive Minimal Wormhole Routing 
for Meshes,” Journal of Parallel and Distributed Computing, vol. 27, no. 1, pages 56-70, 
1995. 

[18] J. Upadhyay, V. Varavithya, and P. Mohapatra, “A Traffic-Balanced Adaptive Wormhole-
Routing Scheme for Two-Dimensional Meshes,” IEEE Transactions on Computers, vol. 
46, no. 2, pages 190-197, 1997. 

[19] W. J. Dally, H. Aoki, “Deadlock-Free Adaptive Routing in Multicomputer Networks Using 
Virtual Channels”, IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 4, 
pages 466-475, 1993. 

[20] J. H. Kim, Z. Liu, A. A. Chien, “Compressionless Routing: A Framework for Adaptive and 
Fault-tolerant Routing,” IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 
3, pages 229-244, 1996. 

[21] W.J. Dally, C.L. Seitz, “Deadlock-free message routing in multiprocessor interconnection 
networks”, IEEE Transactions on Computers, vol. C-36, no. 5, pages 547-553, 1987. 

[22] J. Hu, R. Marculescu, “DyAD - Smart Routing for Networks on-Chip,” Design 
Automation Conference, DAC,  pages 260-263, 2004.  

[23] G. M. Chiu, "The Odd-Even Turn Model for Adaptive Routing," IEEE Transactions on 
Parallel and Distributed Systems, vol. 11, no. 7, pages 729-38, 2000. 

[24] R. V. Boppana, S. Chalasani, “A framework for designing deadlock-free wormhole routing 
algorithms,” IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 2, pages 
169-183, 1996. 

[25] C. J. Glass, L. M. Ni, “The turn model for adaptive routing,” Proceedings of the 
International Symposium on Computer Architecture (ISCA), pages 278-287, 1992. 

[26] A. Singh, W. J. Dally, A. K. Gupta and B. Towles, “GOAL: A Load-balanced Adaptive 
Routing Algorithm for Torus Networks,” in Proc. of the International Symp. on Comp. 
Arch., pages 194-205, 2003. 

[27] A. M. Rahmani, I. Kamali, P. L. Kamran, A. Afzali-Kusha, and S. Safari, “Negative 
exponential distribution traffic pattern for power/performance analysis of network on 
chips, “ In Proceedings of Int. Conference on VLSI Design, VLSID ’09, pages 157-162,  
New Delhi, 2009. 



149 

 

 

[28] A. Patooghy, M. Fazeli, S.G. Miremadi, "Reducing Power Consumption in NoC Design 
with no Effect on Performance and Reliability," Int. Conf. on Electronics, Circuits and 
Systems, ICECS, Pages 886-889, 2007. 

[29] T. Li, “Estimation of Power Consumption in Wormhole Routed Networks on Chip,” 
Master Thesis IMIT/LECS, Sweden, 2005. 

[30] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh: “Effect of Traffic Localization on 
Energy Dissipation in NoC-based Interconnect,” In Int. Sym. On Circuits and Systems, 
ISCAS (2), pages 1774-1777, 2005. 

[31] S. Koohi, M. Mirza-Aghatabar, S. Hessabi "Evaluation of Traffic Pattern Effect on Power 
Consumption in Mesh and Torus Network-on-Chips," Integrated Circuits Symposium. 
ISIC '07, pages 512-515, 2007. 

[32] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, M. Pedram, “An Empirical Investigation of 
Mesh and Torus NoC Topologies under Different Routing Algorithms and Traffic Models,” 
Int. Conference on Digital System Design Architectures, Methods and Tools, DSD, pages 
19-26, Lubeck, Germany, 2007.  

[33] W. J. Dally, B. Towles, “Route packets, not wires: on-chip interconnection networks,” Proc. 
Of Design Automation Conference, DAC, pages 684–689, 2001. 

[34] Terry T. Ye, Luca Benini, Giovanni De Micheli, “Analysis of Power Consumption on 
Switch Fabrics in Network Routers,” In Proceedings of Design Automation Conference, 
DAC, pages 524-529, 2002. 

[35] H. S. Wang, L. S. Peh, S. Malik, “Orion: A Power-Performance Simulator for 
Interconnection Network,” In International Symposium on Microarchitecture, Micro 35, 
pages 294-305, Los Alamitos, CA, USA, 2002. 

[36] D. L. Liu, C. Svensson, “Power consumption estimation in CMOS VLSI chips,” IEEE 
Journal of Solid-State Circuits, vol. 29, no. 6, pages 663-670, 1994. 

[37] W. J. Dally, C. Seitz, “The torus routing chip,” In Journal of Distributed Computing, vol. 1, 
no. 4, pages 187-196, 1986. 

[38] N. Banerjee, P. Vellanki, K. S. Chatha, “A Power and Performance Model for Network-on-
Chip Architectures,” In Proceedings of Design, Automation and Test in Europe, DATE, 
pages 1250-1255, France, 2004. 

[39] K. Srinivasan, K. S. Chatha, “ISIS: A Genetic Algorithm based Technique for Custom On-
Chip Interconnection Network Synthesis”, In Int. Conference on VLSI Design, VLSID, 
pages 623-628, 2005. 

[40] J. Duato et al., “Interconnection Networks,” ISBN: 1-55860-852-4, 2003. 
[41] D. Rahmati et al., “Power Efficient Routing Algorithm for Torus NoCs,” Int. Conference 

on Contemporary Computing, IC3, pages 211-220, India, 2008. 
[42] P. Pande, A. Ganguly, H. Zhu and C. Grecu, "Energy reduction through crosstalk 

avoidance coding in networks on chip, " Elsevier Journal of Systems Architecture, vol. 54, 
no. 3-4, pages 441-451, 2008. 

[43] M. M. H. Rahman, Y. Inoguchi, F. Al Faisal and M. K. Kundu, "Symmetric and Folded 
Tori Connected Torus Network, " Journal of Networks, vol. 6, no. 1, pages 26-35, 2011. 

[44] Srinivasan Murali, "Designing Reliable and Efficient Networks on Chips", Lecture Notes in 
Electrical Engineering, Issue No. 34, Springer, 2009. 

[45] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The  SPLASH-2 Programs: 
Characterization and Methodological  Considerations,” In Proceedings of Int. Symposium 
on Computer Architecture, ISCA, pages 24-36, 1995.   

 
 

 





151 

 

 

 
 
 
 
 
 
 
 
 
An Analytical Latency Model for 
Networks-on-Chip 
 
 

Abbas Eslami Kiasari 
Zhonghai Lu 
Axel Jantsch 
 
IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, vol. 21, no. 1, pp. 113-123, Jan. 2013. 

 Paper 9 





153 

 

 

An Analytical Latency Model for Networks-on-Chip 
 

Abbas Eslami Kiasari, Member, IEEE, Zhonghai Lu, Member, IEEE,  
and Axel Jantsch, Member, IEEE 

 
 

Abstract—We propose an analytical model based on queueing theory for delay analysis 
in a wormhole-switched Network-on-Chip (NoC). The proposed model takes as input an 
application communication graph, a topology graph, a mapping vector, and a routing 
matrix, and estimates average packet latency and router blocking time. It works for 
arbitrary network topology with deterministic routing under arbitrary traffic patterns. 
This model can estimate per-flow average latency accurately and quickly, thus enabling 
fast design space exploration of various design parameters in NoC designs. Experimental 
results show that the proposed analytical model can predict the average packet latency 
more than four orders of magnitude faster than an accurate simulation, while the 
computation error is less than 10% in non-saturated networks for different system-on-
chip platforms.  

Index Terms—Modelling and prediction, network-on-chip, performance analysis and 
design aids, queueing theory. 
 
1. INTRODUCTION 
Latency is recognised as one of the most critical design characteristics for on-chip interconnection 
network architectures  [17]. In this work, we propose a performance model which predicts the 
latency of flows in a Network-on-Chip (NoC) based system. Performance models are frequently 
employed by system designers for early architecture and design decisions. Typically, engineers 
construct a performance model, and then compare future technology options based on 
performance model projections. To this end, application and architecture models are first 
developed separately. Then, the application is mapped to the architecture and a performance 
model is used to evaluate the chosen application-architecture combination. Nowadays, most 
performance models of NoCs rely on simulations  [2] [19]. The use of simulation experiments 
makes the task of searching for efficient designs computationally intensive and does not scale well 
with the size of networks. Therefore, it is simply impossible to use the simulation in optimization 
loops.  

An alternative approach is an analytical model which can estimate the desired performance 
metrics in a fraction of time. Analytical models can be used to prune the large design space in a 
very short time compared to simulation. Thus, it is justified to derive accurate analytical models 
for performance prediction of NoCs to eliminate the need for time consuming simulations. The 
information provided during the performance analysis step can be used in any optimization loop 
for NoCs such as topology selection, application mapping, and buffer allocation. Although the 
use of high-level models conceals a lot of complex technological aspects, it facilitates fast 
exploration of the NoC design space. Accurate simulations can be setup at later steps of design 
process when the design space is reduced to a few practical choices. 

In this research a Performance Queueing (PQ) model, is proposed and evaluated for NoCs. 
The PQ model, which is based on a G/G/1 queueing model, has been developed for 
deterministic routing and wormhole switching. The proposed model is topology-independent and 
supports any kind of spatial and temporal traffic patterns. The estimated performance metrics 
such as average latency and router blocking time can be conveniently used for optimization 
purposes to find appropriate design parameters, as well as obtaining quick performance estimates. 
Our results show that the PQ model calculates quickly the latency of flows in the network with 
less than 10% error when compared to the simulation. This gives us confidence that we can 
utilize the model in the early design phase of high performance on-chip networks. 



154 

 

 

The rest of this paper is organized as follows. We start by reviewing previous studies and 
highlighting our contribution in Section II. Since our work is based on queueing theory, we give a 
very brief review of G/G/1 queues and priority queues in Section III. The proposed 
performance model is then described in Section IV, while Section V compares the modelling 
results and those obtained through accurate simulations. Finally, concluding remarks and future 
work plans are given in Section VI. 

 
2. RELATED WORK 

Much of the previous analytical latency models in wormhole-switched off-chip networks have 
been formulated for a specific topology and traffic pattern  [12] [13]. In  [7], the authors utilized a 
queueing model and presented a performance model to overcome the problem of buffer 
allocation in NoC-based systems, but the approach cannot handle the wormhole-switched 
networks. The authors in  [6] addressed the allocation of link capacities in NoCs through an 
analytical latency model. Their proposed model, however, only works for networks with single flit 
buffers and also ignores the queueing delays and network contentions. A more accurate analytical 
router model has been proposed in  [16]. This work assumes that packet arrivals to the network 
follow the Poisson distribution. As a result, such models lack the accuracy for use in applications 
with bursty traffic such as multimedia application. In  [11] a mathematical performance model for 
NoC-based systems was proposed to predict performance metrics in NoCs. However, the 
modelling approach was limited to k-ary n-cube networks with single flit buffers and dimension-
order routing algorithm. A worst-case analysis of flow latency in the NoC-based systems was 
considered in  [8]. This paper optimizes the traffic regulation parameters aiming for buffer 
optimization. Although this approach is proper for such a system with real-time requirements, 
many NoC-based systems have more relaxed timing constraints. 

To the best of our knowledge, this work proposes the first average case analytical model for 
on-chip routers which takes into account the burstiness of the traffic. The proposed model can 
be used to develop a thorough performance analysis for arbitrary network topology with 
wormhole switching under arbitrary traffic pattern. Our proposed model, besides providing 
performance metrics such as average latency and router blocking time, gives useful feedbacks 
about the network behaviour which can be used in an optimization loop for NoCs such as 
topology selection, application mapping, and buffer allocation. 

 
3. FOUNDATION 

Queueing theory is an appropriate and useful modelling tool for system analysis and 
performance evaluation in computer and telecommunications network  [14]. Since our proposed 
model has been constructed on the G/G/1 priority queue  [3][22], in this section we give a quick 
review on the G/G/1 queue and priority queue concepts. 

 
A. G/G/1 Queue 

The G/G/1 model has a single service facility with one server, unlimited waiting room and 
the first-come first-served queue discipline. The service times are independent and identically 
distributed with a general distribution, the interarrival times of customers are also independent 
and identically distributed with a general distribution, and the interarrival times are independent 
of the service times. It is assumed that the general interarrival time and service time distributions 
are each partially specified by their first two moments. We should remind here that the nth 

moment of a random variable X is defined as the average of ��	J��1111 = ∑ +��/���72 o⁄ K . All 

descriptions of this model thus depend only on the basic parameter 4-tuple J#1, #�111, :̅, :�111K, where #1 and #�111 are the first and second moments of the customers’ interarrival time, and similarly, :̅ 
and :�111 are the first and second moments of the service time. Also in this work we consider the 



155 

 

 

arrival rate and service rate as O = 1 #1⁄  and � = 1 :̅⁄ , respectively. The mean waiting time of a 
G/G/1 queueing system can be approximated by Allen-Cunneen formula  [3]. �6�/� 2⁄ ≈ �J��B
��BK��+2��/                                                                                                                     (1) 

where \   is the utilization factor of the server and equal to O/� , and (�  and (�  are the  
coefficient of variation (CV) of the interarrival time and service time respectively  [3]. We remind 
that the relationship between CV of random variable X and its moments is represented by (;� = v�111 v̅�⁄ − 1.  
 
B. Priority Queue 

We consider a system with one server in which the customers have preferential treatment 
based on priorities associated with them. We assume that the priority of a customer is an integer 
fixed at arrival time, and a customer with priority i (i = 1, 2, …, p) belongs to class i. We say one 
customer has higher priority than another if it belongs to a priority class with lower index. In 
other words, the lower the index, the higher the priority. The priority queueing system to be 
studied is depicted in Figure 1, where the different queue levels correspond to the different 
priority classes. For the service discipline, we assume that whenever a customer is completed, the 
server is next assigned to that customer at the head of the highest priority nonempty queue. Once 
a customer begins on the server, it is allowed to run to completion; i.e., the service discipline is 
nonpreemptive. Independent and identically distributed arrivals and service times are assumed for 
the ith class with the arrival and service rate denoted by O� and ��, respectively. The mean waiting 
time of random arrivals to the ith queue, �6�, can be written as [22] 11:  �6� = �1J2�∑ �������� KJ2�∑ ������ K                                                                                                       (2) 
where W1 is the residual service time seen by an incoming customer. In a G/G/1 queueing system, W1 is approximated by  [3]: W1 ≈ ∑ �������72 J(��� + (��� K                                                                                                         (3) 
where ��  and \� are average service rate and utilization factor of class k, respectively. Also, (�� 
and (��  are CV of interarrival time and service time of class k, respectively. 

In all the analysis we have reviewed so far, the queue size of each class was infinite. However, 
in the case of wormhole switching this is not a true assumption, because in wormhole switching 
each buffer can hold only finite number of flits. Later in subsection V.B, we analyze such a 
queueing system. 

 
 

 
Figure 1: A typical priority queueing system 

 

4. PERFORMANCE ANALYSIS 
The following assumptions are made when developing the proposed performance model. 

• The PQ model works for deterministic routing algorithms which may be minimal or non-
minimal. 

…..

…..

…..

…
..

server

λp

λ2

λ1

…
..

the highest priority

the lowest priority



156 

 

 

• The switching method is wormhole and messages are broken into packets. 
• There is one finite FIFO queue per channel and channels are allocated per packet. It means 
that the channel is released when the whole packet has passed through the channel. 

• Packets are consumed immediately by the destination node. 
In order to characterize network performance, architecture and application models are 

essential.  
 

A. Architecture Model 
As shown in Figure 2.a, a directed graph can represent the topology of an NoC architecture. 

Vertices and edges of the graph show nodes and channels of the NoC, respectively. The structure 
of a single node is depicted in Figure 2.b. Every node contains an intellectual property (IP) core 
and a router with �  input channels and �  output channels. Each IP core performs its own 
computational, storage or I/O processing functionality, and is equipped with a Resource-
Network-Interface (RNI). The RNI translates data between IP cores and routers by 
packing/unpacking data packets and also manages the packet injection process. Packets are 
injected into the network on the injection channel (input port 1) and leave the network from the 
ejection channel (output port 1). Generally, each channel connects output port j of node N to 
input port i of node M. Therefore, we denote this channel �(�� (jth output channel of router N) 

or )(�� (ith input channel of router M). We consider the general reference architecture for routers 
in  [4] and it comprises the following major components. 

• Buffer. This is a finite FIFO buffer for storing packets in transit. In the model shown in Figure 
2.b, a buffer is associated with each input physical channel and each output physical channel. 
In alternative designs, buffers may be associated only with inputs (input buffering) or outputs 
(output buffering).  
 

                  
 
                                 (a)                                                              (b) 
Figure 2: (a) A graph representation of a general NoC architecture, (b) Structure of a node in an 
NoC-based system 
 

• Link controller (LC). The flow of packets across the physical channel between adjacent routers 
is implemented by the link controller. The link controllers on either side of a channel 
coordinate to transfer flits. 

• Crossbar switch. This component is responsible for connecting router input channels to router 
output channels.  

• Routing and arbitration unit. This component implements the routing algorithms, selects the 

0

2

1

6
4

3

5

1

…

1
injection 
channel

ejection 
channel

in
p
u

t c
h
a

n
n
e

ls

o
u

tp
u
t c

h
a

n
n

e
ls

RNI

2

IP

Router

Crossbar
Switch

LC

Routing &

Arbitration

LC

LC

3

LC

p

LC

…

…

3

q

2

…

… …

LC

LC

LC



157 

 

 

output channel for an incoming packet, and accordingly sets the crossbar switch. Routing is 
only performed with the head flit of a packet. If two or more packets simultaneously request 
the same output channel, the arbiter must provide for arbitration among them. In this work, 
we suppose that input channels have a descending order of priority in a clock-wise direction 
for each output channel. The incoming packets from injection channel have the highest 
priority in each priority group. Usually, a control mechanism prevents the network from being 
overloaded. Therefore, it is guaranteed that the router is never overloaded and incoming 
packets from lower priority channels do not face starvation. If the requested output channel is 
busy, the incoming head flit remains in the input buffer. It will be routed again after the 
channel is freed and if it successfully arbitrates for the channel. 
Similar to the network model in  [4], we suppose that the routing decision delay for a packet, 

crossing time of a flit over the crossbar switch, and transfer time of a flit across a wire between 
two adjacent routers are tr, ts, and tw, respectively. Also the transfer times of a flit across the 
injection and ejection channels are considered to be tinj and tej, respectively. Having looked at 
Figure 3, we can infer that the latency of a head flit of a one hop packet in the absence of 
contention includes injection channel delay (tinj), first router delay (tr + ts), inter-node wire delay 
(tw), second router delay (tr + ts), ejection channel delay (tej). Therefore, we can write it as tinj + (tr + 
ts) + tw + (tr+ ts ) + tej.  

In this study, we consider the wormhole switching under deterministic routing algorithm. 
Although adaptive routing algorithms avoid congested channels and result in more balanced load 
on the network, they may cause out-of-order packet delivery. The re-order buffers needed at the 
destination for ordering the packets impose large area and power on system  [15]. Deterministic 
routers not only are more compact and faster than adaptive routers, but also guarantee in-order 
packet delivery. Therefore, it is not surprising that designers would like to use deterministic 
routing algorithms in the NoCs which desire small silicon overheads. Thus, in this research we 
use the deterministic routing for deadlock-free routing. 

 

 
 

Figure 3: Delay of a one hop flow 
B. Application Model 

The target application can be specified by the communication graph  [18]. The communication 
graph is a directed graph where each vertex represents an IP core, and the directed edge 
represents the communication between cores. The weight of the edge represents the 
communication rate between source and destination. In experimental results section, we consider 
the communication graph of a multimedia application (Table 3). Although generation of data 
packets in NoC nodes has dependence, especially in application-specific platforms, the studies 
in  [1] [21] show that compared to real traffic traces in NoCs, it will be still accurate to model their 
traffic generation separately as independent bursts of packets with statistical characteristics.  

We assume that the packet injection process to the router N has a general distribution with 
mean value of O� packets/cycle and coefficient of variation of (�. Also, the probability of packet 
transmission from the source node S to the destination node D is D�→�. This information can be 
easily extracted from the communication graph of application. Messages are broken into some 

Routing 
&

Arbitration

Crossbar 
Switch

IP

tr ts

tinj tw

Routing 
&

Arbitration

Crossbar 
Switch

IP

tr ts

tej



158 

 

 

packets with arbitrary size distribution. m and  ]k represent the average and standard deviation 
of the packet size respectively, as listed in Table 1 along with other parameters.  

 
5. COMMUNICATION ANALYSIS 

To have a better view of the proposed model, the main idea of the analysis approach is 
summarized here. 
a) To estimate the average latency of flows, it is essential to estimate the packet waiting times 

for network channels. 
b) Each channel is modelled as a G/G/1 priority queue and the waiting time to access each 

channel is calculated based on the packet arrival rate and channel service time which are 
calculated in (c) and (d), respectively. 

c) Given the communication volume among IP cores and routing algorithm, the packet arrival 
rate to each channel is determined. 

d) The channel service time, which is part of the waiting time, is calculated recursively for each 
communication path starting from the destination node. 
 

A. Latency Model 
The average packet latency (L) is used as the performance metric. We assume that the packet 

latency spans the instant when the packet is created, to the time when the packet is delivered to 
the destination node. We also assume that the packets are consumed immediately once they reach 
their destination nodes. 

In Figure 4, consider a flow which is generated in IPS, and reaches its destination +)D�/ after 
traversing W�, W�, and W�. The latency of this packet +*�→�/ consists of two parts: the latency 
of head flit +*��→�/ and the latency of body flits +*�/. In other words, 

 *�→� = *��→� + *�                                                                                                                    (4) 

 
Figure 4: A two-hops flow from IPS (source) to IPD (destination) 

 *��→�	is the time since the packet is created in  )D� , until the head flit reaches the )D� , 
including the queueing time spent at the source node and intermediate nodes.  In Figure 4, *��→� 
can be computed as *��→� = %��� + J%� +����→�l>�� + %>K  													+%� + +%� +���>�→�l>�� + %>/                                                                                     (5) 													+%� + J%� +���>�→��� + %>K + %��  
where ��→��

 is the mean waiting time for a packet from )(�� to �(��. Note that in Figure 4, the 

channel between S and M can be addressed with �(�l>��  or )(��>�� .  
Once the head flit arrives at the destination, the flow pipeline cycle time is determined by the 

maximum of the switch delay and wire delay. For an input-only or output-only buffered router, 
this cycle time would be given by the sum of the switch and wire delays  [4]. In other words, in an 
input-output buffered router *� is given by  *� = +� − 1/ × �#v+%>, %�/                                                                                                   (6) 
and in an input-only or output-only buffered router it is  *� = +� − 1/+%> + %�/                                                                                                            (7) 

S M D

IPS IPD

inj ej

East

West

East

West



159 

 

 

The only unknown parameter for computing the latency is ��→�� . This value can be calculated 
using a queueing model.  

 
Table 1: Parameter notation. 

 %�  Time spent for packet routing decision (cycles) 

A
rchitecture param

eters 

%>  Time spent for switching (cycles) %�  
Time spent for transmitting a flit between two adjacent routers (cycles) 

m Average size of packets (flits) ]k Standard deviation of packet size (flits) *�→� Average packet latency from )D� to )D� (cycles) 
L Average packet latency in the network (cycles) )D� The IP core located at address N W� The router located at address N )(�� The ith input channel in router W� �(�� The jth output channel in router W� ).�� Capacity of the buffer in )(��	(flits) �.�� Capacity of the buffer in �(��	(flits) 

 D�→� 
Probability of a packet is generated in )D�  and is delivered to )D� +∑ ∑ D�→��� = 1/ 

A
pplication param

eters 

O� Average packet injection rate of )D� (packets/cycle) O�→��  Average packet rate from )(�� to �(�� (packets/cycle) O�� 
Average packet rate to �(�� (packets/cycle) 

 JO�� = ∑ O�→��� K D�→��  Probability of a packet entered form )(�� to be exited from �(�� ��� Average service rate of the �(�� (packets/cycle) W1�� Residual service time of �(�� seen by an incoming flow (cycle) (3�  Coefficient of variation (CV) for service time of the �(�� (��→�   CV for interarrival time of packets from )(�� to �(�� \�→��  The fraction of time that the �(�� is occupied by packets from )(�� ��→��  Average waiting time for a packet from )(�� to �(�� (cycles) 
 

 

 
Figure 5: Queueing model of a channel of an arbitrary topology 

 
B. Waiting Time Estimation  

A router is primarily modelled based on nonpreemptive priority queueing system. Let us 
consider, for instance, the jth output channel of W� J�(��K. As can be seen in Figure 5, this 

…..

…
..

N

j
OC

1

N

j
λ →

from IP

…
..

N

p jλ →

from 
adjacent nodes

N

j→2λ



160 

 

 

channel is modelled as a server in a priority queueing system with � classes ()(2� to )(��), the 

arrival rate O�→�� 	+1 ≤ � ≤ �/ , and served by one server J�(��K  of service rate ��� . Both 
interarrival and service times are independent and identically distributed with arbitrary 
distributions.  
The queueing model for output channel represented in Figure 5 is different from traditional 
priority queue model in Figure 1.  

Since in the wormhole switching each input buffer can hold finite number of flits, we cannot 
use Eq. (2) and we have to compute the average waiting time for the head of class i in this special 
case of priority queues. Using a technique similar to that employed in the literature for general 
priority queues  [3] 11[22], we can write 

��→�� = ¡W1�� J1 − \2→�� K¢ ,																											� = 1,
W1�� J1 − ∑ \�→����2�72 K�,								2 ≤ � ≤ �¢ j                                                                      (8) 

where \�→��  is the fraction of  time that the �(�� is occupied by packets from )(�� and equals \�→�� = O�→�� ���¢                                                                                                                        (9)  

Also W1�� is the residual service time of  �(�� seen by an incoming head flit. Based on Eq. (3), in a 

G/G/1 queueing system the residual service time is approximated by  [3] 

W1�� ≈ ∑ \�→�� ���→� B 
��� B��� ��72                                                                                                         (10) 

Since we do not have enough insight about the CV of  interarrival time at each channel 0(��→�  8, 
we suppose that (��→�   is the same for all input channels in the network and equal to the 

coefficient of  variation of  the arrival process to network 0(��→�  = (�8 . Therefore, we can 

rewrite Eq. (10) as 

W1�� ≈ ��B
��� B���  ∑ \�→����72                                                                                                             (11) 

Due to the definition of \�→�� , we can write ∑ \�→����72 = ∑ JO�→�� ���¢ K��72 . It is obvious that the 

average packet rate to an output channel of W�	is equal to sum of the average packet rate from all 
input channel of W� to this output channel. Therefore, we can write ∑ O�→����72 ���¢ = O�� ���¢ =\��. As a result, Eq. (11) can be rewritten as W1�� ≈ \�� £(�� + (�� � ¤ 2���¢                                                                                                      (12) 

By substituting W1�� in Eq. (8) we can write 

��→�� =
¥¦¦
§
¦¦̈�� ©��B
��� B ª

�0�� �«�→�  8 ,																								� = 1,							
«� ©��B
��� B ª

�0�� �∑ «�→� ������ 8B ,														2 ≤ � ≤ �
j                                                                        (13) 

Therefore, to compute the ��→��  we have to calculate the arrival rate from )(�� to �(��	JO�→�� K, 
and also first and second moments of the service time of �(�� 	0:̅�� , J:¬�K�11111111	8. In the following 

two subsections, packet arrival rate and channel service time are computed. 
 



161 

 

 

C. Packet Arrival Rate Calculation  

Assuming the network is not overloaded, the arrival rate from )(�� to �(�� can be calculated 
using the following general equation O�→�� = ∑ ∑ O� × D�→� × WJp → , )(�� → �(��K��                                                              (14) 

In Eq. (14), the routing function WJp → , )(�� → �(��K equals 1 if a packet from )D� to )D� 

passes from )(��  to �(�� ; it equals 0 otherwise. Note that we assume a deterministic routing 

algorithm, thus the function of WJp → , )(�� → �(��K  can be predetermined, regardless of 

topology and routing algorithm. After that, the average packet rate to �(��  can be easily 
determined as O�� = ∑ O�→���                                                                                                                            (15) 
 
D. Channel Service Time Estimation  

After estimating the packet arrival rates, now we focus on the estimation of the moments of 
channel service times. At first, we assign a positive integer index to each output channel. Let �� 
be the set of all possible destinations for a packet which passes through �(��. The index of �(�� 

is equal to the maximum of distances among N and each , where , ∈ �� . Obviously, the 
index of a channel is between 1 and diameter of the network. In addition, the index of all ejection 
channels is supposed to be 0. After that, all output channels are divided into some groups based 
on their index numbers, so that group o contains all channels with index k.  

Determination of the channel service time moments starts at group 0 (ejection channels) and 
works in ascending order of group numbers. Therefore, the waiting time from lower numbered 
groups can then be thought of as adding to the service time of packets on higher numbered 
groups. In other words, to determine the waiting time of channels in group o , we have to 
calculate the waiting time of all channels in group o − 1. This approach is independent of the 
network topology and works for all kinds of deterministic routing algorithm, whether minimal or 
non-minimal.  

In the ejection channel of W� , the head flit and body flits are accepted in %> + %�  and *� 
cycles, respectively. Therefore, we can write :̅2� = %> + %� + *� and since the standard deviation 
of packet size is known, we can easily compute (��  . Now, by using Eq. (13), the waiting time of 

input channels for ejection channel, ��→2� , can be determined for all nodes in the network, where 2 ≤ � ≤ �. 
Although the moments of service time can be computed simply for all ejection channels, 

service time moments of the other output channels cannot be computed in a direct manner by a 
general formula, and we have to use a more complicated approach. Consider flow f in Figure 6.a 
which passes through routers M, N and O. We suppose that the average service time of �(�� +:̅��/ with index x has been computed before, and now we want to compute the average service 
time of �(�� +:̅��/ with index x+1. At the first glance, it seems that the average service time of �(�� is equal to %> + %� + %� +��→�� + :̅�� . However, we should ponder the effect of buffer 
spaces in input and output port of a router on channels service time. In the Figure 6.a, when the 
tail flit of the passing packet through �(�� reaches position 2, the service time of �(�� is finished 
and similarly the service time of �(�� is finished, when the tail flit of the packet reaches position 
1. Therefore, the preceding equation should be decreased by the spent time for reaching position 

2 from position 1. Therefore, we can write %> + %� + %� +��→�� + :̅�� − J).�� + �.��K ×�#v+%>, %�/ where ).�� and �.�� are the capacity of the buffer in )(��	and �(��, respectively. 
Although the effect of buffer size on the channel service time is considered in this equation, it 

does not work in all cases. Because, as shown in Figure 6.b, there might be several paths for 



162 

 

 

different flows in �(��, so we should consider the possibility of using several output channels to 
make the next hop. Now, we can estimate the first moment or average service time of �(�� as :̅�� = ∑ D�→�� © %> + %� + %� +��→�� + :̅��−J).�� + �.��K × �#v+%>, %�/ª®�72                                                                (16) 

 

     
                                                          (a)                                                                  (b) 
 
Figure 6: (a) A passing flow from RM, RN, and RO, (b) Some possible path for an entering flow to 
RN 
 
 
where D�→��  is the probability of a packet entered form )(�� to be exited from �(�� and equals  D�→�� = O�→�� O��⁄                                                                                                                      (17) 

Here, we should remind that to calculate :̅��, all values of :̅��	+1 ≤ o ≤ �/ must be computed 
before. Likewise, the second moment of service time of �(�� can be approximated by 

	+:5�/�11111111 = ∑ D�→�� © %> + %� + %� +��→�� + :̅��−J).�� + �.��K × �#v+%>, %�/ª®�72
�
                                                       (18) 

Finally, the CV of channel service time for �(�� can be given by  (��̄� = +:5�/�11111111 +:̅��/� − 1¢                                                                                                         (19) 

Now, we are able to compute the average waiting time of all output channels using Eq. (13). 
After computing ��→��  for all nodes and channels, the average packet latency between any two 

nodes in the network, *�→�, can be calculated. The average packet latency is the weighted mean 
of these latencies. * = ∑ ∑ D�→� × *�→���                                                                                                          (20) 
where D�→� is the probability of a packet is generated in )D� and is delivered to )D�. 
 
E. Analysis Flow 

To have a clear view of our proposed analysis approach, the flowchart description of the 
performance model is shown in Figure 7. Average packet latency in the network is computed in 
following steps. 

 

RM
j

RN
i k

N

jIB N

kOB

f
RO

l

M

is
N

ks

service time service time

position 2position 1

M N

1 2

3

q

i j



163 

 

 

 
 

Figure 7: Flowchart of proposed analytical model 
 

• Step 1. Given the application communication graph, we can easily extract the temporal and 
spatial features of communication among IP cores with the computational complexity of O(n2) 
where n is the number of nodes in the network. 

• Step 2. After a mapping phase, the traffic input rates to network channels are computed. The 
computational complexity of this step is proportional to n2 and d, where d is the diameter of 
the network. As a result the overall complexity of this step is obtained as O(n2d). 

• Step 3. Statistical distribution of channel service times are partially computed using equations 
16, 18, and 19. The computational complexity of this step is O(nq2), where q is the number of 
output ports per router. 

• Step 4. After computing the channel service times, the average waiting time of packets are 
computed with the complexity of O(np2q), where p is the number of input ports. 

• Step 5. The complexity of the average latency calculation using Eq. (20) is O(n2d) as with step 
2. 

As a result, the overall complexity of the PQ model is obtained as O(n2d) + O(np3), if the number 
of input and output ports of routers are the same. More especially, in the case of 2D mesh 
network, a router is connected to maximum four neighbouring routers and also a local IP core 

through injection and ejection channels. Therefore, p and q equal 5 and d is proportional to √s. 
As a result, the proposed model has time requirement O(n5/2) for 2D mesh networks. 
 

(Section IV.B)

A

NDS
CP ,,λ→

Eq. (16)

Eq. (18)

Eq. (19)

M

is

( )2M

is

2
M
is

C

Eq. (9)

Eq. (12)

Eq. (13)

N

jk→ρ
N

jR
N

jiW →

Application

- task graph

- packet size
distribution ),( N

j

N

i OBIB

Architecture

- topology
- input  channels  priority 
- buffer size

- router delay (tr , ts)
- wire delay (tw)Mapping

Average packet latency (L)

Eq. (20)

Eq. (14)

Eq. (15)

Eq. (17)

N

ji→λ

N

kjP →

N

jλ
Step 1 Step 2

Step 3

Step 4

Step 5



164 

 

 

6. EXPERIMENTAL RESULTS 
The proposed analytical model has been validated through a discrete-event simulator that 

mimics the behaviour of the routing algorithm in the network at the flit level. The simulator uses 
the same assumptions as the analytical model. To achieve a high accuracy in the simulation 
results, we use the batch means method  [20] for simulation output analysis. There are 10 batches 
and each batch includes 1,000 up to 80,000,000 packets depending on the workload type, traffic 
injection rate, packet length, and network size. Statistics gathering was inhibited for the first batch 
to avoid distortions due to the startup transient. The standard deviation of latency measurements 
is less than 1.8% of the mean value. As a result, the confidence level and confidence interval of 
simulation results are 0.99 and 0.02, respectively  [20]. In other words, the probability of 0.98�; ≤ �1 ≤ 1.02�; is 0.99 where �; is the real average value and �1 is the estimated average 
value by simulator  [20].  

For the sake of comprehensive study, numerous validation experiments have been performed 
for several combinations of workload types, network sizes and packet lengths. In what follows, 
the accuracy of PQ model will be assessed in Multi-processor system-on-chip and Application-
specific system-on-chip platforms. Since their applications differ starkly in purpose, these classes 
of NoCs have substantially different traffic patterns.  

 
A. Multi-processor System-on-Chip Platform  

We have considered a 9x9 mesh on-chip interconnect and input-output buffered router with 4 
flits in each input and output channel. It takes 2 clock cycles to pass a flit within a router and 1 
clock cycle to transmit a flit between neighbouring routers. We also consider the XY routing 
algorithm to route the data packets among IP cores. Packet destinations are uniformly distributed 
across the network nodes. Following a Poisson process, nodes generate packets independently of 
each other. It means that the time between two successive packet generations in an IP core is 
distributed exponentially. The Poisson model widely used in many performance analysis studies, 
and there are a large number of papers in many application domains that are based on this 
stochastic assumption  [7].  
Figure 8.a depicts latency results predicted by the PQ model explained in the previous section, 
plotted against those provided by the simulator for the two different fixed packet lengths m = 4 
and 64 flits. The horizontal axis in the figure shows the packet generation rate while the vertical 
axis shows the average packet latency. The figure reveals that in both cases the analytical model 
predicts the average latency with a good degree of accuracy. However, some discrepancies around 
the saturation point are apparent. These can be accounted for by the approximations made to 
facilitate the derivation of different variables, e.g. the approximation made to estimate CV of the 
interarrival time of each channels. Such an approximation greatly simplifies the model as it allows 
us to avoid computing the exact distribution of the interarrival time at a given channel, which is 
not a straightforward task due to interdependencies between successive arrival times at channels 
as wormhole switching relies on a blocking mechanism for flow control. However, the analytical 
model can still predict the average latency fairly accurately in almost all traffic regions which are 
appropriate for network operations. 

 
 



165 

 

 

                    
                                             (a)                                                              (b) 
 

                                       
                                                                                     (c) 
 

Figure 8: (a) The average packet latency of all flows against simulation results, (b) Some selected 
flows of uniform traffic in a 9x9 mesh network, (c) The average packet latency of the flows in 
Figure 8(b), predicted by the PQ model against simulation results 

 
Also, we compare the average latency of some selected flows in the network predicted by the 

PQ model and the simulator. Figure 8.b shows these flows from node 0 in the corner of the 
network and node 40 in the centre of the network. Figure 8.c depicts the average latency of these 
flows when the flit injection rates are 0.18 and 0.12 flits/cycle/node for the packet length of 4 
and 64 flits, respectively. The comparison results show that the model is in good conformity with 
the simulator with average relative error of 7.5%. 

 
B. Application-specific System-on-Chip Platform 

Analyzing the multimedia applications in NoCs shows bursty patterns of traffic over a wide 
range of time scales  [23]. Since the Poisson process cannot model the bursty traffic very well, we 
use Markov-modulated Poisson process (MMPP) model  [5] to model the temporal burstiness of 
traffic. MMPP has been widely employed to model the traffic burstiness in the temporal 
domain  [5]. Figure 9 shows a two-state MMPP in which the arrival traffic follows a Poisson 
process with rate OV and O2. The transition rate from state 0 to 1 is r0, while the rate from state 1 
to state 0 is r1.  

 
 

0

100

200

300

400

0 0.05 0.1 0.15 0.2 0.25

A
v

e
ra

g
e

 p
a

c
k

e
t 

la
te

n
c
y

 (
c

y
c

le
s

)

Packet generation rate (flit/cycle/node)

Simulation (m=4)

PQ model (m=4)

Simulation (m=64)

PQ model (m=64)

36

72 76

4

44

80

8

40

0

0

40

80

120

160

200

240

A
v
e

ra
g

e
  p

a
c

k
e

t  
la

te
n

c
y
 (
c

y
c

le
s

)

Flow

Latency of some selected flows 

Simulation (m=4) PQ model (m=4)

Simulation (m=64) PQ model (m=64)



166 

 

 

 
Figure 9: Two-state MMPP model 

 
In this study, we use the notation MMPP(k) for the two-state MMPP in which O2 = oOV. 

Figure 10 shows the number of packet arrivals in a node against time for different values of k 
when the mean generation rate is 0.01 packet/cycle. Figure 10.a vividly shows that Poisson 
process (k =1) cannot model the traffic burstiness and figures 10.b – 10.f reveal that greater k 
results in greater intensity of packet burstiness.  

The distribution of the interarrival times in the two-state MMPP is a second order hyper-
exponential distribution  [9]. Therefore, it is easy to compute the coefficient of variation of the 
interarrival time (CA) which is reported in Table 2. We can infer that the greater the k, the greater 
the CA. It means that CA reflects the burstiness intensity very well. Here we recall that CA is used 
in the proposed model to estimate the packet waiting time (Eq. 13). 

 
Table 2: CV of packet interarrival time for different values of k. 

 

Traffic 
model 

o = O2/OV 
CA 

MMPP(1) 1 1.00 
MMPP(10) 10 1.55 
MMPP(20) 20 2.04 
MMPP(50) 50 3.08 
MMPP(100) 100 4.28 
MMPP(200) 200 6.00 

 
To evaluate the capability of the proposed model to predict the performance of application-

specific applications, we applied it to a generic multimedia system (MMS), which includes an 
H.263 video encoder, an H.263 video decoder, an mp3 audio encoder, and an mp3 audio 
decoder  [7]. MMS includes 40 tasks and the tasks are assigned into 16 selected IPs. The 
communication volume requirements (in bytes) of this application are summarized in Table 3. In 
the next phase, we map theses 16 IPs into tiles of a 4x4 torus network randomly. Throughout the 
experiments, we considered an application-specific system-on-chip with 3 cycle router delay, 1 
cycle wire delay and exponentially distributed packet size with average size of 16 flits. In addition, 
we supposed that input and output buffers of the routers have the capacity of 6 and 2 flits, 
respectively.  

Latency of flows in this configuration is investigated in Figure 11.a and 11.b. Average latency 
of all packets generated by MMPP(10), MMPP(20) and MMPP(50) in different network 
throughput are compared in Figure 11.a. Figure 11.b depicts the average latency of all flows 
generated by MMPP(50) when the network operates at 0.02 flits/cycle/node. 

 
 
 
 
 
 
 

λ0 λ1

r0

r1



167 

 

 

   
                                    (a)                                                                                (b) 
 

   
                                   (c)                                                                                 (d) 
 

    
                                  (e)                                                                                   (f) 
 
Figure 10: Number of packets against time in the MMPP model for (a) k =1 (Poisson model), (b) 
k =10, (c) k =20, (d) k =50, (e) k =100, (f) k =200. 

 
 

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(1)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(10)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(20)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(50)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(100)

0

10,000

20,000

30,000

0 1,000,000 2,000,000 3,000,000

N
u

m
b

e
r 

o
f 
p

a
c
k
e
ts

Time (cycles)

MMPP(200)



168 

 

 

Table 3: MMS application traffic requirement  [7]. 
src dst vol. 

(bytes) 

 

src dst vol. 
(bytes) ASIC1 ASIC2 25 DSP2 DSP1 20363 

ASIC1 DSP8 25 DSP3 ASIC4 38016 
ASIC2 ASIC3 764 DSP3 DSP6 7061 
ASIC2 MEM2 640 DSP3 DSP5 7061 
ASIC2 ASIC1 80 DSP4 DSP1 3672 
ASIC3 DSP8 641 DSP4 CPU 197 
ASIC3 DSP4 144 DSP5 DSP6 26924 
ASIC4 DSP1 33848 DSP6 ASIC2 28248 
ASIC4 CPU 197 DSP7 MEM2 7065 
CPU MEM1 38016 DSP8 DSP7 28265 
CPU MEM3 38016 DSP8 ASIC1 80 
CPU ASIC3 38016 MEM1 ASIC4 116873 
DSP1 DSP2 33848 MEM1 CPU 75205 
DSP1 CPU 20363 MEM2 ASIC3 7705 
DSP2 ASIC2 33848 MEM3 CPU 75584 

 
As can be seen again, the model has a fairly good degree of accuracy in comparison to the 

simulation results with average relative error of 4.7%. We also implement the proposed model 
in  [13] and compare it with the PQ model. Figure 11.a also shows that using the model in  [13] to 
design a system with bursty traffic may lead us to less trusted decisions. 

 
C. Arbitrary Topology 

To show the capability of PQ model to predict the average latency in an arbitrary network, we 
consider the topology shown in Figure 12.a with the uniform workload and 32 flits packets. We 
used the CAR framework  [10] to find the deadlock-free routes in this network. CAR constructs 
the channel dependency graph based on the network topology and application, and then deletes 
some edges from the channel dependency graph to guarantee the deadlock freedom. After that, 
CAR creates the routing space by finding all possible shortest paths for each flow. Finally, the 
simulated annealing heuristic is used to find congestion-aware routes. 

Figure 12.b reveals that the proposed analytical model predicts the average packet latency 
accurately in almost all traffic regions which are appropriate for network operation. 

 

  
                         (a)                                                                              (b) 
 

Figure 11: (a) The average packet latency of all flows in case of bursty traffic, (b) The average 
packet latency of each flow predicted by the PQ model against simulation results.  
 

 

20

40

60

80

100

0 0.04 0.08 0.12 0.16

A
v
e

ra
g

e
 p

a
c

k
e

t l
a

te
n

c
y
 (c

y
c

le
s

)

Packet generation rate (flit/cycle/node)

Simulation

Analytical Model in [13]

PQ Model - MMPP(10)

PQ Model - MMPP(20)

PQ model - MMPP(50)

0

20

40

60

80

100

a
v
e

ra
g

e
 p

a
c

k
e

t 
la

te
n

c
y
 (

c
y
c

le
s

)

flow (source node → destination node)

Latency of flows in the MMS application

Simulation

PQ model



169 

 

 

 

                       
                                (a)                                                                     (b)  

Figure 12: (a) A custom topology, (b) The average packet latency of all flows. 
 
Furthermore, to assess the proposed model for large networks, we compare the PQ model and 
simulation results for 16x16 mesh network and 8-dimensional hypercube network with 256 
nodes. Dimension-order routing algorithms are used to route the data packets among IP cores. 
We choose the hypercube network for this experiment because it has totally different topological 
properties compared to the mesh network. Figure 13 shows the comparison result when the 
packet length is 32 flits, input buffers of the routers have the capacity of 8 flits and there are no 
output buffers.  
 
 

 
 

Figure 13: The average packet latency for a 16x16 mesh network and an 8-dimensional hypercube 
network with dimension-order routing. 
 
D. Execution Time Comparison 

Finally, the execution time of the proposed analytical model and simulation are compared. We 
implement both the PQ model and the simulator in C++ and run on the same computer. The 
execution times of the PQ model and simulation for mesh networks with various sizes from 9 
(3x3) to 400 (20x20) nodes are compared in Figure 14. We simulate different size networks for 4 
flits input and output buffers and 32 flits packets under uniform traffic. In such a traffic pattern, 
the number of flows are considerably increased with O(n2) where n is the number of nodes in the 
network. 

6

0 1 2

3 4 5

97 8

0

150

300

450

600

0 0.1 0.2 0.3 0.4 0.5 0.6

A
v
e

ra
g

e
 p

a
c

k
e

t l
a

te
n

c
y
 (c

y
c

le
s

)

Packet generation rate (flit/cycle/node)

Simulation

PQ Model

0

150

300

450

600

0 0.1 0.2 0.3 0.4 0.5

A
v
e

ra
g

e
 p

a
c

k
e

t l
a

te
n

c
y
 (c

y
c

le
s

)

Packet generation rate (flit/cycle/node)

Mesh (Simulation)

Mesh (PQ Model)

Hypercube (Simulation)

Hypercube (PQ Model)



170 

 

 

As we mentioned previously in this section, a simulation run is divided into 10 batches. To 
reduce the simulation time we suppose that the simulator generates only three packets for each 
flow and averages the latency of these three packets to estimate the average latency of flows in 
each batch. Figure 14 shows that the proposed approach is much faster than the simulation and 
the overall speed-up due to the analytical model is more than 60,000 for small networks and 
more than 260,000 for large networks. Also, the simulation execution time grows faster for larger 
buffer size, longer packet length, heavier traffic, and more bursty traffic, while the execution time 
of the analytical approach is constant for the same platform under different operation conditions. 
Furthermore, we observe that the model accuracy fluctuates randomly with the network size and 
does not confirm any specific trend. 

 

 
Figure 14: The execution time comparison of the PQ model and simulation for different size of 
mesh networks. 
 

7. CONCLUSION AND FUTURE WORK 
Usually, system designers address the design problems by exploring the design space using 

detailed simulations. However, this approach has high run-time overhead and lacks of insights. 
Like in other disciplines of science and engineering, the use of analytical models can potentially 
address these limitations under certain assumptions. To this end, we propose the PQ model for 
predicting the communication performance of wormhole-switched NoC platforms. This 
queueing theory based model takes as input (1) an application communication graph, (2) a 
topology graph, (3) a mapping vector, and (4) a routing matrix, and estimates some performance 
metrics of the system such as average packet latency and router blocking time. The proposed 
model is validated through simulation experiments, and we have shown that the proposed model 
achieves a good degree of accuracy (< 10% error) making it a practical and useful evaluation tool 
that can be used by researchers in the field to gain insight into the performance behaviour of the 
designed system. The model independency on network topology and workload type makes it a 
robust tool to explore the huge design space of NoC-based systems. 

In many applications such as real-time systems, the worst case execution time is of particular 
concern since it is important to know how much time might be needed in the worst case to 
guarantee that the task will always finish its jobs before the predetermined deadline. Therefore, 
we plan to advance this research by integrating the proposed average case model with an 
analytical worst case model. Finally, we would like to utilize the integrated performance model to 
find a near optimal solution for some design problems such as topology selection, module 
placement and buffer allocation problems in the network-based systems. 

 
REFERENCES 
[1] J. H. Bahn and N. Bagherzadeh, “A Generic Traffic Model for On-Chip Interconnection 

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

0 100 200 300 400

E
x
e

c
u

tio
n
  t

im
e

  (
s
e

c
)

Network size

Simulation

PQ model



171 

 

 

Networks,” The International Workshop on Network-on-Chip Architectures (NoCArc), Held in 
conjunction with the IEEE/ACM International Symposium on Microarchitecture (MICRO-41), pp. 
2008. 

[2] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De Micheli, 
“NoC Synthesis Flow for Customized Domain Specific Multiprocessor Systems-on-chip,” 
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 2, pp. 113-129, 2005. 

[3] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, Queueing Networks and Markov Chains: 
Modeling and Performance Evaluation with Computer Science Applications, 2nd Edition, John Wiley 
and Sons, 2006. 

[4] J. Duato, C. Yalamanchili, and L. Ni, “Interconnection Networks: An Engineering 
Approach,” IEEE Computer Society Press, 2003. 

[5] W. Fischer and K. Meier-Hellstern, “The Markov-Modulated Poisson Process (MMPP) 
Cookbook”, Performance Evaluation, vol. 18, no. 2, pp. 149-171, 1993. 

[6] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Network Delays and 
Link Capacities in Application-Specific Wormhole NoCs” Journal of VLSI Design, vol. 2007, 
Article ID 90941, 2007.  

[7] J. Hu, U. Y. Ogras, and R. Marculescu, “System-level Buffer Allocation for Application-
Specific Networks-on-Chip Router Design,” IEEE Transaction on Computer-Aided Design of 
Integrated Circuits and Systems, vol. 25 no. 12, pp. 2919 – 2933, 2006. 

[8] F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee. "Buffer Optimization in Network-on-Chip 
Through Flow Regulation". IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 29, no. 12, pp 1973-1986, 2010. 

[9] S. H. Kang and D. K. Sung, “Two-State MMPP Modelling of ATM Superposed Traffic 
Streams Based on the Characterisation of Correlated Interarrival Times”, In the Proceedings of 
the IEEE Global Telecommunications Conference (GLOBECOM), vol. 2, pp. 1422-1426, 1995. 

[10] A. E. Kiasari, A. Jantsch and Z. Lu, “A Framework for Designing Congestion-Aware 
Deterministic Routing,” In the Proceedings of the International Workshop on Network-on-Chip 
Architectures (NoCArc), Held in conjunction with the IEEE/ACM International Symposium on 
Microarchitecture  (MICRO-43), pp. 45-50, 2010. 

[11] A. E. Kiasari, H. Sarbazi-Azad, and S. Hessabi, “Caspian: A Tunable Performance Model for 
Multi-Core Systems,” Euro-Par 2008 Parallel Processing, E. Luque, T. Margalef, and D. Benitez, 
eds., Lecture Notes in Computer Science, Springer-Verlag, pp. 100-109, 2008. 

[12] A. E. Kiasari, H. Sarbazi-Azad, and M. Ould-Khaoua, “An Accurate Mathematical 
Performance Model of Adaptive Routing in the Star Graph,” Future Generation Computer 
Systems, vol. 24, no. 6, pp. 461-474, 2008. 

[13] J. Kim and C. R. Das, “Hypercube communication delay with wormhole routing”, IEEE 
Transactions on Computers, vol. 43, no. 7, pp. 806-814, 1994. 

[14] L. Kleinrock, Queueing Systems, vol. 1, John Wiley, New York, 1975. 
[15] S. Murali, T. Theocharides, N. Vijaykrishnan, M. Jane Irwin, L. Benini, G. De Micheli, 

“Analysis of Error Recovery Schemes for Networks on Chips”, IEEE Design & Test of 
Computers, vol. 22, no. 5, pp. 434-442, 2005. 

[16] U. Y. Ogras, P. Bogdan, R. Marculescu, “An Analytical Approach for Network-on-Chip 
Performance Analysis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 29, no. 12, pp. 2001-2013,  2010. 

[17] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L. S. Peh, “Research 
Challenges for On-Chip Interconnection Networks,” IEEE Micro, vol. 27, no. 5, pp. 96-108, 
2007. 

[18] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “Application Specific Routing Algorithms 
for Networks on Chip,” IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 3, pp. 
316-330, 2009. 

[19] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance Evaluation and 



172 

 

 

Design Trade-offs for Network-on-Chip Interconnect Architectures,” IEEE Transactions on 
Computers, vol. 54, no. 8, pp. 1025-1040, 2005. 

[20] K. Pawlikowski, “Steady-State Simulation of Queueing Processes: A Survey of Problems and 
Solutions,” ACM Computing Surveys, vol. 22, no. 2, pp. 123–170, 1990. 

[21] V. Soteriou, H. Wang, L.-S. Peh, “A Statistical Traffic Model for On-Chip Interconnection 
Networks,” In the Proceedings of the IEEE International Symposium on Modeling, Analysis, and 
Simulation of Computer and Telecommunication Systems, pp. 104-116, 2006. 

[22] H. Takagi, Queueing Analysis, vol. 1: Vacation and Priority Systems, Amsterdam, 1991. 
[23] G. V. Varatkar and R. Marculescu, “On-chip traffic Modeling and Synthesis for MPEG-2 

Video Applications,” IEEE Trans. Very Large Scale Integration Systems, vol. 12, no. 1, pp. 108–
119, 2004. 

 
 

 
Abbas Eslami Kiasari (S’11) received his B.Sc. degree in electrical engineering 
from the Ferdowsi University, Mashhad, Iran, in 2003, and his M.Sc. degree in 
computer engineering from the Sharif University of Technology, Tehran, Iran, in 
2005. He is currently pursuing the Ph.D. degree in electronic systems under 
supervision of Prof. Axel Jantsch at the Royal Institute of Technology (KTH), 
Stockholm, Sweden.  His research interests include design methodologies and 
performance analysis of network-based systems. He is a member of the IEEE 
Computer Society. 

 
 

 
Zhonghai Lu (M’05) received the BSc. degree in Radio & Electronics from 
Beijing Normal University, Beijing, China, in 1989, the MSc. degree in System-
on-Chip Design, and the Ph.D. degree in Electronic and Computer Systems 
Design from the Royal Institute of Technology (KTH), Stockholm, Sweden, in 
2002 and 2007, respectively.  

From year 1989 to 2000, he was an engineer in the area of electronic and 
embedded systems. He is currently an Associate Professor with the Department 
of Electronic Systems, School for Information and Communication 

Technology, KTH. His research interests include network-on-chip/system-on-chip, many-core 
computing architectures, cyber-physical systems, performance analysis, and design automation. 
He has published about 100 papers in those areas. 
 
 
 

Axel Jantsch (M’97) received the Dipl.Ing. and Dr. Tech. degrees from the 
Technical University of Vienna, Vienna, Austria, in 1988 and 1992, respectively.  

He was with Siemens Austria, Vienna, Austria, as a System Validation 
Engineer from 1995 to 1997. Since 1997, he has been an Associate Professor 
with the Royal Institute of Technology (KTH), Kista, Stockholm, Sweden. Since 
2000, has been a Docent, and since December 2002, a Full Professor of 
Electronic System Design with the Department of Electronic Systems. He has 
published over 200 papers in international conferences and journals, and one 

book in the areas of very large scale integration design and synthesis, system level specification, 
modeling and validation, HW/SW codesign and cosynthesis, reconfigurable computing, and 
networks on chip. 



173 

 

 

Dr. Jantsch received the Alfred Schrödinger Scholarship from the Austrian Science 
Foundation while a Guest Researcher with KTH between 1993 and 1995. He has served on a 
large number of technical program committees of international conferences, such as FDL, 
DATE, CODES+ISSS, SOC, NOCS, and others. He has been the TPC Chair of SSDL/FDL 
2000, the TPC Co-Chair of CODES+ISSS 2004, the General Chair of CODES+ISSS 2005, and 
the TPC Co-Chair of NOCS 2009. From 2002 to 2007, he was a Subject Area Editor for the 
Journal of System Architecture. At KTH, he is heading a number of research projects involving a total 
number of ten Ph.D. Students, in two main areas: system modeling and networks-on-chip. 





175 

 

 

 

 
 
 
 
 
 
 
Mathematical Formalisms for 
Performance Evaluation of 
Networks-on-Chip 
 
Abbas Eslami Kiasari 
Axel Jantsch 
Zhonghai Lu 
 
ACM Computing Surveys, vol. 45, no. 3, Article no. 38, 
Jun. 2013 

 Paper 10 





177 

 

 

 

Mathematical Formalisms for Performance Evaluation of 
Networks-on-Chip 

 
 

Abbas Eslami Kiasari, KTH Royal Institute of Technology, Sweden 
Axel Jantsch, KTH Royal Institute of Technology, Sweden 
Zhonghai Lu, KTH Royal Institute of Technology, Sweden 
 
 
This paper reviews four popular mathematical formalisms – queueing theory, network calculus, 
schedulability analysis, and dataflow analysis – and how they have been applied to the analysis of on-
chip communication performance in Systems-on-Chip. The paper discusses the basic concepts 
and results of each formalism and provides examples of how they have been used in Networks-
on-Chip (NoCs) performance analysis. Also, the respective strengths and weaknesses of each 
technique and its suitability for a specific purpose are investigated. An open research issue is a 
unified analytical model for a comprehensive performance evaluation of NoCs. To this end, the 
paper reviews the attempts that have been made to bridge these formalisms. 
 
 
Categories and Subject Descriptors: C.4 [PERFORMANCE OF SYSTEMS]: Modeling 
techniques 
 
General Terms: Design, Performance 
 
Additional Key Words and Phrases: System-on-Chip (SoC), Network-on-Chip (NoC), 
performance evaluation, analytical modeling 
 
1. INTRODUCTION 
It is essential to gain a solid understanding of a system’s performance as far as possible in 
advance of the system being implemented in detail and built. Therefore, performance models 
have been deployed in system design for many decades and, more recently, have been adopted 
for the study of System-on-Chip (SoC). In modern SoCs, the on-chip communication 
infrastructure or network-on-chip (NoC) is a dominant factor for design, validation, and 
performance analysis. SoC designers are interested in performance evaluation, given that their 
goal is either to provide the highest performance at a given cost or to provide a minimum level of 
performance at the lowest possible cost. In both cases, a reliable measure of performance is 
indispensible. However, the focus in the first case is typically on average performance, while the 
worst-case performance is the main metric in the latter case. In real-time systems such as 
automotive or avionic applications, the worst-case execution time is of particular concern; it is 
important to know how much time might be needed in the worst case in order to guarantee that 
the task will always finish its jobs before the predetermined deadline. However, the worst-case-
based design results in resource over-dimensioning. Therefore, average-case-based design 
methods are usually used for non-time critical applications in order to achieve a more efficient 
system.  

Performance estimation tools can be classified in simulation model and mathematical model. 
SoC designers have explored the design space using detailed simulations in order to tackle 
performance analysis. Although simulation tools are flexible and accurate, the complexity of 
modern SoCs imposes a firm limit on what can reasonably be simulated. Another disadvantage of 
a simulation-based design process is that the non-linear and non-monotonic behavior of system 
performance makes it difficult to draw conclusions from the simulation results regarding how to 



178 

 

 

adapt the system hardware or its programming. It is also difficult to determine the worst-case 
behavior of the SoC. An alternative approach is to build an abstract, analytical model for the 
architecture of the on-chip communication. An appropriate analytical model can estimate the 
desired performance metrics very early in the design phase, in a fraction of the time that 
simulation would take. Although the use of high-level models conceals a lot of complex 
technological aspects, it facilitates rapid exploration of the NoC’s design space. Also, the 
analytical models provide not only the timing properties of the system, but also useful feedback 
about the system’s behavior. Consequently, such models can be invoked in any optimization loop 
for NoCs in order to obtain fast and accurate performance estimations. Therefore, analytical 
models have a place alongside simulation in SoC performance analysis, and their importance is 
likely to grow as SoC communication architectures become increasingly complex and irregular. 
Several popular analysis methods, developed in other context years or even decades ago, have 
recently been adapted to NoC analysis. 

The purpose of this survey is to recapitulate the results from the mathematical formalisms – 
queueing theory, network calculus, schedulability analysis, and dataflow analysis – and their application to 
the analysis of NoCs. For each of them, we review the basic concepts and results in Section 2 to 
5. Section 6 considers a simple application and show how these formalisms can be used to 
evaluate the performance of a system. Section 7 presents attempts to combine these methods and 
finally their respective strengths, weaknesses, and suitability for a specific purpose are 
summarized in Section 8.  

 
2. QUEUEING THEORY 
2.1. Overview 
Queueing theory is a branch of probability theory. As shown in Figure 1, in a queueing system a 
population of customers at some time enters a service facility, which includes one server or multiple 
servers, in order to obtain service. If a new customer arrives and all servers are busy, it enters a 
queue and waits until one server becomes available. Therefore, In order to analyze such a system, 
we must identify the arrival process as well as the structure and discipline of the service facility.  

 
 

Figure 1: Model of a queueing system. 
 

In queueing theory, the arrival process and service time are specified probabilistically. Generally, 
the arrival process is described in terms of the cumulative distribution function (CDF) of the interarrival 
times of customers (the time between two successive arrivals) and is denoted A(t) where  

A(t) = P{interarrival time ≤ t}                                                      (1) 
 
The notation P{X} denotes the probability of the event X. A(t) is a non-negative and non-
decreasing function of t. Also, the probability density function (pdf) of interarrival times is 
 

arriving 

customers

server 1

server 2

server n

.

.

.

servers

queue
departed

customers



179 

 

 

#+%/ = ²²�³+%/                                                                    (2) 
 
For instance, if the interarrival time of customers has exponential distribution with parameter 
O (O > 0), then its CDF is given by  
 

³(%) = a1 − ´�«�        % ≥ 0
0                      % < 0

j                                                              (3) 
 
which is sketched in Figure 2.a. The corresponding pdf of the interarrival time is 
 

#(%) = aO´�«�        % ≥ 0
0                % < 0

j                                                                  (4) 
 
which is sketched in Figure 2.b. 
 
 

                        
(a)                                                                (b) 
 

Figure 2: (a) CDF and (b) pdf of an interarrival time with exponential distribution. 
 
 

The assumption in queueing systems is that these interarrival times are independent and 
identically distributed random variables. Similarly, service time, the length of time that a customer 
spends in the service center, is considered as another continuous random variable whose CDF 
and pdf respectively are   
 

B(x) = P{service time ≤ x}                                                     (5) 
 

"(v) = ²
²m .(v)                                                               (6) 

 
Regarding the structure and discipline of the service facility, a variety of additional quantities 

must be specified such as the extent of storage capacity available to hold waiting customers, the 
number of service stations available, the queueing discipline (FCFS, LCFS, and random order of 
service), etc.  

In addition to interarrival and service times distributions, queueing systems may differ in the 
number of servers, the capacity of queue (infinite or finite), and the service discipline. Some 
common service disciplines are: 
- FCFS (First-Come, First-Served): A customer that finds the service center busy goes to the end 
of the queue. 

0

0

A
(t

)

t

1111

0

0

a
(t

)

t

λλλλ



180 

 

 

- LCFS (Last-Come, First-Served): A customer that finds the service center busy proceeds 
immediately to the head of the queue. It will be served next, given that no further customers 
arrive. 

- RS (Random Service): The customers in the queue are served in random order. 
- RR (Round Robin): Every customer gets a time slice. If its service is not completed, it will re-
enter the queue. 

- PR (Priority): Every customer has a (static or dynamic) priority, the server selects always the 
customers with the highest priority. This scheme can use preemption or not. 

 
The Kendall notation is used for a short characterization of queueing systems [Bolch et al. 2006]. 

A queueing system description looks as A/B/m/K – S where A denotes the distribution of the 
customer interarrival time, B denotes the distribution of the service time, m denotes the number 
of servers, K denotes the maximum capacity of queue in the finite case (if K = ∞, then this letter 
is omitted) and the optional S denotes the service discipline used. If S is omitted, the service 
discipline is always FCFS. For A the following abbreviations are very common: 
 
- M (Markov property): this denotes the exponential distribution with average arrival rate of O 
customers/time unit. In other words, the number of customers follows a Poisson distribution 
with the average of 1 customer per 1/O time unit. 

- D (Deterministic): The interarrival times are constant and have the same value. 
- G (General): General distribution, not further specified. In most cases at least the mean and the 
variance are known. 

Similarly, B can be specified by these notations (M, D, and G) to describe the distribution of 
service time. For instance, the M/G/2/10-RS queueing system can be described as follows:  
- The customer interarrival times are exponentially distributed (with specified average). 
- The service time distribution is arbitrary (with specified average and variance).  
- There are two servers in the system.  
- The queue has room for at most 10 customers.  
- The customers in the queue are served in random order. 

After specifying a queueing system, it is appropriate that we identify the measures of 
performance and effectiveness that we shall obtain by analysis. Basically, we are interested in the 
waiting time for a customer, the number of customers in the queue, the length of busy and idle 
periods of the server (the continuous interval during which the server is busy or idle), and the 
current work backlog (unfinished work) expressed in units of time. All these quantities are 
random variables and thus we seek their complete probabilistic description such as their pdf. 
However, in most applications it is enough to calculate the first few moments (mean, variance, 
etc.). Also within the scope of queueing theory is the case where several servers are arranged in a 
network and customers move through the network to visit several servers.  

 
2.2. An Example 

As an example, consider a packet-switched mesh network that packet routing is carried out by a 
router at each node. Every node contains a processor and a router. Packets are injected into the 
network on crossbar input port 0 (injection channel) and leave on output port 0 (ejection 
channel) as shown in Figure 3.a. In the following, we utilize the queueing theory to estimate the 
average waiting time to access the ejection channel. The following assumptions are made when 
developing the queueing model. 
• The packet arrivals to the northern, eastern, southern, and western input channels are 

independent and follow Poisson processes with mean rate of O2 = 0.025, O� = 0.015, O9 =0.05, and O¶ = 0.01 packets/cycle, respectively. 



181 

 

 

• An infinite FIFO buffer is associated only with each input channels for storing packets in 
transit. 

• Messages are broken into some packets of fixed length. When a packet arrives on an ejection 
channel, it is accepted by the processor in 8 network cycles. Therefore, we can model the 
ejection channel as a constant-rate server with service rate of � = 1/8 = 0.125 
packets/cycle.  

• We consider an ejection channel as a server in which the packets have preferential treatment 
based on priorities associated with them. We assume that the priority of a packet is an integer 
fixed at arrival time, and packets with priority index 1, 2, 3, and 4 come from northern, 
eastern, southern, and western input channel, respectively. We say one packet has higher 
priority than another if it belongs to a priority class with lower index. For the service 
discipline, we assume that whenever a packet is traversed ejection channel completely, the 
ejection channel is next assigned to that packet at the head of the highest priority nonempty 
queue. 

 
 

 

         
 
                                        (a)                                                                            (b) 
Figure 3: (a) The structure of a router in 2D mesh network, (b) Queueing model of the ejection 
channel. 
 
 

To calculate the average waiting time for ejection channels, we model the ejection channel as 
an M/D/1 priority queue as shown in Figure 3.b. The average waiting time of random arrivals to 
the ith queue of M/D/1 system, �6�, can be written as [Bolch et al. 2006] 
 �6� = �B·∑ ���̧��J2�∑ �������� KJ2�∑ ������ K                                                           (7) 
 
where \� = O�/� . In this example, \2 = 0.2, \� = 0.12, \9 = 0.4  and \¶ = 0.08 . Thus, the 
waiting times can be computed as 
 �62 = 9.�2�V.� = 4.0 cycles �6� = 9.�+2�V.�/+2�V.9�/ = 5.9 cycles �69 = 9.�+2�V.9�/+2�V.º�/ = 16.8 cycles �6¶ = 9.�+2�V.º�/+2�V.L/ = 57.1 cycles 

ejection 
channel

from North
crossbar

switch

routing &

arbitration

injection 
channel

buffers

from East
from South
from West

to North
to East
to South
to West

processor

1
2
3
4

1
2
3
4

00

(λ1= 0.025) North

(λ2= 0.015) East

(λ3= 0.05) South

(λ4= 0.01) West

Ejection
0

µ = 0.125

1

2
3

4



182 

 

 

 
Using Little’s theorem [Kleinrock 1975], the average number of packets in each input port can 

be computed as follows: 
 �62 = O2�62 = 0.10 packet �6� = O��6� = 0.09 packet �69 = O9�69 = 0.84 packet �6¶ = O¶�6¶ = 0.57 packet 

 
2.3. Applications in NoCs 
Similar to other networks, traffic patterns play an important role in the performance of NoCs; 
consequently, traffic models are critically needed for effectively evaluating existing and new NoC 
designs. As a result, network traffic modeling is a first step towards understanding of the design 
space of NoC architectures, protocols and implementations. Soteriou et el. [2006] proposed an 
on-chip traffic model for homogeneous NoCs. The model is based on three statistical 
parameters: temporal burstiness, spatial hop distribution, and spatial injection distribution. The 
authors showed that their model captures the characteristics of NoC traffic accurately when 
compared to actual NoC application traces gathered from full system simulations of chip 
platforms. Varatkar and Marculescu [2004] have found long-range dependent behavior in 
communications traffic between different parts of the MPEG-2 video decoding application. They 
presented an approach for analyzing such a traffic pattern based on self-similar processes. They 
showed that characterizing the degree of self-similarity via the Hurst parameter helps in finding 
the optimal buffer-length distribution. However, Scherrer et al. [2009] showed that long-range 
dependence is not an ubiquitous property of the traffic produced by on-chip processors running 
multimedia applications. Using cycle-accurate simulator of a complete SoC, they showed that 
long-range dependence impact on the network-on-chip is highly correlated with the low level 
communication protocol used. 

Performance evaluation techniques for NoCs have been inherited from parallel and 
distributed processing research groups. Many of the previous analytical latency models in off-chip 
networks have been formulated for a specific topology and traffic pattern [Kim and Das 1994; 
Kiasari et al. 2008a]. Queueing theory has been used to estimate average performance metrics 
such as average packet latency, average throughput, average energy and power consumption, and 
average resource utilization. System designers utilize these metrics to make decisions for solving 
problems such as module placement [Kiasari et al. 2008d], routing decision [Kiasari et al. 2010], 
buffer configuration [Hu et al. 2006], and link capacity [Guz et al. 2007]. 

Guan et al. [1993] proposed an analytical model for a general topology with an exponential 
packet length distribution. Their approach has high complexity for high dimensional networks. 
Using queueing theory, Hu and Kleinrock [1997] presented a general analytical model for 
wormhole routing to estimate the average packet latency in interconnection networks. In order to 
provide fast performance estimates during the design cycle, Kim et al. [2005] developed a 
queueing theory-based model for quantifying the performance and energy behavior of on-chip 
networks. They assumed that packet arrivals at all input channels have Markov property. Hu et al. 
[2006] considered M/M/1/K queueing models and solved a series of nonlinear equations to 
quickly analyze the current buffer size configuration and detect the performance bottlenecks in 
the router channels. This model was then used in buffer sizing problem in packet-switched 
NoCs. More precisely, given the traffic characteristics of the target application and the total 
budget of the available buffering space, the proposed model automatically assigns the buffer 
depth for each input channel, in different routers across the chip, such that the average packet 
latency is minimized in the system. Based on M/M/1 queueing model, an analytical delay model 
for virtual channeled wormhole networks was proposed for link capacity allocation in NoC-based 



183 

 

 

systems by Guz et al. [2007]. This assignment algorithm allocates network resources efficiently so 
that quality of service (QoS) and performance requirements are met.  

Hur et al. [2008] presented a performance analysis of hard and soft on-chip networks for 
FPGAs. They applied the Jackson’s queueing model [Jackson 1957] to analyze the performance 
of a multiprocessor SoC. They further used the Jackson’s model to analyze circuit-switched NoCs 
and show that the hardwired networks perform significantly better than conventional soft NoCs. 
A Markovian performance model for torus on-chip networks with deterministic routing and 
wormhole switching was proposed by Kiasari et al. [2008b]. The model is then used to estimate 
the power consumption of all routers. This model is restricted to Poisson arrival process and 
uniform traffic pattern. Kiasari et al. [2008c] modeled each channel in an NoC with G/G/1-PR 
queueing model (G/G/1 queue with priority discipline) and estimated per-flow average packet 
latency. However, the modeling approach is limited to k-ary n-cube networks with single flit 
buffers and dimension-order routing algorithm. This model was used to map the processing 
cores onto an SoC architecture such that the average communication delay is minimized [Kiasari 
et al. 2008d]. A case-study of using an analytical method, based on Markov chain stochastic 
processes, for latency evaluation of an NoC arranged in a 2D mesh topology, with deterministic 
routing algorithm and uniform traffic pattern was presented by Foroutan et al. [2009].  

Foroutan et al. [2010] proposed a generic analytical model to estimate communication 
latencies and link-buffer utilizations for wormhole-switched NoCs with a given application 
mapped on it. This work correctly models the resulting interdependencies between the routers. 
An analytical performance model for wormhole-switched NoCs has been proposed by Ogras et 
al. [2010]. Using M/G/1 queueing model, the average number of packets at each buffer is 
computed. This model provides three performance metrics, namely average buffer utilization, 
average packet latency, and network throughput. Another analytical model to estimate the 
communication performance of wormhole-switched NoCs is presented by Cheng et al. [2011]. 
This model supports arbitrary network topology with virtual channels. To resolve the inherent 
dependency of successive links occupied by a packet, the authors use routing path decomposition 
approach to generating a series of ordered link categories. Next, they used M/M/1 and 
M/M/1/K queueing models to derive the transmission latency of network components. The 
analytical model proposed by Krimer et al. [2011] is inspired by industrial work-flow modeling 
techniques. The authors introduced a packet-level static timing analysis for wormhole-switched 
NoCs with virtual channels. It relies on a reduced Markov chain to represent the network state, 
including the occupancy of all buffers. The model handles any topology, link capacities, and 
buffer sizes and provides per-flow delay analysis. Wang et al. [2011] proposed a performance 
analytical model using semi-Markov process to estimate the average packet latency in NoCs. 
More precisely, semi-Markov process is used to describe the behavior of each link in the network 
and the header flit delay is calculated.  

Kiasari et al. [2012] extended the proposed queueing model by Kiasari et al. [2008c] to support 
arbitrary topology, buffer size, and oblivious routing algorithm. This model is developed for 
wormhole switching and it supports any kind of spatial and temporal traffic patterns. Spatial 
traffic pattern refers to the distribution of packet destinations and temporal component of traffic 
is determined by the distribution of interarrival time of packets. It means that the model accepts 
both Poisson and non-Poisson arrival processes. The average packet latency (L) is used as the 
performance metric. The authors assume that the packet latency spans the instant when the 
packet is created, to the time when the packet is delivered to the destination node. They also 
assume that the packets are consumed immediately once they reach their destination nodes. In 
Figure 4, consider a flow which is generated in IPS, and reaches its destination +)D�/  after 
traversing routers W�, W�, and W�. The latency of this packet +*�→�/ consists of two parts: the 
latency of head flit +*��→�/ and the latency of body flits +*�/. *��→�	is the time since the packet is 
created in )D�, until the head flit reaches the )D�, including the transfer times of a flit across the 
injection and ejection channels (tinj and tej), routing decision delay for a packet (tr), crossing time of 



184 

 

 

a flit over the crossbar switch (ts), and transfer time of a flit across a wire between two adjacent 
routers (tw), and queueing time spent at the source node and intermediate nodes (��→��  , the mean 
waiting time for a packet from input port i of node N to output port j of the same node). Having 
looked at Figure 4, we can infer that the latency of a head flit of a two-hops packet includes 

injection channel delay (tinj), first router delay J%� +����→�l>�� + %>K, inter-node wire delay (tw), 

second router delay +%� +���>�→�l>�� + %>/ , inter-node wire delay (tw), third router delay J%� +���>�→��� + %>K, and ejection channel delay (tej). Therefore, it can be written as 
 

                                                   *��→� = %��� + J%� +����→�l>�� + %>K   													+	%� + +%� +���>�→�l>�� + %>/                                          (8)                                             
                                                            +	%� + J%� +���>�→��� + %>K + %��  
 

 

 
Figure 4: A two-hops flow from IPS (source) to IPD (destination). 

 
Once the head flit arrives at the destination, the body flits follow the header flit in a pipelined 
fashion. Therefore, the only unknown parameter for computing the latency is ��→�� . This value 
was calculated using a priority queueing model. Later, in Section 6.1, we show how to use this 
analytical model to estimate the average packet latency. 

Studies done by Varatkar and Marculescu [2004] have demonstrated that the traffic of some 
multimedia applications exhibits a long-range dependent behavior which has a considerable 
impact on queueing performance. The assumption of the traditional Poisson arrival process is 
inherently unable to capture such a traffic pattern. Therefore, it is crucial to re-examine the 
performance properties of interconnection networks in the context of more realistic traffic 
models before practical implementations show their potential faults. Toward this end, Min and 
Ould-Khaoua [2004] proposed an analytical queueing model for wormhole-switched networks in 
the presence of self-similar traffic. This study reveals that the network suffers considerable 
performance degradation when subjected to self-similar traffic, stressing the great need for 
improving network performance to ensure efficient support for this type of traffic.  

In queueing theory, generally, the average quantities in an equilibrium state are considered. 
Characterizing the transient behavior of queueing systems is known as a very difficult problem 
which has been addressed by either simplified analytical models or simulation [Odoni and Roth 
1983; van As 1986; Bertsimas and Mourtzinou 1997; Yang and Liu 2010]. As an alternative 
approach, Bogdan and Marculescu [2007] proposed a statistical physics inspired framework to 
analyze the traffic dynamics in NoCs and show how the non-stationary effects of the system 
workload can be effectively captured. The temperature of a physical system is replaced by the 
NoC packet injection rate and the authors predicted that the buffer occupancy follows a power 
law distribution. Later, they addressed the buffer sizing problem under non-equilibrium 
conditions [Bogdan and Marculescu 2009]. The main idea in this model is that packets move 
from one node to another in a manner that is similar to particles moving in a Bose gas and 
migrating between various energy levels as a consequence of temperature variations. Bogdan and 
Marculescu [2010; 2011] also investigated the impact of non-stationary effects (as a function of 
packet injection rate) on buffer overflow probability and node-to-node latency exceedance 
probability. 

In order to analyze a queueing system, it is necessary to know something about the laws 
governing the arrival pattern, the logic governing the behavior of the queue, and the 

S M D

IPS IPD

inj ej

East

West

East

West



185 

 

 

characteristics of the service facility. Queueing theory is concerned with the mathematical analysis 
of such systems subject to demands whose occurrences and lengths can, in general, be specified 
only probabilistically. 

 
3. NETWORK CALCULUS 
3.1. Overview 
Network calculus is a mathematical framework to derive the worst-case bounds on maximum 
latency and backlog in a single node and a network of nodes. Therefore, it can be seen as a theory 
for analyzing performance guarantees in computer networks. Cruz [1991a; 1991b] has pioneered 
the network calculus and based on Cruz’s foundation, Chang [2000] and Le Boudec and Thiran 
[2001] have further developed the network calculus theory and based it on min-plus algebra. The 
basic elements in this algebra are arrival curves as an abstraction of application traffic and service 
curves as an abstraction of network elements. Network calculus is similar to conventional system 
theory, in which a system consists of an input function, a transfer function and an output 
function. The difference to conventional system theory is that the min-plus algebra is used, where 
addition and multiplication are replaced by minimum and addition, respectively. As in 
conventional system theory, a key operation in network calculus is the min-plus convolution. The 
min-plus convolution of t+%/ and ½+%/ is defined as 
 +t ⊗ ½/+%/ = ��rV¿À¿Á		�t+:/ + ½+% − :/�.                                          (9) 
 

The infimum (inf) is similar to the minimum; a minimum of a set is the smallest element of the 
set, and of course, is in the set. An infimum of a set is the greatest lower bound of the set, and need 
not to be in the set. The same applies for the maximum and supremum (sup). 

In network calculus theory, cumulative functions R(t) and R*(t) describe the input function and 
output function, respectively. They represent the number of bits (words, or packets) seen on the 
input and output data flow in time interval [0, t]. It is obvious that functions R and R* are always 
monotonically increasing functions. System S receives input data and delivers the output data 
after a variable delay. System S might be, for example, a single buffer served at a constant rate, a 
complex communication node, or even a complete network. 

The backlog is the number of bits that are held inside the system; if the system is a single 
buffer, it determines the queue length. In contrast, if the system is more complex, then the 
backlog is the number of bits “in transit”, assuming that we can observe input and output 
simultaneously. Therefore, for a lossless system the backlog at time t is  
 

                            b(t) = R(t) – R*(t).                                                  (10) 
 

The virtual delay at time t is the delay that would be experienced by a bit arriving at time t if all 
bits received before it are served before it. Hence, the virtual delay at time t is  
 P+%/ = infTUV�	W+%/ ≤ W∗+% + Y/�.                                               (11) 
 

In other words, d(t) is the smallest value satisfying R*(t + d(t)) = R(t). As shown in Figure 5, 
the backlog and virtual delay are shown as the vertical and horizontal deviation between input 
and output functions, respectively. In network calculus theory, the input and transfer functions 
are referred to as arrival curve and service curve, respectively.  

 
 



186 

 

 

            
                                           (a)                                                  (b) 

Figure 5: Backlog and virtual delay of a flow at time t. 
 
3.1.1. Traffic Model 
Assume that we want to provide guarantees to traffic flows. This requires some specific support 
in the network to limit the traffic sent by sources. This is done by using the concept of arrival 
curve, illustrated in Figure 6.a. Given an increasing function α(t) defined for t ≥ 0, we say that an 
input flow R(t) is constrained by α(t) if and only if for all s ≤ t:  
 

R(t) − R(s) ≤ α(t − s).                                                           (12) 
 
The min-plus representation of this equation is  
 

R ≤ R ⊗ α.                                                                     (13) 
 
We say that R has α as an arrival curve, or also that R is α-smooth.  

A common arrival curve is leaky bucket arrival curve (or affine arrival curve) defined by 
 G+%/ = Z�,[ = \% + ],								% ≥ 0.                                                        (14) 

 
where ρ is the rate of the flow (in units of data per time unit) and σ  limits the burstiness of 

the flow (in units of data). Having such an arrival curve allows a source to send σ  bits at once, 
but not more than ρ bits/second over the long run. The (σ , ρ) traffic characterization was 
initially proposed by Cruz [1991a] and the corresponding arrival curve is shown in Figure 6.b. 

                       
   (a)                                                    (b) 

Figure 6: (a) Input function R(t) is constrained by an arrival curve α(t), (b) Leaky bucket (affine) 
arrival curve. 
 

server
R(t ) R*(t )

input flow output flow
0

0

d
a

ta
 v

o
lu

m
e

 (
b

it
s)

time (sec)

R(t)

R*(t)

d(t)

b(t)

t

0 0

R
(t

)
-
R

(s
)

t-s

R
(t

)

t
s

R(s)

0

1 0

2 0

3 0

0 5 1 0 1 5

d
a

ta
 v

o
lu

m
e

time 

σ

rate ρ



187 

 

 

3.1.2. Network Elements Model 
Service curve describes minimal service levels of network elements (router, channel, etc). It often 
abstracts a scheduling policy. Consider a system S and a flow through S with input and output 
functions R and R*. We say that S offers to the flow a service curve β if and only if  
 
- β is an increasing function. 
- β(0) = 0.                                                                                                                                  (15) 
- R* ≥ R ⊗ β. 
 
In other words, for all t, there exists some s ≤ t such that 
 

R*(t) ≥ R(s) + β(t-s).                                                                  (16) 
 
Figure 7.a shows a graphical representation of this condition. A well-defined service curve is 
latency-rate function ��,	,  
 ��,	+%/ = W+% − `/
 = aW+% − `/,							% > `,										0,																				otherwise.		 j                                         (17) 
 
where R is the service rate and T the maximum response delay of the node [Stiliadis and Varma 
1998]. Figure 7.b shows such a service curve which is widely used to model the routers in a 
network. 
 

                      
             (a)                                                                         (b) 

 
Figure 7: (a) Definition of service curve, (b) A latency-rate service curve. 

 
3.1.3. Basic Bounds 
Assume a flow, constrained by an arrival curve α, traverses a system that offers a service curve β.  
- The backlog for all t satisfies 

 "+%/ = W+%/ − W∗+%/ ≤ >Â�ÀUV		�G+:/ − �+:/�                                       (18) 
 

- The virtual delay for all t satisfies  P+%/ ≤ >Â�ÀUV		u ��rτUV		�G+:/ ≤ �+: + Y/�w                                                  (19) 
 

- The output flow is computed by the min-plus deconvolution operator +⊘/ and constrained by 
the curve  

 G∗ = G ⊘ � = >Â�ÄUV		 �G+% + Å/ − �+Å/�                                                (20) 
 

0

1 0

2 0

3 0

0 5 1 0 1 5

d
a

ta
 v

o
lu

m
e

time 

R(t)

R*(t)

R(s)+β(t-s)

t

R*(t)

R(s)

s

x

x

R*(t) ≥ R(s)+β(t-s)

t

R*(t)

R(s)

s

x

x

R*(t) ≥ R(s)+β(t-s)
0

1 0

2 0

3 0

0 5 1 0 1 5

d
a

ta
 v

o
lu

m
e

time T

βR,T =R(t-T )
+

rate R



188 

 

 

For instance, in a system with leaky bucket arrival curve and latency-rate service curve shown 
in Figure 8, the maximum backlog, maximum delay, and output traffic characterization are [Le 
Boudec and Thiran 2001] 
 "klm = ] + \`,                                                                      (21) 

 Pklm = ` + ] W,⁄                                                                    (22) 
 G∗+%/ = Z�,[
�	 = \% + ] + \`.                                           (23) 

 
 

  
Figure 8: Maximum backlog and delay in a system with leaky bucket arrival curve and latency-rate 
service curve. 
 

Using superposition theorem, concatenation theorem, and leftover service theorem [Jiang and Liu 2008], 
network calculus can be applied to a network of nodes. 

 
Superposition: Consider the superposition of n flows Ri, i = 1, ... , n. If each flow Ri has an 
arrival curve αi ,the aggregate flow R has an arrival curve G = ∑ G���72 .  
Superposition property implies that the aggregate of individual flows can be represented by a 
single aggregate flow. For instance, the aggregate flow of two flows constrained by G2 = Z��,[� 
and G� = Z�B,[B is constrained by Z��
�B,	[�
[B, because: 
 G = 	G2 + G� = Z��,[� + Z�B,[B = +\2% + ]2/ + +\�% + ]�/ = 	 Z��
�B,[�
[B 
 
Concatenation: Similar to traditional system theory, the concatenation of a series of servers in 
tandem with service curves �� (i = 1, ... , n) offers a service curve of � =	⊗�72� �� = �2 ⊗�� ⊗…⊗��. As an example, consider two nodes offering each a latency-rate service curve ���,	� and  ��B,	B. A simple computation gives � = ���,	� ⊗��B,	B = �ÆÇÈ+��,�B/,		�
	B 

 
Leftover service: Consider a system offers a service curve β to the aggregate of flows R1 and R2. 
If R1 has an arrival curve α1, then +� − G2/
 can be a service curve for flow R2. For instance, 
assume a latency-rate server serves an aggregate of two flows as shown in Figure 9.a. If flow 1 is +]2, \2/ regulated flow, then the offered service to flow 2 is: 
 

�� = +� − G2/
 = +	W+% − `/
 − +\2% + ]2/	/
 = +W − \2/ ©% − 0` + ��	
[����� 8ª
 =�����,	
��������� 	  

0

1 0

2 0

3 0

0 5 1 0 1 5

d
a

ta
 v

o
lu

m
e

time 

leaky bucket arrival curve

rate-latency service curve

σ

rate ρ

dmax

T

rate R

bmax



189 

 

 

 
It means that the second flow is guaranteed a latency-rate service curve with parameters W� = W − \2, and �̀ = ` + ��	
[�����  as shown in Figure 9.b. 

 
 

 
                                                          (a)                                       (b) 
 

Figure 9: (a) Server offers a service curve � to the aggregate of two flows, (b) The second flow 
receives leftover service curve �� = �����,	
��������� 	. 

 
Network calculus has been extremely successful when applied to ATM and IP networks with 
both differentiated and integrated services to achieve predictable performance [Le Boudec and 
Thiran 2001]. Recently, it has also been applied to wireless LAN [Kim and Hou 2009], sensor 
networks [Schmitt and Roedig 2005; She et al. 2009], and on-chip networks [Jafari et al. 2010]. 
Network calculus has been extended to a few directions. In the following, we briefly describe the 
real-time calculus and stochastic network calculus. 
 
3.1.4. Real-Time Calculus 
Chakraborty et al. [2003] proposed real-time calculus to model and analyze heterogeneous 
systems in a compositional manner. It is a framework based on network calculus and relies on the 
modeling of timing properties of event streams and available resources with curves called arrival 
curves and service curves. In real-time calculus, an arrival curve is function of relative time that 
constrains the number of events that can occur in an interval of time. For any sliding window of 
time of length ∆, the pair of arrival curves +GÉ, GÂ/ gives the lower bound GÉ+∆/ and upper 
bound GÂ+∆/ on the number of events. Similarly, the processing capacity of a component is 
specified by a service curve +�É, �Â/. The number of events that may be processed in any time 
interval of size ∆  is at least �É+∆/   and at most �Â+∆/ . In other words, arrival curve G =+GÉ, GÂ/  and service curve � = +�É, �Â/ are expressed in terms of numbers of events per time 
interval. As an alternative representation, Altisen et al. [2010] expressed arrival and service curves in 
terms of length of time interval. In this case, an arrival curve is represented by a pair of curves Ê = +ÊÉ, ÊÂ/. ÊÉ+o/ and ÊÂ+o/ respectively provide the lower and upper bounds on the length of 
the time interval during which any k consecutive events can arrive. Let %� denote the arrival time 
of the ith event; we have ÊÉ+o/ ≤ %�
� − %� ≤ ÊÂ+o/  for all � ≥ 0  and o ≥ 0 . Also, the 
processing capacity of a component is specified by a service curve Ë = +ËÉ , ËÂ/. The length of 
the time to process any k consecutive events for any potential stream is at least ËÉ+o/ and at 
most ËÂ+o/. Actually, Ê  is a pseudo-inverse of G , satisfying ÊÂ+o/ = ��s∆UV	�∆|GÉ+∆/ ≥ o� 
and ÊÉ+o/ = �#v∆UV	�∆|GÂ+∆/ ≤ o�  (same for �  and Ë ). Also, the length of the time to 
process any k consecutive events for any potential stream is at least ËÉ+o/  and at most ËÂ+o/. 

Based on the results from network calculus, the maximum delay experienced by an event and 
the maximum number of backlogged events from the stream that waiting to be processed can be 
given by the following inequalities: 
 P´$#& ≤ >Â�ÁUV		u ��rτUV		�GÂ+%/ ≤ �É+% + Y/�w                                         (24) 
 "#{o$!½ ≤ >Â�ÁUV		�GÂ+%/ − �É+%/�                                                 (25) 

α1= γρ1,σ1

α2

α1
*

α2
*

βR,T α2 α2
*β 2



190 

 

 

  
Furthermore, real-time calculus gives exact bounds on the output stream of a component as a 
function of its input stream. This result can then be used as input for the next component.  An 
event stream entering a processing or communication resource gets processed or transmitted, 
thereby generating an outgoing event stream which might enter another resource. As a result, the 
processing capability (such as the processor or bus bandwidth) of the resource, as specified by its 
upper and lower service curves gets modified.  

Given an event stream which is specified by its arrival curves G = +GÉ, GÂ/ and a resource 
which processes this event stream and its processing capability being specified by its service 

curves � = +�É, �Â/. Let G ′ = +GÉ′ , GÂ′/ denote the outgoing arrival curve of the (processed) 

event stream and �′ = +�É′ , �Â′/  denote the remaining service curves of the resource. By 
generalizing ideas from network calculus, these curves can be calculated as follows [Chakraborty 
et al. 2003]: 

 GÉ′+∆/ = ��s Í�É+∆/, �stV¿�¿∆�:Å�«UV�GÉ+� + O/ − �Â+O/� + �É+∆ − �/�Î  (26) 

 

       GÂ′+∆/ = ��s Í�Â+∆/, :Å�«UVu�stV¿�¿«
∆�GÂ+�/ + �Â+O + ∆ − �/� − �É+O/wÎ         

(27) 
 �É′+∆/ = :Å�V¿«¿∆��É+O/ − GÂ+O/�       (28) 
 

       �Â′+∆/ = �#vÍ0, �st«U∆��Â+O/ − GÉ+O/�Î                           

(29) 
3.1.5. Stochastic network calculus 
Stochastic network calculus [Jiang and Liu 2008] is the probabilistic version of the (deterministic) 
network calculus. Providing deterministic service guarantees often results in low resource 
utilization in the network. However, in some applications, such as multimedia applications, excess 
delay and loss for a small amount of data can be tolerated. For such applications, providing 
stochastic service guarantees can give better utilization of resources in the network without 
jeopardizing performance. Furthermore, in some networks, such as wireless networks, the service 
offered by a communication channel may vary randomly over time due to channel contention 
and impairment. Such networks can only provide stochastic services and guarantees [Jiang and 
Liu 2008]. Also, several stochastic versions of arrival curve have been proposed by extending the 
concept of arrival curve to the stochastic case based on the traffic amount property or virtual 
backlog property. In contrast to the deterministic arrival curves, stochastic arrival curves envelop 
traffic tighter, but have higher implementation complexity. An arrival process R is said to be 
constrained by a stochastic arrival curve a(t) with bounding function t+v/ if for all 0 ≤ : ≤ % 
and v ≥ 0 there holds [Jiang and Liu 2008] 
 D�:Å�V¿>¿��W+%/ − W+:/ − #+% − :/� > v� ≤ t+v/                                  (30) 
 
where notation P{Z} means the occurrence probability of event Z. Also, a system S is said to 
provide a stochastic service curve β with bounding function ½+v/, if for all % ≥ 0 and v ≥ 0 
there holds [Jiang and Liu 2008] 
 D�:Å�V¿>¿��W⨂�+:/ − W∗+:/� > v� ≤ ½+v/                                           (31) 
 



191 

 

 

Similar to network calculus, the probabilistic versions of backlog and delay bounds are computed 
based on stochastic arrival and service curves. 
 
3.2. Applications in NoCs 
Zhang [1995] surveyed several service disciplines proposed in the literature to provide per-
connection end-to-end performance guarantees in packet-switching networks. Various issues and 
trade-offs in designing service disciplines for guaranteed performance service are discussed, and a 
general framework for studying and comparing these disciplines are presented. This work gives 
an excellent overview of guaranteed service in networks that can be applicable to NoCs.  

Network calculus can be used to estimate the worst-case flow delays and backlogs in a given 
system. Qian et al. [2009c] investigated per-flow flit and packet worst-case delay bounds in on-
chip wormhole networks. The authors first proposed analysis models for flow control, link and 
buffer sharing, and then based on these analysis models, they obtained an open-ended service 
analysis model capturing the combined effect of flow control, link and buffer sharing. With the 
service analysis model, they computed leftover service curves for individual flows, and then 
derived their flit and packet delay bounds.  

Lu et al. [2009] defined a regulation spectrum for lossless flow regulation and used it to reduce 
delay and backlog bounds in SoC architectures. Based on the regulation spectrum, Jafari et al. 
[2010] then formulated optimization problems for minimizing total buffers and buffer variations 
under QoS constraints. The regulation analysis was performed for best-effort networks. 
Bakhouya et al. [2011] presented a methodology to analyze and evaluate on-chip interconnects in 
terms of performance and cost metrics such as latency, energy consumption and area 
requirements. The 2D mesh, spidergon, and WK-recursive topologies were compared using a 
given traffic pattern. The authors showed that WK-recursive outperforms the mesh and 
spidergon in all considered metrics. Lu [2011] used network calculus to analyze and determine the 
delay and buffer bounds for TDM virtual circuits crossing synchronous clock domains.   

Qian et al. [2009a] applied network calculus to NoCs in order to analyze delay and backlog 
bounds for self-similar traffic. The authors first showed that self-similar traffic cannot be 
constrained by any deterministic arrival curve. Then they proved that self-similar traffic can be 
constrained by leaky bucket arrival curves if an additional parameter, excess probability, is used to 
capture its burstiness exceeding the arrival envelope. Qian et al. [2010a] derived the worst-case 
delay bound for an individual flow on packet-switched best-effort NoCs. To derive the leftover 
service curve for the flows, the authors first constructed a contention tree [Lu et al. 2005] for each 
flow, which captures its contention with other interfering flows along its routing path, and then 
scanned the tree. A tagged flow directly contends with interfering flows. Also, interfering flows 
may contend with each other and then contend with the tagged flow again. This indirect 
contention may, in turn, influence the performance of the tagged flow. To decompose a complex 
contention scenario, they identified three primitive contention patterns. Figure 10 shows a tagged 
flow, f(1,N), traverses a tandem of N routers from source to destination, and is multiplexed with 
contention flows. The contention scenarios the tagged flow may experience can be classified into 
three patterns, nested, parallel, and crossed. The authors analyzed the three scenarios and derived 
their basic analytical models with focus on the derivation of the service curve the tandem 
provides.  

For nested, parallel, and crossed contention flows, the service curve of tandem (1,N) for 
f(1,N) are calculated as in Eqs. (32), (33), and (34), respectively. Interested readers can find more 
details in [Qian et al. 2010a]. 

 �+2,�/ = J⊗�72Ð�2 ��K ⊗ �+2,�/�Ð→��,�® ⊗ +⊗�7�
2� ��/                                                         (32) �+2,�/ = J⊗�72Ð�2 ��K ⊗ �+2,�/�Ð→��,�® ⊗ J⊗�7�
2��2 ��K ⊗ �+2,�/��→��,�® ⊗ +⊗�7�
2� ��/           (33) �+2,�/ = J⊗�72Ð�2 ��K ⊗ �+2,�/�Ð→��2�,�® ⊗�+2,�/��→��,�® ⊗ +⊗�7�
2� ��/                                  (34) 



192 

 

 

 
 

 

 
(a) 
 

 
(b) 
 

 
(c) 
 

Figure 10: Three basic contention patterns for a tagged flow: (a) nested, (b) parallel, and (c) 
crossed [Qian et al. 2010a] © IEEE 2010. 
 
After obtaining the tandem service curve, the authors derived closed-form formulas to calculate 
the delay bound and output arrival curve based on Eqs. (19) and (20), respectively. The authors 
showed that the simulated delays are totally constrained by the calculated delay bounds and the 
bounds are all tight. In this work, the authors have assumed big enough buffers in routers. 
Bounded buffers and virtual channels were considered in [Qian et al. 2009b] and [Qian et al. 
2010b], respectively. 

Based on real-time calculus, Hamann et al. [2004] presented a framework for design space 
exploration and system optimization for heterogeneous SoCs and distributed systems using 
SymTA/S, a software tool for formal performance analysis. SymTA/S takes the hierarchical 
structure of the design space of heterogeneous SoCs and distributed systems into account, 
allowing the designer to control the exploration process. The authors showed that optimization 
potential through traffic shaping in complex SoCs and distributed systems is very high. 
Therefore, the central aspect in their proposed framework is traffic shaping. Although traffic 
shaping is a promising approach for implementing real time systems, it is not suitable for non-real 
time and best-effort systems; since it makes the system non-work-conserving. SymTA/S allows 
designers to control the exploration process and provides them with insights on system-level 
performance dependencies. Based on this knowledge, designers can identify interesting design 
sub-spaces, worthy to be searched in-depth or even completely.  

Soft real-time applications, such as a video decoder, may miss some deadlines without much 
of a detriment to their perceived performance. In these instances, Nelson et al. [2010] proposed a 
conservative simulation approach as an alternative to formal modeling for soft real-time 
applications. The authors introduced a hybrid simulation method which enables performance 
guarantees on a per-trace basis, without any modeling effort. Furthermore, they evaluate an 
implementation of the described technique and compare it with an actual MPSoC instance 
implemented on an FPGA.  

Network calculus emerged as a new theory for the analysis of performance bounds in 
network-based systems. In contrast to queueing theory, network calculus deals with worst-case 
analysis instead of average-case analysis. Hence, it has been a promising formalism for quality of 

1 ... g ... h ... j ... k ... Nf(1, N)

f(g,k) f(h,j)

1 ... g ... h ... j ... k ... Nf(1, N)

f(g,h) f(j,k)

1 ... g ... h ... j ... k ... Nf(1, N)

f(g,j) f(h,k)



193 

 

 

service analysis. With network calculus, we are able to derive the worst-case bounds on maximum 
latency, backlog, and minimum throughput. 

 
4. SCHEDULABILITY ANALYSIS  
4.1. Overview 
Schedulability analysis is a mathematical formalism to investigate the timing properties in real-
time systems. It was originally proposed to analyze the computation systems [Liu and Layland 
1973; Leung and Whitehead 1982; Lehoczky et al. 1989] and then applied to communication 
platforms such as multicomputers [Li and Mutka 1994] and NoCs [Shi and Burns 2008]. Usually 
in schedulability analysis, tasks are modeled with periodic and sporadic models. Periodic and 
sporadic tasks are released repeatedly. A periodic task is released at regular intervals and sporadic 
task is released at arbitrary times, but with a specified minimum time interval between releases. 
Given a set of periodic and sporadic tasks, their worst-case execution time, and a scheduling 
policy, schedulability analysis determines whether it is possible to schedule these tasks, such that 
deadline misses never occur. The earliest results in real-time scheduling and schedulability 
analysis have been obtained under restrictive assumptions about the task set and the underlying 
architecture: the task set is composed of a fixed number of independent tasks mapped on a single 
processor, the tasks are periodically released, each with a fixed period, the deadlines equal the 
periods, and the task execution times are fixed. Later works were done under more relaxed 
assumptions such as multi-processor systems, data dependency relationships among the tasks, 
deadlines less than or equal to the periods, and sporadic tasks. 

Usually real-time systems are equipped with a schedulability test [Wu et al. 2010], which 
determines whether each of the admitted tasks can meet its deadline. A new task will not be 
admitted unless it passes the schedulability test. The schedulability test can be either direct or 
indirect. In a direct schedulability test the worst-case response time of the tasks is calculated and a 
task set is schedulable if and only if the worst-case response time of each task is less than or equal 
to its deadline. This type of test is accurate, but the computing cost in calculating the response 
times is very high. Audsley et al. [1993] proposed an iterative formula to compute the worst-case 
response time of a periodic task set. The complexity of this test is pseudo-polynomial, thus it may 
be unsuited for online admission control, especially in those real-time applications consisting of 
large task sets. Sjodin and Hansson [1998] proposed a few methods for reducing the number of 
iterations in computing the tasks response times. However, the worst-case complexity of their 
test is still pseudo-polynomial. Indirect schedulability tests do not compute the delays, but test 
another performance factor of the system to determine the task schedulability. The utilization-
based test is the most common indirect schedulability test which tests system resource utilization 
to determine the task schedulability. A new task can be admitted only if the utilization is lower 
than a pre-derived bound. For utilization-based schedulability test, a task set is schedulable when 
the utilization of the task set is lower than a pre-derived bound. 

In the seminal work of Liu and Layland [1973], the problem of multiprogram scheduling on a 
single processor is studied. They derived a utilization bound for rate monotonic (RM) scheduling 
policy in which a task with a shorter period is given a higher priority than a task with a longer 
period. They considered sets of periodic tasks on a uniprocessor system under the assumptions 
that all tasks start simultaneously at time % = 0, deadlines are equal to periods and tasks are 
independent. Under such assumptions, a set of n periodic tasks is schedulable by RM algorithm if  
 ∑ ��	���72 ≤ s 022 �¢ − 18                                                      (35) 
 
where (� is the worst-case execution time (WCET) of task i, �̀ is the period of task i, and n is the 
number of tasks. The left-hand side of the inequality represents the maximum utilization of the 



194 

 

 

system and the right-hand side represents the utilization bound, a quantity which decreases 
monotonically from 0.83 when s = 2 to ln 2 	≈ 0.69 as s → +∞.  

In the same paper, they analyzed the set of tasks in the case they are dynamically scheduled by 
a runtime scheduler according to a dynamic assignment of priorities to tasks. The assignment is 
made according to the earlier deadline first (EDF) algorithm (the closer the task deadline, the 
higher the task priority). Task preemption is allowed. Under these assumptions, they proved that 
a task set is schedulable if and only if 
 ∑ ��	���72 ≤ 1                                                                   (36) 

 
Consequently, it can meet all the deadlines of all periodic tasks up to full processor utilization. 
They also proved that in a uniprocessor system RM and EDF are the optimal static and dynamic 
priority assignment algorithms, respectively. In other word, if a task set is not schedulable by RM 
(EDF), then it cannot be scheduled by any other static (dynamic) priority assignment. As an 
example, consider a processor with 3 tasks which their WCET and period are shown in Table 1. 
 

Table 1: Time properties of tasks in a real-time system. 
 

task WCET +(�/ period + �̀/ 
task 1 1 5 
task 2 3 9 
task 3 2 10 

 
The maximum utilization of the processor is 1/5 + 3/9 + 2/10 = 0.73 and the utilization bound 
for 3 tasks is U = 3(21/3 - 1) = 0.78. Since 0.73 < 0.78 the system is surely schedulable by the RM 
algorithm.  

In spite of the dominance of the EDF over the RM, the RM algorithm is more common in 
practical real-time systems, because it is easier to implement [Sha et al. 1986]. The typical 
motivations that are usually given in favor of RM state that RM introduces less runtime overhead, 
it is easier to analyze, it is more predictable in overload conditions, and causes less jitter in task 
execution. However, Buttazzo [2005] compared RM against EDF under several aspects, using 
theoretical results and simulation experiments to show that many common beliefs are either false 
or only restricted to specific situations. 

Based on Liu and Layland’s result, any periodic task set of any size will be able to meet all 
deadlines all of the time if the rate monotonic algorithm is used and the total utilization is not 
greater than 69%. It is worth mention that this condition is sufficient and not necessary. In 
practical systems, the RM algorithm can often successfully schedule task sets having total 
utilization higher than 69%. Based on stochastic analysis, Lehoczky et al. [1989] performed an 
average-case study and showed that for randomly generated task sets consisting of a large number 
of tasks whose periods are drawn from a uniform distribution, 88% is a good approximation to 
the threshold of schedulability for the RM algorithm. This implies that due to better resource 
utilization, the average-case is substantially better than the worst-case. Exact schedulability tests 
for RM yielding to necessary and sufficient conditions have been independently derived by 
Joseph and Pandya [1986], Lehoczky et al. [1989], Audsley et al. [1993], and Manabe and Aoyagi 
[1995].  

Leung and Whitehead [1982] considered the case of deadlines smaller than periods and they 
proved that the deadline monotonic priority assignment is optimal. Also, arbitrary deadline 
assignment schemes are studied in [Lehoczky et al. 1989; Lehoczky 1990; Peng and Shin 1993]. 
Xuan et al. [2000] and Abdelzaher et al. [2004] derived some utilization bounds for non-periodic 



195 

 

 

systems. Pop et al. [2000] proposed solutions to the schedulability analysis of hard real-time 
systems with control and data dependencies. 

Oh and Bakker [1998], Liu [2000], and Bini et al. [2003] proposed approaches for deriving 
polynomial time tests with better acceptance ratio. For instance, the hyperbolic bound proposed 

in [Bini et al. 2003] improves the acceptance ratio by a factor of √2 for large n, compared with 
the Liu and Layland test. According to hyperbolic bound method, a set of periodic tasks is 
schedulable by RM if  ∏ 0��	� + 18��72 ≤ 2                                                               (37) 

 
The authors also extended this test in the case of resource constraints and aperiodic servers. Bini 
and Buttazzo [2004] derived a schedulability test for periodic task sets under an arbitrary fixed 
priority assignment which can be tuned through a parameter to balance complexity versus 
acceptance ratio, so that it can be used online to better exploit the processor, based on the 
available computational power.  
Oh and Son [1995] studied the problem of allocating a set of periodic tasks on a multiprocessor 
system such that tasks are scheduled to meet their deadlines on individual processors by the RM 
scheduling algorithm. Utilization bounds of RM in multiprocessor systems are derived in [Oh and 
Bakker 1998; Andersson and Jonsson 2000; Andersson et al. 2001; Funket al. 2001; Baker 2003]. 
Davis and Burns [2011] surveyed hard real-time scheduling algorithms and schedulability analysis 
techniques for homogeneous multiprocessor systems. The survey provides a taxonomy of the 
different scheduling methods, and considers the various performance metrics that can be used 
for comparison purposes. 
 
4.2.   Application in NoCs 
The SoC communication platform needs to provide different levels of service for various 
application components on the same network. Real-time communication, has very stringent 
requirements, the correctness relies not only on the communication result but also the 
completion time bound. A data packet received by a destination too late could be useless. The 
worst-case acceptable time metric is defined to be the deadline of the packet. A set of real-time 
traffic flows over the network are termed schedulable if all the packets belonging to these traffic 
flows meet their deadlines under any arrival order of the packet set. In such a system, 
schedulability analysis deals with investigation of the schedulability of flows in the network. This 
formalism uses an iterative approach to estimate the maximum end-to-end latency of flows in a 
network-based system.  

To support real-time communication in interconnection networks, several flow control 
mechanisms have been proposed to explore the priority-based packet scheduling mechanism in 
the literature  [Li and Mutka 1994; Song et al. 1997; Balakrishnan and Ozguner 1998]. Li and 
Mutka [1994] proposed a flow control mechanism in which there is the same number of virtual 
channels as the number of priority levels, and a packet can request only a virtual channel which is 
numbered lower than or equal to its priority. Song et al. [1997] proposed throttle and preempt flow 
control to avoid the priority inversion problem of traditional blocking flow control in wormhole 
routers. Priority inversion is referred to as a situation where a higher priority packet must wait for 
the transferring of a lower priority packet. Throttle and preempt flow control prohibits low 
priority packets from using input buffers beyond their allowed limit, so that high priority packets 
can always preempt the low priority packets to use the channels, if necessary. Hence, this flow 
control does not cause priority inversion. However, the upper bound of network latency for each 
packet in the network is not delivered by this method.  

A few works address the packet delivery guarantee problem in communication platforms and 
proposed schedulability analysis methods to solve it. Since a link in the network is shared among 
several flows, it is too complex to use the utilization-based tests for determining the packet 



196 

 

 

schedulability. Hence, researchers had to use direct schedulability tests and proposed a few 
methods to calculate the worst-case delay of packets. Kandlur et al. [1994], Sathaye and 
Strosnider [1994], and Li and Mutka [1996] addressed scheduling of real-time communication on 
direct networks. Kandlur et al. [1994] analyzed interprocessor communication for real-time 
systems with a direct network using store-and-forward switching. They presented a method for 
guaranteeing the maximum end-to-end delivery time for packets, and a schedulability test to 
ensure that real-time packets meet their deadlines. Several flow control methods for real-time 
wormhole-routed networks were proposed by Li and Mutka [1996]. These methods increase the 
likelihood of real-time packets meeting their deadlines, but have no guarantees on the feasibility 
of packets. For this reason, they are more suited to soft-deadline systems than hard-deadline 
systems. Hary and Ozguner [1997] presented FT1, an offline feasibility test for real-time 
wormhole-routed packets. This test works for any static priority assignment method. Passing FT1 
is a sufficient, but not a necessary condition for feasibility. All the links used to form a route for a 
flow are lumped as one shared resource (like a bus structure). Since they just considered the 
direct competitions and ignored indirect competition, their result was optimistic. Balakrishnan 
and Ozguner [1998] utilized the same model proposed by Hary and Ozguner [1997] and 
considered the indirect competitions. However, since direct and indirect contentions are 
considered the same, their result is pessimistic.  They showed that the computation complexity of 
proposed schedulability analysis algorithm is O(n2) where n is the number of flows in the system. 
Kim et al. [1998] used a blocking dependency graph to express the contentions a flow may meet 
and derived the packet delivery upper bound. Lu et al. [2005] formulated a contention tree to take 
in to account the direct and indirect contentions and captures concurrent use of links.  

Shi and Burns [2008] proposed an offline schedulability analysis approach to discuss a real-
time on-chip communication with wormhole switching and fixed priority scheduling. The 
authors proved that the general problem of determining the exact schedulability of real-time 
traffic flows over the on-chip network is NP-hard. However, they gave a determinant upper 
bound on the schedulability of real-time traffic flows by evaluating diverse inter-relationships 
among the traffic flows. They proposed a method to predict the packet network latency based on 
direct and indirect contention from higher priority traffic flows. Although wormhole switching 
with fixed priority preemption is a possible solution for real-time on-chip communication, the 
hardware implementation cost is expensive. Shi and Burns [2009] proposed a solution by utilizing 
a priority share policy to reduce the resource overhead while still achieving the hard real-time 
service guarantees. However, the blocking introduced by priority share policy complicates the 
analysis process. To address this problem, Shi and Burns [2010] proposed a per-priority basis 
analysis scheme which computes the total time window at each priority level instead of each 
traffic flow. By checking the release instance of each flow at the corresponding priority window, 
they determined schedulability efficiently. Building on this static analysis, for a given set of tasks 
and network topology, the authors further proposed a task mapping and priority assignment 
algorithm, in such a way that the hard time bounds are met with a reduced hardware overhead. 

The focus of schedulability analysis is on real time systems and it determines if a real-time 
system can meet its deadline or not. Furthermore, schedulability analysis tries to assign priority to 
tasks so that each task meets its deadline. 

 
5. DATAFLOW ANALYSIS 
5.1. Overview 
Dataflow graph is a Model-of-Computation (MoC) where a number of concurrent processes 
communicate with each other via unbounded FIFO channels [Lee and Parks 1995]. Writing to 
these channels is non-blocking while reading from these channels is blocking [Jantsch and Sander 
2005]. A dataflow program is a directed graph consisting of nodes (actors) that represent 
communication and arcs that represent ordered sequences (streams) of data units (tokens) as 
illustrated in Figure 11.a. Circles represent nodes, arrows represent streams and the dot 



197 

 

 

represents a token. Dataflow graphs can be hierarchical since a node can represent a dataflow 
graph. The execution of a dataflow graph is a sequence of firings. During each firing an actor 
consumes input tokens and produces output tokens. The number of tokens consumed and 
produced may vary for each firing and is defined in the firing rules of a dataflow actor. An 
important property of dataflow graphs is that an actor firing only depends on the availability of 
data. This implies that dataflow graphs are untimed, meaning that nothing is specified about 
points in time at which firings occur. Dataflow graphs have been shown to be very valuable in 
digital signal processing applications (e.g., audio and video applications) for concurrent 
implementation on parallel hardware. When running multiple actors on a single resource, a 
sequence of firings, also called a schedule, is required. For general dataflow models it cannot be 
decided whether such a schedule exists because it depends on the input data.  
 

   
   (a)     (b) 
 

Figure 11: (a) Dataflow network, (b) A synchronous dataflow (SDF) network. 
 

Depending on how the consumption, production, and the firing rules are specified, there exists a 
variety of different dataflow MoCs. They differ in their expressiveness and succinctness, analyzability, 
and implementation efficiency [Stuijk et al. 2011]. The expressiveness and succinctness of a MoC 
indicates how well it can explain characteristics of the system and how compact it is. The 
analyzability is determined by the availability of analysis and synthesis algorithms and the run-
time needed for an algorithm on a graph with a given number of nodes. The implementation 
efficiency of a MoC is influenced by the complexity of the run-time scheduling problem. We shall 
now briefly describe the most important dataflow types and then compare them with regard to 
expressiveness, analyzability and implementation efficiency. 

Synchronous dataflow (SDF) model is currently the most popular and widely studied dataflow 
model for streaming applications [Bekooij et al. 2005]. As shown in Figure 11.b, SDF puts further 
restrictions on the general dataflow model, since a process consumes and produces a fixed 
number of tokens for each firing [Lee and Messerschmitt 1987a]. With this restriction it can be 
tested efficiently, if a finite static schedule exists. If one exists, it can be effectively computed. The 
numbers on the arcs show how many tokens are produced and consumed during each firing. 
There exists an algorithm to construct a static periodic schedule for SDF models [Lee and 
Messerschmitt 1987b]. A possible schedule for the given SDF network is {A, A, C, C, B, D}. 
This allows determining a static firing sequence which returns the SDF graph into its initial state. 
Such a firing sequence can be repeated in a loop to statically schedule an SDF graph operating on 
a stream of data. Much of the existing work on SDF scheduling focuses on optimizing static and 
dynamic schedules for parallel execution, required sizes of buffers, and end-to-end throughput. 
There exist many analysis algorithms for SDFs which have polynomial complexity [Stuijk et al. 
2011]. Hence, it is possible to derive efficient implementations based on SDF.  

Since in SDF, the data rates over different channels are not the same, it is also called a 
multirate dataflow model [Horstmannshoff et al. 1997]. Single-rate or homogeneous SDF 
(HSDF) graph is a restricted form of SDF model in which the consumption and production on 
each edge is a single token [Rumbaugh 1977; Dennis 1980; Lee and Messerschmitt 1987a]. A 
token is fireable if there is at least one token on all its incoming edges. For any HSDF, a static 
schedule can be easily constructed by compile-time scheduling tools. Parhi [1989] described an 
algorithm that transforms any SDF graph into an HSDF graph. 

A B D

C

A B D

C

1 2 1 1

2

11

1



198 

 

 

One problem with the SDF model is that for algorithms with variation of the data rate, SDF 
model leads to use more memory than the application actually needs. For example, consider the 
graph in Figure 12. Here, implementing the up-sample actor as an SDF actor requires a large 
memory to hold all of the output tokens from a single firing. This problem has been addressed by 
extending SDF model to support cyclo-static actors in which rate conversion actors are 
implemented more efficiently to execute in multiple phases [Lauwereins et al. 1994]. 

 
 

 
Figure 12: An SDF graph with a large sample rate change. C's Input requires excessive memory 
[BUCK 1994] © IEEE 1994. 
 
In the cyclo-static dataflow (CSDF) model [Lauwereins et al. 1994; Bilsen et al. 1996] the number 
of consumed and produced tokens by an actor varies cyclically. There are fixed number of phases 
in a cycle and each actor produces or consumes fixed number of token in each phase, but 
different phases may have different behavior. As shown in Figure 13, the production of actor Ó� 
on edge e, is represented as a sequence of constant integers [v�+1/, v�+2/,… , v�+��/	]. The nth 
time that actor Ó� is executed, it produces x(1+ (n-1) mod pi) tokens on edge e. The consumption 
of vertex Ó�  is analogous. The firing rule of a cyclo-static actor Ó�  is evaluated as “true” for its nth 
firing if and only if all input FIFOs contain at least yi(1+ (n-1) mod pj)  tokens. Lauwereins et al. 
[1994] showed that although the CSDF is more compact than the HSDF, it is as expressive as 
HSDF. Since the data rate of each channel is not fixed, analysis and scheduling of CSDF are 
more complex compared to SDF. 
 

 
 

Figure 13: Cyclo-static dataflow (Adapted from [Bilsen et al. 1996] © IEEE 1996). 
 

Due to some non-synchronous and data-dependent behavior, some streaming applications 
cannot be expressed by SDF and CSDF [Buck 1994]. This problem can be addressed by 
extending the SDF model to permit some actors with data-dependent behavior. A further 
generalization of SDF model is Boolean dataflow (BDF) [Buck 1993] where the numbers of 
consumed and produced tokens depends on the value of a token read from a dedicated control 
input. Since the token productions and consumptions depend on data values during run time, a 
BDF network is not completely statically schedulable. However, extending the SDF model to 
support some dynamic actors (SWITCH and SELECT actors) while preserving static scheduling 
as much as possible has been studied in [Lee 1991; Buck and Lee 1993]. By using SWITCH and 
SELECT actors, we can build conditional constructs like if-then-else and do-while loops. As 
shown in Figure 14.a and 14.b, the SWITCH actor gets a control token and then copies a token 
from the input to the appropriate output, determined by the Boolean value of the control token. 
Figure 14.c and 14.d show that the SELECT actor gets a control token and then copies a token 
from the appropriate input, determined by the Boolean value of the control token, to the output. 
These actors are not SDF compliant because the number of produced/consumed tokens is not 
fixed and depends on an input Boolean control. 
 

A UP C
1 1 1000 1

x(1), ..., x(pi) y (1), ..., y(pj)

vi vj
e



199 

 

 

   
          (a)                                                           (b) 

 

   
                                             (c)                     (d) 
 
Figure 14: The behavior of SWITCH and SELECT actors for different input (Derived from 
[Buck 1994] © IEEE 1994). 
 

Dynamic dataflow (DDF) model [Lee and Parks 1995] is a Boolean dataflow model with one 
additional variation: the control actors mentioned in the BDF model are able to read multiple 
token values and the data actors can be fired conditionally based on the control actors read. 
Because of the incomplete knowledge at compile time, BDF and DDF MoCs need a run-time 
scheduling mechanism to determine when an actor becomes executable. Moreover, it is not 
always possible to predict whether a schedule with bounded buffer lengths can be constructed. 
Consequently, run-time scheduling and deadlock detection mechanism are required to implement 
these MoCs. This makes their implementation less efficient compared to SDF and CSDF. To 
overcome this problem, several dataflow MoCs have been proposed in related literatures such as 
Parameterized Synchronous Dataflow (PSDF) [Bhattacharya and Bhattacharyya 2001], Scenario-
Aware Dataflow (SADF) [Theelen et al. 2006], Variable Rate Dataflow (VRDF) [Wiggers et al. 
2008], and Variable Phased Dataflow (VPDF) [Wiggers et al. 2011]. These MoCs provide a trade-
off between analyzability and implementation efficiency. Consequently, they can express some 
dynamism while allowing design-time analysis and low overhead implementation. 

Bhattacharya and Bhattacharyya [2001] proposed a parameterized dataflow framework to 
improve the expressive power of dataflow MoCs. The parameterized dataflow framework is 
compatible with many of the existing data flow models including SDF and CSDF. As an 
application of the parameterized modeling framework, formal semantics for parameterized SDF, 
PSDF, is developed in the same paper. In the PSDF MoC, channel rates are allowed to be 
parameterized rather than constant. Therefore, Parameterized schedules and buffer sizes can be 
computed. Although PSDF can model data-dependent and dynamic DSP systems, options to 
express dynamism are limited. Variable Rate Dataflow (VRDF) is proposed to model the data-
dependent communication behavior. In VRDF, data rates on channels can vary arbitrarily within 
a specified range. Variable Phased Dataflow (VPDF) is a generalization of both VRDF and of 
CSDF MoCs where the number of repetitions of CSDF phases can vary in some finite interval. 
Also, the presented algorithm to compute buffer capacities under throughput constraint is a 
generalization of the algorithms presented in [Wiggers et al. 2007b; 2008] for CSDF and VRDF, 
respectively. Existing analyses of VRDF and VPDF are limited to computing buffer capacities 
that satisfy a throughput constraint. In the Scenario-Aware Dataflow (SADF) MoC, the dynamic 
behavior of an application is viewed as a collection of different scenarios (behaviors) [Theelen et 
al. 2006; Stuijk et al. 2011]. Each scenario is static and predictable in performance and resource 
usage. An SDF MoC models the behavior of each scenario. Since SDF model of different 
scenarios may differ in all aspects, it is possible to exploit the dynamic behavior of applications to 
derive an implementation with limited run-time overhead. 

SWITCH

T      F

SWITCH

T      F

Enabled Fired

TRUE SWITCH

T      F

SWITCH

T      F

Enabled Fired

FALSE

T      F

SELECT

Enabled Fired

T      F

SELECT

TRUE
T      F

SELECT

Enabled Fired

T      F

SELECT

FALSE



200 

 

 

As shown in Figure 15, Stuijk et al. [2011] compared dataflow MoCs based on the previously 
mentioned aspects of expressiveness and succinctness, analyzability and implementation 
efficiency. Dataflow models are ordered in terms of their ability to capture dynamic behavior in a 
compact way in the expressiveness and succinctness axis. An overall conclusion is that 
expressiveness is typically traded off against analyzability and implementation efficiency.  
 
 

 
 

Figure 15: Comparison of dataflow MoCs (Adapted from [Stuijk et al. 2011] © IEEE 2011). 
 
5.2. Applications in NoCs 

The classical dataflow models are untimed. To address the timing properties of a system, a 
worst-case execution time can be associated with each actor [Sriram and Bhattacharyya 2009]. 
This extension allows us to assess the timing behavior of the NoC-based system such as 
throughput and latency. A worst-case execution time is added to each actor as shown in Figure 
16. The specified number of tokens is consumed and produced within the execution time of the 
actor. A self-edge of an actor is used to model that the previous execution must be finished 
before the next execution can start. Scheduling policies can be modeled indirectly by 
transforming the worst-case execution time to the worst-case response time [Bekooij et al. 2005]. 

Throughput is an important performance indicator in streaming applications. It has been well 
studied in the literature on dataflow models [Dasdan and Gupta 1998; Dasdan 2004; Ghamarian 
et al. 2006]. All these studies focused on analysis of HSDFs and are applicable to SDFs only 
through a conversion to HSDF [Lee and Messerschmitt 1987a; Sriram and Bhattacharyya 2009]. 
Maximum Cycle Mean (MCM) analysis is then used to determine throughput. To determine the 
MCM, the maximum of the cycle means of all simple cycles in the HSDF graph needs to be 
determined, where the cycle mean (CM) of a cycle c is the sum of the response times of the actors 
on c divided by the number of initial tokens on the cycle c. The maximal attainable throughput of 
the graph relates to 1/MCM. Latency is another prominent performance metric. However, a little 
research has been done on latency. Sriram and Bhattacharyya [2009] studied the latency for the 
HSDFs. Although it is possible to compute the latency for an SDF through a conversion to a 
HSDF, the conversion may lead to an exponential increase in the number of nodes in the graph 
which makes it prohibitively expensive in predicting performance metrics [Stuijk et al. 2006]. 
Moreira and Bekooij [2007] presented a closed-form expression for the latency of HSDF graphs.  
The authors provide useful bounds on maximum latency for jobs with periodic, sporadic, and 
bursty sources, as well as a technique to check latency requirements. Ghamarian et al. [2007] 
proposed a latency minimization technique that works directly on SDFs. This technique 
computes the minimal achievable latency for an SDF and provides an execution scheme that 
gives the minimal latency.  

 

HSDF

SDF

CSDF

PSDF

VRDF

VPDF

BDF

SADF

DDF

expressiveness

and succinctness
implementation

efficiency analyzability

high

low



201 

 

 

 
Figure 16: An SDF graph with execution time [Kumar et al. 2008]. 

 
Bekooij et al. [2004] proposed an NoC-based multiprocessor architecture and an HSDF model of 
the jobs which enables reasoning about the timing behavior of the system. The NoC provides 
virtual point-to-point connections with a guaranteed throughput and maximal latency. The 
authors modeled every task by one actor with a self edge as depicted in Figure 17.a. Wiggers et al. 
[2007a] have shown that Latency-Rate servers [Stiliadis and Varma 1998] can be included in a 
dataflow model by two actors as shown in Figure 17.b. One actor models the rate and the other 
one models the latency. 
 

               
 
                                                (a)                                                   (b) 
Figure 17: A task model with (a) one actor and (b) two actors [Wiggers et al. 2007a]. 
 

Bekooij et al. [2005] used SDF models to derive the end-to-end temporal behavior of jobs in a 
real-time embedded multiprocessor system. Hansson et al. [2009] and Hansson and Goossens 
[2010] showed how to construct a CSDF model that conservatively models an NoC connection. 
Then they used the proposed dataflow model for dimensioning the buffer size in network 
interfaces to guarantee the system performance and showed that buffer sizes are determined with 
a run time comparable to analytical methods, and results comparable to exhaustive simulation. 
Wiggers et al. [2007b] proposed an algorithm that determines close to minimal buffer capacities 
for CSDF graphs such that the throughput requirement and constraints on maximum buffer 
capacities are satisfied. Also, they showed that a CSDF model can lead to reduced resource 
requirements compared to an SDF model. 

 
6. NUMERICAL EXAMPLES 
In this section, we consider a simple application mapped on an NoC and show how to estimate 
the performance metrics by using surveyed mathematical formalisms. Throughout these analyses, 
we assume the same topology and routing but different flow control mechanism, since 
applications of formalisms differ starkly in purpose. As an example, schedulability analysis is 
usually used to determine the worst-case delay bound in systems with hard real time constraints, 
so we assume the preemptive flow control. On the other hand, network calculus studies more 

3

5

A

7

C

6

D

10

B

1 1

4 2

4

1

1

3

4

b

up uc

vp vc

b

up uc

vp,2 vc,1

b

b

vp,1 vc,2



202 

 

 

general systems, so we assume the nonpreemptive flow control. Figure 18 shows the task graph 
and also communication infrastructure for the on-chip network. Links and routers are organized 
in a 3x3 mesh structure as shown in Figure 18.b. The delay of links and routers are assumed 1 
cycle and 2 cycles, respectively. Tasks, executing on different Intellectual Property (IP) modules, 
communicate with each other by transmitting packets through the NoC.  
 
 

                         
                                       (a)                                                             (b) 
 

Figure 18: (a) Task graph of an application mapped on an (b) NoC platform. 
 
 
Table 2 shows attributes of the traffic flows including flow priority, source and destination of the 
flow, packet length in flits and average packet generation rate in packet/cycle/IP, as well as route 
of the flow in the network. For instance, f1 has the highest priority in the system and starts in IPA 
and passes through injection channel 1, links 1, 4, 5, and ejection channel 6 before terminating in 
IPD. All packets of this flow have the same length of the 8 flits and the average packet generation 
rate is 0.02 packet/cycle. In other words, on average, every 50 cycles a packet is generated in IPA. 
 

Table 2: Description of traffic flows. 
 

flow priority source 
destinatio

n 
packet length 

(mi) 
packet generation 

rate (λi) 
route 

f1 high 1 6 8 0.02 Inj1, L1, L4, L5 , Ej6 

f2 low 5 6 16 0.01 Inj5, L3, L4, L5 , Ej6 

f3 medium 3 8 12 0.02 Inj3, L2, L4, L7, Ej8 

f4 low 6 8 8 0.03 Inj6, L6, L7, Ej8 

 
 
6.1. Queueing Theory 
In this section, the queueing theory-based analytical model proposed by Kiasari et al. [2012] is 
used to estimate the average latency of flows in Figure 18.b. We described this model briefly in 
Section 2.3. We assume that the flow control mechanism is wormhole switching and there is one 
flit buffer per input channel. Channels are allocated per packet. It means that the channel is 
released when the whole packet has passed through the channel. Also, we assume that nodes 
generate packets independently of each other following a Poisson process. 

The basic packet latency, di, happens when there is no traffic contention. It consists of two 
parts: the latency of head flit and the latency of body flits. Latency of head flit is determined by 

f1

f2

f3

f4

6 7 8

4 53
L2 L3

L7

L4

Inj3

Inj6

Inj1

f3

f1

f2

1 20

L1

Ej8

Inj5

f4

Ej6 L6

L5



203 

 

 

routing distance and router and wire delay. Once the head flit arrives at the destination, the body 
flits follow the header flit in a pipelined fashion. Hence, the body flit latency is a function of 
packet size and wire delay. For instance, according to Figure 18.b, head flit of f1 passes through 4 
routers and 5 links. Therefore, the head flit latency is 4%�ÔÂ��� + 5%���� = 13 cycles and the 
body flit latency equals +�2 − 1/%���� = 7. As a result, the basic packet latency of f1 is  
 P2 = 4%�ÔÂ��� + 5%���� + +�2 − 1/%���� = 8 + 5 + 7 = 20 cycles 
 
Average packet latency of f1, D1, is the time since the packet is created in IPA, until the last flit 
reaches the IPD, including the queueing time spent at the source node +�6Õ���→}�/  and 

intermediate nodes +�6}�→}¸/. In Figure 18.b, D1 can be computed as 62 = P2 +�6Õ���→}� +�6}�→}¸ +�6}¸→}Ö +�6}Ö→��×  
 
Note that, �6}¸→}Ö and �6}Ö→��×  are equal to zero. The input buffer of L4 and L5 only have space 
for one head flit. Hence, if the head flit holds the input buffer of L4, it can access channel L5 
without any waiting time. Therefore, 
 62 = P2 +�6Õ���→}� +�6}�→}¸ 
 
To estimate the �6�→� , the first moment (average) and second moment of channels service time 
should be computed. We remind here that the second moment of a random variable X is defined 

as the average of ��	J��1111 = ∑ +��/���72 o⁄ K. Determination of the channel service time moments 
starts at ejection channels and works in the reverse order of routing towards to the source of the 
packet. It means that, to compute 62, we should compute the service time of Ej6, L5, L4, and L1 
(:̅��× , :̅}Ö , :̅}¸ , :̅}� respectively). Since the delay of all channels is considered 1 cycle, an ejection 

channel offers service time of �� cycles to a packet of length �� flits. According to Figure 18.b 
and Table 2, Ej6 serves flows 1 and 2 with the length of 8 and 16 flits and the rate of 0.02 and 
0.01 packet/cycle, respectively. Therefore, average service time of ejection channels 6 is 
 :̅��× = 0.020.03 × 8 + 0.010.03 × 16 = 10.67 

 
The waiting time for a channel closer to the destination (ejection channel) can be thought of as 
adding to the service time of channels farther from the destination. In other words, 
 :̅}Ö = :̅��× +�6}Ö→��×  :̅}¸ = 35 J:̅}Ö +�6}¸→}ÖK + 25 J:̅}Ø +�6}¸→}ØK :̅}� = :̅}¸ +�6}�→}¸ 
 
As stated before, �6}Ö→��× = 0. Hence, :̅}Ö = :̅��× = 10.67. To compute the :̅}¸, we have to 

compute �6}¸→}Ø in advance.  The first and second moments of service time of L7 can be given 
by :̅}Ø = :̅��Ù = 25�9 + 35�¶ = 9.6 

:}Ø�1111 = 25 +�9/� + 35 +�¶/� = 96 

 



204 

 

 

After computing the moments of service time, the service rate and squared coefficient of 
variation (SCV) of service time of L7 are computed. 
 �}Ø = 1 :̅}Ø⁄ = 0.1042 (>ÚØ� =	:}Ø�1111/J:̅}ØK� − 1=0.0417 

 
 
Now, we are able to compute the waiting time for channel L7. Flows f3 and f4 compete to access 
L7 while f3 has higher priority than f4. 
 �6}¸→}Ø = 12 0(�� + (>ÚØ� 8 O}Ø�}Ø� = 2.4 

 (�� is the SCV of arrival process and for the Poisson process it equals 1. Similarly, for L4 we can 
write 
 :̅}¸ = 35 J:̅}Ö +�6}¸→}ÖK + 25 J:̅}Ø +�6}¸→}ØK = 11.2 

:}�̧1111 = 68 J:̅}Ö +�6}¸→}ÖK� + 28 J:̅}Ø +�6}¸→}ØK� = 125.9 �}¸ = 1 :̅}¸⁄ = 0.0893 (>Ú¸� =	:}�̧1111/J:̅}¸K� − 1=0.0037 

 
Waiting time for L4 are given by 
 �6}�→}¸ = 12 0(�� + (>Ú¸� 8 O}¸�}¸� = 3.1 

 
If we repeat the computation for L1, �6Õ���→}� can be computed as 
 �6Õ���→}� = 12 0(�� + (>Ú�� 8 O}��}�J�}� − O2K = 2.9 

 
Finally, we can write 
 62 = P2 +�6Õ���→}� +�6}�→}¸ = 26 cycles 
 
Following the same approach, the average packet latency for other flows can be computed. 
 
6.2. Network Calculus 
In this section, we show how to apply the network calculus formalism for estimating the worst-
case latency in the NoC described in Figure 18 and Table 2. Figure 19 shows the system model in 
network calculus. 
 



205 

 

 

 
 

Figure 19: Network calculus model of the system in Figure 18.b. 
 
We consider the virtual cut-through switching with nonpreemptive priority scheduling policy. It 
is also assumed that four leaky bucket controllers constrain the packet injection process in the 
system. In other word, fi is a +]�, \�/ regulated flow which is constrained by arrival curve Z��,[� =\�% + ]�. According to Table 2, average flit injection rate are calculated as 
 \2 = 0.02 × 8 = 0.16 flit/cycle \� = 0.01 × 16 = 0.16 flit/cycle \9 = 0.02 × 12 = 0.24 flit/cycle \¶ = 0.03 × 8 = 0.24 flit/cycle 
 
Let us further assume that the burstiness values are 
 ]2 = 5 packets = 40 flits ]� = 3 packets = 48 flits ]9 = 4 packets = 48 flits ]¶ = 5 packets = 40 flits 
 
Channels and routers are modeled with latency-rate servers, ��,	+%/ = W+% − `/
 . Average 
service rates are considered 1 flit/cycle and wire and router delay were supposed to be 1 cycle 
and 2 cycles, respectively. Therefore, we can model the system as shown in Figure 20. 
 

 
Figure 20: System model based on the leaky bucket arrival curves and latency-rate servers. 

 
Applying the concatenation theory, the model shown in Figure 20 can be simplified to Figure 

21. As we mentioned in Section 3.1.3, the concatenation of two latency-rate server results in a 
new latency-rate server. 
  
 ���,	� ⊗��B,	B = �ÆÇÈ	+��,�B/,	�
	B 

f3 Inj3 L2

L3 Inj5L4

L5

L7Inj6

Ej6

f2

f4 f3*, f4*

L1

Inj1

f1

f1*, f2*

Ej8L6

β1,1 β1,3

β1,3 β1,1β1,3

β1,3

β1,3β1,1

β1,3

f3*, f4*

β1,3

β1,1

f1*, f2*

β1,3β1,3

f3: γ0.24,48

f1: γ0.16,40

f2: γ0.16,48

f4: γ0.24,40



206 

 

 

 
 

 
 

Figure 21: Simplified system model. 
 
Figure 22 shows how to compute the leftover service curve for f1 step by step. The node in the 
center of Figure 22.a guarantees the service curve �2,9 = % − 3 to the aggregate of the three 
flows where f1 has the highest priority. Then f1 is guaranteed a service curve �2,9 = +% − 3/ − 16 
because the maximum packet size for the lower priority flows is 16 [Le Boudec and Thiran 2001]. 
Applying the concatenation theory on Figure 22.b results in Figure 22.c. 
 

                 
                                          (a)                                                            (b)                       (c) 

 
Figure 22: Leftover service curve for flow f1. 

 
By using the delay bound formula, Eq. (22), we can write  
 2 ≤ ` + ]2 W⁄ = 29 + 40 1⁄ = 69 cycles 
 
The worst-case delay of other flows can be computed by the same approach. 
 
6.3. Schedulability Analysis 
In section 4.2, we reviewed FT1 proposed by Hary and Ozguner [1997], a feasibility test for real-
time wormhole-routed systems. In this section, we describe it in more detail as a sample of 
schedulability analysis approach. Consider again the system described in Figure 18 and Table 2. 
We assume that packets are injected periodically in the network. The length of time between 
releases of successive packets of fi is a constant, which is called the period Ti for this flow. Using 
packet generation rate in Table 2, period of each flow can be easily computed. 
 2̀ = 1 0.02⁄ = 50 cycles �̀ = 1 0.01⁄ = 100 cycles 9̀ = 1 0.02⁄ = 50 cycles ¶̀ = 1 0.03⁄ = 33 cycles 
 
It is also assumed that routers architecture support preemptive priority scheduling and there are 
as many virtual channels per link as flows per link. Therefore, a packet cannot be blocked due to 

β1,4

β1,4β1,3

β1,6

β1,3 f3*, f4*

β1,4

f1*, f2*

β1,3β1,4

f3: γ0.24,48

f1: γ0.16,40

f2: γ0.16,48

f4: γ0.24,40

β1,4

β1,4β1,3

β1,6

β1,4

f1*, f2*

f3: γ0.24,48

f1: γ0.16,40

f2: γ0.16,48 β1,19

β1,6

β1,4

f1*

f1: γ0.16,40

β1,29

f1*

f1: γ0.16,40



207 

 

 

its inability to access a virtual channel. Let p� be the set of higher-priority flows that share at least 
one link with t� .  
 p2 = ∅ p� = �t2, t9� p9 = �t2� p¶ = �t9� 
 
A packet from t� can only be blocked from accessing a link by higher priority packets that share a 
link with t� (i.e., any packets from t� ∈ p�). t� may be blocked by more than one instance of each t� ∈ p� , since flows are periodic. The maximum end-to-end latency of t�  is the sum of the 

blocking time and P� . P�  is the basic packet latency and we showed how to calculate them in 
section 6.1.  
 P2 = 4%�ÔÂ��� + 5%���� + +�2 − 1/%���� = 8 + 5 + 7 = 20 cycles P� = 4%�ÔÂ��� + 5%���� + +�� − 1/%���� = 8 + 5 + 15 = 28 cycles P9 = 4%�ÔÂ��� + 5%���� + +�9 − 1/%���� = 8 + 5 + 11 = 24 cycles P¶ = 3%�ÔÂ��� + 4%���� + +�¶ − 1/%���� = 6 + 4 + 7 = 17 cycles 
 
f1 do not suffer any contention and receives the worst-case network latency equal to their basic 
latency. Therefore, the worst-case delay of a packet from f1 is 20 cycles.  

The worst-case response time of other flows, fi, at time t, Ri(t), is given as 
 W�+%/ = P� + ∑ P�Ü%/ �̀Ý� ,					t� ∈ p�                                               (38) 
 
where Ü%/ �̀Ý, is the maximum number of instances of higher priority packets fj that can occur up 
to time t. An iterative approach is used to solve Eq. (38) and the first iteration begins at t = 0. 
The value of t used for each iteration is the latency of the previous iteration. Eq. (38) converges 
when the latency of the current iteration is equal to the latency of the previous iteration. For 
instance, consider flow f3 which shares at least one link with higher priority flow f1. The worst-
case latency for flow f3 is given by 
 W9+%/ = P9 + P2Þ%/ 2̀ß = 24 + 20Þ%/50ß  
 
t = 0:     R3(t) = 24 
t = 24:   R3(t) = 24 + 20Þ20/50ß = 44 
t = 44:   R3(t) = 24 + 20Þ44/50ß = 44 
 
The worst-case latency of f3 converges at t = 44 cycles. Therefore, based on FT1 test, if the 
deadline of f3 is greater than 44, f3 is schedulable, otherwise not.  
 
6.4. Dataflow Analysis 
We consider again the application and architecture in Figure 18. In this section, we assume that 
all packets are single-flit and they arrive strictly periodically. We use the proposed approach by 
Wiggers et al. [2007a] to find the minimum required buffer for f1, if IPA injects a packet to the 
network every 2 cycles (throughput(f1) = 0.5). Similar to network model in Section 6.2, we can use 
the latency-rate servers to model the network elements which serve f1. The result is shown in 
Figure 23.a. Also, Figure 23.b shows the HSDF model of the network for f1.  
 
 



208 

 

 

              
 
                                     (a)                                                                    (b) 

 
Figure 23: (a) Latency-rate model and (b) dataflow model of the network for flow f1. 

 
 
In the dataflow model shown in Figure 23.b, we need to guarantee that the throughput of the 
graph equals the throughput of flow f1. Since throughput(f1) = 0.5, it is required that the MCM of 
the graph to be maximally 2, as we described in Section 5.2. In other words, 
 
 ,(, = �#v a11 , 1 + 1 + 1 + 3"2 , 1 + 3 + 1 + 4"� , 1 + 4 + 1 + 3"9 , 1 + 3 + 1 + 3"¶ à ≤ 2 

 
which results in 
 
 
 1 + 1 + 1 + 3"2 ≤ 2 

 1 + 3 + 1 + 4"� ≤ 2 

 1 + 4 + 1 + 3"9 ≤ 2 

 1 + 3 + 1 + 3"¶ ≤ 2 

 
Therefore, b1 = 3 packets, b2 = 5 packets, b3 = 5 packets, and b4 = 4 packets are the minimum 
number of buffers to guarantee throughput(f1) = 0.5. 
 
7. BRIDGING DIFFERENT FORMALISMS 
With the advances of technology, SoCs characteristics and requirements are changing.  Therefore, 
there has been a demand for theories to deal with heterogeneous architectures and applications 
encountered in such systems. The two front runner models for performance analysis and 
performance guarantees of SoCs are average-case and worst-case analytical models. An open 
research issue is a unified analytical model for performance. To overcome the weaknesses of 
individual formalisms, research should try to combine the components of these formalisms. A 
few attempts are made to link these formalisms together.  

β1,4

β1,3β1,3

β1,3

β1,1

f1

f1

1

1

1

3

4

1

1

3

3

1

f1
b1

b2

b3

b4

f1



209 

 

 

Based on network calculus, Schmitt [2003] derived bounds on delay and backlog per traffic 
class in non-preemptive priority queueing systems. There are known results for the average 
behavior of such a queueing system from queueing theory. By use of numerical investigations, 
worst-case bounds are compared to those average-case analysis results in order to give a feel as to 
how conservative the worst-case bounds are. Pandit et al. [2004] analyzed the impact of network 
calculus bounds on queueing theory results. More precisely, they studied the impact of traffic 
shaping and service curve enforcement on a single M/M/1 queue. They do not analyze the 
system analytically and the study was performed through simulation. The queue length 
distribution was compared with the original M/M/1 case and the authors showed how the 
probability mass of the higher buffer states (longer queues) of the M/M/1 queue distributes over 
the lower buffer states (shorter queues).  

Another attempt to link queueing theory and network calculus was presented by Jiang [2009]. 
Based on the two network calculus principles, the min-plus and the max-plus convolutions, the 
author derived delay bounds for the single node case and showed that they are consistent with 
similar bounds derived based on Lindley’s equation [Lindley 1952] for G/G/1 queues. Besides 
attempts to link network calculus and queueing theory, there is an effort to bridge a gap between 
network calculus and dataflow analysis formalisms. A relation between concepts from the 
network calculus and dataflow domains was described by Wiggers et al. [2007a], where it is 
shown that a latency-rate server, which is a concept from network calculus, can be included in the 
HSDF model. Figure 24 models a task ux with one input FIFO and one output FIFO that 
executes on a latency-rate server with latency Tx and allocated rate Rx. ry and rz are the response 
time of actors y and z, respectively. The resulting dataflow model provides guarantees on the 
temporal behavior of the implementation. 

 
Figure 24: A dataflow component that models a latency-rate server (Derived from [Wiggers et al. 
2007a]). 
 
8. CONCLUSION 
To summarize the discussion, we compare the presented formalisms based on the event model, 
node mode, and analysis output of the formalisms.  
 
8.1. Event Model 
The event model refers to the data packet representation. In queueing theory, the event model is 
the probability distribution of the interarrival time of packets. The interarrival times of different 
flows are independent and identically distributed random variables. In network calculus, an upper 
bound for the number of packets, called the arrival curve, models the events. An arrival curve is 
associated to each flow and they are assumed to be independent. In schedulability analysis, the 
events are modeled with periodic and sporadic models in which a flow is represented by its 
minimum interarrival times. Like in queueing theory and network calculus, there is no 
dependency between events. Dataflow analysis models events with tokens which are produced 
and consumed by nodes. The production of new tokens (events) in the output ports depends on 
the availability of tokens in the input ports. Hence, dataflow analysis is the only formalism that 
captures the dependency between the events.  
 
8.2. Node Model 
Nodes are modeled based on their service time. In queueing theory, service time is specified 
probabilistically. The node model is the probability distribution of the router service time. In 

vy vz

ry=Tx rz=1/Rx

1 1 1 1

11

1



210 

 

 

network calculus, nodes are modeled using the notion of a service curve, which is a function 
characterizing the minimum number of bits a node must transmit in any given time interval. In 
scheduling analysis, a node is modeled based on its worst-case delay and the scheduling policy. 
The worst-case node delay and scheduling policy represent a node in dataflow analysis. Note, that 
scheduling policy is modeled explicitly in scheduling theory and data flow models, but implicitly 
in network calculus and queueing theory as more abstract node models. 

Transformation of one node model to another is not always possible without loss of 
information or accuracy. Since queueing theory deals with average-case analysis and the three 
other formalisms deal with worst-case analysis, transformations between them results in 
information loss.  Many common distributions in queueing theory, e.g. exponential distribution, 
assign a non-zero probability to any positive number, even regions far from the mean value. 
Therefore, usually it is not possible to find a worst-case bound for the service time of a node in 
queueing theory. Also, it is not possible to estimate the shape of the service time distribution 
from the worst-case service time. Node models in the other formalisms (network calculus, 
schedulability analysis, and dataflow analysis) can be transformed to each other without 
information loss. For instance, it is easy to find the worst-case node delay in dataflow analysis 
from a service curve in network calculus or designers can estimate the shape of the service curve 
from the worst-case node delay. 

 
8.3. Analysis Results 
The four considered formalisms lead to different kinds of analysis results. Since queueing theory 
deals with probability models, it can compute average-case performance metrics such as average 
packet latency, average throughput, average energy and power consumption [Kim et al. 2005; 
Kiasari et al. 2008b], and average resource utilization. Network calculus computes the worst-case 
packet latency and maximum backlog in the system, and schedulability analysis estimates the 
worst-case latency of a flow to determine if it is schedulable or not. Finally, dataflow analysis 
determines the worst-case latency and throughput of a given system. Table 3 summarizes the 
input model, node model and output of the studied formalism. 

 
 

Table 3: Input model, node model and output of the mathematical formalisms. 
 

Formalism Event model Node model Analysis Result 

Queueing 
Theory 

the probability 
distribution of the 
interarrival time of 
packets 

probability 
distribution of  the 
node service time  

average packet 
latency, average 
throughput, 
average energy 
and power 
consumption, and 
average resource 
utilization 

Network 
Calculus 

an upper bound for the 
number of packets  
(arrival curve) 

a representation of 
worst-case service 
time of the node 
(service curve) 

worst-case latency 
and backlog 

Schedulability 
Analysis 

minimum interarrival 
times of periodic or 
sporadic packets 

worst-case node 
delay and scheduling 
policy 

worst-case latency 

Dataflow 
Analysis 

tokens which are 
produced and 
consumed by nodes 

worst-case node 
delay and scheduling 
policy 

throughput, 
buffer sizing, 
worst-case latency 



211 

 

 

 
8.4. Summary  
Finally, we list the features and weaknesses of each formalism which are summarized in Table 4.  
 

Table 4: Advantages and disadvantages of the formalisms. 
 

Formalism Feature Weakness 

queueing 
theory 

• abstract model 
• average-case 
analysis 

• hard to derive accurate models 
• cannot represent flow 

dependencies 

network 
calculus 

• abstract model 
• worst-case analysis 

• hard to derive accurate models 
• cannot represent flow 

dependencies 

schedulability 
analysis 

• easy to setup event 
and node models 

• cannot represent flow 
dependencies 

• limited accuracy 

dataflow 
analysis 

• can express flow 
dependencies and 
flow control 

• must be used with restricted 
models such as SDF and CSDF 

 
All formalisms can find a closed-form relationship between system parameters and system 

performance metrics. However, in case of queueing theory and network calculus, it is difficult to 
derive mathematical models of a given network, because they use complicated event models and 
node models. On the other hand, since schedulability analysis uses simpler event models, the 
performance model is easily extracted with less accuracy. A common problem of all models 
except dataflow is that they cannot capture well dependencies between data flows. The dataflow 
model is the only formalism that can model the dependent flows in a system accurately. The 
general trade-off between abstraction and accuracy can also be observed in the comparison 
between these four formalisms. Queueing theory, network calculus, and schedulability analysis 
can be considered more abstract than dataflow. As a consequence, details such as flow control, 
back-pressure and data dependencies are more difficult to captures in a natural way. Dataflow can 
easily model these details but for an efficient and precise analysis restricted models such as SDF 
and CSDF have to be used.  
 
8.5. Outlook 
Since each of the reviewed formalisms has different advantages and difficulties, and since they 
also partially differ in purpose, none of them can easily replace all others. There are definitely 
point problems for each formalism that are worthy for further studies, but research on integrated 
approaches to the problems of system performance analysis is most urgent. Although each 
formalism can be extended in various directions, these extensions typically run into problems of 
complex mathematics or they are perceived to be unnatural and cumbersome. Therefore, we 
believe that comprehensive frameworks that combine two or more formalisms would be most 
desirable. For instance, queueing theory and network calculus could be combined to offer both 
worst-case and average-case analysis. The result could be combined with dataflow analysis to 
naturally model event dependencies and lead a bridge to simulation. However, significant work to 
explore and understand the relations between these models and the possible and useful 
transformations between them is required. 
 
 
 



212 

 

 

ACKNOWLEDGMENT 
The authors would like to thank the reviewers for their valuable comments and suggestions. This work 
is funded in part by Intel Corporation through a research gift. 
 
REFRENCES 
ABDELZAHER, T. F., SHARMA, V., AND LU, C. 2004. A utilization bound for aperiodic tasks and 

priority driven scheduling. IEEE Trans. Comput. 53, 3, 334-350. 
ANDERSSON, B. AND JONSSON, J. 2000. Fixed-priority preemptive multiprocessor scheduling: to 

partition or not to partition. In Proceedings of the 7th International Conference on Real-Time Systems 
and Applications (RTCSA'00). IEEE Computer Society, 337-346. 

ANDERSSON, B., BARUAH, S., AND JONSSON, J. 2001. Static-priority scheduling on 
multiprocessors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS'01). IEEE 
Computer Society, 193-202. 

AUDSLEY, N. C., BURNS, A., TINDELL, K., AND WELLINGS, A. 1993. Applying new scheduling 
theory to static priority preemptive scheduling. Softw. Eng. J. 8, 5, 284-292. 

ALTISEN, K., LIU, Y., AND MOY, M. 2010. Performance evaluation of components using a 
granularity-based interface between real-time calculus and timed automata. In Proceedings of the 
8th Workshop on Quantitative Aspects of Programming Languages (QAPL’10). 16-23. 

BAKER, T. P. 2003. Multiprocessor EDF and deadline monotonic schedulability analysis. In 
Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS'03). IEEE Computer 
Society, 120-129. 

BAKHOUYA, M., SUBOH, S., GABER, J., EL-GHAZAWI, T. A., AND NIAR, S. 2011. Performance 
evaluation and design tradeoffs of on-chip interconnect architectures. Simulation Modeling 
Practice and Theory. 19, 6, 1496-1505. 

BALAKRISHNAN, S. AND OZGUNER, F. 1998. A priority-driven flow control mechanism for real-
time traffic in multiprocessor networks. IEEE Trans. Parallel Distrib. Syst. 9, 7, 664-678. 

BEKOOIJ, M. J. G., MORIERA, O., POPLAVKO, P., MESMAN, B., PASTRNAK, M., AND VAN 

MEERBERGEN, J. 2004. Predictable embedded multiprocessor system design. In Proceedings of 
the International Workshop on Software and Compilers for Embedded Systems, Lecture Notes in 
Computer Science, vol. 3199, Springer, 77-91. 

BEKOOIJ, M. J. G., HOES, R., MOREIRA, O., POPLAVKO, P., PASTRNAK, M., MESMAN, B., MOL, J. 
D., STUIJK, S., GHEORGHITA V., AND VAN MEERBERGEN J. 2005. Dataflow analysis for real-
time embedded multiprocessor system design, chapter 15, Dynamic and robust streaming 
between connected consumer-elecronic devices, Kluwer Academic Publishers. 

BERTSIMAS, D. AND MOURTZINOU, G. 1997. Transient laws of non-stationary queueing systems 
and their applications. Queueing Systems,25, 1-4, 115-155 

BHATTACHARYA, B. AND BHATTACHARYYA, S. S. 2001. Parameterized dataflow modeling for 
DSP systems, IEEE Trans. Signal Process. 49, 10, 2408-2421. 

BILSEN, G., ENGELS, M., LAUWEREINS, R., AND PEPERSTRAETE, J. 1996. Cyclo-static dataflow. 
IEEE Trans. Signal Process. 44, 2, 397-408. 

BINI, E., BUTTAZZO, G. C. AND BUTTAZZO, G. M. 2003. Rate monotonic scheduling: the 
hyperbolic bound, IEEE Trans. Comp. 52, 7, 933-942. 

BINI, E. AND BUTTAZZO, G. C. 2004. Schedulability analysis of periodic fixed priority systems. 
IEEE Trans. Comput. 53, 11, 1462-1473. 

BOGDAN, P. AND MARCULESCU, R. 2007. Quantum-like effects in network-on-chip buffers 
behavior. In Proceedings of the 44th Annual Design Automation Conference (DAC'07). ACM Press, 
266-267. 

BOGDAN, P. AND MARCULESCU, R. 2009. Statistical physics approaches for network-on-chip 
traffic characterization. In Proceedings of the 7th IEEE/ACM International Conference on 
Hardware/Software Codesign and System Synthesis (CODES+ISSS'09). ACM Press, 461-470.  



213 

 

 

BOGDAN, P. AND MARCULESCU, R. 2010. Workload characterization and its impact on multicore 
platform design. In Proceedings of the 8th IEEE/ACM/IFIP International Conference on 
Hardware/Software Codesign and System Synthesis (CODES+ISSS'10). ACM Press, 231-240. 

BOGDAN, P. AND MARCULESCU, R. 2011. Non-stationary traffic analysis and its implications on 
multicore platform design. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 30, 4, 508-
519. 

BOLCH, G., GREINER, S., DE MEER, H., AND TRIVEDI, K. S. 2006. Queueing Networks and Markov 
Chains: Modeling and Performance Evaluation with Computer Science Applications, 2nd Edition, John 
Wiley & Sons. 

BUCK, J. T. 1993. Scheduling dynamic dataflow graphs with bounded memory using the token 
flow model. Ph.D. dissertation, Dept. of EECS, UC Berkeley, USA. 

BUCK, J. T. AND LEE, E. A. 1993. Scheduling dynamic dataflow graphs with bounded memory 
using the token flow model. In Proceedings of the IEEE International Conference on Acoustics, Speech, 
and Signal Processing: Plenary, Special, Audio, Underwater Acoustics, VLSI, Neural Networks - 
(ICASSP'93), vol. I. IEEE Computer Society, 429-432. 

BUCK, J. T. 1994. A dynamic dataflow model suitable for efficient mixed hardware and software 
implementations of DSP applications. In Proceedings of the 3rd international workshop on 
hardware/software co-design (CODES'94). IEEE Computer Society, 165-172. 

BUTTAZZO, G. C. 2005. Rate monotonic vs. EDF: Judgement day. Real Time Systems 29, 1, 5-26. 
CHAKRABORTY, S., KUNZLI, S., AND THIELE, L. 2003. A general framework for analysing system 

properties in platform-based embedded system designs. In Proceedings of the conference on Design, 
Automation and Test in Europe - Volume 1 (DATE'03). IEEE Computer Society, 10190-10195. 

CHANG, C.-S. 2000. Performance Guarantees in Communication Networks. Springer-Verlag, London, 
UK. 

CHENG, A.-L., PAN, Y., YAN, X.-L., HUAN, R.-H. 2011. A general communication performance 
evaluation model based on routing path decomposition. J. Zhejiang Univ. - Sci. C (Comput. & 
Electron.) 12, 7, 561-573. 

CRUZ, R. L. 1991a. A calculus for network delay, part I: Network elements in isolation. IEEE 
Trans. Inf. Theory. 37, 1, 114-131. 

CRUZ, R. L. 1991b. A calculus for network delay, part II: Network analysis. IEEE Trans. Inf. 
Theory. 37, 1, 132-141. 

DASDAN, A. 2004. Experimental analysis of the fastest optimum cycle ratio and mean algorithms. 
ACM Trans. Des. Autom. Electron. Syst. 9, 4, 385-418. 

DASDAN, A. AND GUPTA, R. 1998. Faster maximum and minimum mean cycle algorithms for 
system performance analysis. IEEE Trans. Computer-Aided Design Integr. Circuits Syst.17, 10, 889-
899. 

DAVIS, R. I. AND BURNS, A. 2011. A survey of hard real-time scheduling for multiprocessor 
systems. ACM Comput. Surv. 43, 4, article 35. 

DENNIS. J. B. 1980. Data flow supercomputers. Computer. 13, 11, 48-56. 
FOROUTAN, S., THONNART, Y., HERSEMEULE, R., AND JERRAYA, A. 2009. Analytical computation 

of packet latency in a 2D-mesh NoC. In Proceedings of the Joint IEEE North-East Workshop on 
Circuits and Systems and TAISA Conference, 1-4. 

FOROUTAN, S., THONNART, Y., HERSEMEULE, R., AND JERRAYA, A. 2010. An analytical method 
for evaluating network-on-chip performance. In Proceedings of the 13th Conference on Design, 
Automation and Test in Europe (DATE'10).1629-1632. 

FUNK, S., GOOSSENS, J., AND BARUAH, S. 2001. On-line scheduling on uniform multiprocessors. 
In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS'01). IEEE Computer Society, 
183-192. 

GHAMARIAN, A. H., GEILEN, M. C. W., STUIJK, S., BASTEN, T. THEELEN, B. D., MOUSAVI, M. R., 
MOONEN, A. J. M., AND BEKOOIJ, M. J. G. 2006. Throughput analysis of synchronous data 



214 

 

 

flow graphs. In Proceedings of the 6th International Conference on Application of Concurrency to System 
Design (ACSD'06). IEEE Computer Society, 25-36. 

GHAMARIAN, A. H., STUIJK, S., BASTEN, T., GEILEN, M. C. W., AND THEELEN, B. D. 2007. 
Latency minimization for synchronous data flow graphs. In Proceedings of the 10th Euromicro 
Conference on Digital System Design Architectures, Methods and Tools (DSD'07). IEEE Computer 
Society, 189-196. 

GUAN, W., TSAI, W., AND BLOUGH, D. 1993. An analytical model for wormhole routing in 
multicomputer interconnection networks. In Proceedings of the International Parallel Processing 
Symposium, 650-654. 

GUZ, Z., WALTER, I., BOLOTIN, E., CIDON, I., GINOSAR, R., AND KOLODNY, A. 2007. Network 
delays and link capacities in application-specific wormhole NoCs. J. VLSI Design, 2007, article 
90941, 15 pages. 

HAMANN, A., JERSAK, M., RICHTER, K., AND ERNST, R. 2004. Design space exploration and 
system optimization with SymTA/S - symbolic timing analysis for systems. In Proceedings of the 
25th IEEE International Real-Time Systems Symposium (RTSS'04). IEEE Computer Society, 469-
478. 

HANSSON, A., WIGGERS, M., MOONEN, A., GOOSSENS, K., AND BEKOOIJ, M. J. G. 2009. 
Enabling application-level performance guarantees in network-based systems on chip by 
applying dataflow analysis. IET Comput. Digital Tech. 3, 5, 398 - 412. 

HANSSON, A. AND GOOSSENS, K. 2010. On-chip Interconnect with Aelite: Composable and Predictable 
Systems, Springer. 

HARY, S. L. AND OZGUNER, F. 1997. Feasibility test for real-time communication using 
wormhole routing. IEE Proc. Comput. Digital Tech. 144, 5, 273-278. 

HORSTMANNSHOFF, J., GROTKER, T., AND MEYR, H. 1997. Mapping multirate dataflow to 
complex RT level hardware models. In Proceedings of the IEEE International Conference on 
Application-Specific Systems, Architectures and Processors (ASAP'97). 283-292. 

HU, P.-C. AND KLEINROCK, L. 1997. An analytical model for wormhole routing with finite size 
input buffers. In Proceedings of the 15th International Teletraffic Congress. 549-560. 

HU, J., OGRAS, U. Y. AND MARCULESCU, R. 2006. System-level buffer allocation for application-
specific networks-on-chip router design. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 
25, 12, 2919-2933. 

HUR, J. Y., GOOSSENS, K., AND MHAMDI, L. 2008. Performance analysis of soft and hard single-
hop and multi-hop circuit-switched interconnects for FPGAs. In Proceedings of the IFIP 
International Conference on Very Large Scale Integration, 224-229. 

JACKSON, J. R. 1957. Networks of waiting lines. Operations Research, 5, 518-521. 
JAFARI, F., LU, Z., JANTSCH, A., AND YAGHMAEE, M. H. 2010. Buffer optimization in network-

on-chip through flow regulation. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 29, 12, 
1973-1986.   

JANTSCH, A., AND SANDER, I. 2005. Models of computation and languages for embedded system 
design. IEE Proceedings of Computers and Digital Techniques, 152, 2, 114-129. 

JIANG, Y. AND LIU, Y. 2008. Stochastic Network Calculus, Spriger-Verlag.  
JIANG, Y. 2009. Network calculus and queueing theory: two sides of one coin. In Proceedings of the 
4th International Conference on Performance Evaluation Methodologies and Tools, article 37, 12 pages. 

JOSEPH, M. AND PANDYA, P. 1986. Finding response times in a real-time system. The Computer J. - 
British Computer Society, 29, 5, 390-395. 

KANDLUR, D. D., SHIN, K. G., AND FERRARI, D. 1994. Real-time communication in multihop 
networks. IEEE Trans. Parallel Distrib. Syst. 5, 10, 1044-1056. 

KIASARI, A. E., SARBAZI-AZAD, H., AND OULD-KHAOUA, M. 2008a. An accurate mathematical 
performance model of adaptive routing in the star graph. Future Generation Computer Systems, 24, 
6, 461-474. 



215 

 

 

KIASARI, A. E., RAHMATI, D., SARBAZI-AZAD, H. AND HESSABI, S. 2008b. A Markovian 
performance model for networks-on-chip. In Proceedings of the 16th Euromicro International 
Conference on Parallel, Distributed and Network-Based Processing (PDP’08), 157-164. 

KIASARI, A. E., SARBAZI-AZAD, H., AND HESSABI, S. 2008c. Caspian: a tunable performance 
model for multi-core systems, In Proceedings of the 14th European Conference on Parallel and 
Distributed Computing (Euro-Par’08), Lecture Notes in Computer Science, vol. 5168, 100-109. 

KIASARI, A. E., HESSABI, S., AND SARBAZI-AZAD, H. 2008d. PERMAP: A performance-aware 
mapping for application-specific SoCs. In Proceedings of the International Conference on Application-
Specific Systems, Architectures and Processors (ASAP'08). IEEE Computer Society, 73-78. 

KIASARI, A. E., JANTSCH, A., AND LU, Z. 2010. A framework for designing congestion-aware 
deterministic routing. In Proceedings of the 3rd International Workshop on Network-on-Chip 
Architectures (NoCArc’10). ACM Press, 45-50. 

KIASARI, A. E., LU, Z., AND JANTSCH, A. 2012. An analytical latency model for networks-on-chip. 
Accepted for publication in the IEEE Trans. on Very Large Scale Integration (VLSI) Systems. doi: 
10.1109/TVLSI.2011.2178620. 

KIM, J. AND DAS, C. R. 1994. Hypercube communication delay with wormhole routing. IEEE 
Trans. Comput. 43, 7, 806-814. 

KIM, B., KIM, J., HONG, S. J., AND LEE, S. 1998. A real-time communication method for 
wormhole switching networks. In Proceedings of the International Conference on Parallel Processing 
(ICPP'98). IEEE Computer Society, 527-534. 

KIM, J., PARK, D., NICOPOULOS, C., VIJAYKRISHNAN, N., AND DAS, C. R. 2005. Design and 
analysis of an NoC architecture from performance, reliability and energy perspective. In 
Proceedings of the ACM Symposium on Architecture for Networking and Communications Systems 
(ANCS'05). ACM Press, 173-182. 

KIM, H. AND HOU, J. C. 2009. Enabling network calculus-based simulation for TCP congestion 
control. Comput. Netw. 53, 11-24. 

KLEINROCK, L. 1975. Queueing Systems, vol. 1, John Wiley. 
KRIMER, E., KESLASSY, I., KOLODNY, A., WALTER, I., AND EREZ, M. 2011. Static timing analysis 

for modeling QoS in networks-on-chip. J. Parallel Distrib. Comput. 71, 5, 687-699. 
KUMAR, A., MESMAN, B., THEELEN, B. D., CORPORAAL, H., HA, Y. 2008. Analyzing 

composability of applications on MPSoC platforms. Journal of Systems Architecture - Embedded 
Systems Design. 54, 3-4, 369-383. 

LAUWEREINS, R., WAUTERS, P., ADE, M., PEPERSTRAETE, J. A. 1994. Geometric parallelism and 
cyclo-static data flow in GRAPE-II. In Proceedings of the International Workshop on Rapid System 
Prototyping, 90-107. 

LE BOUDEC J.-Y. AND THIRAN, P. 2001. Network Calculus: A Theory of Deterministic Queuing Systems 
for the Internet. Springer-Verlag. 

LEE, E. A. AND MESSERSCHMITT, D. G. 1987a. Synchronous data flow. Proceedings of the IEEE, 75, 
9, 1235-1245. 

LEE, E. A. AND MESSERSCHMITT, D. G. 1987b. Static scheduling of synchronous data flow 
programs for digital signal processing. IEEE Trans. Comput. 36, 1, 24-35. 

LEE, E. A. 1991. Consistency in dataflow graphs. IEEE Trans. Parallel Distrib. Syst. 2, 2, 223-235. 
LEE, E. A. AND PARKS, T. M. 1995. Dataflow process networks. Proceedings of the IEEE, 83, 5, 773-

799. 
LEHOCZKY, J. P., SHA, L., AND DING, Y. 1989. The rate monotonic scheduling algorithm: exact 

characterization and average case behavior. In Proceedings of the IEEE Real-Time Systems 
Symposium, 166-171. 

LEHOCZKY, J. P. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In 
Proceedings of the IEEE Real Time Systems Symposium, 201-209. 

LEUNG, J. Y. T. AND WHITEHEAD, J. 1982. On the complexity of fixed priority scheduling of 
periodic, real-time tasks. Performance Evaluation, 2, 4, 237-250. 



216 

 

 

LI, J.-P. AND MUTKA, M. W. 1994. Priority based real-time communication for large scale 
wormhole networks. In Proceedings of the 8th International Symposium on Parallel Processing, IEEE 
Computer Society, 433-438. 

LI, J.-P. AND MUTKA, M. W. 1996. Real-time virtual channel flow control. J. Parallel Distrib. 
Comput. 32, 1, 49-65. 

LINDLEY, D. V.  1952. The theory of queues with a single server. Proceedings of the Cambridge 
Philosophical Society. 48, 2, 277-289. 

LIU C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20, 1, 46-61. 

LIU, J. W. S. 2000. Real-Time Systems (1st ed.). Prentice Hall. 
LU, Z., JANTSCH, A., AND SANDER, I. 2005. Feasibility analysis of messages for on-chip networks 

using wormhole routing. In Proceedings of the Asia and South Pacific Design Automation Conference 
(ASP-DAC'05). ACM Press, 960-964. 

LU, Z., MILLBERG, M., JANTSCH, A., BRUCE, A., VAN DER WOLF, P., AND HENRIKSSON, T. 2009. 
Flow regulation for on-chip communication. In Proceedings of the Design, Automation and Test in 
Europe Conference (DATE'09). 578-581. 

LU. Z. 2011. Cross clock-domain TDM virtual circuits for networks on chips. In Proceedings of the 
5th ACM/IEEE International Symposium on Networks-on-Chip (NoCS'11). ACM Press, 209-216. 

MANABE, Y. AND AOYAGI, S. 1995. A feasibility decision algorithm for rate monotonic 
scheduling of periodic real-time tasks. In Proceedings of the Real-Time Technology and Applications 
Symposium (RTAS'95). IEEE Computer Society, 212-218. 

MIN, G. AND OULD-KHAOUA, M. 2004. A performance model for wormhole-switched 
interconnection networks under self-similar traffic. IEEE Trans. Comput. 53, 5, 601-613. 

MOREIRA, O. M. AND BEKOOIJ, M. J. G. 2007. Self-timed scheduling analysis for real-time 
applications. EURASIP J. Advances in Signal Processing, 2007, id: 083710. 

NELSON, A., HANSSON, A., CORPORAAL, H., GOOSSENS, K. 2010. Conservative application-level 
performance analysis through simulation of MPSoCs. In Proceedings of the 8th IEEE Workshop 
on Embedded Systems for Real-Time Multimedia, 51-60. 

ODONI, A. AND ROTH E. 1983. An empirical investigation of the transient behavior of stationary 
queueing systems. Oper. Res. 31, 432-455. 
OGRAS, U. Y., BOGDAN, P., AND MARCULESCU, R. 2010. An analytical approach for network-on-

chip performance analysis. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 29, 12, 2001-2013. 
OH D. AND BAKKER, T. P. 1998. Utilization bounds for n-processor rate monotone scheduling 

with static processor assignment. Real Time Systems J., 15, 1, 183-193. 
OH, Y. AND SON, S. H. 1995. Allocating fixed-priority periodic tasks on multiprocessor systems. 
Real-Time Syst. 9, 3, 207-239. 

PANDIT, K., SCHMITT, J., AND STEINMETZ, R. 2004. Network calculus meets queueing theory - a 
simulation based approach to bounded queues. In Proceedings of the IEEE International Workshop 
on Quality of Service, pp. 114-120. 

PARHI, K. K. 1989. Algorithm transformation techniques for concurrent processors. Proceedings of 
the IEEE, 77, 12, 1879-1895. 

PENG, D.-T. AND SHIN, K. G. 1993. A new performance measure for scheduling independent 
real-time tasks. J. Parallel Distrib. Comput. 19, 1, 11-26. 

POP, P., ELES, P., AND PENG, Z. 2000. Schedulability analysis for systems with data and control 
dependencies. In Proceedings of the 12th Euromicro Conference on Real-Time Systems (RTS'00). IEEE 
Computer Society, 201-208. 

QIAN, Y., LU, Z., AND DOU, W. 2009a. Applying network calculus for performance analysis of 
self-similar traffic in on-chip networks. In Proceedings of the 7th IEEE/ACM International 
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'09). ACM Press, 
453-460. 



217 

 

 

QIAN, Y., LU, Z., AND DOU, W. 2009b. Analysis of worst-case delay bounds for best-effort 
communication in wormhole networks on chip. In Proceedings of the 3rd ACM/IEEE 
International Symposium on Networks-on-Chip (NOCS'09). IEEE Computer Society, 44-53.  

QIAN, Y., LU, Z., AND DOU, W. 2009c. Worst case flit and packet delay bounds in wormhole 
networks on chip. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 
Special Section on VLSI Design and CAD Algorithms, E92-A, 12, 3211-3220. 

QIAN, Y., LU, Z., AND DOU, W. 2010a. Analysis of worst-case delay bounds for on-chip packet-
switching networks. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys. 29, 5, 802-815. 

QIAN, Y., LU, Z., AND DOU, W. 2010b. QoS scheduling for NoCs: strict priority queueing versus 
weighted round robin. In Proceedings of the 28th International Conference on Computer Design 
(ICCD’10), 52-59. 

RUMBAUGH. J. 1977. A data flow multiprocessor. IEEE Trans. Comput. 26, 2, 138-146. 
SATHAYE, S. S. AND STROSNIDER, J. K. 1994. A real-time scheduling framework for packet-

switched networks. In Proceedings of the IEEE International Conference on Distributed Computing, 
IEEE Computer Society, 182-191. 

SCHERRER, A., FRABOULET, A., AND RISSET, T. 2009. Long-range dependence and on-chip 
processor traffic. Microprocess. Microsyst. 33, 1, 72-80. 

SCHMITT, J. B.  AND ROEDIG, U. 2005. Sensor network calculus: a framework for worst case 
analysis. Distributed Computing in Sensor Systems, Lecture Notes in Computer Science, vol. 3560, 
Springer, 141-154.  

SCHMITT, J. 2003. On average and worst case behaviour in non-preemptive priority queueing. In 
Proceedings of the International Symposium on Performance Evaluation of Computer and Telecommunication 
Systems. 197-204. 

SHA, L., LEHOCZKY, J. P., AND RAJKUMAR, R. 1986. Solutions for some practical problems in 
prioritized preemptive scheduling. In Proceedings of the IEEE Real-Time Systems Symposium.181-
191. 

SHE, H., LU, Z., JANTSCH, A., ZHOU, D., AND ZHENG, L. 2009. Analytical evaluation of 
retransmission schemes in wireless sensor networks. In Proceedings of the 69th IEEE Vehicular 
Technology Conference (VTC’09-Spring). 

SHI, Z. AND BURNS, A. 2008. Real-time communication analysis for on-chip networks with 
wormhole switching. In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-
Chip (NOCS'08). IEEE Computer Society, 161-170. 

SHI, Z. AND BURNS, A. 2009. Real-time communication analysis with a priority share policy in on-
chip networks. In Proceedings of the 21st Euromicro Conference on Real-Time Systems (ECRTS). IEEE 
Computer Society, 3-12. 

SHI, Z. AND BURNS, A. 2010. Schedulability analysis and task mapping for real-time on-chip 
communication. Real-Time Systems. 46, 3, 360-385. 

SJODIN, M. AND HANSSON, H. 1998. Improved response-time analysis calculations. In Proceedings 
of the IEEE Real-Time Systems Symposium (RTSS'98). IEEE Computer Society, 399-409. 

SONG, H., KWON, B., AND YOON, H. 1997. Throttle and preempt: a new flow control for real-
time communications in wormhole networks. In Proceedings of the international Conference on 
Parallel Processing (ICPP'97). IEEE Computer Society, 198-202. 

SOTERIOU, V., WANG, H., AND PEH, L.-S. 2006. A statistical traffic model for on-chip 
interconnection networks. In Proceedings of the 14th IEEE International Symposium on Modeling, 
Analysis, and Simulation (MASCOTS'06). IEEE Computer Society, 104-116. 

SRIRAM, S., AND BHATTACHARYYA, S. S. 2009. Embedded Multiprocessors: Scheduling and 
Synchronization (2nd ed.). CRC Press. 

STILIADIS, D. AND VARMA, A. 1998. Latency-rate servers: a general model for analysis of traffic 
scheduling algorithms. IEEE/ACM Trans. Netw. 6, 5, 611-624. 



218 

 

 

STUIJK, S., GEILEN, M. C. W., AND BASTEN, T. 2006. Exploring trade-offs in buffer requirements 
and throughput constraints for synchronous dataflow graphs. In Proceedings of the 43rd Annual 
Design Automation Conference (DAC'06). ACM Press, 899-904. 

STUIJK, S., GEILEN, M. C. W., THEELEN, B. D., AND BASTEN, T. 2011. Scenario-aware dataflow: 
modeling, analysis and implementation of dynamic applications. In Proceedings of the International 
Conference on Embedded Computer Systems, 404-411. 

THEELEN, B. D. GEILEN, M. C. W., BASTEN, T., VOETEN, J. P. M., GHEORGHITA, S. V., AND 

STUIJK, S. 2006. A Scenario-aware data flow model for combined long-run average and worst-
case performance analysis. In Proceedings of the International Conference on Formal Methods and Models 
for Co-Design, 185-194. 

H. R. VAN AS. 1986. Transient analysis of Markovian queueing systems and its application to 
congestion-control modeling. IEEE J. Selected Areas in Communications. 4, 6, 891-904. 

VARATKAR, G. V. AND MARCULESCU, R. 2004. On-chip traffic modeling and synthesis for 
MPEG-2 video applications. IEEE Trans. Very Large Scale Integr. Syst. 12, 1, 108-119. 

WANG, J., LI, Y., AND PENG, Q. 2011. A novel analytical model for network-on-chip using semi-
Markov process. Advances in Electrical and Computer Engineering, 11, 1, 111-118. 

WIGGERS, M. H., BEKOOIJ, M. J. G., AND SMIT, G. J. M. 2007a. Modeling run-time arbitration by 
latency-rate servers in dataflow graphs. In Proceedings of the International Workshop on Software and 
Compilers for Embedded Systems, 11-22. 

WIGGERS, M. H., BEKOOIJ, M. J. G., AND SMIT, G. J. M. 2007b. Efficient computation of buffer 
capacities for cyclo-static dataflow graphs. In Proceedings of the 44th Annual Design Automation 
Conference (DAC'07). ACM Press, 658-663. 

WIGGERS, M. H., BEKOOIJ, M. J. G., AND SMIT, G. J. M. 2008. Buffer capacity computation for 
throughput constrained streaming applications with data-dependent inter-task communication. 
In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium 
(RTAS'08). IEEE Computer Society, 183-194. 

WIGGERS, M. H., BEKOOIJ, M. J. G., AND SMIT, G. J. M. 2011. Buffer capacity computation for 
throughput-constrained modal task graphs. ACM Trans. Embed. Comput. Syst. 10, 2, article 17, 
59 pages. 

WU, J., LIU, J.-C., AND ZHAO, W. 2010. A general framework for parameterized schedulability 
bound analysis of real-time systems. IEEE Trans. Comput. 59, 6, 776-783. 

XUAN, D., BETTATI, R., CHEN, J., ZHAO, W., AND LI, C. 2000. Utilization-based admission control 
for real-time applications. In Proceedings of the International Conference on Parallel Processing 
(ICPP'00). IEEE Computer Society, 251-262. 

YANG, F. AND LIU, J. 2010. Transient analysis of general queueing systems via simulation-based 
transfer function modeling, In Proceedings of the Winter Simulation Conference (WSC). IEEE 
Computer Society, 1110-1122.   

ZHANG, H. 1995. Service disciplines for guaranteed performance service in packet-switching 
networks. Proceedings of the IEEE, 83, 10, 1374-1396. 

 



219 

 

 

 
 
 
 
 
 
 
A Heuristic Framework for Designing 
and Exploring Deterministic Routing 
Algorithm for NoCs 
 

Abbas Eslami Kiasari 
Axel Jantsch 
Zhonghai Lu  
 
M. Palesi and M. Daneshtalab, editors, Routing 
Algorithms in Networks-on-Chip, Springer, 2013,  
ISBN 978-1-4614-8273-4. 

 Paper 11 





221 

 

 

A Heuristic Framework for Designing and Exploring Deterministic 
Routing Algorithm for NoCs 

 
 

Abbas Eslami Kiasari,2Axel Jantsch, and Zhonghai Lu 
 

 
Abstract In this chapter, we present a system-level framework for designing minimal deterministic 
routing algorithms for Networks-on-Chip (NoCs) that are customized for a set of applications. To 
this end, we first formulate an optimization problem of minimizing average packet latency in the 
network and then use the simulated annealing heuristic to solve this problem. To estimate the 
average packet latency we use a queueing-based analytical model which can capture the burstiness of 
the traffic. The proposed framework does not require virtual channels to guarantee deadlock 
freedom since routes are extracted from an acyclic channel dependency graph. Experiments with 
both synthetic and realistic workloads show the effectiveness of the approach. Results show that 
maximum sustainable throughput of the network is improved for different applications and 
architectures. 
  
1. INTRODUCTION 
Thanks to high performance and low power budget of ASICs (application specific integrated 
circuits), they have been common components in the design of embedded systems-on-chip. 
Advances of semiconductor technology facilitate the integration of reconfigurable logic with ASIC 
modules in embedded systems-on-chip. Reconfigurable architectures are used as new alternatives 
for implementing a wide range of computationally intensive applications, such as DSP, multimedia 
and computer vision applications  [1]. In the beginning of the current millennium, network-on-chip 
(NoC) emerged as a standard solution in the on-chip architectures  [8][10][11]. In network-based 
systems, the performance of the communication infrastructure is critical, as it can represent the 
overall system performance bottleneck. The performance of networks depends heavily on the 
routing algorithm effectiveness, since it impacts all network metrics such as latency, throughput, and 
power dissipation.  

Routing algorithms are generally categorized into deterministic and adaptive. A deterministic 
routing algorithm is oblivious of the dynamic network conditions and always provides the same 
path between a given source and destination pair. In contrast, in adaptive routing algorithms, 
besides source and destination addresses, network traffic variation plays an important role for 
selecting channels to forward packets. However, adaptive routing may cause packets to arrive out-
of-order since they may be routed along different paths. The re-order buffers needed at the 
destination for ordering the packets impose large area and power on system  [13]. Deterministic 
routers not only are more compact and faster than adaptive routers  [4], but also guarantee in-order 
packet delivery. Therefore, it is not surprising that designers would like to use deterministic routing 
algorithms in the NoCs which suffer from limited silicon resources. However, in deterministic 
routing a packet cannot use alternative paths to avoid congested channels along its route; this leads 
to degraded performance of the communication architecture at high levels of network throughput.  

A well-designed routing algorithm utilizes the network resources uniformly as much as possible 
and avoids the congested channels, even in the presence of non-uniform traffic patterns, which are 

                                                           

A.E. Kiasari (✉) • A. Jantsch • Z. Lu 
KTH Royal Institute of Technology, 
Stockholm, Sweden  
e-mail: kiasari@kth.se 

 

 



222 

 

 

usual in the embedded systems. In this paper, we propose a system-level Latency-Aware Routing 
(LAR) framework for designing minimal deterministic routing algorithms for network-based 
platforms. Especially, LAR is appropriate for reconfigurable embedded systems-on-chip which host 
several applications with high computational requirements and static workloads. To the best of our 
knowledge, the proposed framework is the first one to deal with traffic burstiness. Before the 
execution of a new application, the routing tables are configured with pre-computed routes, as well 
as other components in the system. After selecting the route and adding it to the packet, no further 
time is needed on routing at the intermediate nodes along the path. Due to advantages of table-
based routing, it is one of the most widely used routing methods for implementing deterministic 
routing algorithm, e.g., IBM SP1 and SP2 [5]. 

LAR uses a recently proposed analytical model in  [14] to calculate the average packet latency in 
the network. The results obtained from simulation experiments confirm that the proposed routing 
framework can find efficient routes for various networks and workloads.  

The rest of the paper is organized as follows. We start by reviewing previous studies in Section 2. 
The proposed heuristic framework is proposed in Section 3. Experimental results in Section 4 show 
that our proposed approach can improve the system performance. Finally, concluding remarks are 
given in Section 5. 

 
2. RELATED WORK 

Turn model for designing partially adaptive routing algorithms for mesh and hypercube networks 
was proposed in  [7]. Prohibiting minimum number of turns breaks all of the cycles and produces a 
deadlock-free routing algorithm. Turn model was used to develop the Odd-Even adaptive routing 
algorithm for meshes  [3]. This model restricts the locations where some turns can be taken so that 
deadlock is avoided. In comparison with turn model, the degree of routing adaptivity provided by 
the Odd-Even routing is more even for different source-destination pairs. 

DyAD routing scheme, which combines deterministic and adaptive routing, is proposed in  [9] for 
NoCs, where the router works in deterministic mode when the network is not congested, and 
switches to adaptive mode when the network becomes congested. In  [17] the authors extend routers 
of a network to measure their load and to send appropriate load information to their direct 
neighbors. The load information is used to decide in which direction a packet should be routed to 
avoid hot-spots. Recently, the authors in  [14] present APSRA, a methodology to develop adaptive 
routing algorithms for NoCs that are specialized for an application or a set of concurrent 
applications. APSRA exploits the application-specific information regarding pairs of cores that 
communicate and other pairs that never communicate in the NoC platform to maximize 
communication adaptivity and performance. 

Since all of these approaches are based on adaptive routing, they suffer from out-of-order packet 
delivery. Our proposed routing framework overcomes this problem while it minimizes the average 
packet latency across the network. 

An application-aware oblivious routing is proposed in  [11] that statically determines deadlock-free 
routes. The authors presented a mixed integer-linear programming approach and a heuristic 
approach for producing routes that minimize maximum channel load. However, in case of realistic 
workload, they did not study the effect of task mapping on their approach. Also, we have addressed 
the congestion-aware routing problem in  [15]. With the analysis technique, we first estimated the 
congestion level in the network, and then embedded this analysis technique into the loop of 
optimizing routing paths so as to find deterministic routing paths for all traffic flows while 
minimizing the congestion level in the network. Since this framework cannot capture the traffic 
burstiness, in this work we utilize an analytical model  [14] to deal with traffic burstiness. 

 
3. LAR FRAMEWORK 

The LAR framework consists of 5 steps as its flowchart is shown in Figure 1. At first, we 
represent the architecture and application using topology graph (TG) and communication graph (CG), 
respectively. Then we construct the channel dependency graph (CDG) based on TG and CG. In the 



223 

 

 

third step, an acyclic CDG is extracted by deleting some edges from CDG to guarantee the 
deadlock freedom. After that, we find all possible shortest paths for each flow to create the routing 
space. Finally, we formulate an optimization problem over the routing space and solve it. In the 
following subsections, each step is described in detail. 

 

  
Figure 1: The flowchart of LAR framework. 

 
3.1   Model Architecture and Application 
In order to characterize network performance, a network model is essential. As shown in Figure 2, a 
directed graph, which is called Topology Graph (TG), can represent the topology of an NoC 
architecture. Vertices and edges of TG show nodes and links of the NoC, respectively. Every node 
in TG contains a core and a wormhole-switched router. Such cores are local computing or storage 
regions, which may contain a processor, a DSP core, a configurable hardware, a high-bandwidth 
I/O controller, or a memory block. Each core is equipped with a Resource Network Interface 
(RNI). The RNI translates data between cores and routers by packing/unpacking data packets and 
also manages the packet injection process. Packets are injected into the network on injection 
channel and leave the network from ejection channel. We consider the general reference 
architecture for routers  [7], where a routing logic determines the output channel over which the 
packet advances. Routing is only performed with the head flit of a packet. After routing phase, a 
crossbar switch handles the connections among input and output channel.  
 

 
Figure 2: TG of a 4x4 mesh network. 

 
An application can be modeled by a graph called Communication Graph (CG). CG is a directed graph, 
where each vertex represents one selected task, and each directed arc represents the communication 
volume from source task to destination task. As an example, the CG of a video object plane 
decoder (VOPD) is shown in Figure 3  [18]. Each node in the CG corresponds to a task and the 
numbers near the edges represent the bandwidth (in MBytes/sec) of the data transfer, for a 30 
frames/sec MPEG-4 movie with 1920×1088 resolution  [18]. 
 

Construct CDG
Model architecture 

and application

Remove cycles 
from CDG

Create 
routing space 

Routing tables 
construction

Routing space 
exploration

1 2

34

5

0 1 2 3

4 5 6 7

8 9 A B

C D E F



224 

 

 

 
 

Figure 3: CG of a video object plane decoder (VOPD) application  [18]. 
 

3.2   Construct Channel Dependency Graph 
Dally and Seitz simplified designing deadlock-free routing algorithms with a proof that an acyclic 

channel dependency graph (CDG) guarantees deadlock freedom  [5]. Each vertex of the CDG is a 
channel in TG. For instance, vertex 01 in Figure 4 corresponds to the channel from node 0 to node 
1 in Figure 2. There is a directed edge from one vertex in CDG to another if a packet is permitted 
to use the second channel in TG immediately after the first one. To find the edges of a CDG, we 
use the Dijkstra’s algorithm to find all shortest paths between source and destination of any flows in 
corresponding TG. CDG of a 4x4 mesh network (Figure 2) under minimal fully adaptive routing is 
shown in Figure 4.a, when any two nodes have the need to communicate such as in the uniform 
traffic pattern.  

 

  
                                        (a)                                                                    (b) 
 
Figure 4: The CDG of 4x4 mesh network for minimal fully adaptive routing under (a) uniform and 
(b) transpose traffic patterns. 
 
3.3   Remove Cycles from CDG 

Traditional routing algorithms, such as dimension-order routing (DOR) and turn model, extract an 
acyclic CDG by systematically removing some edges from the CDG regardless of the traffic pattern. 
This may result in poor performance of routing algorithm due to prohibition of unnecessary turns. 
For instance, as shown in Figure 4.b, there is no cycle in CDG of 4x4 mesh network under 
transpose traffic pattern, which the node in row i and column j sends packets to the node in row j 
and column i. However, traditional routing algorithms conservatively remove some edges from the 
CDG.  

Variable 

length

decoder

70 Run-

length

decoder

362
Inverse 

scan

362
AC/DC 

prediction

362
iQuant

357
IDCT

Stripe 

memory

4927

Up 

sampling

VOP 

reconstruction

PaddingVOP 

memory

353

300

313

94

313

500

Context-based 

Arithmetic 

decoder

Memory

Down sampling &

context calculation

157

16

16

Reference 

memory

Up 

sampling

16

16

16

16

16

45

10

5104

54

01

1540

56

21

62

65

12

26

67

32

73

76

23

37

89

9548

98

5984

9A

A6

A9

6A

AB

B7

BA

7B

CD

D98C

DC

9DC8

DE

EA

ED

AE

EF

FB

FE

BF

45

10

5104

54

01

1540

56

21

62

65

12

26

67

32

73

76

23

37

89

9548

98

5984

9A

A6

A9

6A

AB

B7

BA

7B

CD

D98C

DC

9DC8

DE

EA

ED

AE

EF

FB

FE

BF



225 

 

 

We modify the depth-first-search (dfs) algorithm to find cycles in a given CDG. Since we want to 
remove minimum number of edges, we delete an edge from the CDG which is shared among more 
cycles. Note that, this edge is removed if the reachability of all flows is guaranteed. For example, in 
a CDG of 4x4 mesh network, shown in Figure 4.a, there are 6,982,870 cycles and the edge from 
vertex 40 to vertex 01 is shared among 5,041,173 cycles. Thus by removing this edge from the 
CDG, the number of cycles is considerably reduced to 1,941,697. These steps are repeated again 
while there is no cycle in the CDG. Table 1 shows the numbers of cycles found by LAR in the 
CDG of different mesh networks. As it can be vividly seen, number of cycles is exponentially grown 
with the size of the TG and it takes a long time to find all cycles in the CDG. Hence, we find cycles 
in the CDG till certain number of cycles, and then remove an edge from the CDG which is shared 
among more cycles.  

Table1: Number of cycles in CDG of mesh networks. 
 

TG 
Number of cycles in 
corresponding CDG 

Mesh (2x2) 2 
Mesh (2x3) 8 
Mesh (3x3) 292 
Mesh (3x4) 14,232 
Mesh (4x4) 6,982,870 
Mesh (4x5) 3,656,892,444 

 
3.4   Create Routing Space (RS) 

In this step, we apply Dijkstra’s algorithm to the acyclic CDG to find all shortest paths between 
source and destination of flows in corresponding TG and create a set of f flows Wp =�q1, q2, …, qt}  where f is the number of all flows in the system. q�=O�,(³�,s�,D� , where O� is the 
average packet generation rate and (�� is the coefficient of variation (CV) of packet interarrival time 
for flow i. We remind that the relationship between CV of random variable X and its moments is 

represented by (;� = v�111 v̅�⁄ − 1 . In  [14], we show that CV of a random variable reflects the 
burstiness intensity very well. s� is the number of available shortest paths for flow i and D� is itself a 
set and includes all s� routes for flow i.  

Usually more than one shortest path is available between two nodes (s� > 1) in the routing space 
RS, so it is reasonable to choose a path such that the average packet latency is minimized. In the 
next subsection, we formulate an optimization problem over RS to find a suitable route for each 
flow and then use the simulated annealing heuristic to solve this problem. 

 
3.5   Routing Space Exploration 
 
3.5.1. Define Optimization Problem 

In this subsection, we define an optimization problem to explore the routing space of RS. It is 
essential to define decision variables and objective functions in formulating an optimization problem. Our 
goal is to select a path for flow i (1 ≤ � ≤ t) among s�  available paths to minimize the average 
packet latency. Therefore, we define � = uv2, v�, … , vrw as decision variables in the space of RS 

where v�  refers to a path number for flow i (1 ≤ v� ≤ s�)  and the average packet latency as 
objective function. 

The use of simulation experiments makes the task of searching for efficient designs 
computationally intensive and does not scale well with the size of networks since the search space 
of such a problem increases dramatically with the system size. Therefore, it is simply impossible to 
use the simulation in optimization loops. In the following subsection, we use an efficient analytical 
model to find nearly optimal solutions in reasonable time. 

 



226 

 

 

3.5.2. Analytical Latency Model 
If the performance of a routing algorithm is measured in terms of average packet latency, then 

maximizing the performance means, in fact, minimizing the end-to-end packet latency. In this 
section, we briefly review a recently proposed analytical performance model which estimates the 
average packet latency in on-chip networks [14].  

In a wormhole switched network, the end-to-end delay of a packet consists of two parts: the 
latency of the head flit and the latency of the body flits which follow the header flit in a pipelined 
fashion. The average latency of the head flit can be computed as the sum of delays at each hop, 
clearly, the link delays the head flit experienced and the residence times of the head flit in each of 
the routers along the path. Therefore, generally the only unknown parameter for computing the 
average packet latency is the mean waiting time for a packet from input channel i to output channel 

j in router N J��→�� K. Using a G/G/1 priority queueing model, we estimated this value by  [14]  

 ��→�� =
¥¦¦
§
¦¦̈�� ©��B
��� B ª

�0�� �«�→�  8 ,																								� = 1,							
«� ©��B
��� B ª

�0�� �∑ «�→� ������ 8B ,														2 ≤ � ≤ �
j                                                             (1) 

where the variables are listed in Table 2 along with other parameters used in this chapter. 
Therefore, to compute the ��→��  we have to calculate the arrival rate from )(�� to �(��	JO�→�� K, 

and also first and second moments of the service time of �(�� 	0:̅�� , J:¬�K�11111111	8. In the following two 

subsections, packet arrival rate and channel service time are computed.  
Assuming the network is not overloaded, the arrival rate from )(�� to �(��  can be calculated 

using the following general equation O�→�� = ∑ ∑ O� × D�→� × WJp → , )(�� → �(��K��                                                        (2) 

In Eq. (2), the routing function WJp → , )(�� → �(��K  equals 1 if a packet from )D�  to )D� 

passes from )(��  to �(�� ; it equals 0 otherwise. Note that we assume a deterministic routing 

algorithm, thus the function of WJp → , )(�� → �(��K  can be predetermined, regardless of 

topology and routing algorithm. After that, the average packet rate to �(�� can be easily determined 
as O�� = ∑ O�→���                                                                                                                   (3) 

After estimating the packet arrival rates, now we focus on the estimation of the moments of 
channel service times. At first, we assign a positive integer index to each output channel. Let �� be 

the set of all possible destinations for a packet which passes through �(��. The index of �(�� is 

equal to the maximum of distances among N and each , where , ∈ ��. Obviously, the index of a 
channel is between 1 and diameter of the network. In addition, the index of all ejection channels is 
supposed to be 0. After that, all output channels are divided into some groups based on their index 
numbers, so that group o contains all channels with index k.  

Determination of the channel service time moments starts at group 0 (ejection channels) and 
works in ascending order of group numbers. Therefore, the waiting time from lower numbered 
groups can then be thought of as adding to the service time of packets on higher numbered groups. 
In other words, to determine the waiting time of channels in group o, we have to calculate the 
waiting time of all channels in group o − 1. This approach is independent of the network topology 
and works for all kinds of deterministic routing algorithm, whether minimal or non-minimal.  
 

 



227 

 

 

Table 2: Parameter notation. 
 %�  Time spent for packet routing decision (cycles) %>  Time spent for switching (cycles) %�  

Time spent for transmitting a flit between two adjacent 
routers (cycles) 

m Average size of packets (flits) 
Lb The latency of body flits *�→� Average packet latency from )D� to )D� (cycles) 
L Average packet latency in the network (cycles) )D� The IP core located at address N W� The router located at address N )(�� The ith input channel in router W� �(�� The jth output channel in router W� ).�� Capacity of the buffer in )(��	(flits) �.�� Capacity of the buffer in �(��	(flits) D�→�Probability of a packet is generated in )D� and is delivered 

to )D� +∑ ∑ D�→��� = 1/ O� Average packet injection rate of )D� (packets/cycle) O�→��  Average packet rate from )(�� to �(�� (packets/cycle) O�� 
Average packet rate to �(�� (packets/cycle) 

 JO�� = ∑ O�→��� K D�→��  
Probability of a packet entered form )(��  to be exited 
from �(�� ��� Average service rate of the �(�� (packets/cycle) (��   Coefficient of variation (CV) for service time of the �(�� (� CV for interarrival time of packets  \�� The fraction of time that the �(�� is occupied  ��→�� Average waiting time for a packet from )(�� to �(�� (cycles) 

 
In the ejection channel of W�, the head flit and body flits are accepted in %> + %� and *� cycles, 

respectively. Therefore, we can write :̅2� = %> + %� + *� and since the standard deviation of packet 
size is known, we can easily compute (��  . Now, by using Eq. (1), the waiting time of input channels 

for ejection channel, ��→2� , can be determined for all nodes in the network, where 2 ≤ � ≤ �. 
Although the moments of service time can be computed simply for all ejection channels, service 

time moments of the other output channels cannot be computed in a direct manner by a general 
formula, and we have to use a more complicated approach. Now, we can estimate the first moment 
or average service time of �(�� as :̅�� = ∑ D�→�� 0%> + %� + %� +��→�� + :̅�� − J).�� + �.��K × �#v+%>, %�/8®�72                          (4) +:5�/�11111111 = ∑ D�→�� 0%> + %� + %� +��→�� + :̅�� − J).�� + �.��K × �#v+%>, %�/8®�72 �

                  (5) 

 
where D�→��  is the probability of a packet entered form )(�� to be exited from �(�� and equals  D�→�� = O�→�� O��⁄                                                                                                               (6) 

Here, we should remind that to calculate :̅�� and +:5�/�11111111  all values of :̅��	+1 ≤ o ≤ �/  must be 
computed before. Finally, the CV of channel service time for �(�� can be given by  



228 

 

 

(��̄� = +:5�/�11111111 +:̅��/� − 1¢                                                                                                   (7) 

Now, we are able to compute the average waiting time of all output channels using Eq. (1). After 
computing ��→��  for all nodes and channels, the average packet latency between any two nodes in 

the network, *�→�, can be calculated. The average packet latency is the weighted mean of these 
latencies. * = ∑ ∑ D�→� × *�→���                                                                                                               (8) 
where D�→�  is the probability of a packet is generated in )D�  and is delivered to )D� . LAR 
framework uses the simulated annealing heuristic to minimize the average packet latency L as 
described briefly in the next subsection.  
 
3.5.3 Simulated Annealing 

Simulated Annealing is a stochastic computational method for solving the global optimization 
problem in a large search space. It is often used when the search space is discrete. For instance, 
simulated annealing has been applied to some computer-aided design (CAD) problems such as 
module placement  [21] and packet routing  [15]. For such problems, simulated annealing may be 
more efficient than exhaustive enumeration. While simulated annealing is unlikely to find 
the optimum solution, it can often find an acceptably good solution in a fixed amount of time. 
Simulated annealing was independently proposed as an optimization technique in 1983  [12] and 
1985  [3]. This technique stems from thermal annealing in metallurgy which aims to increase the size 
of crystals and reduce their defects by heating a material and then slowly lowering the temperature 
to give atoms the time to attain the lowest energy state.  

To simulate the physical annealing process, the simulated annealing algorithm starts with an initial 
solution and then at each iteration, a trial solution is randomly generated. The algorithm accepts the 
trial solution if it lowers the objective function (better solution), but also, with a certain probability, 
a trial solution that raises the objective function (worse solution). Usually the Metropolis 
algorithm  [2] is used as the acceptance criterion in which worse solution are allowed using the 
criterion that ´�∆�/	 > W+0,1/,                                                                                                                 (9) 
where ∆�  is the difference of objective function with current and trial solutions (negative for a 
better solution; positive for a worse solution), T is a synthetic temperature, and R(0,1) is a random 
number in the interval [0,1].  Typically this step is repeated until the system reaches a state that is 
good enough for the application, or until a given computation budget has been exhausted. By 
accepting worse solutions, the algorithm avoids being stuck at a local minimum in early iterations 
and is able to explore globally for better solutions. Detailed information about simulated annealing 
approach can be found in  [12]. 

As mentioned in subsection 3.5.1, objective function is the average packet latency and decision 
variables are represented by the routing set � = uv2, v�, … , vrw where v�  is the path number for 

flow i +1 ≤ v� ≤ s�/. Let � = uv2, v�, … , v� , … , vrw be the initial routing set. To choose a trial 

routing set ���� = uv2, v�, … , v����, … , vrw, we generate a random number r where 1 ≤  ≤ t to 

choose a flow, and then generate another random number v����  where 1 ≤ v���� ≤ s�  and v���� ≠ v� to choose another path for flow r. Using analytical model describe in subsection 3.5.2, 
we estimate the average packet latency for current and trial routing set. 

 
4. Experimental Results 

To evaluate the capability of the proposed framework, we developed a discrete-event simulator 
that mimics the behavior of routing algorithm in the networks at the flit level. Due to the popularity 
of the mesh network in NoC domain, our analysis focuses on this topology but LAR framework 
can be equally applied for other topologies without any change. We compare the performance of 
LAR with DOR which becomes XY routing algorithm in 2D mesh networks.  



229 

 

 

To achieve a high accuracy in the simulation results, we use the batch means method  [13] for 
simulation output analysis. There are 10 batches and each batch includes 1000 up to 1,000,000 
packets depending on the workload type, packet injection rate, and network size. Statistics gathering 
was inhibited for the first batch to avoid distortions due to the startup transient. The standard 
deviation of latency measurements is less than 1.8% of the mean value. As a result, the confidence 
level and confidence interval of simulation results are 0.99 and 0.02, respectively. 

For the sake of comprehensive study, numerous validation experiments have been performed for 
several combinations of workload types and network size. In what follows, the capability of LAR 
will be assessed for both synthetic and realistic traffic patterns. Since their applications differ starkly 
in purpose, these classes of NoC have substantially different traffic patterns. 

 
4.1   Synthetic Traffic 
Synthetic traffic patterns used in this research include uniform, transpose, shuffle, bit-complement, and bit-
reversal  [4]. After developing models describing spatial traffic distributions, we should use an 
appropriate model to model the temporal traffic distribution. In the case of synthetic traffics, we use 
the Poisson process for modeling the temporal variation of traffic. It means that the time between 
two successive packet generations in a core is distributed exponentially. The Poisson model widely 
used in many performance analysis studies, and there are a large number of papers in many 
application domains that are based on this stochastic assumption. 
The average packet latencies in the 4x4 and 8x8 mesh networks are plotted against offered load in 
the network in Figure 5 and Figure 6, respectively. We observe that under uniform and bit-
complement traffic patterns LAR converges to DOR, because in such traffic patterns the standard 
deviation of channels throughput is minimum for DOR. This result is consistent with other results 
reported in  [3] [7] [9] [14]. The main reason is that the DOR distributes packets evenly in the long 
term  [7]. Previous works, Odd-Even  [3], turn model  [7], DyAD  [9], and APSRA  [14] indicate that in 
the case of uniform traffic, their proposed approaches underperform DOR. However, as can be 
seen in Figure 5.a and 6.a, our proposed framework has the same performance as DOR for 
different traffic loads. 

Figure 5.b and 5.c compare the latency of DOR and LAR in 4x4 mesh network under transpose 
and bit-reversal workloads, respectively. It can be vividly seen that LAR considerably outperforms 
DOR. Also, in the case of 8x8 mesh network, LAR has better performance than DOR as shown in 
Figure 6.b and 6.c. Figure 5.d and 6.d reveal that under shuffle traffic pattern LAR slightly 
outperforms DOR. Table 3 shows the maximum sustainable throughput of the network for each 
workload and for each routing algorithm in 4x4 and 8x8 mesh networks. It also shows the 
percentage improvement of LAR over DOR and reveals that on average LAR outperforms DOR. 
The maximum load that the network is capable of handling using LAR is improved by up to 205%.  

Also, the performance of LAR framework is compared against DyAD routing scheme  [9] which 
combines deterministic and adaptive routing algorithms. We simulate the uniform and transpose 
workloads on the similar architecture (6x6 mesh network) and compare their improvement over 
DOR. Table 4 shows the percentage improvement of DyAD and LAR over DOR. In case of 
uniform workload, DyAD underperforms DOR while LAR has the same performance as DOR. In 
case of transpose traffic pattern, DyAD and LAR give about 62% and 60% improvement over 
DOR, respectively. This means that our deterministic routing policy can compete with adaptive 
routing policies (DyAD switches to adaptive mode under high traffic load) and meanwhile 
guarantees in-order packet delivery.  

 
 
 
 
 
 
 



230 

 

 

    
                 (a)                                                                              (b) 

   
                    (c)                                                                (d) 

Figure 5: Average packet latency under (a) uniform and bit-complement, (b) transpose, (c) bit-
reversal, and (d) shuffle traffic patterns in 4x4 mesh network. 
 
 

       
               (a)                             (b) 

      
 (c)                                           (d) 

Figure 6: Average packet latency under (a) uniform and bit-complement, (b) transpose, (c) bit-
reversal, and (d) shuffle traffic patterns in 8x8 mesh network. 

30

90

150

210

270

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR

Bit complement - LAR

Uniform - DOR

Uniform - LAR

30

90

150

210

270

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR

LAR

30

90

150

210

270

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR

LAR

30

90

150

210

270

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR

LAR

50

100

150

200

250

300

0 5 10 15

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR

Bit complement - LAR

Uniform - DOR

Uniform - LAR

50

100

150

200

250

300

0 2 4 6 8 10

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR

LAR

50

100

150

200

250

300

0 3 6 9

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR

LAR

30

120

210

300

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR

LAR



231 

 

 

 
 

Table 3: Improvement in maximum sustainable throughput of LAR as compared to DOR for 
different synthetic workloads. 
 

Workload 
4x4 mesh network 8x8 mesh network 

DOR LAR Impr. DOR LAR Impr. 
Uniform 7.4 7.4 0 15.9 15.9 0 
Transpose 3.8 11.6 205% 7.7 10.5 36% 
Bit-comp. 5.6 5.6 0 8.8 8.8 0 
Bit-rev. 3.8 11.6 205% 7.6 9.2 21% 
Shuffle 6.6 7.4 12% 12.2 13.4 10% 

 
 

Table 4: Improvement in maximum sustainable throughput of DyAD and LAR over DOR. 
 

Workload 
Improvement over DOR 
DyAD LAR 

Uniform  -21% 0 
Transpose  62% 60% 

 
4.2   Realistic Traffic 

In case of realistic traffic, we consider two virtual channels for links to show the consistency of 
proposed framework with multiple virtual channel routing. As realistic communication scenarios, 
we consider a generic multimedia system (MMS) and the video object plane decoder (VOPD) 
application. MMS includes an H.263 video encoder, an H.263 video decoder, an mp3 audio 
encoder, and an mp3 audio decoder  [10]. The communication volume requirements of this 
application are summarized in Table 5. VOPD is an application used for MPEG-4 video decoding 
and its communication graph is shown in Figure 3.  Several studies reported the existence of bursty 
packet injection in the on-chip interconnection networks for multimedia traffic  [16] [19].  

 
Table 5: MMS application traffic requirement  [10]. 

 
src dst vol. 

(bytes) 

 

src dst vol. 
(bytes) ASIC1 ASIC2 25 DSP2 DSP1 20363 

ASIC1 DSP8 25 DSP3 ASIC4 38016 
ASIC2 ASIC3 764 DSP3 DSP6 7061 
ASIC2 MEM2 640 DSP3 DSP5 7061 
ASIC2 ASIC1 80 DSP4 DSP1 3672 
ASIC3 DSP8 641 DSP4 CPU 197 
ASIC3 DSP4 144 DSP5 DSP6 26924 
ASIC4 DSP1 33848 DSP6 ASIC2 28248 
ASIC4 CPU 197 DSP7 MEM2 7065 
CPU MEM1 38016 DSP8 DSP7 28265 
CPU MEM3 38016 DSP8 ASIC1 80 
CPU ASIC3 38016 MEM1 ASIC4 116873 
DSP1 DSP2 33848 MEM1 CPU 75205 
DSP1 CPU 20363 MEM2 ASIC3 7705 
DSP2 ASIC2 33848 MEM3 CPU 75584 

 



232 

 

 

Poisson process is not the appropriate model in case of bursty traffic; consequently, we used 
Markov-modulated Poisson process (MMPP) model as stochastic traffic generators to model the 
bursty nature of the application traffic  [4] [8]. MMPP has been widely employed to model the traffic 
burstiness in the temporal domain  [8]. Figure 7 shows a two-state MMPP in which the arrival traffic 
follows a Poisson process with rate OV and O2. The transition rate from state 0 to 1 is r0, while the 
rate from state 1 to state 0 is r1.  

 
Figure 7: Two-state MMPP model 

 
Since in such systems, there are various types of cores with different bandwidth requirements, 

placement of tasks on a chip has strong effect on the system performance. To find a suitable 
mapping of these applications, we formulate another optimization problem to prune the large 
design space in a short time and then again use the simulated annealing heuristic to find a suitable 
mapping vector. Initially, we map task i to node i and then try to minimize the average packet 
latency through the simulated annealing approach. Figure 8.a shows that in the case of MMS 
application and DOR, for the initial mapping M1, average packet latency equals 87 and after a 
certain number of tries, the mapping vector converges to the mapping M4 with average packet 
latency = 41. Furthermore, average packet latency values for mappings M2 and M3, which are two 
local minimum points in simulated annealing process, are shown in the figure.  

After the mapping phase, we apply the LAR framework to these four mapping vectors. Figure 8.a 
reveals that in case of mapping M1, LAR can significantly reduce the average packet latency from 87 
to 67. However, for more efficient mapping vectors (M2, M3, and M4), we achieve less 
improvement. Specially, in the case of best mapping (M4), average packet latency is reduced 
insignificantly from 41 to 40. It is reasonable that DOR is latency-aware for the best mapping, 
because during the mapping problem solving process, we fix the routing policy to DOR and strive 
to minimize average packet latency for this routing policy. Likewise, as shown in Figure 8.b, for the 
VOPD application, the analysis result is the same as MMS application.   

 
 
 

   
                  (a)                                                                    (b) 

 
Figure 8: The effect of mapping and routing on the performance of (a) MMS application and (b) 
VOPD application. 
 

λ0 λ1

r0

r1

DOR

LAR

0

30

60

90

M1
M2

M3
M4

87.00

68.00

56.00

41.00

67.00

55.00

49.00

40.00

A
v
e
ra

g
e
 p

a
c
k
e
t 

la
te

n
c
y

Mapping & Routing Effect on Performance

DOR
LAR

0

20

40

60

80

M1
M2

M3
M4

71.00

64.00

54.00

43.00

58.00

53.00

49.00

43.00

A
v
e
ra

g
e
 p

a
c
k
e
t 

la
te

n
c
y

Mapping & Routing Effect on Performance



233 

 

 

 
Figure 8 reveals that in case of application-specific traffic patterns, the improvement in the 

performance of the routing schemes highly depends on how the application tasks are mapped to the 
topology. This fact was not considered in the related works such as  [16]. Nowadays, in embedded 
systems-on-chip there are several different types of cores including DSPs, embedded DRAMs, 
ASICs, and generic processors which their places are fixed on the chip. On the other hand, such a 
system hosts several applications with completely different workload. Furthermore, modern 
embedded devices allow users to install applications at run-time, so a complete analysis of such 
systems is not feasible during design phase. As a result, it is not feasible to map all applications such 
that the load is balanced for all of them with specific routing algorithm and we should balance the 
load in routing phase.  

In this section we used the LAR framework to find low latency routes in the mesh network. Due 
to simplicity, regularity, and low cost merits of 2D mesh topology, it is the most popular one in the 
field of NoC. However, for large and 3D NoCs, which will be popular in the future, the 
communication in mesh architecture takes a long time. In the next subsection we use LAR to find 
deadlock-free paths in an arbitrary topology. 

 
4.3   Find Routes in an Arbitrary Topology 

To show the capability of LAR framework to find deadlock-free routes in an arbitrary topology, 
we consider the topology shown in Figure 9.a. LAR reports that under uniform traffic pattern there 
are 2 cycles in the corresponding CDG and by prohibiting turns 52 to 21 and 87 to 73 (shown in 
Figure 9.b) the deadlock-freedom is guaranteed.  

 

      
  
                                           (a)                                               (b) 

 
Figure 9: (a) A custom topology and (b) prohibited turns. 

 
Table 6 shows the routing table for node 0 of the topology in Figure 9.a. Each route in the table 

specifies a path from node 0 to a given destination as channels name. SE, SW, and EJ specify South 
East, South West, and ejection channels, respectively. To route a packet, the routing table is indexed 
by destination address to look up the pre-computed route by LAR. This route is then added to the 
packet. Since there are 7 channels in this network (E, S, NE, NW, SE, SW, and EJ), they can be 
encoded as 3-bit binary numbers. Also, there are techniques to reduce the size of routing 
tables  [4] [14]. 

 
 
 
 
 
 
 

0

1 2

3 4 5

7 8 96

0

1 2

3 4 5

7 8 96



234 

 

 

Table 6: Routing table for node 0 of topology in Figure 8.a. 
 

dst. route  dst. Route 
0   No packet  5   SE, SE, EJ 
1   SW, EJ  6   SW, SW, SW, EJ 
2   SE, EJ  7   SE, SW, SW, EJ 
3   SW, SW, EJ  8   SW, SE, SE, EJ 
4   SW, SE, EJ  9   SE, SE, SE, EJ 

5. Conclusion 
On-chip packet routing is extremely crucial because it heavily affects performance and 

power.  This calls for a great need of routing optimization. However, due to the diverse connectivity 
enabled by a network and the interferences in sharing network buffers and links, determining good 
routing paths, which are minimal and deadlock free for traffic flows, is nontrivial. In this paper, we 
have addressed the latency-aware routing problem. Using an analytical model, we first estimate the 
average packet latency in the network, and then embed this analysis technique into the loop of 
optimizing routing paths so as to quickly find deterministic routing paths for all traffic flows while 
minimizing the latency. Our experiments with both synthetic and realistic workloads show that we 
can extract high quality solutions with small computational time.  

The proposed framework is appropriate for reconfigurable embedded systems-on-chip which run 
several applications with regular and repetitive computations on large set of data, e.g., multimedia 
and computer vision applications. LAR can not only design minimal and deterministic routing, but 
also can implement non-minimal routing without virtual channels in arbitrary topology. 

 
Reference 
[1] K. Bondalapati and V.K. Prasanna, “Reconfigurable Computing Systems,” Proceedings of the 

IEEE, 90(7):1201-1217, 2002. 
[2] O. Catoni, “Metropolis, Simulated Annealing, and Iterated Energy Transformation Algorithms, 

Theory and Experiments,” Journal of Complexity 12(4):595-623, 1996. 
[3] V. Cerny, "Thermodynamical Approach to the Traveling Salesman Problem: an Efficient 

Simulation Algorithm," J. Opt. Theory Appl., vol. 45, pp. 41-45, 1985. 
[4] G.-M. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” IEEE Transactions on Parallel 

and Distributed Systems, 11(7):729-738, 2000. 
[5] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan 

Kaufmann Publishers Inc., First edition, 2004. 
[6] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in Multiprocessor Interconnection 

Networks,” IEEE Transactions on Computers, 36(5):547-553, 1987. 
[7] J. Duato, C. Yalamanchili, and L. Ni, “Interconnection Networks: An Engineering Approach,” 

IEEE Computer Society Press, 2003. 
[8]  W. Fischer and K. Meier-Hellstern, “The Markov-Modulated Poisson Process (MMPP) 

Cookbook”, Performance Evaluation, vol. 18, no. 2, pp. 149-171, 1993. 
[9] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,” Journal of the Association for 

Computing Machinery, 41(5):874-902, 1994. 
[10] P. Guerrier and A. Greiner, “A Generic Architecture for on-chip Packet-Switched 

Interconnections,” Proceedings of the Design, Automation, and Test in Europe, pp. 250-256, 2000. 
[11] A. Hemani, et. al., “Network on a Chip: An Architecture for Billion Transistor Era,” Proceedings 

of the IEEE NorChip, pp. 166-173, 2000. 
[12] J. Hu and R. Marculescu, “DyAD - Smart Routing for Networks-on-Chip,” Proceedings of the 

Design Automation Conference, pp. 260-263, 2004. 
[13] J. Hu and R. Marculescu, “Energy- and Performance-Aware Mapping for Regular NoC 

Architectures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
24(4):551-562, 2005. 



235 

 

 

[14]  A. E. Kiasari, Z. Lu and A. Jantsch, "An Analytical Latency Model for Networks-on-Chip," 
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 113-123, Jan. 
2013. 

[15] A. E. Kiasari, A. Jantsch and Z. Lu, "A Framework for Designing Congestion-Aware 
Deterministic Routing" In the Proceedings of the 3rd International Workshop on Network-on-
Chip Architectures (NoCArc), Held in conjunction with the 43rd Annual IEEE/ACM 
International Symposium on Microarchitecture (MICRO-43), pp. 45-50, 2010. 

[16] M. A. Kinsy, et. al., “Application-Aware Deadlock-free Obli- vious Routing,” Proceedings of the 
ISCA, pp. 208-219, 2009. 

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing,” Science, 
220(4598):671–680, 1983. 

[18] S. Murali, et. al., “Analysis of Error Recovery Schemes for Networks on Chips”, IEEE Design 
and Test of Computers, 22(5): 434-442, 2005. 

[19] M. Palesi, et. al., “Application Specific Routing Algorithms for Networks on Chip,” IEEE 
Transactions on Parallel and Distributed Systems, 20(3):316-330, 2009. 

[20] K. Pawlikowski, “Steady-State Simulation of Queueing Processes: A Survey of Problems and 
Solutions,” ACM Computing Surveys, 22(2):123-170, 1990. 

[21] C. Sechen and A. Sangiovanni-Vincentelli, "The TimberWolf placement and routing package," 
Journal for Solid State Circuits," vol. SC-20, pp. 510-522, 1985. 

[22] V. Soteriou, H. Wang, L.-S. Peh, “A Statistical Traffic Model for On-Chip Interconnection 
Networks,” Proceedings of the MASCOTS, pp. 104-116, 2006. 

[23] W. Trumler, et. al., “Self-optimized Routing in a Network-on-a-Chip,” IFIP World Computer 
Congress, pp. 199-212, 2008. 

[24] E.B. van der Tol and E.G. Jaspers, “Mapping of MPEG-4 Decoding on a Flexible Architecture 
Platform,” SPIE, vol. 4674, pp. 1-13, 2002. 

[25] G. Varatkar and R. Marculescu, “Traffic Analysis for On-chip Networks Design of Multimedia 
Applications,” Procee- dings of the Design Automation Conference, pp. 795-800, 2002. 
 

 


	Cover Page
	Abstract
	Table of Contents
	List of Publications
	Part I   Introduction
	1 Introduction
	2 Background and Related Work
	3 Problem Description and Solution Overview
	4 Summary and Outlook
	Bibliography

	Part II   Included Papers
	Paper 1
	Paper 2
	Paper 3
	Paper 4
	Paper 5
	Paper 6
	Paper 7
	Paper 8
	Paper 9
	Paper 10
	Paper 11


