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Abstract

Recently, wireless sensor network (WSN) has become a promising technology
with a wide range of applications such as supply chain monitoring and environment
surveillance. It is typically composed of multiple tiny devices equipped with lim-
ited sensing, computing and wireless communication capabilities. Design of such
networks presents several technique challenges while dealing with various require-
ments and diverse constraints. Performance analysis and deployment techniques
are required to provide insight on design parameters and system behaviors.

Based on network calculus, a deterministic analysis method is presented for
evaluating the worst-case delay and buffer cost of sensor networks.To this end,
traffic splitting and multiplexing models are proposed and their delay and buffer
bounds are derived. These models can be used in combination to characterize
complex traffic flowing scenarios. Furthermore, the method integrates a variable
duty cycle to allow the sensor nodes to operate at low rates thus saving power.
In an attempt to balance traffic load and improve resource utilization and perfor-
mance, traffic splitting mechanisms are introduced for sensor networks with gen-
eral topologies. To provide reliable data delivery in sensor networks, retransmis-
sion has been one of the most popular schemes. We propose an analyticalmethod
to evaluate the maximum data transmission delay and energy consumption of two
types of retransmission schemes: hop-by-hop retransmission and end-to-end re-
transmission. In order to validate the tightness of the bounds obtained by the anal-
ysis method, the simulation results and analytical results are compared with various
input traffic loads. The results show that the analytic bounds are correct and tight.

Stochastic network calculus has been developed as a useful tool for Quality
of Service (QoS) analysis of wireless networks. We propose a stochastic service
curve model for the Rayleigh fading channel and then provide formulas tode-
rive the probabilistic delay and backlog bounds in the cases of deterministic and
stochastic arrival curves. The simulation results verify that the tightness of the
bounds are good. Moreover, a detailed mechanism for bandwidth estimationof
random wireless channels is developed. The bandwidth is derived fromthe mea-
surement of statistical backlogs based on probe packet trains. It is expressed by
statistical service curves that are allowed to violate a service guarantee witha cer-
tain probability. The theoretic foundation and the detailed step-by-step procedure
of the estimation method are presented.

One fundamental application of WSNs is event detection in a Field of Inter-
est (FoI), where a set of sensors are deployed to monitor any ongoingevents. To
satisfy a certain level of detection quality in such applications, it is desirable that
events in the region can be detected by a required number of sensors. Hence, an
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iv Abstract

important problem is how to conduct sensor deployment for achieving certain cov-
erage requirements. In this thesis, a probabilistic event coverage analysis method
is proposed for evaluating the coverage performance of heterogeneous sensor net-
works with randomly deployed sensors and stochastic event occurrences. More-
over, we present a framework for analyzing node deployment schemesin terms of
three performance metrics: coverage, lifetime, and cost. The method can beused
to evaluate the benefits and trade-offs of different deployment schemesand thus
provide guidelines for network designers.

Keywords: wireless sensor network, performance analysis, network calculus,
coverage analysis, deployment scheme
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Chapter 1

Introduction

This chapter provides a brief background and outlines the design challenges in
wireless sensor networks. It also gives an overview of the researchpresented in the
thesis and highlight the author’s contributions.

1.1 Background

With the development of wireless communications and micro-electronics,wire-
less sensor network(WSN) has become a promising technology and received sig-
nificant research attention in recent years [73, 2, 65, 21, 50, 27, 105, 68].

A typical sensor network consists of a large number of sensor nodes deployed
either inside the phenomenon of interest or close to it. These sensor nodesare
devices equipped with sensing, computation, and wireless communication capabil-
ities. They take measurements and forward their observation values via the wireless
interfaces to single or multiple fusion centers, which can also be called a sink node.
Typical sensing tasks for sensors could be temperature, light, humidity, vibration,
sound, etc. There are a variety of WSNs applications, which typically involve
monitoring, tracking and controlling. Specific applications include environment
surveillance, next-generation health-care systems, structural monitoring, supply
chain management, disaster area monitoring, and military assistance [34, 3, 27].
Figure 1.1 shows an application of sensor networks for volcanic monitoring[104].
When an earthquake or an eruption occurs, sensor nodes detect the seismic event
and send data to a base station via a multi-hop network. Collecting and analyzing
data from multiple base stations can produce precise mappings of the volcano.

1



2 Chapter 1. Introduction

Figure 1.1. A wireless sensor network for volcanic monitoring

Although WSNs share many commonalities with existing ad hoc networks,
there are still a number of unique features and application requirements [3,50, 27].
These features, which are stated below, make the design of WSNs challenging.

• Application specific[10]: Sensor networks can be deployed in a variety of
application scenarios. It is unlikely that there will be one all-purpose solution
for all the potential possibilities. Therefore, it is essential to design a sensor
network that can meet the requirements and constraints of specific domains.

• Constrained resource[27]: Unlike traditional networks, sensor networks are
limited in power, computational capability and communication bandwidth.
New solutions are needed both to meet the requirements of a specific appli-
cation and to balance the trade-offs between performance and cost. On the
other hand, in order to allocate the limited resource, evaluating the perfor-
mance of WSNs is therefore a crucial task.

• Limited memory size[78]: Too much memory space would increase the cost
and size of sensors, while too little memory space can not meet the require-
ments of applications. Hence, it is essential to estimate the required memory
spaces before the deployment of sensor networks.

• Low power requirements[75, 16]: Due to size and cost constraints, the tiny
sensor nodes can only be equipped with a limited power source. Moreover, in
some application scenarios, recharge of power source is impossible. Hence,
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efficient power management takes on great importance in sensor networks.
One of the challenges is to design power efficient protocols.

• Unpredictability [3, 2]: A sensor network is subject to a number of uncer-
tainties from several factors. First, the sensor network may be deployedin
a hostile environment dealing with uncontrollable factors. Second, the wire-
less communication is unreliable due to interference, attenuation and fading
effects. Third, some nodes may die over time and some new nodes may join
later. As a consequence, the network topology and routing structures change
dynamically.

1.2 Motivation

In many application scenarios of sensor networks, sensor data must be deliv-
ered to the base station within time constraints so that appropriate actions can be
made. Hence, it is crucial to evaluate the performance limits, such as maximum
delay, of traffic flows under all conditions [42]. Moreover, sensor networks present
several technical challenges in terms of extremely low cost, low energy require-
ments and limited communication capabilities, while dealing with various work-
loads and diverse constraints [35, 76]. Addressing all these problemsinevitably
requires performance analysis techniques to provide insight on the design parame-
ters and system behavior.

Since WSNs are in their early stage of development, most of the solutions are
built, tested and evaluated either by simulations or testbeds. In [106], Woonet
al. present a preliminary performance investigation, including throughput, packet
delivery ratio, and average delay, of IEEE 802.15.4 standard focusing on multiple
sources and multi-hop wireless sensor networks. In [31], the authors propose a
mechanism to improve network coverage, increase throughput and reduce delay of
a static sensor network by deploying several mobile sensors. In [111],Zhanget al.
investigate the performance of an experimental WSN. The dynamic relaying and
fixed relaying algorithms are tested and compared in terms of throughput, packet
loss rate and data efficiency.

Simulations are useful in evaluating the average performance for specificcases.
However, they are usually time consuming. If one configuration parameter is
changed, the simulation needs to be relaunched. Moreover, simulations arevery
difficult or even impossible to cover worst cases. Therefore, a more efficient and
faster approach is required to design and analyze a sensor network before it is de-
ployed. The analysis needs to provide evidences that the network can meet its
requirements and to indicate the performance of the network. In order to design a
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WSN with predictable delay, backlog and energy consumptions, formal methods
are desired to dimension sensor networks in an analytical way rather than case-
by-case simulations. Starting with the seminal work by Cruz [25, 26],network
calculushas been developed as a powerful tool for the performance analysis of
networked system [11, 44, 46] . In contrast to queueing theory, network calcu-
lus deals with performance bounds, such as worst-case delay and backlog bounds,
rather than average values. In general, network calculus has been developed along
two tracks:deterministic network calculus (DNC)andstochastic network calculus
(SNC). The DNC generally considers the worst-case performance analysis through
deterministic arrival curve and service curve. Recently, it has been extended and
applied for worst-case performance analysis of sensor networks by several re-
searchers [81, 51, 82, 49]. To incorporate non-deterministic serviceprovisioning,
the performance bounds have to be complemented with certain violation probabil-
ities. SNC is such a tool that can be employed in the design of wireless networks
to provide stochastic service guarantees. It has been applied to QoS analysis for
wireless networks by many researchers recently [95, 45, 22, 60, 47].

WSNs generally have two fundamental application scenarios: tracking and
monitoring. In both applications, it is essential to ensure that information of the
target or the environment can be discovered and collected by sensors.To achieve
good coverage, sensors are usually densely deployed. One of the most popular
metrics to quantify the coverage performance is thek-coverage[43, 113]. An FoI
(Field of Interest) is said to be k-covered if every point in it is covered byat least
k sensors. The coverage problem can be classified in different ways depending
on the way of sensor deployment and the features of applications. Moreover, the
lifetime of WSN is determined by the energy budgets of sensors. To obtain longer
network lifetime, more energy budgets should be assigned to sensors. Since sen-
sors are usually equipped with batteries which are limited and expensive resources,
deploying spare sensor nodes would cause high installation and maintenance cost.
Therefore, in order to deploy minimum necessary sensors that can achieve the re-
quirements, it is important to evaluate these performance metrics of a WSN before
its deployment.

Performance analysis such as coverage, connectivity, energy consumption, cost
for sensor networks has been studied by many researchers. In [20], the authors pro-
posed a general framework for the analysis of the network lifetime and costs for
several network deployment strategies in sensor networks. They investigated de-
ployment strategies to maximize the network lifetime by mitigating the hot-spot
traffic problem around the data sink. The coverage problem in sensor networks
has been extensively investigated [59, 112, 100, 52, 6, 8, 72, 115, 108]. Zhang
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and Hou [112] studied the problem of deriving the node density for maintaining
k-coverage for a given network area in both random and deterministic deployment
strategies. However, most attentions focused on analyzing the minimum coverage.
In [88], the authors proposed an analytical method to model the event coverage
problem in sensor networks. In [72], the authors investigated the coverage, energy
consumption and message transfer delay of large-scale WSNs. They considered
the square grid based deployment scheme which shows very good coverage perfor-
mance and the Tri-Hexagon Tiling (THT) deployment strategy, which outperforms
other schemes for energy consumption and worst-case delay.

Network calculus is a mathematical tool dealing with performance guarantees
in packet switching networks [25, 26, 17, 11, 44]. With the abstraction ofar-
rival curve for traffic flows andservice curvefor network elements, it has been
widely applied in communication networks for performance analysis. In general,
network calculus has been developed in two tracks: deterministic network calculus
(DNC) and stochastic network calculus (SNC). The DNC generally considers the
worst-case performance analysis through deterministic arrival curve and service
curve. Recently, it has been extended and used for worst-case performance analy-
sis of sensor networks by several researchers [81, 51]. Since data communication
in wireless networks is unstable and irregular, it is very difficult or impossible to
find the deterministic performance bounds. To incorporate nondeterministic ser-
vice provisioning, the performance bounds have to be complemented with certain
violation probabilities. SNC is such a tool which can be employed in the design of
wireless networks to provide stochastic service guarantees.

In this thesis, the research has been orienting in two tracks: performanceanal-
ysis for WSNs using network calculus, and deployment mechanisms especially
coverage analysis in WSNs.
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1.3 Contributions and Outline

The remainder of this thesis is structured as follows:

Chapter 2

In this chapter, we present a deterministic analysis method integrating traffic
splitting and traffic multiplexing for worst-case performance analysis in WSNs.
Moreover, two retransmission schemes are analytically evaluated: hop-by-hop re-
transmission and end-to-end retransmission. Most of the materials were published
in:

• Huimin She, Zhonghai Lu, Axel Jantsch, Dian Zhou, Li-Rong Zheng, "Per-
formance Analysis of Flow Based Traffic Splitting Strategy on Cluster-Mesh
Sensor Networks",International Journal of Distributed Sensor Networks,
Volume 2012, no-232937, 2012.

Author’s contributions:The author developed the algorithm, implemented
the experiments and wrote the manuscript.

• Huimin She, Zhonghai Lu, Axel Jantsch, Li-Rong Zheng and Dian Zhou,
"Deterministic Worst-case Performance Analysis for Wireless Sensor Net-
works," in Proc. of the 2008 International conference on Wireless Com-
munications and Mobile Computing Conference (IWCMC’08), Crete Island,
Greece, August, 2008.

Author’s contributions:The author developed the algorithm, implemented
the experiments and wrote the manuscript.

• Huimin She, Zhonghai Lu, Axel Jantsch, Li-Rong Zheng, Dian Zhou, "Ana-
lytical Evaluation of Retransmission Schemes in Wireless Sensor Networks",
IEEE 69th Vehicular Technology Conference (VTC2009-Spring), Spain, April
2009.

Author’s contributions:The author generated the ideas, developed the algo-
rithm, implemented the experiments and wrote the manuscript.

Chapter 3

This chapter summarizes our research on applying stochastic network calculus
for wireless channel modeling, and bandwidth estimation through backlog mea-
surement. We propose a network calculus based approach for Quality ofService
(QoS) analysis of wireless channels subject to Rayleigh fading. Furthermore, a
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detailed mechanism for bandwidth estimation of random wireless channels based
on stochastic network calculus is developed. The bandwidth is derived from the
measurement of statistical backlogs based on probe packet trains. The theoretic
foundation and the detailed step-by-step procedure of the estimation method are
also presented.

Part of the results were published in:

• Huimin She, Zhonghai Lu, Axel Jantsch, Dian Zhou, Li-Rong Zheng, "Mod-
eling and Analysis of Rayleigh Fading Channels using Stochastic Network
Calculus", the IEEE Wireless Communication and Networking Conference
(WCNC’2011), Mexico, April 2011.

Author’s contributions:The author contributed with the idea, solution, ex-
periments and wrote the manuscript.

• Huimin She, Zhonghai Lu, Axel Jantsch, Li-Rong Zheng, "Estimation of
Statistical Bandwidth through Backlog Measurement",Workshop on Net-
work Calculus (WoNeCa2012), in conjunction with MMB&DFT 2012, Ger-
many, March 2012.

Author’s contributions:The author developed the algorithms, conducted the
experiments and wrote the manuscript.

Chapter 4

This chapter contains the research on coverage analysis and deployment mech-
anisms in WSNs. A probabilistic event coverage analysis method is proposedfor
evaluating the coverage performance of heterogeneous sensor networks with ran-
domly deployed sensors and stochastic event occurrences. Moreover, we introduce
techniques for analyzing the coverage, network lifetime and cost both in random
deployed and regular sensor networks.

Part of the results were published in:

• Huimin She, Zhonghai Lu, Axel Jantsch, Dian Zhou, Li-Rong Zheng, "Stochas-
tic Coverage in Event-Driven Sensor Networks",the 22nd IEEE Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC’2011), Canada, September 2011.

Author’s contributions:The author contributed with the idea, solution, ex-
periments and wrote the manuscript.

An extended version of the conference paper is submitted to:
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• Huimin She, Zhonghai, Axel Jantsch, Li-Rong Zheng, "Probabilistic Event
Coverage in Heterogeneous Sensor Networks", submitted to ACM Transac-
tions on Sensor Networks, 2012.

Author’s contributions:The author contributed with the idea, solution, ex-
periments and wrote the manuscript.

• Huimin She, Zhonghai, Axel Jantsch, "System-Level Evaluation of Sensor
Networks Deployment Strategies: Coverage Lifetime and Cost",the 8th In-
ternational Wireless Communications and Mobile Computing Conference
(IWCMC’2012), Cyprus, August 2012.

Author’s contributions:The author contributed with the idea, solution, ex-
periments and wrote the manuscript.

Chapter 5

This chapter summarizes the thesis and proposes several open topics forfuture
investigation.



Chapter 2

Deterministic Performance
Analysis

In this chapter, we present a deterministic analysis method integrating traffic
splitting and traffic multiplexing for worst-case performance analysis in WSNs.
Moreover, two retransmission schemes are analytically evaluated: hop-by-hop re-
transmission and end-to-end retransmission. The work in this chapter is mainly
based on [83, 84, 85, 90, 86].

2.1 Introduction

A typical sensor network consists of a larger number of sensor nodes that are
capable of sensing the environment and forwarding their observation values to a
fusion center (sink) through multi-hop wireless links. Thus, the traffic pattern in
sensor networks is usually in a many-to-one manner. The nodes near the sink may
need to forward more data and thus consume more energy and buffer thanthe nodes
far away. Consequently, the distributions of energy and buffer requirements in
WSNs might be extremely uneven. Unfortunately, energy supplies and buffers are
limited and expensive resources in typical WSNs, since sensor nodes are usually
made as tiny devices with limited buffers and equipped with batteries that may not
be convenient or economical for replacement. One way to address thesechallenges
is applying traffic splitting strategies which have been adopted by many researchers
for load balancing in communication networks [97, 66]. With traffic splitting, a
main flow is divided into several subflows and forwarded to the destination through
different routing paths. By distributing traffic over the network, the overall network
load balance can be improved. It is shown in [109] that the spare capacitycan

9
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be reduced and thus the overall performance of the system can be improved by
splitting traffic across multiple disjoint paths.

One popular application of WSNs is real-time monitoring and tracking, such
as logistic chain tracking [114] and health-care application [40]. In suchkind of
applications, it is crucial to ensure sensor data delivered to the sink within time
constraints so that appropriate actions can be made. In order to design a WSN with
predictable delay, backlog and energy consumptions, formal performance analy-
sis is desired for analyzing a sensor network before its actual deployment. While
simulation running based methods can offer high accuracy, it can be verytime-
consuming and tedious to find the worst-case performance. Each simulation may
take considerable time and evaluates only a single network configuration, traffic
pattern, and load point. Hence, formal methods are desired to dimension sensor
networks in an analytical way rather than case-by-case simulations. Starting with
the seminal work by Cruz [25, 26],network calculushas been developed as a pow-
erful tool for the performance analysis of networked system [11]. Incontrast to
queueing theory, network calculus deals with performance bounds, such as worst-
case delay and backlog bounds, rather than average values. It has been applied to
sensor networks by many researchers recently [81, 51, 82, 49].

Data transmission in WSNs is unreliable due to several factors such as fading,
shadowing and multi-path effects of radio propagation. One of the most common
approaches for enhancing transmission reliability is retransmission [71, 99, 69].
Parket al. [71] propose a scalable framework for reliable downstream data de-
livery using aWait-for-First-Packet (WFP)pulse. In [99], Wanet al. propose a
reliable transport protocol called PSFQ(Pump Slowly and Fetch Quickly). These
two protocols are typical examples that make use of hop-by-hop retransmissions.
In [69], Paiet al. present an adaptive retransmission mechanism which allows a
fusion center to select the sensors to retransmit their local information according
to the reliability of the received information. This protocol belongs to end-to-end
retransmission.

In this chapter, an analytical method for the performance analysis of WSNs
based on deterministic network calculus is presented. Section 2.4 contains the
analysis of traffic splitting strategies for mesh sensor networks. In Section2.5, a
method to analyze the retransmission schemes is presented.

2.2 Related Work

In general packet switching networks, network calculus provides methods to
deterministically reason about timing properties and resource requirements.Based
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on the powerful abstraction ofarrival curve for traffic flows andservice curvefor
network elements, it allows computing the worst-case delay and backlog bounds.
Systematic introduction of network calculus can be found in books [11, 17].

Network calculus has been extremely successful for ensuring performance bounds
when it is applied to Asynchronous Transfer Mode (ATM), Internet, and other net-
works. It has been recently extended and applied for performance analysis and
resource dimensioning of WSNs by several researchers. In [81], Schmitt et al.
firstly applied network calculus to sensor network and proposed a generic frame-
work for performance analysis of WSNs with various traffic patterns. They further
extended the general framework to incorporate computational resources besides the
communication aspects of WSNs [82]. In [51], Aniset al. proposed a methodol-
ogy for the modeling and worst-case dimensioning of cluster-tree sensor networks.
They derived plug-and-play expressions for the end-to-end delay bounds, buffer-
ing and bandwidth requirements as a function of the WSN cluster-tree and traffic
characteristics. Lenziniet al. [55] proposed a method for deriving tight end-to-
end least upper delay boundsin sink-tree networks. The least upper delay bound
is defined as the minimum value of the upper delay bound. In [49], the authors
presented a method for computing the worst-case delays, buffering and bandwidth
requirements while assuming that the sink node can be mobile.

Traffic splitting strategies have several common features with multi-path rout-
ing protocols. There have been plenty of research works on multi-path routing
and traffic splitting for sensor networks [36, 62, 61, 116, 56, 67]. The authors in
[36] proposed a multi-path routing scheme that finds several disjoint paths. In this
scheme, the source node or an intermediate node chooses one path from the avail-
able paths to deliver the data to sink based on the performance requirementssuch
as delay and throughput. An energy efficient multi-path routing protocol for WSNs
with multiple sinks is presented in [62]. The path construction is implemented by
the source node sending route messages to its neighbors. Traffic is distributed over
the multiple paths according to a load balancing algorithm. The results show that
the proposed scheme results in a higher energy efficiency. In [61], authors proposed
an N-to-1 multi-path routing protocol, in which nodes are arranged in a spanning
tree. Multi-paths are constructed by traversing the tree. The multi-path scheme is a
combination of end-to-end multi-path traffic dispersion and per-hop alternate path
salvaging. Zouet al. [116] studied the interplay between data aggregation and flow
splitting in WSNs and proposed a flow-based scheme. The flows are preserved un-
til the aggregation point. The aggregated data is splitted into multiple flows on the
rest of the path to the destination. The results show that the scheme can balance en-
ergy consumption and therefore prolong the lifetime of WSNs. In [56], the authors
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Figure 2.1. (a): arrive curve and service curve; (b): delay bound and backlog bound

investigated a joint coding/routing optimization of network costs and capacity in
WSNs. By combining the link rate allocation and network coding-based multi-
path routing, the total energy consumption of encoding power, transmissionpower
and reception power can be reduced. A back-pressure collection protocol (BCP)
for sensor networks is presented in [67]. In this protocol, routing and forward-
ing decisions are made based on a per-packet basis. By using ETX optimization
and floating LIFO queues, BCP is capable of improving throughput and delivery
performance under static and dynamic settings, respectively.

2.3 Basics of Deterministic Network Calculus

Network calculus contains two parts, which are deterministic network calculus
[25, 26, 11, 1] and stochastic network calculus [44]. In this chapter, the analysis is
based on deterministic network calculus. In general, network calculus is a min-plus
system theory for deterministic queuing systems [11]. It has been developed for
deterministic queuing, allowing to derive deterministic guarantees on throughput
and delay, and bounds on buffer sizes. Specifically, network calculusanalyzes the
worst-case behavior of a network rather than the average behavior.

Next, some basic definitions and notations are provided. Detailed definitions
and descriptions can be found in [11].

Definition 2.1 Min-Plus Convolution
Let f(t) andg(t) bewide-sense increasingfunctions1 defined over real num-

bert ≥ 0, andf(0) = g(0) = 0. Then their convolution under min-plus algebra is

1A functionh is wide-sense increasing if and only ifh(s) ≤ h(t) for all s ≤ t.
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defined as:
(f ⊗ g)(t) = inf

0≤s≤t
{f(t− s) + g(s)} (2.1)

An arrival process can be modeled by its cumulative trafficR(t), which is
defined as the number of bits that arrive in the time interval[0, t]. In particular,
R(0) = 0 andR(t) is wide-sense increasing. Similarly, the output functionR∗(t)
of a system is the number of bits that depart from the system in time interval[0, t].
In particular,R∗(0) = 0 andR∗(t) is wide-sense increasing.

Definition 2.2 Arrival curve
Given a flow with input functionR(t), a wide-sense increasing functionα(t)

is an arrival curve forR(t) if and only if (Figure 2.1),

∀t ≥ 0, s ≥ 0 ands ≤ t : R(t)−R(t− s) ≤ α(s) (2.2)

One of the most commonly used arrival curve is theaffine arrival curve[11],
which is defined as:

α(t) = ρ · t+ σ (2.3)

whereσ andρ represent the burst tolerance (in units of data) and the rate (in units
of data per unit time), respectively. The average data rateρ gives an indication of
the expected traffic volume in a given period of time. And burstinessσ describes
the maximum traffic above the average rate during any time interval.

Definition 2.3 Service Curve
Assume that a server process is able to processS(t) bits of input data until time

t. Then, a wide-sense increasing functionβ(t) is a service curve forS(t) if and
only if (Figure 2.1),

∀t ≥ 0, 0 ≤ s ≤ t : S(t)− S(t− s) ≥ β(s) (2.4)

One of the most commonly used service curve is therate-latencyservice curve
[11], which is defined as:

β(t) = R[t− T ]+ (2.5)

whereR represents the service data rate andT represents the maximum service
delay. Ifx ≥ 0, notation[x]+ = x; otherwise it equals to 0.

With the arrival curve and service curve, the following theorems can be derived
based on the network calculus theory. The detailed descriptions and proofs of these
theorems can be found in [11].
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Theorem 2.1Delay bound
Assume a traffic flowR(t), constrained by arrival curveα(t), traverses a sys-

tem that provides a service curveβ(t). At any timet, the virtual delayD(t) satis-
fies,

D(t) ≤ sup
t≥0

{ inf
τ≥0

{τ : α(t) ≤ β(t+ τ)}} (2.6)

The delay bound defines the maximum delay that would be experienced by a
bit arriving at timet. Graphically, the delay bound is the maximum horizontal
deviation betweenα(t) andβ(t) (Figure 2.1).

Theorem 2.2Backlog Bound
Assume a traffic flowR(t), constrained by arrival curveα(t), traverses a sys-

tem that provides a service curveβ(t). The backlogB(t) for all t satisfies,

B(t) ≤ sup
t≥0

{α(t)− β(t)} (2.7)

The backlog is the amount of bits that are held inside the sensor node. The re-
quired buffer size of a sensor node is determined by the maximum backlog. Graph-
ically, the backlog bound is the maximum vertical deviation betweenα(t) andβ(t)
(Figure 2.1).

Theorem 2.3Output bound
Assume a traffic flowR(t), constrained by arrival curveα(t), traverses a sys-

tem that provides a service curveβ(t). The output flow is constrained by the fol-
lowing arrival curve:

α∗(t) = sup
s≥0

{α(t+ s)− β(s)} (2.8)
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Theorem 2.4Concatenation
Assume a flow sequentially traverses two systems which offer a service curve

of β1 andβ2, respectively. Then the concatenation of the two systems offers the
flow the service curveβ(t), which is defined by,

β(t) = (β1 ⊗ β2)(t) = inf
0≤s≤t

{β1(t− s) + β2(s)} (2.9)

where⊗ representsmin-plus convolution(Definition 2.1). Ifβ1 andβ2 are rate-
latency service curves, i.e.β1(t) = R1[t − T1]

+ andβ2(t) = R2[t − T2]
+, then

β1 ⊗ β2 = R∗[t− T ∗]+, whereR∗ = min(R1, R2) andT ∗ = T1 + T2.

Theorem 2.5Aggregate Multiplexing
Consider a node multiplexing two flows 1 and 2 inFirst-In-First-Out (FIFO)

order. Assume that the node provides a guaranteed service curveβ(t) to the aggre-
gate of the two flows and flow 2 is constrained by an arrival curveα2(t). Then, for
anyθ ≥ 0 andt ≥ θ, flow 1 is guaranteed with the following service curve,

βθ
1(t) = [β(t)− α2(t− θ)]+ (2.10)

This is also called leftover service, since it is the leftover capability of the node
after serving flow 2.

2.4 Analysis of Traffic Splitting Scheme

In this section, based on network calculus, we propose a flow based traffic
splitting strategy and an analytical method for worst-case performance analysis on
cluster-mesh sensor networks. The traffic splitting strategy is useful in balancing
network load and power consumption. Aiming to evaluate the worst-case perfor-
mance in terms of end-to-end least upper delay bound, least upper backlog bound
and power consumption, a splitting model is built for a single node analysis and
an analytical method is proposed for the network analysis. Through an example,
it is shown that the performance analysis method is able to derive closed-form for-
mulas of these bounds. The numerical results indicate that the backlog and power
consumption can be balanced by applying the traffic splitting strategy. In addition,
simulations are performed to validate the performance bounds of our analytical
method. The results show that their tightnesses are satisfactory.

2.4.1 System Model

This section presents system models, including the cluster-mesh network topol-
ogy and power consumption model.
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Figure 2.2. A cluster-mesh sensor network

A WSN may consist of a large number of sensors that are densely deployed
either inside the phenomenon of interest or close to it. These sensors can be orga-
nized in various topologies, such as mesh and cluster based topologies. The mesh
networking has advantages like supporting path diversity which enables better bal-
ance on traffic load and energy consumption [9]. The cluster based topologies are
also quite suitable for WSNs with demanding requirements in terms of Quality
of Service (QoS) support and real-time communications [51]. Consideringthese
aspects, we adopt thecluster-meshtopology that merges advantages of mesh and
cluster [54, 70]. It is a two-layered architecture with the mesh defining a back-
bone that consists of a set ofcluster heads(CH). A cluster is formed by grouping
a number of sensors within a geographic neighborhood. We define the network
composed by cluster heads and the sink as the layer-1 network, and the network
inside a cluster as the layer-2 network.

In summary, the cluster-mesh network contains three types of nodes:sink, clus-
ter headand sensor. Like in most sensor networks, the sink is responsible for con-
trolling the network and collecting data from all the other nodes. A cluster head
and multiple sensors form a cluster. In order to reduce the cost and complexity, sen-
sors do not communicate with each other and data generated by them is collected
by their cluster head and delivered to the sink through neighbor cluster heads. For
simplicity and conciseness, we consider cluster heads static and they do notsense
the environment nor generate input data. However, this assumption can beeas-
ily relaxed and the subsequent analysis is straightforward. In the mesh network
composed by cluster heads and the sink, links are considered bidirectional.
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Fig. 2.2 shows an example of the cluster-mesh topology. A cluster-mesh net-
work is a mesh network where each cluster head and its connected sensors form it
own logical cluster. The layer-1 network can be modeled as a direct graph G(N,L),
whereN is the set of all sensor nodes and the sink andL is the set of all direct
links in the network. In this paper, our work concentrates on analyzing thelayer-1
network.

In most types of sensor nodes, the energy consumption is mainly contributedby
the transmitter, receiver and computation module [75]. The application scenarios
of sensor networks for fresh food monitoring in warehouses are considered. In this
scenario, sensors may perform tasks and send packets periodically. Consequently,
the power consumption of the computation module can be considered as nearly
constant denoted bypc. Let ǫr denote the energy consumption of the receiver elec-
tronics for receiving one bit data. In practical applications, the power consumption
of the receiving is usually stable [75]. Soǫr can be considered as a constant. Ac-
cording to the results in [74], the energy required to transmit a given amount of
data is a convex and monotonically increasing function of the transmission rate,
i.e., the energy per bit can be expressed as (Fig. 2.3),

ǫt =
N0

RG

(
2

R
ηW − 1

)
(2.11)

whereR is the transmission rate,W is the channel bandwidth,G is the channel
gain,N0 is the noise power, andη ∈ (0, 1) is the probability that the information
can be reliably transmitted at a given transmission rate2. A simplified model for
channel gain is adopted, i.e.,G = G0(d/d0) (Section 2.6 of [37]), whereθ is
the path loss exponent(2 ≤ θ ≤ 4), d is the distance between the transmitter
and receiver,d0 is a reference distance where the reference channel gainG0 is
measured.

Therefore, the total power consumptionPi of a nodei can be expressed as,

Pi = ǫr
∑

k∈Nin(i)

ρki +
∑

j∈Nout(i)

ǫtijρij + pc

= ǫr
∑

k∈Nin(i)

ρki +
∑

j∈Nout(i)

ρijN0

RijGij

(
2

Rij
ηW − 1

)
+ pc

(2.12)

whereρki andρij denote the data rates on linkki andij, respectively,Rij denotes
the transmission rate of nodei sending data to nodej, Gij = G0(dij/d0)

−θ de-
notes the channel gain between nodei andj,Nin(i) denotes the set of nodes which

2In an optimal channel coding scheme, a transmission rateR = ηC can be guaranteed for any
0 < η < 1, whereC = W log2(1 +GP/N0) is the Shannon capacity [74].
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Figure 2.3. Energy per bit vs. transmission rate [74]:W = 20 kHz, N0 =
−100 dB, G0 = −50 dB, d = 5 m, θ = 3.

are the direct sources of incoming data flows of nodei; Nout(i) denotes the set of
nodes which are the direct destinations of output data flows of nodei.

As stated in the previous section, sensor nodes inside a cluster generate input
data and then send them to their cluster head. A trafficflow is defined as an infinite
stream of data from a source to a destination. Following network calculus, the
input flow at a cluster head is modeled using its cumulative trafficR(t), defined as
the number of bits coming from the flow in time interval[0, t]. Furthermore, we
use a wide-sense increasing functionα(t) to constrain this cumulative traffic flow
R(t), defined as

R(t)−R(s) ≤ α(t− s); ∀t ≥ 0, t ≥ s (2.13)

whereα(t) is called the arrival curve of the input flowR(t) [11]. Affine arrival
curve is one of the most commonly used arrival curves, which has been adopted
in many works [81, 51, 82, 49]. The application scenario of this work is real-time
monitoring, the sensor nodes sense the environment and send packets periodically
to the cluster heads. Therefore, the affine arrival curve model can be used to ab-
stract the input traffic of cluster heads, defined asα(t) = γσ,ρ = ρ · t + σ, where
σ andρ represent the burst tolerance (in bits) and the average data rate (inbits/s),
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respectively. Fig. 2.4-(a) shows examples of a periodic cumulative flowR(t) and
an affine arrival curveα(t).
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Figure 2.4. (a) An affine arrival curve: the arrows show the packet generationpro-
cess; (b) A rate-latency service curve.

Service curve is an abstraction to model the processing capability of a node,
depending on link layer characteristics, such as transmission rate, channel charac-
teristics, and packet scheduling. The node and the channel together are modeled
as a network element which provides a service curveβs to the input flows. If
the node forwards packets with the rateR (bits/s) and delays packets forT (s)
at maximum due to scheduling and queuing, it can be modeled by arate-latency
service curve [11] that consists of two components: arate service curveand a
latency service curve. The rate-latency service curve can be formally defined as
β(t) = χR,T = R[t− T ]+, where notation[x]+ denotesmax{0, x}.

In wireless networks, data transmission over wireless channels is usually unre-
liable due to their inherent uncertainties. The actual transmission rate and success
probability are influenced by the transmission power, path loss, noise power and in-
terference. In spite of these uncertainties, deterministic network calculus can still
be useful in modeling wireless networks by making reasonable assumptions and
abstractions. First, the uncertainties in some applications of WSNs are low. Anex-
ample scenario for which our framework suits well is the process monitoring and
tracking in logistics systems [114]. Second, the link unreliability and data loss rate
can be mitigated by applying high transmission powers, especially for the cases
with small distances between a transmitter and a receiver. Third, the interference
between adjacent nodes can be alleviated by using appropriate MAC layerproto-
cols. There are plenty of research works on designing TDMA-based link protocols
which can create collision-free slot schedules [33, 79].

Based on these assumptions about link reliability and interference, the service
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capability of a node can be abstracted and approximated by a deterministic service
curve with the idea of effective transmission rate. From information theory,the
Shannon capacity of a wireless channel can be expressed as,C = W log2(1 +
GP/N0), whereW,G,N0 are the same as those in Eq. (2.11). The service rate
is defined as the rate that the information can be reliably transmitted. With an
optimal or suboptimal channel coding scheme, a service rate ofR = η · C can be
guaranteed for any0 < η < 1 [74]. R defines a lower bound on the transmission
rate. Therefore, the rate-latency service curveβ(t) = χR,T = R[t − T ]+ can be
applied to model the service capability of a wireless channel, whereT denotes the
maximum possible processing/queueing delay.

Given the arrival curve and service curve of a node, the least upper delay bound,
least upper backlog bound and output bounds can be derived according to network
calculus [11]. The least upper backlog bound is defined as the minimum value of
the upper backlog bound. Consider a nodei provides a service curveβs

i to the input
flow which is constrained by an arrival curveαi. According to network calculus ,
the least upper delay bound of the flow can be computed by

Di = h(αi, β
s
i ) = sup

t≥0

{
inf
τ≥0

{τ : αi(t) ≤ βs
i (t+ τ)}

}
. (2.14)

Moreover, the least upper backlog bound of nodei can be calculated by

Bi = v(αi, β
s
i ) = sup

t≥0
{αi(t)− βs

i (t)} . (2.15)

Additionally, the arrival curve of the departure flow can be derived by

α̃i = αi ⊘ βs
i = sup

τ≥0
{αi(t+ τ)− βs

i (τ)} . (2.16)

2.4.2 Analysis

In this section, the splitting and multiplexing models are introduced. Then,
the formal performance analysis procedure is presented. After that, thescope and
assumptions of the analysis approach are discussed.

The Splitting Model

To analyze the splitting strategy, we build a splitting model that identifies the
relations of input, output, delay and backlog for a single node. Without losing
generality, a main flow is split into two subflows. The node thatf1 traverses is
abstracted as the combination of a buffer plus asplitter depicted in Fig. 2.5-(a).
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Consider that the node performs a weighted proportional splitting scheme, in
which the main flow is split according to the configured weights,φi for subflow
i. In each round, the splitter will try to forwardφi packets to output linki before
moving to the next one. The values ofφi can be set either according to a pre-defined
rule or randomly. Increasing the value ofφi can result in increased packets to
output linki. By adjustingφi, the amount of traffic over each link can be controlled.
If the service rate isR bits/s, the maximum length of a round is consequently equal
to
∑

i φil/R seconds and the time for packets of subflowi to be forwarded within
a round is bounded byφil/R seconds, wherel is the packet length. In the weighted
proportional splitting scheme, the worst case appears when the packets of a subflow
just misses its turn in the current round. Consequently, it will have to wait for its
turn at the next round. In the worst case, packets of the subflowi have to wait up
to
∑

i 6=j φjl/R seconds to be served.
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Figure 2.5. (a) The main flowf1 is split into two subflowsf1.1 andf1.2; (b) The
equivalent model.

Consider a main flowf1 that is upper constrained by arrival curveα1 = γσ1,ρ1 ,
be split into two subflowsf1.1 andf1.2 according to weightsφ1 andφ2, whereσ1
andρ1 denote the burstiness and average data rate off1, respectively. Burstiness
is defined as the amount of data inputted/outputted to/from a system or a node at
one time. Consequently, it should be equal or bigger than the packet sizel. Let
α1.1 = γσ1.1,ρ1.1 andα1.2 = γσ1.2,ρ1.2 denote the arrival curves off1.1 andf1.2,
respectively. Then,

ρ1.1 =
φ1

φ1 + φ2
ρ1, σ1.1 = max

(⌈
φ1σ1

(φ1 + φ2)l

⌉
· l, l
)

(2.17)

ρ1.2 =
φ2

φ1 + φ2
ρ1, σ1.2 = max

(⌈
φ2σ1

(φ1 + φ2)l

⌉
· l, l
)

(2.18)

where⌈·⌉ denotes the minimum integer equal to or bigger than the number inside.
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Assume that the splitter provides a service curveβs = χR,T . Since the splitter
serves one subflow at one time, the service rate for each subflow also equalsR.
Therefore, the equivalent service curve for subflowf1.1 can be derived by

β̂s
1 = βs ⊗ δφ2l

R

= χ
R,T+

φ2l

R

. (2.19)

Analogously, the equivalent service curve forf2.2 is

β̂s
2 = βs ⊗ δφ1l

R

= χ
R,T+

φ1l

R

. (2.20)

Furthermore, the equivalent bounds on backlogs can be calculated by

B1 = σ1.1 +
φ1ρ1

φ1 + φ2

(
T1 +

φ2l

R

)
, B2 = σ1.2 +

φ2ρ1
φ1 + φ2

(
T1 +

φ1l

R

)
.(2.21)

Therefore, the least upper bound of the total backlog is computed by

B = B1 +B2 = σ1 + ρ1

[
T +

2φ1φ2l

R(φ1 + φ2)

]
. (2.22)

The least upper delay bounds consist of three parts: the processing time, the
time to serve input burstiness, and the scheduling delay. LetD1.1 andD1.2 denote
the delay bounds of subflowf1.1 andf1.2, respectively. They can be computed by

D1.1 = T +
σ1.1
R

+
φ2l

R
D1.2 = T +

σ1.2
R

+
φ1l

R
. (2.23)

Furthermore, the departure arrival curves off1.1 andf1.2 can be derived by

α̃1.1 =
φ1ρ1

φ1 + φ2
t+ σ1.1 +

φ1

φ1 + φ2
(ρ1T +

ρ1φ2l

R
)

α̃1.2 =
φ2ρ1

φ1 + φ2
t+ σ1.2 +

φ2

φ1 + φ2
(ρ1T +

ρ1φ1l

R
). (2.24)

The Multiplexing Model

In order to analyze resource sharing when multiple input flows share the band-
width of a link at a node, a multiplexing model is proposed. This model should be
used for analyzing a network with various traffic flowing scenarios.

Without loss of generality, let us consider a node serve two flowsf1 andf2 in
the FIFO order as shown by Fig. 2.6-(a). And its equivalent model is drawn in Fig.
2.6-(b). Let the node provide a service curveβs to the aggregating flows, andf1
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andf2 haveα1 andα2 as arrive curves, respectively. We defineβ̂s
1 = κ(βs, α2) as

theequivalent service curve[55] provided to flowf1, whereκ(·, ·) is an operator
to compute the equivalent service andτ is an intermediate argument. Thus, the
departure arrival curve off1 can be derived bỹα1 = α1 ⊘ κ(βs, α2), and its least
upper delay bound is computed byh(α1, κ(β

s, α2)), and the least upper backlog
bound of the node isv(α{1,2}, β

s), whereα{1,2} denotes the arrival curve of the
aggregating flowf{1,2}. Similarly, the equivalent service curve provides to flowf2
can be derived bŷβs

2 = κ(βs, α1), and its delay and backlog bounds, and departure
arrival curve can be derived accordingly.
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Figure 2.6. (a) A node serves two input flows; (b) The equivalent model.

An example is given to show how to computeκ(·, ·). Let βs(t) = χR,T =
R[t− T ]+, andα2(t) = γσ2,ρ2(t) = ρ2t+ σ2, then applying Corollary 4.5 in [55],
the equivalent service curve forf1 can be calculated by

β̂s
1 = κ(βs, α2) = γR·τ,R−ρ2 ⊗ δT+

σ2
R

+τ (τ ≥ 0) (2.25)

whereτ is an intermediate argument for calculating the least upper delay bound,
andδT (t) = +∞ for t > T , and0 otherwise.

The least upper delay bound off1 is calculated by

D1 = h(α1, β̂
s
1) = inf

τ≥0

{
T +

σ2
R

+
σ1 −Rτ

R− ρ2
+ τ

}
. (2.26)

Furthermore, the least upper backlog bound of the node can be derived by

B = σ1 + σ2 + (ρ1 + ρ2)T. (2.27)

Additionally, the arrival curve of the departure flow off1 is computed by

α̃1 = α1 ⊘ β̂s
1 = ρ1t+ σ1 + ρ1

(
T +

σ2
R

+ τ
)
, (2.28)

whereτ is the same as the value obtained in equation (2.26).
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The Splitting Based Performance Analysis Procedure

There have been several research works on the traffic splitting strategy in packet
networks [66, 109], due to its efficiency in load balancing. In the flow based
splitting strategy, a traffic flow is split into multiple subflows at its source node,
and these subflows are forwarded to the sink through different routingpaths. The
source node decides how the subflows are split. Given the traffic patterns, service
models, the routing protocols and the splitting strategy, the general performance
analysis procedure is shown as follows:

Step 1: Based on the traffic pattern, routing protocols, and the traffic splitting
strategy, construct a performance analysis model that converts the original
network into an equivalent network.

Step 2: Derive the input and departure arrival curves of all nodes in the network
based on network calculus.

Step 3: Derive the end-to-end equivalent service curves for the subflows;and
then compute the end-to-end least upper delay bound usingD = h(α, β̂),
whereα denotes the input arrival curve and̂β denotes the end-to-end equiv-
alent service curve.

Step 4: Using the results in Step 2, compute the least upper backlog bound of
each nodeBs = v(

∑
i∈I(s) α

s
i , β

s), whereI(s) represents the set of input
flows of nodes.

Step 5: Compute the power consumption of a nodes byPs = ǫr
∑

i∈Nin(s)
ρis+∑

j∈Nout(s)
ǫtsjρsj + pcs, whereNin(i) andNout(i) denote the set of nodes

which are the direct sources of incoming data flows and the direct destina-
tions of output data flows of nodei, respectively.
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2.4.3 Discussions

Flow Based Splitting vs. Multipath Routing

Basically, a traffic splitting process consists of two stages: establishing multiple
routing paths and allocating traffic on each path according to the splitting strategy.
Multi-path routing is a technique exploiting routing diversity by using multiple
source-destination pairs. It has been receiving plenty of research attentions [36, 29,
30, 18]. This work focuses on analyzing the performance of the splitting strategy
rather than finding multi-path routes. So it is assumed that multiple paths have
already been established between source nodes and the sink.

There are several common features between multi-path routing and flow based
traffic splitting: first, both of them use multipaths to explore routing diversities.
Second, both of them aim for balancing the load performance. Apart from these
common features, there exist significant differences between them. In multi-path
routing, routing decisions are made on a per-packet basis, i.e., each packet chooses
its routing path and is forwarded to the destination individually. Multi-path rout-
ing is mainly used for improving network performance in terms of reliability and
robustness [18, 30]. While in flow-based splitting strategy, the routing andforward-
ing is made on a per-flow basis. So it is capable of realizing a controlled splitting
and providing quality of service. For example, if there are two paths between a
source and a destination, a flow may be split half to one path and half to the other.
So the delay guarantees can be reasoned about.

Flow Based Splitting vs. Node Based Splitting

According to the way that a traffic flow split, the traffic splitting strategy can
be classified into two categories: flow based splitting and node based splitting.

(a) (b)
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Figure 2.7. An example of splitting strategies.s1 is the source node of the traffic
flow ands6 is the sink. (a) Flow based traffic splitting strategy; (b) Node based traffic
splitting strategy.
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In flow based splitting, the source node decides how the subflows are scheduled
and split. The subflows can be identified after splitting. As shown in Fig. 2.7-
(a), the traffic flowfi is split into two subflows (fi.1 andfi.2) only at its source
nodes1 and forwarded to the sink (s6) through two routing paths:{s1, s2, s4} and
{s1, s3, s5}. In the node based traffic splitting strategy (Fig. 2.7-(b)), the traffic
flow can be split at the intermediate nodes that have multiple output links (such
as nodess1 s2 s3 in Fig. 2.7-(b)), and these nodes decide how their input flows
are allocated to their output links. An example of node based routing strategyis
the back-pressure-based routing protocol (BCP) [67]. Implementing aflow-based
traffic splitting strategy is more complex than a node-based traffic splitting strategy
in practice, but a flow-based traffic splitting strategy also has its own advantages.
In the flow-based splitting strategy, the routing and forwarding decisions are made
on a per-flow basis. So it is capable of realizing a controlled splitting and satisfying
quality of service requirements.

How to Set Splitting Parameters?

This work mainly provides a framework for quality of service analysis of the
flow based splitting strategy. Another research issue is on splitting parameterex-
ploration, i.e., how to set splitting factors. One way is to utilize static network
state information, such as link capacity and buffer length, to set splitting parame-
ters. For example, in Fig. 2.7-(a), source nodeS1 can select appropriate splitting
factors based on the link capacity information of its downstream links. A larger
amount of traffic can be allocated to the links with higher capacity. In [19], au-
thors presented an explicit rate-based flow control scheme, in which each route ran
a proportional max-min fair bandwidth sharing algorithm to divide the measure
bandwidth among the passed flows. Alternatively, the splitting decision can be
made based on dynamic network state information. Each node records its current
or historic buffer lengths and the information is sent to the source node, sothat the
source node can select appropriate splitting parameters. For example, authors in
[48] proposed a congestion-aware routing scheme which could redirect a certain
amount of traffic to other paths under heavy traffic load. In this scheme, the con-
gestion status information at each route is detected depending on the average MAC
layer utilization and queue length. If congestion happens, traffic is split intoother
paths according to its services type.

2.4.4 An Analysis Example

In this section, we exemplify the general performance analysis and derive
close-form formulas of delay bounds, backlog bounds and power consumptions
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Figure 2.8. (a) A network analysis example: the main flowf1 is split into two sub-
flows f1.1 andf1.2. f2 is the contention flow; (b) The equivalent analysis network:
the blue, green, and red dashed lines show the routing path of flowf1.1, f1.2 andf2
respectively.

under the conditions of affine arrival curve and rate-latency servicecurve. Con-
sider that a network consists of four nodes as shown in Fig. 2.8. We define the
tagged main flowas the main flow for which we shall derive the end-to-end delay
bound. In this example,f1 is chosen as the tagged main flow. Letf1 be con-
strained by an arrival curveα1 = γσ1,ρ1 , and split into two subflowsf1.1 andf1.2,
and respectively traverse two different routing pathsR(f1.1) = {s1, s2, s4} and
R(f1.2) = {s1, s3, s4} from the source nodes1 to the sink.φ1 andφ2 are the split-
ting weights off1.1 andf1.2, respectively.f2 is the contention flow that is modeled
by an arrival curveα2 = γσ2,ρ2 . Let αsi

j andα̃si
j denote the input and departure

arrival curves of flowj at nodesi, respectively. Next, we need to derive the end-
to-end least upper delay bound for flowf1 and the least upper backlog bound and
power consumption for each node.

In order to compute the end-to-end least upper delay and the least upperback-
log bounds, the input and departure arrival curves of each node need to be derived
firstly.
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Arrival Curves of Input and Output

According to the results of the splitting model, the arrival curves of departure
flows at nodes1 can be derived as

α̃s1
1.1 =

φ1ρ1
φ1 + φ2

t+ σ1.1 +
φ1

φ1 + φ2

(
ρ1T1 +

ρ1φ2l

R1

)

α̃s1
1.2 =

φ2ρ1
φ1 + φ2

t+ σ1.2 +
φ2

φ2

(
σ1 + ρ1T1 +

ρ1φ1l

R1

)
.

(2.29)

Nodes2 has two input flows, with arrival curvesα2 andαs2
1.1 = α̃s1

1.1. According to
the multiplexing analysis results (Section 2.4.2), the arrival curves of the departure
flows of nodes2 is derived as follows,

α̃s2
2 = ρ2t+ σ2 + ρ2

(
T2 +

σs2
1.1

R2
+ τ1

)

α̃s2
1.1 = α̃s1

1.1 +
φ1ρ1

φ1 + φ2

(
T2 +

σ2
R2

+ τ2

)
.

(2.30)

whereσs2
1.1 = σ1.1 +

φ1

φ1+φ2
(ρ1T1 +

ρ1φ2l
R1

), andτ1 andτ2 are defined by

argmin
τ1

ζ1(x) = {τ1 ≥ 0 :
σ2 −R2τ1

R2 − φ1ρ1/(φ1 + φ2)
+ τ1}

argmin
τ2

ζ2(x) = {τ2 ≥ 0 :
σs2
1.1 −R2τ2
R2 − ρ2

+ τ2}.
(2.31)

For nodes3, the arrival curve of its input flow isαs3
1.2 = α̃s1

1.2, and it provides a
service curveβs3 = χR3,T3

. Consequently, the arrival curve of its departure flow
is,

α̃s3
1.2 = α̃s1

1.2 +
φ2ρ1

φ1 + φ2
T3. (2.32)

According to the connection relations, we can get the arrival curves ofthree
input flows at nodes4, which areαs4

2 = α̃s2
2 , αs4

1.1 = α̃s2
1.1 andαs4

1.2 = α̃s3
1.2. Since

it is not necessary to compute the arrival curves of the departure flowsat nodes4,
the derivation is skipped.

The End-to-End Delay Bound

In order to compute the end-to-end delay bound, we first need to derivethe
service curve provided by individual nodes. Letβ̂si

k represent the equivalent service
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curve provided by nodesi to itskth input flow. As shown in Fig. 2.8, nodes2 serves
two flow f1.1 and f2. According to the multiplexing analysis in section 2.4.2,
the equivalent service curve forf1.1 at s2 is β̂s2

2 = κ(βs2 , α2). Nodes4 serves
three flows, and the equivalent service curve forf1.1 is β̂s4

1 = κ(κ(βs4 , αs4
2 ), αs4

1.2).
Thus, the end-to-end equivalent service curve forf1.1 can be derived by

βe2e
1.1 = β̂s1

1 ⊗ β̂s2
2 ⊗ β̂s4

2

= βs1 ⊗ δφ2l

R1

⊗ κ(βs2 , α2)⊗ κ(κ(βs4 , αs4
2 ), αs4

1.2)

= χR1,T1
⊗ δφ2l

R1

⊗ γR2τ2,R2−ρ2 ⊗ δT2+
σ2
R2

+τ2
⊗ γ

R4τ3,R4−ρ
′

4

⊗ δ
T4+

σ
′

4
R4

+τ3

= χR1,T1
⊗ δ

φ2l

R1
+T2+

σ2
R2

+τ2+T4+
σ
′

4
R4

+τ3
⊗ γR2τ2,R2−ρ2 ⊗ γ

R4τ3,R4−ρ
′

4

(2.33)

whereτ1 andτ2 are the same as those in Eq. (2.30),τ3 is calcuated byargminτ3{τ3 ≥
0 :

σ
s4
1.1−R4τ3

R4−ρ
′

4

+ τ3}, ρ
′

4 = ρ2 + φ2ρ1/(φ1 + φ2) and

σ
′

4 = ρ2(T2 +
σs2
1.1

R2
+ τ1) + σ1.2 +

φ2[ρ1(T1 + T3) +
ρ1φ1l
R1

]

φ1 + φ2
+ σ2. (2.34)

Analogously, the end-to-end equivalent service curve forf1.2 can be derived
by

βe2e
1.2 = β̂s1

2 ⊗ βs3 ⊗ β̂s4
3

= βs1 ⊗ δφ1l

R1

⊗ βs3 ⊗ κ(κ(βs4 , αs4
2 ), αs4

1.1)

= χR1,T1
⊗ δφ1l

R1

⊗ χR3,T3
⊗ γ

R4τ4,R4−ρ
′′

4

⊗ δ
T4+

σ
′′

4
R4

+τ4

(2.35)

whereτ4 is defined byargminτ4{τ4 ≥ 0 :
σ
s4
1.2−R4τ4

R4−ρ
′′

4

+τ4}, ρ
′′

4 = (ρ2+φ1ρ1/(φ1+

φ2)) and

σ
′′

4 =
φ1ρ1

φ1 + φ2
(T1 + T2 +

σ2
R2

+ τ2) +
ρ1φ1φ2l

R1(φ1 + φ2)
+ ρ2(T2+

σs2
1.1

R2
+ τ1) + σ1.1 + σ2

(2.36)

whereτ1 andτ2 are the same as those in Eq. (2.30).
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After getting the end-to-end service curves, the least upper delay bounds of
f1.1 andf1.2 can be respectively computed byh(α1.1, β

e2e
1.1 ) andh(α1.2, β

e2e
1.2 ),

h(α1.1, β
e2e
1.1 ) = T1 + T2 + T4 +

φ2l

R1
+

σ2
R2

+
σ

′

4

R4
+ inf

τ2≥0
τ3≥0

{
τ2 + τ3

+

[
σ1.1
R1

∨ σ1.1 −R2τ2
R2 − ρ2

∨ σ1.1 −R4τ3

R4 − ρ
′

4

]}

h(α1.2, β
e2e
1.2 ) =T1 + T3 + T4 +

φ1l

R1
+

σ
′′

4

R4

+ inf
τ4≥0

{
τ4 +

[
σ1.2
R1

∨ σ1.2
R3

∨ σ1.2 −R4τ4

R4 − ρ
′′

4

]}

(2.37)

Hence, the end-to-end least upper delay bound for the flowf1 equals the max-
imum of the delays of two subflows, namely,

Df1 = max
{
h(α1.1, β

e2e
1.1 ), h(α1.2, β

e2e
1.2 )

}
. (2.38)

The Backlog Bound

Let Bsi denote the backlog bound of nodesi (i = 1, · · · , 4). As we have
already derived the arrival curves of input and output flows at each node, its least
upper backlog bound can be calculated very easily. According to the result in Eq.
(2.22), it shows

Bs1 = B1.1 +B1.2 = σ1 + ρ1

[
T1 +

2φ1φ2l

R1(φ1 + φ2)

]
. (2.39)

Nodes2 has two input flowsα2 andαs2
1.1, so its least upper backlog bound is

computed by

Bs2 = σ1.1 + σ2 +
φ1(ρ1T1 +

ρ1φ2l
R1

)

φ1 + φ2
+

(
φ1ρ1

φ1 + φ2
+ ρ2

)
T2. (2.40)

Analogously, the least upper backlog bounds of nodes3 ands4 can be derived
by,

Bs3 = σ1.2 +
φ2

φ1 + φ2

[
ρ1(T1 + T3) +

ρ1φ1l

R1

]

Bs4 = ρ1(T1 + T4) + σ1 + ρ2

(
T2 + T4 +

σs2
1.1

R2
+ τ1

)
+ σ2

+
2ρ1lφ1φ2

R1(φ1 + φ2)
+

φ2ρ1T3

φ1 + φ2
+

φ1ρ1
φ1 + φ2

(
T2 +

σ2
R2

+ τ2

)
.

(2.41)
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Power Consumption

According to the power model, the total power consumption of a node is con-
tributed by the radio transmitter, radio receiver, and computation electronics. Thus,
the power consumptions of all the nodes can be computed by

Ps1 = ǫrρ1 + ǫts1s2ρ1.1 + ǫts1s3ρ1.2 + pc

= ρ1


ǫr + φ1N0(2

Rs1s2
ηW − 1)

Rs1s2Gs1s2(φ1 + φ2)
+

φ2N0(2
Rs1s3
ηW − 1)

Rs1s3Gs1s3(φ1 + φ2)


+ pc

Ps2 = ǫr(ρ1.1 + ρ2) + ǫts2s4(ρ
s4
1.1 + ρs42 ) + pc

=


ǫr + N0(2

Rs2s4
ηW − 1)

Rs2s4Gs2s4



(

φ1ρ1
φ1 + φ2

+ ρ2

)
+ pc

Ps3 =


ǫr + N0(2

Rs3s4
ηW − 1)

Rs3s4Gs3s4


 φ2ρ1
φ1 + φ2

+ pc

Ps4 =


ǫr + N0(2

Rs4s0
ηW − 1)

Rs4s0Gs4s0


 (ρ1 + ρ2) + pc

(2.42)

whereds4s0 denotes the distance between nodes4 and the sink nodes0. Here, we
assume that the link capacity can meet the requirements of the traffic bandwidth,
i.e., the service rate is bigger than the sum of input data rates.

2.4.5 Performance Evaluation

To show benefits of the traffic splitting strategy and to validate the network cal-
culus based performance analysis method, numerical results and simulationsare
presented under the scenario of a fresh food monitoring application. In the nu-
merical results, the end-to-end least upper delay bounds, the least upper backlog
bounds and power consumptions are compared under two scenarios:general rout-
ing with no traffic splitting (NOS)andflow based splitting strategy (FBS). In the
simulations, the results obtained by the analytical method are compared with the
simulation results also under these two scenarios.

The numerical results are based on an application example of a real-time fresh
food monitoring system deployed in a warehouse [114] [70]. As shown inFig. 2.9,
one sink and 9 cluster heads are uniformly distributed in a 20m×10m warehouse.
Each cluster head connects with 5 sensor nodes. The coordinates of cluster heads
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Figure 2.9. A cluster-mesh sensor network:s0 is the sink. An event happens in the
blue circle and three traffic flowsf1, f2, f3 are generated.

and sink (s0) are:s0(0, 0), s1(17.2, 1.7), s2(14.1, 5.5), s3(11, 0.5), s4(14.8,−3.6),
s5(8.3, 4), s6(9.1,−4.4), s7(2.5, 4.7), s8(4.2, 0.8), s9(3.3,−3.6). We consider the
application scenario of real-time monitoring, where sensor nodes periodically gen-
erate packets when there is a request.

Numerical Results

Assume that sensor nodes in clusterC1,C2 andC3 are requested to send packets
to the sink via cluster heads1, s2 ands3, respectively. Consequently, there are three
traffic flows in the network:f1, f2 andf3. They are characterized by arrival curves
α1 =

∑
nj∈C1

αj
1, α2 =

∑
nj∈C2

αj
2, α3 =

∑
nj∈C3

αj
3, whereαj

i (i = 1, 2, 3)
denotes the arrival curve of traffic generate by sensor nodej in clusterCi. For pe-
riodic packets generation applications, the arrival process can be characterized by
the affine arrival curve [81], i.e.,α1 = γσ1,ρ1 , α2 = γσ2,ρ2 andα3 = γσ3,ρ3 . More-
over, assume cluster headsi provides a rate-latency service curveβsi = χRi,Ti

.
f1 is the tagged main flow, andf2, f3 are the contention flows. Other parameters
are listed in Table 2.1. We shall derive the end-to-end least upper delay bound for
f1, the least upper backlog bounds and power consumptions of all nodes intwo
scenarios: NOS and FBS (Fig. 2.10).

From the power model in Eq. (2.11) and Fig. 2.3, the energy per bit is a mono-
tonically increasing function of the transmission rate [74] if other parametersare
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Table 2.1.System Parameters

System Parameter Notation Value Unit

Packet length l 400 bits

Computation power pc 10 uJ/s

Path loss factor θ 3 -

Service delay Ti(i = 1 · · · 9) 0.1 s

Data rate off2 ρ2 1.2 kbps

Data rate off3 ρ3 1.6 kbps

Burstiness σ1, σ2, σ3 400 bits

Channel bandwidth W 20 kHz
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Figure 2.10. (a) General routing with no splitting (NOS): the tagged main flowf1
chooses one of path 1, 2 or 3, and the routing paths off2 andf3 are shown by the
blue and green line respectively; (b) Flow based splitting (FBS): all threeflows are
split as shown by the red, blue and green lines respectively.

fixed. Thus, it is better to use low transmission power for the sake of energy effi-
ciency. On the other hand, the delay bound is a monotonically decreasing function
of the service rate3. Therefore, there is a trade-off between energy consumption
and delay. In order to study this trade-off, numerical experiments are implemented

3For example, given an arrival curveα(t) = ρt + σ, and service curveβ(t) = R[t − T ]+, the
delay bound isT + σ/R whenR ≥ ρ.
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Figure 2.11.End-to-end least upper delay bound

in two scenarios: 1) Uniform service rate: the service rate of all cluster heads are
the same and fixed; 2) Heterogeneous service rate: In order to guarantee a limited
delay and backlog, the service rate should be equal to or bigger than the data arrival
rate. So the service rateR is set to be equal to the arrival rateρ.

The end-to-end least upper delay off1, the backlog bounds and power con-
sumptions of all nodes are compared in two scenarios: NOS and FBS. In NOS,
f1 chooses one of the three paths: path 1-{s1, s3, s8}, path 2-{s1, s4, s6, s9}, and
path 3-{s1, s2, s5, s7}. In FBS,f1 is evenly split into three subflows, and they are
allocated on these three paths.

Uniform Service Rate

In the first numerical example, a fixed service rate is chosenRi = 9.6 kbps
(i = 1, · · · 9).

Fig. 2.11 shows the comparison of the end-to-end least upper delay bounds
of the tagged main flowf1 in NOS and FBS scenarios. In the NOS scenario, the
end-to-end delays off1 going through three different routing paths are compared
(Fig. 2.10-(a)). The input data rate off1 varies from1.2 kbps to 4 kbps. From
this figure, we can see that the end-to-end delays in all scenarios increase with the
input data rates. Furthermore, on average, the delays in FBS are23.6% and9.4%
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less than those of path 2 and path 3 in NOS, respectively. And the delay in FBS is
12.4% bigger than those of path 1 in NOS. This is because path 1 is shorter than
other two paths.
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Figure 2.12. Least upper back-
log bounds (In NOS: flow 1
chooses path 3).
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Figure 2.13. Variance of least
upper backlog bounds (In NOS:
flow 1 chooses path 3).

Fig. 2.12 shows the least upper and average backlog bounds in the FBS and
NOS scenarios with input data rates vary, where ’Max-B(NOS)’ means the max-
imum backlog in NOS which denotes the maximum value of backlogs among all
nodes, and ’Ave-B(FBS)’ means the average backlog in FBS which denotes the
average value of backlogs over all nodes. From this figure, we can find that both
the maximum and average backlogs in FBS are less than those in NOS. It indicates
that the traffic splitting strategy can reduce backlogs. Moreover, the differences
between the maximum backlogs of the two scenarios are much bigger than those
of average backlogs. The average backlogs in FBS is14.5% less than those in
NOS on the average. While the maximum backlog in FBS is23.4% less than that
in NOS when the input data rate is1.2 kbps, and the value increases to40% when
the input data rate is4 kbps. We can also observe similar reduction in the variance
of maximum backlogs ( as shown in Fig. 2.13), where the variance of backlogs
in NOS is much bigger than that in FBS. It means that in NOS some nodes have
very small backlogs, but some nodes have very large backlogs. Since the buffer
size of a sensor node is basically determined by the value of maximum backlog,
larger backlog would brings higher hardware cost and bigger buffer. Therefore,
applying the flow based splitting strategy can bring better load balance and thus
reduce overall cost.

The maximum and average power consumptions of all nodes in NOS and FBS
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Figure 2.14. Power consump-
tion (In NOSi: flow 1 chooses
pathi, wherei = 1, 2, 3).
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Figure 2.15. Variance of power
consumption.

are shown in Fig. 2.14, where ’Max-P(NOS)’ and ’Ave-B(NOS)’ respectively de-
notes the maximum and average power consumptions in the NOS scenario. First,
we see from the figure that all the power consumptions increase with the input data
rates. Furthermore, when the data rate increases, the average power consumptions
in the NOS and FBS are almost the same. However, the maximum power consump-
tion in NOS increases much faster than that in FBS, with the maximum differences
between FBS and NOS increasing from0.8% to 12%. It indicates that the power
consumptions of nodes are uneven in NOS. We can also see this from Fig. 2.15
showing the variance of power consumption of all nodes. From this figure, we
can find the variance in NOS increases much faster than that in FBS. Usually, the
lifetime of a WSN is determined by the first node exhausting its energy. Hence,
the flow based splitting scheme can be used for balancing power consumptionand
consequently increasing the lifetime of the network.

Heterogeneous Service Rate

The data rate off1 varies from1.2 to 4 kbps. The data rate off2 andf3 are
given in Table 2.1. The service rate of each node is equal to its arrival rate.

Being different from Fig. 2.11, the end-to-end delays of FBS are basically
bigger than those of NOS in this case (Fig. 2.16). Moreover, when the input data
rate increases, the end-to-end delay decreases. The reason is that the service rate
increases with the input data rate. While the input burstiness is the same, so the
delay would decrease.

Fig. 2.17 shows the comparison of backlog bounds in the FBS and NOS sce-
narios. From this figure, we can find that the average backlogs in FBS and NOS
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Figure 2.16.End-to-end delay.
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Figure 2.17. Least upper back-
log bounds (In NOS: flow 1
chooses path 3).
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Figure 2.18. Variance of least
upper backlog bounds (In NOS:
flow 1 chooses path 3).

are almost the same. The maximum backlog in FBS is2.4% bigger than that in
NOS when the input data rate is1.2 kbps. When the input data rate is increased,
the maximu backlog in FBS becomes less than that in NOS. Similar to Fig. 2.13,
from Fig. 2.18, we can see that the variance of backlogs in NOS is bigger than that
in FBS. It also means that in NOS some nodes have very small backlogs, butsome
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nodes have very large backlogs.
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Figure 2.19. Power consump-
tion (In NOSi: flow 1 chooses
pathi, wherei = 1, 2, 3).
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Figure 2.20. Variance of power
consumption.

In the case of heterogeneous service rates, we see from the figure (Fig. 2.19)
that all the power consumptions increase with the input data rates. Furthermore,
the average power consumptions in the NOS are approximately11.4% bigger than
those in FBS. However, the maximum power consumption in NOS increases much
faster than that in FBS, with the maximum differences between FBS and NOS
increasing from23.9% to 33%. The differences of maximum power consumption
in this case are much bigger than those in uniform service rate case Fig. 2.14. We
can also see this from Fig. 2.20 showing the variance of power consumption. From
this figure, we can find the variance in NOS increases much faster than thatin FBS.

From all those results and comparison, we can have the following conclusions:
First, applying FBS strategy can balance traffic load and power consumption, so as
to reduce overall system cost and increase the network lifetime. Second,there is
a trade-off between power consumption and system performance. Under uniform
service rate, the end-to-end delays of FBS are less than those of NOS in most cases,
and the power consumptions of FBS are slightly less than those of NOS. While un-
der heterogeneous service rates, the end-to-end delays of FBS are generally bigger
than those of NOS, but the power consumptions of FBS are much less than those
of NOS. It means that the decreasing of power consumption is obtained at the cost
of increasing delay.

Comparison of End-to-end and Hop-by-hop Methods

As stated in [85], there are two ways to compute the end-to-end delay bound.
The first method is to sum up the per-hop delay together. The second methodis to
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Figure 2.21.Compare the end-to-end delay computed by two methods.

derive an equivalent service curve for a given traffic flow. And then the end-to-end
delay bound is calculated using the equivalent service curve. In [85],we use the
first method (hop-by-hop). While in this thesis, we adopt the second method(end-
to-end). Fig. 2.21 illustrates the comparison of these two methods in the scenario
of FBS and NOS. On average, the hop-by-hop delay in NOS is26.4% bigger than
the end-to-end delay. And in FBS, the hop-by-hop delay is22.5% bigger than the
end-to-end delay. Therefore, the end-to-end method can achieve tighter bound than
the hop-by-hop method.

Simulation Results

Since a simulation environment allows us to create a realistic sensor network
behavior while still controllable, experiments are conducted in a simulation envi-
ronment based on OMNeT++ 3.3 rather than in a field trial. Thetightnessis defined
as the ratio of maximum simulation value divided by the analytical value.

In the simulation, a most common log-normal path loss model [77] is adopted.
This model can provide more accurate multi-path channel models than Rayleigh
and Nakagami models for indoor environments [110]. The simulation is also based
on the application scenario shown in Fig. 2.9. Parameters used in simulations are
the same as those in Table 2.1. Other parameters used are:d0 = 1 m, reference
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channel gainG0 = 10−5 (−50 dB), noise powerN0 = 10−10 (−100 dB), and
the channel noise is subject to a Gaussian random variable with deviation4. 50
simulation runs are conducted. In each run, the total simulation period is 25000
cycles and the source generates one packet every cycle. The packet generation rate
is based on the pre-defined data rate. In order to bypass the initial non-stationary
stage, the data of first 5000 cycles are omitted. In each run, the delay of every
packet is recorded, and the value of backlog is recorded in every cycle. In order to
compare the analytical results with the worst-case simulation results, the resultsof
runs leading to maximum delay and maximum backlog are selected as the simula-
tion results.
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Figure 2.22. End-to-end delays
in NOS.
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Figure 2.23. End-to-end delays
in FBS.
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Fig. 2.22 and Fig. 2.23 show the comparison of simulation results and an-
alytical results of end-to-end delays of flowf1 in the NOS and FBS scenarios,
respectively. In NOS, the arrival rate of flow 1 is2.8 kbps, and it selects path 3 as
its routing path. In order to make the figure easy to read, we do not illustrate the
delays of all packets, but extract500 values from them. From these two figures, we
observe that all the simulation values are bounded by the analytical results.And
the tightness in NOS and FBS are91% and93.2%, respectively. This indicates our
analysis performs well on bounding the end-to-end data delivery delay.

For the backlog analysis, nodes8 is chosen as the observation node. Its back-
logs in different time points are recorded and compared as shown in Fig. 2.24 and
Fig.2.25. In NOS, the arrival rate of flow 1 is2.8 kbps, and it selects path 3 as its
routing path. We can see that all the simulation values of backlogs are within the
scopes of the analytical values. Moreover, the backlogs in the FBS scenario are
less than those in NOS, which also indicates that the flow based splitting scheme
can reduce the maximum backlogs by balancing traffic load over the network. Ad-
ditionally, the tightness of the analytical results in NOS and FBS are93.5% and
92.1%, respectively. In summary, the proposed analysis method is correct on de-
riving the backlog bound and the tightness is satisfactory.

2.5 Analysis of Retransmission Schemes

Many previous works have been done on reliable transport issues in experi-
mental ways. However, there still lack analytical techniques to evaluate different
reliable transport solutions. In [58], Liuet al. analyze the roles of packet retrans-
mission and erasure coding in the reliable transport of WSNs by establishingthe
probability models. In this section, we propose analytical techniques to evaluate
retransmission schemes in WSNs. We first introduce the traffic model, service
model and energy model. Based on these models and network calculus, we ana-
lytically evaluate the maximum packet transfer delay and energy efficiency of two
basic retransmission schemes, which are hop-by-hop retransmission andend-to-
end retransmission. From the experiment results, the maximum delay and energy
consumption of these two schemes are compared in several scenarios. Moreover,
the analytical maximum delay is compared with the simulation results. With our
method, appropriate retransmission scheme can be chosen based on different re-
quirements and constraints.
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2.5.1 System Model

To characterize the traffic generated by the sensor nodes, the arrival flow at a
node is modeled using its cumulative trafficR(t). An affine arrival curveα(t) is
used to constrain the cumulative traffic flow, namely,α(t) = ρ · t + σ (Definition
2.2 in Section 2.3). To model the processing capability of a node, the following
service curve is used,

β(t) = C · S

Ts
· [t− (Ts − S)]+ (2.43)

Following the energy model presented in [75], the energy consumption of a
packet transmission between two nodes is abstracted in a similar way,

E = 2Estart +
L

R
(Ptx + Prx + 2Pcir) (2.44)

whereEstart represents the energy for startup the radio;Ptx andPrx represent
the power consumption of the radio in transmission mode and receive mode, re-
spectively;Pcir represents the power consumption of the electronic circuitry;L
denotes the packet length in bits; andR denotes the transmission data rate. The
energy consumption in the sleeping mode is ignored since it is much smaller than
that for packet transmission or reception [75]. However, it is straightforward to
extend our model to include the energy consumption in the sleep mode.

2.5.2 Analysis

There have been a lot of papers on designing retransmission schemes in WSNs
[71] [69] [96]. These retransmission schemes can be classified into two basic cat-
egories, namely hop-by-hop retransmission and end-to-end retransmission (Figure
2.26).

Assume that there is a multi-hop path withn hops between a source nodeS and
a destination nodeD. And there is anautomatic repeat request(ARQ) mechanism
running until a packet successfully arrives at the receiver. A packet is accepted
only if every bit of the packet is received without error (for non-coded systems).
Furthermore, assume an ideal MAC protocol where there is no interference and
collision, so packet delivery failures are only due to channel errors.The packet
error ratepe can be computed bype = 1 − (1 − pb)

L, wherepb is bit error rate
(BER).
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Figure 2.26.(a): Hop-by-hop retransmission; (b): End-to-end retransmission.

Hop-by-hop Retransmission

In hop-by-hop retransmission scheme, at every hop, the receiver checks the cor-
rectness of the packet and requests for a retransmission with annegative-acknowledgment
(NACK) packet until a correct packet arrives. After that, anacknowledgment
(ACK) packet is sent to the transmitter indicating a successful transmission.An
example is shown in Figure 2.26 . If the first packet transmission fails between
A and B, then B sends an NACK packet to A asking for a retransmission. After
that, A retransmits the packet for a second time. B sends an ACK packet after
successfully receiving the packet.

Let mi denote the number of transmission trials at hopi, andpi denote the
packet error rate at hopi. Then, we shall derive the transmission delay and energy
consumption.

Let La denote the length of an ACK and NACK packet. At the source node
S, the arrival curve is expressed byα1(t) = ρ1 · t + σ1. According to (2.43), the
service curve at hopi (1 ≤ i ≤ n) is expressed as follows,

βi(t) = C · Si

Ts
· [t− (Ts − Si)]

+ (2.45)

whereSi denotes length of the slot assigned to linki. Since the input of current hop
equals the output of previous hop, i.e.αi(t) = α∗

i−1(t) (2 ≤ i ≤ n), the arrival
curve of the traffic at theith (1 ≤ i ≤ n) hop can be recursively derived based on
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Theorem 2.3 (Section 2.3, Equation (2.8)),

α∗
i (t) = sup

s≥0
{αi(t+ s)− βi(s)} = αi(t) + ρi · (Ts − Si) (2.46)

Based on the theorems of determinsitic network calculus, the maximum delay
at hopi can be derived as follows,

Di = sup
t≥0

{ inf
τ≥0

{τ : αi(t) ≤ βi(t+ τ)}} =
σiTs

CSi
+ (Ts − Si) (2.47)

At each hop, the expected number of transmissions can be evaluated by1/(1−
pi). Therefore, the expected maximum delay (Dhbh) of sending a packet fromS to
D can be calculated by summing up the delays at each hop,

Dhbh =
n∑

i=1

1

1− pi
Di (2.48)

The energy consumption is caused by data packets and ACK (NACK) pack-
ets. For simplicity, the energy consumption for decoding is ignored although itis
straightforward to include it. According to the energy model, the energy consump-
tion at theith hop can be calculated by,

Ei = 2Ei
start +

L+ La

R
(P i

tx + P i
rx + 2P i

cir) (2.49)

Therefore, the total expected energy consumptionEhbh of transmitting a packet
from S toD can be computed by,

Ehbh =
n∑

i=1

1

1− pi
Ei (2.50)

End-to-end Retransmission

In end-to-end retransmission scheme, the intermediate nodes simply forward
received packets to the next hop and do not check the correctness ofthe packets.
When a packet arrives at the destinationD, D checks the packet, and asks for a
retransmission with an NACK packet directly toS if the packet is incorrect. Other-
wise, it sends an ACK packet toS indicating a successful packet transmission. In
this scheme, ACKs/NACKs can be sent to source nodes directly. This is reasonable
since the sink node (i.e. the destination) is usually very powerful and it canreach
every node in the network. See example in Figure 2.26.
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Let pi denote the packet error rate at hopi, andm denote the number of trans-
mission trials. In this scheme, the retransmission is performed in an end-to-end
manner, so an equivalent service curve can be derived for the wholelink based on
Theorem 2.4 (Section 2.3, Equation (2.9)) and Equation (2.45),

βe2e = β1 ⊗ β2 ⊗ · · · ⊗ βn = Re2e · (t− Te2e) (2.51)

whereRe2e andTe2e can be calculated by,

Re2e = min
1≤i≤n

(C · Si

Ts
), Te2e =

n∑

i=1

(Ts − Si) (2.52)

According to the traffic model, the arrival curve of the input flow atS is defined
as:αin(t) = ρin · t+σin. Based on Theorem 2.1 (Section 2.3, Equation (2.6)), the
maximum delayDst for one single transmission fromS toD can be calculated by,

Dst = sup
t≥0

{ inf
τ≥0

{τ : αin(t) ≤ βe2e(t+ τ)}} =
σin
Re2e

+ Te2e (2.53)

In end-to-end retransmission, the total expected number of transmissions can
be evaluated by1/pst, wherepst =

∏n
i=1(1 − pi). Then, the expected maximum

delayDe2e can be calculated by,

De2e =
1

pst
Dst (2.54)

In the end-to-end retransmission scheme, only the sink node needs to send
ACK and NACK packets, other intermediate nodes simply forward data packets.
According to the energy model, the energy consumption at theith hop can be
calculated by,

Ei = 2Ei
start +

L

R
(P i

tx + P i
rx + 2P i

cir) (2.55)

Therefore, the total expected energy consumptionEhbh of transmitting a packet
from S toD can be computed by,

Ee2e =
1

pst

[
n∑

i=1

Ei +
La

R
(P i

tx + P i
rx + 2P i

cir)

]
(2.56)

In Equation (2.56), the first item computes the energy consumption for transmitting
data packets, while the second item computes the energy for ACK and NACK
packets transmissions.

Ee2e =
1∏n

i=1(1− pi)

[
n∑

i=1

Ei +
La

R
(P i

tx + P i
rx + 2P i

cir)

]
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2.5.3 Experiment Results

Experiment Setup

Table 2.2.Experimental Parameters

Parameter Notation Value Unit

Tx power Ptx 19.1 mW

Rx power Prx 14.6 mW

Circuit power Pcir 12 mW

Start energy Estart 1.0 uJ

Data pkt length L 240 bits

ACK(NACK) pkt length La 80 bits

Link capacity C 19.2 kbps

In this section, the maximum transmission delay and energy consumption of
hop-by-hop and end-to-end retransmission schemes are compared. The parameters
used in experiments are shown in Table 2.2, which follow those used in [75] [24].
The link distance is randomly selected between5m and10m, which is typical for
most applications. Set the frame lengthTs and slot lengthS to 0.2 s and0.01 s, re-
spectively. The input data rate of end-to-end retransmission schemeρin = 30 bps,
which corresponds to one packet in every eight seconds. The burstiness is set to
240 bits, which equals to the size of one packet. For hop-by-hop scheme, the num-
ber of ACK (NACK) packets are the same as data packets, so the data rate at the
first hopρ1 = (1 + L/La)ρin.

Comparisons of Two Schemes

Figure 2.27 shows the comparisons of the maximum delay with required target
success probability varying. From this figure, we can see that the maximum delays
of both schemes increase as the target success probability increases. Further more,
when the BER is low, i.e.,(1e − 4), the maximum delay of end-to-end scheme is
less than that of hop-by-hop scheme. But when the BER is high, i.e.,(1e− 3), the
hop-by-hop scheme has less delay. This indicates that when the BER is high, more
trials of retransmissions are required by end-to-end scheme to achieve thesame
target success probability.
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Figure 2.28 plots the energy consumption varies with the required target suc-
cess probability. In this figure, we observe the end-to-end scheme consumes more
energy than the hop-by-hop scheme both for low and high BERs. Especially, when
the BER is(1e − 3), the energy consumption of the end-to-end scheme is much
higher than the other one (BER is1e − 4). The reason is that, in the end-to-end
scheme, erroneous packets are not dropped until their destination is reached. And
the energy for delivering these packets is wasted. When BER is higher, there are
more erroneous packets which would lead to higher energy consumption.
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Figure 2.29. Compare analytical maximum transmission delay with the simulation
results

To validate results of delay bound, the analytical results are compared with
the simulation results in a chain scenario. The simulations are performed using
Omnet++ 3.3. The path length is 4 hops and BER is5e− 4. Other parameters are
shown in table 2.2. From Figure 2.29, we observe that all the simulation values
are within the scopes of the analytical results. This indicates network calculus
performs well on bounding the packet transfer delay. For end-to-endand hop-by-
hop retransmission scheme, the analytical delays are 4.3% and 5.8% bigger than
simulated maximum delays, respectively.
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2.6 Summary

Dimensioning timing-critical sensor networks requires formal methods to en-
sure performance and cost in any conditions. In Section 2.4, we present a network-
calculus-based analysis method to compute the worst-case end-to-end delay bounds
for individual flows, backlog bounds and power consumptions for individual nodes.
Based on network calculus and the flow splitting model, it is able to compute per-
flow equivalent service curve provided by the tandem of visited nodes and the
input and departure arrival curves of each node. Consequently, the performance
bounds for the network which applies the flow based traffic splitting strategycan
be derived. Under the assumptions of affine arrival curve and rate-latency service
curves, closed-form formulas of these bounds are computed. The numerical results
for the example scenario show that by applying the splitting strategy the end-to-
end delay can be reduced in most cases, the maximum backlog can be reduced up
to 40%, and the power consumption can be reduced up to15%. Furthermore, the
simulation results verify that the theoretical bounds of our analysis are validand
fairly tight.

Due to the unreliable wireless links and limited energy budget, providing reli-
able data transmission has turned out to be a non-trivial problem in WSN. Retrans-
mission has been adopted as one of the most prevalent schemes for addressing this
issue. In Section 2.5, we presented analytical techniques to evaluate the maximum
transmission delay and energy consumption of two categories of retransmission
schemes: hop-by-hop retransmission and end-to-end retransmission. With the ex-
periment results, the maximum packet transfer delay and energy efficiency of two
types of retransmission schemes are studied and compared. Moreover, the analyti-
cal method for deriving delay bound is validated through simulations.
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Chapter 3

Channel Modeling and
Bandwidth Estimation

This chapter summarizes our research on applying stochastic network calculus
for wireless channel modeling, and bandwidth estimation through backlog mea-
surement. The work in this chapter is mainly based on [87, 89].

3.1 Introduction

As it has been discussed in the previous chapter, network calculus is a theory
dealing with performance guarantees in packet switching networks [25, 26, 17,
11, 44]. With the abstraction of arrival curve for traffic flows and service curve
for network elements, it has been widely applied in communication networks for
performance analysis. The DNC generally considers the worst-case performance
analysis through deterministic arrival curve and service curve. Recently, it has
been extended and applied for worst-case performance analysis of sensor networks
by several researchers [81, 51]. However, since data communicationin wireless
networks is unstable and irregular, it is very difficult even impossible to findthe
deterministic performance bounds. To incorporate nondeterministic serviceprovi-
sioning, the performance bounds have to be complemented with certain violation
probabilities. SNC is such a tool which can be employed in the design of wireless
networks to provide stochastic service guarantees.

Bandwidth estimation is essential for Quality-of-Service (QoS) provision in
wireless networks. Accurate bandwidth estimation can decrease the packet loss
rate and thus improve the network performance. Due to randomness of wireless
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channels, it is a very challenging task to accurately estimate the bandwidth in wire-
less networks [80]. There have been a lot of research efforts in developing mea-
surement techniques for bandwidth estimation. The most popular ones are toinfer
bandwidth from traffic measurements based on probe packets [41, 57, 64].

In Section 3.4, we propose a network calculus based approach for Quality of
Service (QoS) analysis of wireless channels subject to Rayleigh fading.A stochas-
tic service curve model for the Rayleigh fading channel is developed. Based on this
model, we provide formulas to derive the probabilistic delay and backlog bounds
in the cases of deterministic and stochastic arrival curves. The simulation results
verify that the bounds are tight. Furthermore, through numerical experiments, it
is shown that the analysis method is capable of deriving performance bounds with
corresponding violation probabilities.

In Section 3.5, we develop a detailed mechanism for bandwidth estimation of
random wireless channels based on stochastic network calculus. The bandwidth is
derived from the measurement of statistical backlogs based on probe packet trains.
It is expressed by statistical service curves that are allowed to violate a service
guarantee with a certain probability [14]. The theoretic foundation and the detailed
step-by-step procedure of the estimation method are presented. For casestudy,
simulations are conducted to validate the correctness and accuracy of the proposed
method over Rayleigh channels, although our method can be applied to any chan-
nels with various characteristics.

The rest of this chapter is organized as follows. Section 3.2 includes related
work. Section 3.3 introduces basics of stochastic network calculus. Section 3.4
contains modeling of a Rayleigh fading channel. A bandwidth estimation method
is presented in Section 3.5. Finally, conclusions are given in Section 3.6.

3.2 Related Work

In general packet switching networks, network calculus provides methods to
deterministically reason about timing properties and resource requirements.Sys-
tematic descriptions of network calculus can be found in books [17, 11, 46].

DNC is recently extended and applied for performance analysis and resource
dimensioning of WSNs by several researchers [81, 51, 82, 15, 49, 86]. In [81],
Schmitt et al. first applied network calculus to sensor network and proposed a
generic framework for performance analysis of WSNs with various traffic pat-
terns. They further extended the general framework to incorporate computational
resources besides the communication aspects of WSNs [82]. In [51], Anis et al.
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proposed a methodology for the modeling and worst-case dimensioning of cluster-
tree sensor networks. They derived plug-and-play expressions for the end-to-end
delay bounds, buffering and bandwidth requirements as a function of theWSN
cluster-tree and traffic characteristics. In [49], the authors presented a method for
computing the worst-case delays, buffering and bandwidth requirements while as-
suming that the sink node can be mobile.

Research on SNC has the potential of providing insights into stochastic service
guarantees of packet networks [22, 13, 47, 98]. In [13], Burchard et al. introduced
the concept of statistical service curves as a probabilistic bound on the service re-
ceived by an aggregation of flows or a single flow. Ciucuet al. [22] extended
the stochastic network calculus by providing a network service curve formulation
which is capable of calculating stochastic end-to-end delay and backlog bounds
for a number of arrival and service distributions. In [45], Jiang and Emstad pro-
posed a server model to facilitate stochastic service guarantee analysis and address
the challenges of delay guarantee, backlog guarantee, output characterization and
concatenation property. There are a lot of works providing theoretic fundamentals
of stochastic network calculus, but few of them study the problem of mapping the
theory to a specific application. In [98], the authors presented a method for analyz-
ing wireless channels by modeling channels as Markov chains. And they evaluated
the delay tail distribution. However, they did not give closed-form service curves
for the channel.

Recently, system-theoretic approaches [57, 64] have been proposedfor esti-
mating available bandwidth based on the network calculus. In [57], Liebeherr et
al. proposed a traffic measurement based approach for available serviceestima-
tion of deterministic systems through the measurement of deterministic backlogs.
However, this method is not suitable for bandwidth estimation in wireless networks
due to the stochastic behavior of wireless links. In [64], the authors extended the
work in [57], and proposed to estimate the available bandwidth in networks with
random traffic load or link capacities through the measurement of time stamps of
probing packet trains.

3.3 Basics of Stochastic Network Calculus

The deterministic network calculus provides hard worst-case performance bounds
which might be overly pessimistic in some applications, such as wireless networks.
Stochastic extensions of the network calculus have been of significant interest to
overcome the limitations of the deterministic network calculus. The arrival curves,
service guarantees, and performance bounds are typically statistical bounds with a
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certain violation probability. A systematic description of stochastic network calcu-
lus is provided in book [46].

There are several ways to model the stochastic arrival traffic and service guar-
antees. In this thesis, we adopt one of the definitions in [46], where othertypes of
arrival curves and service curves can be found.

Definition 3.1 A flow R(t) is said to have a stochastic service curveα with
bounding functionf , denoted byR(t) < f, α >, if for all t ≥ 0 and allx ≥ 0
there holds

Pr

{
sup
0≤s≤t

[R(t)−R(s)− α(t− s)] > x

}
≤ f(x). (3.1)

Definition 3.2 A system is said to provide a stochastic service curveβ(t) with
bounding functiong(x) if during any period(s, t], the system is capable of provid-
ing the amount of serviceS(t)− S(s),

Pr {S(t)− S(s) < β(t− s)− x} ≤ g(x) (3.2)

for anyx ≥ 0.
After giving the definition of arrival curve and service curve, the performance

bounds can be derived accordingly. Details are introduced in the next Section.

3.4 Modeling of Rayleigh Fading Channel

3.4.1 Channel Model

Fig. 3.1 shows the system model of a discrete-time flat-fading Rayleigh chan-
nel [77], which can be expressed by,

Y = |ht|ejϕX + Z (3.3)

whereX andY are the channel input and output, respectively;Z is the independent
and identically distributed (i.i.d.) Gaussian noise;|ht|ejϕ is a complex channel gain
with amplitude|ht| which is a random variable with a Rayleigh distribution, and
phaseϕ is uniformly distributed in[0, 2π).

Some assumptions about this model are: 1) Channel distribution information
(CDI) is available both at the transmitter and receiver; 2) Channel state informa-
tion (CSI) is only available at the receiver; 3) it is a slow-fading channel,i.e., the
channel state does not change during the transmission of a packet.
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X

Zht

Y

Figure 3.1. System model of a fading channel.

Let Ptx, W , andN0 denote the average transmission power, channel band-
width, and power spectral density of the noise, respectively. The channel capacity
can be expressed as,

C = W log2(1 + 10γt/10) = W log2

(
1 +

Ptx|ht|2
WN0

)
. (3.4)

Since the transmitter does not know the instantaneous signal-to-noise ratio (SNR)
γt (in dB), it can not adjust its transmission power according to the channel condi-
tion. Hence, the transmission data rate can be considered as a constant regardless
of the SNR of the received signal and there is probability of outage. For atrans-
mission data rateR, the outage probability of a Rayleigh fading channel can be
expressed by,

pout(R) = Pr{C < R}

= Pr

{
W log2

(
1 +

Ptx|ht|2
N0W

)
< R

}

= Pr

{
|ht|2 < (2R/W − 1) · N0W

Ptx

}
,

(3.5)

where the channel gain|ht| has a Rayleigh distribution with PDF

f(x) = x · exp(−x2

2
).

Applying the transformation theorem,|ht|2 has an exponential distribution as
PDF,

g(x) =
1

2
exp(−x

2
).

Therefore, the outage probability is derived as,

pout(R) = 1− exp

(
1− 2R/W

2 · 10SNR/10

)
, (3.6)
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where SNR= 10 log10[Ptx/(N0W )] denotes the signal-to-noise-ratio indB.

3.4.2 Stochastic Service Curve

Since the channel capacityC is random, deterministic service curve is not suit-
able for capturing its characteristics. Thus, we adopt the stochastic service curve
to characterize the service capability of the channel, which is described bytwo
parameters: the data transmission rateR, and the error functionǫ. According to
the previous analysis of the Rayleigh channel, it can be modeled by the stochastic
service curve〈β(t), ǫ〉, where

β(t) = R · t and ǫ(R) = 1− exp

(
1− 2R/W

2 · SNR

)
.

The violation probability functionǫ defines the outage probability of the chan-
nel. It also means that the probability that the channel can not provide the trans-
mission rateR is less thanǫ(R). ǫ is mainly impacted by the transmission data
rateR and the SNR.R is determined by the modulation and coding schemes of the
transmitter. SNR is determined by the transmission power and channel condition.

3.4.3 Performance Bounds

This section presents the results of performance bounds with traffic sources
transmitting data over the Rayleigh channel. Two cases are considered: 1)the
source periodically transmits data, which can be modeled by a deterministic arrival
curve; 2) The traffic source transmits data randomly, which can be modeledby a
stochastic arrival curve. Part of these derivations and proofs arebased on the results
in [46].

Let R(t) andR∗(t) denote the arrival process and departure process1, respec-
tively.

Deterministic Arrival Traffic

Lemma 3.1Consider a traffic arrival processR(t) bounded by a determinis-
tic arrival curveα(t), andR(t) receives a stochastic service curve〈β(t), ǫ〉, the
performance bounds can be derived as follows [46],

1The input and output of the channel are called as arrival process and departure process, respec-
tively.
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1) Backlog bound. The stochastic backlog boundB(t) is expressed as:

Pr{B(t) ≥ α⊘ β(0)} ≤ ǫ, (3.7)

whereα⊘ β(0) = supt≥0{α(t)− β(t)}.
2) Delay bound. A stochastic upper bound for delayD(t) is given by:

Pr{D(t) ≥ h(α, β)} ≤ ǫ, (3.8)

whereh(α, β) = supt≥0{inf[τ ≥ 0 : α(t) ≤ β(t + τ)]} denotes the maximum
horizontal difference between the arrival curve and service curve.

Proof [46]: Let t ≥ s ≥ 0. From known conditions, we haveB(t) = R(t) −
R∗(t),α⊘β(0) = supt≥0{α(t)−β(t)},R(t)−R(s) ≤ α(t−s), andPr{R∗(t) ≤
R⊗ β(t)} ≤ ǫ. Consequently,

Pr {B(t) ≥ α⊘ β(0)}

=Pr

{
R(t)−R∗(t) ≥ sup

τ≥0
[α(τ)− β(τ)]

}

≤Pr

{
R(t)−R∗(t) ≥ sup

0≤τ≤t
[R(t)−R(t− τ)− β(τ)]

}

=Pr

{
R(t)−R∗(t) ≥ R(t)− inf

0≤τ≤t
[R(t− τ) + β(τ)]

}

=Pr {R∗(t) ≤ R⊗ β(t)} ≤ ǫ.

(3.9)

Let τ0 = h(α, β). Since the delay is defined as:D(t) = inf{τ ≥ 0 : R(t) ≤
R∗(t + τ)}, we getPr{D(t) ≥ τ0} ≤ Pr{R(t) ≥ R∗(t + τ0)}. The problem
becomes how to prove the bound ofPr{R(t) ≥ R∗(t+ τ0)}.

R(t)−R∗(t+ τ0)

=R(t)−R⊗ β(t+ τ0) +R⊗ β(t+ τ0)−R∗(t+ τ0)

=R(t)− inf
0≤s≤t+τ0

[R(s) + β(t+ τ0 − s)]

+ [R⊗ β(t+ τ0)−R∗(t+ τ0)].

(3.10)

Let V = [R⊗ β(t+ τ0)−R∗(t+ τ0)], we have

R(t)−R∗(t+ τ0)

≤ sup
0≤s≤t+τ0

[R(t)−R(s)− α(t− s)]

+ sup
0≤s≤t+τ0

[α(t− s)− β(t+ τ0 − s)] + V

≤ sup
0≤s≤t+τ0

[α(t− s)− β(t+ τ0 − s)] + V.

(3.11)
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Sinceτ0 is the maximum horizontal difference betweenα(t) and β(t), we get
α(t− s) ≤ β(t− s+ τ0). Therefore,

Pr{D(t) ≥ τ0} ≤ Pr{R∗(t) ≤ R⊗ β(t)} ≤ ǫ. (3.12)

Stochastic Arrival Traffic

Apart from deterministic arrival curve, an arrival process can be stochastically
bounded, such as the exponentially bounded burstiness (EBB) model [107]. We
consider a stochastic arrival curve model with parameters(ρ, a1, a2) as follows
[13]:

Pr

{
sup
0≤s≤t

[R(t)−R(s)− α(t− s)] ≥ 0

}
≤ a1e

−a2σ, (3.13)

where0 ≤ s ≤ t, σ > 0, andα(t) = ρ · t+ σ.
Lemma 3.2Consider a traffic arrival process constrained by a stochastic arrival

curve, i.e.,R(t) ∼ 〈α(t), f(σ)〉, whereα(t) = ρ · t + σ andf(σ) = a1e
−a2σ.

R(t) receives a stochastic service curve〈β(t), ǫ〉. The performance bounds can be
expressed as follows [46],

1) Backlog bound. A stochastic backlog boundB(t) can be derived by,

Pr{B(t) ≥ α⊘ β(0)} ≤ ǫ+ f(σ). (3.14)

2) Delay bound. A stochastic upper bound for delayD(t) is given by:

Pr{D(t) ≥ h(α, β)} ≤ ǫ+ f(σ). (3.15)

Since the probability can not be bigger than one, we defineǫ+f(σ) = min(ǫ+
f(σ), 1).

Proof [46]: The backlog is defined as the amount of data stored in the system.
So we have,

B(t) = R(t)−R∗(t)

= R(t)−R⊗ β(t) +R⊗ β(t)−R∗(t)

= R(t)− inf
0≤s≤t

[R(s) + β(t− s)] + [R⊗ β(t)−R∗(t)]

≤ sup
0≤s≤t

[R(t)−R(s)− β(t− s)− α(t− s) + α(t− s)]

+ [R⊗ β(t)−R∗(t)]

≤ sup
0≤s≤t

[R(t)−R(s)− α(t− s)] + sup
t≥0

[α(t)− β(t)]

+ [R⊗ β(t)−R∗(t)].

(3.16)
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The prove of delay bound is very similar to the case with deterministic arrival
curve (Eq. (3.11)). The difference is in the last step of Eq. (3.11): for deterministic
arrival curve,Pr{sup0≤s≤t[R(t)−R(s)−α(t−s)] ≥ 0} = 0; while for stochastic
arrival curve,Pr{sup0≤s≤t[R(t)−R(s)−α(t− s)] ≥ 0} ≤ f(σ). Therefore, the
delay bound is given byPr{D(t) ≥ h(α, β)} ≤ ǫ+ f(σ).

Although our work focuses on the EBB arrival model, it is straightforward
to extend the method for deriving performance bounds for other types stochastic
arrival curves as long as the deterministic arrival curve and violation probability
are known.

3.4.4 Performance Evaluation

This section presents both simulation and numerical results. The relations be-
tween performance bounds and channel characteristics are studied through numer-
ical results, which also provide hints on designing transmission strategies in wire-
less networks.

Simulation Results

In order to validate the correctness and tightness of the network calculus based
modeling and QoS analysis method, we conduct simulations and compare analyt-
ical results with simulation results. The parameters used in the simulation are:
channel bandwidthW = 30 kHz, SNR = 0 dB, packet size is1 kbit. Each
simulation is performed 50 runs with different seeds. In each run, the simulation
period is 20000 cycles and the source generates one packet every cycle. The de-
lay of every packet is recorded, and the backlog is recorded in everycycle. Since
we can not obtain the violation probability from the simulation directly, we need
to map the simulation results to delay/backlog bounds with corresponding viola-
tion probabilities. Letm = 50 denote the total number of runs, andn = 20000
denote the total number of packets (cycles) in one simulation run. Letd(i, j)
(i = 1, 2, · · · ,m; j = 1, 2, · · · , n) denote the delay of packetj in simulation run
i. We sortd(i, :) in descending order, whered(i, :) represents the set of values of
delay in simulation runi. Let ǫ0(l) = (l− 1)×κ (l = 1, 2, · · · , ⌈1/κ⌉) denote the
set of violation probabilities, whereκ is a scaler (In the figures, we setκ = 0.05).
If the violation probability isǫ0(l), the corresponding delay bound is computed by
d0(l) = max1≤i≤m[d(i, ⌈n× ǫ0(l)⌉)]. For example, the delay bound with viola-
tion probabilityǫ0(3) = 0.1 is computed asd0(3) = max1≤i≤m d(i, 2000).

In the first simulation, the traffic source sends packets periodically with data
rater = 10 kbps over the Rayleigh fading channel. The arrival process can be
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modeled by an affine arrival curveα(t) = rt + b, with b = 1 kbit. The analytical
and simulation results of packet delays are studied and compared under different
violation probabilities.
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Figure 3.2. Simulation results: delay.

Fig. 3.2 illustrates the packet delays in one simulation run, where20000 pack-
ets are sent by the source. From this figure, we can see that the packetdelays
are very heterogeneous, varying from0.01 s to 5 s. For the simulation data, we
find that there are very few packets experiencing high delays. So the deterministic
bound may be very loose and it is more meaningful to derive the stochastic bound.
From these simulation results, we can derive the delay bounds with corresponding
violation probabilities using the mapping method proposed in the previous dis-
cussion. For example, we first sort the delayd(i) (i = 1, 2, · · · , 20000) in the
descending order. If the violation probability is10%, the delay bound isd(2000)
(since2000/20000 = 0.1), which is0.21 s (shown by the dashed line in Fig. 3.2).
The delay bounds with other violation probabilties (as shown by′+′ marker in Fig.
3.3) can be computed similarly.

The analytical results can be computed by Eq. (3.8). Fig. 3.3 shows the com-
parison of analytical results and simulation results. In this figure, the maximum,
average, and minimum differences between the simulation and analytical results
are5.19%, 9.88% and13.5%, respectively. From this figure, we can see that all
the simulation results are within the bound of the analytical results. Moreover,the
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comparison indicates that the performance bounds derived by network calculus is
reasonably tight.

Since the arrival process is constrained by a deterministic arrival curveα(t) =
rt+b, and the channel provides a stochastic rate service curve with zero processing
delay, the backlog bound (Eq. (3.7)) is only determined by the burstiness of the
input. Hence, the analytical backlog bound is constant and independentof the
violation probability. In this case, we need to use empirical method to derive an
empirical backlog bound by combining the analytical and simulation results.

Simulation with Stochastic Arrival Traffic : In the second simulation, the
traffic arrival process is a stationary two-state Markov processR(t), t = (i −
1)t0, i = 1, 2, 3, · · · (t0 is the inter-arrival time) with transition probabilitiesp12 =
10−6 andp21 = 10−2. When in state 1, the source is generatingn0 packets with
probability1/8 and no packet with probability7/8. When in state 2, the source is
generatingn0 packets with probability9/20 and no packet with probability11/20.
The packet size is1 kbit. This process can be characterized by the EBB arrival
model as follows,Pr {sup[R(t)−R(s)] ≥ ρ(t− s) + σ} ≤ exp(−a2σ), where
a2 = 2.73e− 3 and0 ≤ s ≤ t [95].

Fig. 3.4 shows the comparison of analytical results (by network calculus) and
simulation results. For the analytical results, we set input burstiness10 kbit. Two
simulations are implemented with input data rateρ = 10 kbps, and burstinessσ
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Figure 3.4. Compare simulation results with analytical results: Markov arrivals.

equals to5 kbit and10 kbit, respectively. The input burstiness denotes the maxi-
mum number of packets that the source generates at a time. For example,σ = 5
corresponds ton0 = 5 andt0 = 0.5 s, andσ = 10 corresponds ton0 = 10 and
t0 = 1 s. From the comparison, we can see that both simulation results are within
the bounds of analytical results, which validate the correctness of the analytical
method. Furthermore, with the same setting of input burstiness, i.e.,σ = 10 kbit,
the simulation and analysis results are very close to each other. The maximum,
average, and minimum differences between them are8.25%, 10.5% and15.8%,
respectively. The comparison indicates that the tightness of delay bound derived
by network calculus is acceptable.

Numerical Results

In the first experiment, the performance bounds are studied under the case of
a periodic traffic source sending packets over the Rayleigh fading channel. The
traffic input process is modeled an affine arrival curve [11], which isdefined as
α(t) = rt+ b, whereb andr represent the burst tolerance (inbits) and the average
data rate (inbit/s), respectively. In this experiment, we setb = 1 kbit andr =
10 kbps.
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Figure 3.5. Delay bound under different SNR and transmission data rates.
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Figure 3.6. Violation probability of the delay and backlog bounds.

If R ≥ r 2, the delay bound can be calculated byh(α, β) = b/R, and the

2If R < r, both the delay and backlog would increase with time. It is impossible and meaningless
to find the finite delay and backlog bounds. Therefore, we consider the case thatR ≥ r.
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backlog bound isα⊘ β(0) = b. Fig. 3.5 shows the values of delay bound varying
with R ∈ [10 kbps, 100 kbps] andSNR ∈ [−10 dB, 20 dB]. The delay boundd
is determined by the input burstinessb and the transmission data rateR. From Fig.
3.5, we can see that with a fixedb, the delay bound increases as transmission rate
increases, and it is independent of the SNR. The backlog bound is only determined
by the burstiness of the input traffic. However, the corresponding violation prob-
abilities of these two bounds are impacted both by the transmission data rate and
SNR (as shown in Fig. 3.6). The violation probability increases as transmission
data rate increases and/or SNR decreases. There is a trade-off between the delay
bound and its violation probability. If we want to reduce the transmission delay,
a high transmission rate should be chosen. But high transmission rate bringshigh
violation probability.

The analysis method not only can be used to derive performance boundsand
their corresponding violation probabilities, but also can provide guidelinesfor de-
signing modulation and coding schemes, i.e., the designer can choose appropriate
transmission strategies according to performance requirements. For example, if the
performance requirement is given as:d < 0.02 ( as shown by the plane in Fig. 3.5)
with violation probability less than10% (as shown by the plane in Fig. 3.6), we can
get the following system configurations:R > 50 kbps andSNR > 14dB, which
are the values constraining delay and violation probability within the threshold.
Hence, the designer can choose corresponding transmission strategy (transmission
power, modulation and coding schemes) according toR andSNR.

Numerical Results with Stochastic Arrival Traffic : In the following experi-
ments, we study the performance bounds under the case of a random traffic source
sending packets over the Rayleigh fading channel. The traffic input process is mod-
eled by the EBB arrival curve (Eq. (3.13)). The values of parametersare:a1 = 1,
a2 = 1e − 3, andρ = 10 kbps. Similar to the previous experiment, it is assumed
ρ ≤ R.

In this experiment, the transmission data rate is set toR = 30 kbps, and the
values of input burstiness (σ) and SNR are changed. Both the delay (d = σ/R)
and backlog (B = σ) bounds are linearly increasing with input burstiness. Their
corresponding violation probabilities are illustrated in Fig. 3.7, where we cansee
that the violation probabilities decrease asSNR and/orσ increase. Hence, there
are trade-offs between performance bounds and their violation probabilities. High
σ would cause low violation probability, but bring high delay and backlog. There-
fore, appropriate values ofσ andSNR should be chosen according to the perfor-
mance requirements.

In this experiment, we fix theSNR = 10 dB and change the values of input
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Figure 3.7. Violation probability of the delay and backlog bounds.
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Figure 3.8. The delay bound.

burstiness (σ) and transmission data rateR. Similarly, the backlog bound is only
determined byσ. The delay bound is shown in Fig. 3.8. The violation probabilities
of these two bounds are illustrated in Fig. 3.9.

From Fig. 3.8, we can see that the delay bound increases as input burstiness
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Figure 3.9. Violation probability of the delay and backlog bounds.

increases, and it decreases as transmission data rate increases. While the viola-
tion probability of the bounds has an opposite behavior, i.e., it decreases as the
input burstiness increases and it increases as the transmission data rate increases.
Moreover, from these performance results we can derive the system configurations
which can meet the requirements. For example, if the performance requirements
are defined as:d < 0.15 s, B < 5 kbit with violation probability less than10%,
then we should select the values ofSNR andσ below the planes in Fig. 3.8 and
Fig. 3.9.

3.5 Bandwidth Estimation through Backlog Measurement

3.5.1 Preliminaries

Based on the min-plus algebra and max-plus algebra, network calculus can
transform complex network systems into analytically tractable systems [11, 46].
LetR(t), S(t), andR∗(t) denote the arrival process, service process, and departure
process of a system, respectively. Their relations can be defined as follows,

R∗(t) = R⊗ S(t) = inf
0≤τ≤t

{R(τ) + S(t− τ)} (3.17)

where⊗ denotes the min-plus convolution. In the min-plus algebra, the service ca-
pability of a system is expressed in terms of service curves. For wireless networks,
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it is very difficult, if not impossible, to find deterministic service guarantees due to
the stochastic nature of wireless channels. A popular way to model the stochastic
service process is usingstatistical service curve[14], which provides probabilistic
abstraction of the service guarantees.

A non-decreasing functioñS(t) is a statistical service curve of the system, if

Pr
{
R∗(t) ≥ R⊗ S̃(t)

}
> 1− ξ (3.18)

whereξ denotes the violation probability (0 ≤ ξ ≤ 1). The statistical service curve
provides a probabilistic abstraction of the service at a system, which is expressed
by a deterministic service curve (S̃(t)) and a corresponding violation function.

The objective of our bandwidth estimation framework is to model the service
capability of wireless channels. Since it is very difficult to derive the exact service
processS(t) due to the randomness of the channels, we try to derive its corre-
sponding statistical service curvẽS(t).

Lemma 3.3: For a system with service processS(t), any functionS̃(t) that
satisfies,

Pr
{
S(t) ≥ S̃(t)

}
> 1− ξ (3.19)

for 0 ≤ t ≤ T , is a statistical service curve of the system, whereT is a limit on
the maximal time scale on which the service curve relates service guarantees to
arrivals [14]. The detailed proof of this lemma is presented in [14] [64].

The bandwidth utilization (real service) of a wireless channel is determinedby
its channel characteristics, behaviors of the sender and the receiver. It can be re-
flected by the amount of backlogged traffic at the sender. Therefore,the channel
bandwidth estimation can be implemented by measuring the backlog at the sender
through sending probe packets. We adopt therate scanningprobe scheme pro-
posed in [57], where the packets are organized in packet trains. The probe packet
trains are injected and the backlog bounds are measured. Based on the Legendre
transform [57], the statistical service curve and bandwidth are derived through the
measured backlog bounds.

According to the traffic pattern of probe packets, the arrival processat the
sender can be expressed byR(t) = rt, wherer is the transmission rate of the
probe train. Given the arrival and departure functionsR(t) = rt andR∗(t), the
backlog bound is derived by [46],

B(r) = sup
t
{R(t)−R∗(t)} = sup

t
{rt−R∗(t)} (3.20)
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Due to the stochastic behavior of the wireless channel, the backlog bound isalso
stochastic. We can model the stochastic backlog bound by a statistical backlog
bound, which is formally defined by the following equation,

Pr {B(r) ≤ Bǫ(r)} > 1− ǫ (3.21)

whereBǫ(r) denotes the statistical backlog bound with a violation probabilityǫ
when the probing rate isr. The following proposition formalizes the bandwidth
estimation method.

Proposition 1: Consider a system with probing packet trains constrained by
the arrival curveR(t) = rt. Based on the measurement of the statistical backlog
boundBǫ(r), the statistical service curve of the system can be derived by3,

S̃(t) = sup
r

{rt−Bǫ(r)} (3.22)

where the violation probability of the statistical service curve is calculated byξ =
min(

∑
r ǫ, 1).

Proof: According to Eq. (3.20), the backlog bound of a system can be cal-
culated byB(r) = supt {rt−R∗(t)}. Based on Eq. (3.17) and the Legendre
transform [57] [64], the relations of backlog and service curve can be expressed as,

B(r) = sup
t

{rt− S(t)} ⇒ S(t) = sup
r

{rt−B(r)} (3.23)

From Eq. (3.21), we have

Pr {B(r) ≤ Bǫ(r)} > 1− ǫ

⇒Pr {rt−B(r) ≥ rt−Bǫ(r)} > 1− ǫ
(3.24)

By the application of union bound (Eq. (3.17) in [46]), it follows that,

Pr

{
S(t) ≥ sup

r
{rt−Bǫ(r)}

}
> 1−

∑

r

ǫ (3.25)

If we define S̃(t) = supr {rt−Bǫ(r)}, it completes the proof.S̃(t) is a
statistical service curve of the system with the violation probability calculated by
ξ =

∑
r ǫ. Since the probability is non-negative, we setξ = min(

∑
r ǫ, 1).

Proposition 1 relates the statistical backlog bound with the statistical service
curve based on the Legendre transform. Service curve for random wireless chan-
nels can be estimated by using probe packet trains transmitted at different rates.
Since the service curve is expressed as the integration of instant servicerate over
time, the bandwidth (service rate) is equal to the slope of statistical service curve.

3We have independently given and proved the proposition. Later we found that this proposition
matches an online publication [63].



3.5. Bandwidth Estimation through Backlog Measurement 69

3.5.2 Backlog-Based Bandwidth Estimation

After establishing the theoretic foundation of the bandwidth estimation method
in Section 3.5.1, a detailed estimation procedure is given as follows.

Let a probe packet train be composed ofN0 packets with lengthl. The trans-
mission time interval between two adjacent packets isT0. The transmission rate
(denoted byr) of a probe train is calculated byr = N0 · l/[T0(N0 − 1)]. Probe
packet trains with the same rate are repeatedly injected into the system and the
backlogs are measured according to pre-defined sampling rates. Subsequent probe
packet trains are injected with increasing rates until the system is saturated.The
bandwidth estimation procedure can be divided into three iterative steps. Fig. 3.10
shows the flow chart of the estimation algorithm.
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Figure 3.10.Procedure of the bandwidth estimation method

• Inject packet train and obtain stationary backlog
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From injecting a packet train with probe rater, we can obtain a set of backlog
values at different time points from the measurements. If the values are stationary
(i.e. steady-state), we keep them and calculate the max valueBmax(r). If the
values are not stationary, they are discarded. The stationarity of the backlog series
can be detected by using the square root test from Elliot, Rothenberg andStock
(RES) [64] [32]. The ERS test is based on an autoregressive moving average model
which returns a single value called ERS statistic. If the ERS statistic falls below a
threshold value, the data series is considered as stationary.

• Calculate statistical backlog bound
In the experiment, each packet train (with rater) is sent forM times andM0

(M0 <= M ) steady-state values of maximum backlogBmax(r) can be obtained.
If M0/M > θ 4, it means that most of the measurements of backlog values are
stationary. Then, the probe rate is increased and a new probe packet train is sent.
Otherwise, it indicates that the probe rate is too high, leading to system saturation.
In this case, the probe rate increase is stopped and the program ends.

In order to obtain the statistical backlog bound from a large amount of mea-
surements, we apply the statistical method calledquantile(Chapter 2 in [12]). A
p%-quantile leavesp% of the measurement values below and(100 − p)% above
with certain confidence levels. It is defined as follows. Assume there aren data
pointsx1, ..., xn from the measurements. Sort the points in an increasing order
and obtainx(1) ≤ ... ≤ x(n). Thep%-quantile is defined as(xk′ + xk′′)/2 with
k′ = ⌊p(n− 1)/100 + 1⌋ andk′′ = ⌈p(n− 1)/100 + 1⌉. ⌊u⌋ is the largest inte-
ger not bigger thanu and⌈u⌉ is the smallest integer not less thanu. The quantile
reveals information about the dispersion of the observations of random variables.
It consists of an upper bound and a lower bound. Based on the quantile principle,
theseM0 measurements of backlog bound are quantified and we can get the upper
and lower bounds ofp%-quantile of the backlog bound (denoted byBǫ(r)) with
certain confidence levels (the typical value of confidence level is0.95).

• Bandwidth estimation
Each probe rater reveals one pointBǫ(r) of the service curve in the Leg-

endre domain, which composes a piecewise linear segment of the service curve
S̃(t) = rt − Bǫ(r). The probe rate of packet train is increased and the probe
packet train is sent repeatedly until the proportion of stationary measuredbacklog
values is below the threshold (i.e.M0/M ≤ θ). According to Proposition 1, we
can re-build the estimated statistical service curve, which is composed of piecewise
linear segments. Since the service curve is expressed as the integration ofinstant

4θ denotes the threshold of the proportion of valid measurements that can produce stationary
backlog values.
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service rate over time, the bandwidth can be derived by calculating the slopeof the
statistical service curve.

3.5.3 Experimental Results

Experiment Purpose and Setup

Simulations are conducted to validate the estimation method. The sender trans-
mits probe packet trains to the receiver through a time-variant Rayleigh fading
channel. Consider a slow fading channel so that the capacity does not change
during the transmission of one packet. A packet train contains1000 packets, and
the arrival interval between two adjacent packets is9 ms. The length of a packet
changes from100 bits to 3000 bits with an increment of100 bits in each step.
Hence, the corresponding probe data rate varies from11 kbps to 330 kbps with an
increment of11 kbps. For each probe rate, the simulation runs1000 times. The
values of backlog are recorded every millisecond until the last packet has been sent.
Since the results are not sensitive to the value of thresholdθ, θ is set to0.8 as an
example.
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Figure 3.11.Service rate of Rayleigh channel

The channel capacity of the Rayleigh channel is given byC = BW · log2[1 +
S/(BW · δ0)], whereBW denotes the channel bandwidth,δ0 is the noise power,
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andS represents the received signal power. We setBW = 30 kHz, δ0 = −55
dBm (3.3 × 10−9 W ), andS is an exponential distributed random variable with
a mean of2 × 10−3. Fig. 3.11 illustrates a realization of the service rate which
is defined as the capacity of the channel. The95%-quantile of the service rate is
obtained by using the method described in Section 3.5.2.

Estimation Results

In each simulation run, a backlog bound is recorded if the set of backlog results
are stationary (Section 3.5.2). These backlog bounds are quantified to obtain the
statistical backlog bound. Fig. 3.12 shows the99%-quantile of the upper and lower
bounds of maximum backlog with confidence level of95%.

Figure 3.12.Maximum backlog for different probing rates.

Both the statistical service curves of the reference and estimation are expressed
by deterministic service curves and corresponding violation probabilities. Fig. 3.13
shows the comparison ofreference service curve(Ref SC) and theestimated ser-
vice curve(Est SC). The confidence level of them are95%. The reference service
curve is described by a rate service curve with rate in the range[173, 185] kbps
and the violation probability of5% (as shown by the solid and dashed lines). In the
simulation, the estimated service curve is contributed by piecewise linear segments
with 99%-quantile backlog bounds from5 different probe rates. So the violation
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probability of the estimated service curve is5% (Eq. (3.25)). The estimated ser-
vice curve is divided into two regions: starvation region and stable region.In the
starvation region, the service capability of the channel is higher than the input traf-
fic rate. So the estimated bandwidth is smaller than the actual service rate. In the
stable region, the estimated bandwidth is178 kbps, which is within the range of
the reference service rate. The results in the stable region show that ourmethod
can accurately estimate the bandwidth.
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Figure 3.13. Comparison of reference service curve and estimated service curve: in
simulation trials, the probe packet trains are sent with various rates and thebacklog
bounds are measured. The thin dashed blue lines represent the resultsof bandwidth
estimation from all the trials.

In Fig. 3.14, the estimated bandwidth is compared with the reference service
rate (i.e. bandwidth) under different channel parameters. Since the difference be-
tween the upper and lower bounds of the estimated bandwidth is very small, we
only show the mean value of the estimated bandwidth in the figure. From Fig.
3.14, we can see that the estimated bandwidths are within the range of the upper
and the lower bounds of the reference bandwidth for the second and fourth bar
groups. When the channel bandwidth is20 kHz and the mean of the received sig-
nal power is0.001, the estimated bandwidth is5% bigger than that of the upper
reference bandwidth. For the third bar group, the estimated bandwidth is8% larger
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than the upper reference bandwidth. The deviation is due to imprecise sampling of
backlog measurement.
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We design the following experiment to study the impact of inter-packet interval
and packet size. In each simulation, the packet length is fixed, and we change the
probe data rate by varying the inter-packet interval from2ms to 20ms with an in-
crement of1ms. The bandwidth isBW = 40 kHz, and the mean is0.002. Other
parameters remain the same. We run15 simulations with packet lengths increasing
from 600 bits to 2000 bits. Fig. 3.15 illustrates the comparison of estimated band-
width and reference bandwidth. As we can see, most of the estimated bandwidth
are within the lower and upper bounds of the reference bandwidth. Only afew are
slightly deviated from the reference because of sampling effect. In summary, from
Fig. 3.14 and Fig. 3.15, we can see that the accuracy of the method is satisfactory
under different channel characteristics, packet sizes, and inter-packet intervals.
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Figure 3.15.Comparison of reference service curve and estimated service curvewith
various inter-packet interval and packet length.

3.6 Summary

In this chapter, we propose a method for modeling and QoS analysis of wire-
less channels subject to Rayleigh fading. The key challenge in analyzing wireless
systems is the inherently temporal uncertainties in fading channels. To this end
this work applies stochastic network calculus to model Rayleigh fading channels
and derive stochastic delay and backlog bounds. The analysis method is validated
through simulations.

In Section 3.5, we introduce a stochastic network calculus based method for
statistical bandwidth estimation of random service networks. The statistical band-
width is estimated from the measurement of statistical backlog bounds through
probe packet trains. We propose a step-by-step procedure on how toestimate the
bandwidth from backlog measurement. The method can be applied to any wireless
networks with various channel characteristics. To validate the method, simulations
are performed to compare the estimated bandwidth with the reference bandwidth
over a Rayleigh fading channel. The estimation results show good accuracy of our
bandwidth estimation method.
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Chapter 4

Coverage and Deployment

This chapter presents our research on coverage analysis and deployment tech-
niques in wireless sensor networks. The work in this chapter is mainly basedon
[88, 91, 92].

4.1 Introduction

One fundamental application of WSNs is event detection in a Field of Inter-
est (FoI), where a set of sensors are deployed to monitor any ongoingevents. For
example, sensor networks can be deployed to detect the occurrences of fires, earth-
quakes, volcanic eruptions, and motions of wild animals [3, 27, 102]. To satisfy a
certain level of detection quality in such applications, it is desirable that events in
the region can be detected by a required number of sensors. Hence, animportant
problem is how to deploy sensor nodes for achieving certain coverage require-
ments.

Coverage analysis in WSNs has attracted plenty of research interests [59, 100,
52, 6, 8, 115, 108]. One of the most popular metrics to quantify the coverage per-
formance isk-coverage [43, 113]. An FoI is said to bek-covered if every point in it
is covered by at leastk sensors. The coverage problem can be classified in different
ways depending on the way of sensor deployment and the features of applications.
Based on the characteristics of applications, thek-coverage problem can be cat-
egorized intoarea coverageandevent coverage, where the former requires each
location within the sensing field must be covered by at leastk sensors. While the
objective of event coverage analysis is to study how well the events in the sensing
field are detected. Fig. 4.1 shows an example of area coverage and event coverage
(As an example, the FoI in this figure is a rectangle. However, in our analysis the

77
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FoI can be irregular). In the left figure, the purpose is to ensure the whole area of
the FoI is covered by sensors. In the right figure, the purpose is to ensure the events
in the FoI are covered by sensors.

Field of Interest

Event

Sensor and its 

sensing region

Figure 4.1. Left: area coverage; right: event coverage

In many applications, the tasks of sensor networks are monitoring or detecting
events, such as the behaviors of animals in a forest [93]. For those scenarios,
covering of locations does not mean covering of events. For example, in aWSN
application, we need to deploy video sensors in a forest to monitor the behaviors of
wild animals, and a sensor can not monitor two animals simultaneously. Assume
five video sensors can cover the whole area of the forest from the analysis of area
coverage. However, if more than five animals enter into the monitoring region,
five sensors are not able to track the activities of all the animals. To study the
performance of coverage in those cases, we need event coverage analysis method.
However, there is very few research on event coverage analysis considering both
area coverage analysis and event occurrence.

In this chapter, a probabilistic event coverage analysis method is proposed for
evaluating the coverage performance of heterogeneous sensor networks with ran-
domly deployed sensors and stochastic event occurrences. Different from tradi-
tional area coverage analysis, the event coverage is to quantify the probability that
events can be covered by sensors, given the density of events and thedensity of sen-
sor deployment. We provide formulas to calculate event coverage probability under
different settings of sensor and event densities with the considerations of boundary
conditions. Moreover, the event coverage analysis is extended to heterogeneous
sensor networks. In this chapter, we define heterogeneous sensor network as the
network where the sensor distribution in the FoI is heterogeneous. As shown in Fig.
4.2, in the homogeneous network, the sensor density in the whole FoI is uniform.
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In the heterogeneous network, the FoI is logically divided into sub-FoIs according
to the event density. In different sub-FoIs, the sensors are deployed with differ-
ent densities. The probability of event coverage in heterogeneous sensor networks
is derived. The analytical results show how the probabilities of event coverage
change with the sensor and event densities. Moreover, the results also indicate that
for sensor networks with irregular event occurrence, heterogeneous sensor deploy-
ment can achieve better coverage performance than homogeneous deployment. In
addition, the comparisons of simulation and analytic results validate our proposed
event coverage analysis method. This method can provide guidelines in determin-
ing how many sensors are required to guarantee a certain level of coverage for
given users’ requirements and characteristics of applications.

Figure 4.2. Left: heterogeneous sensor networks; right: homogeneous sensornet-
works

4.2 Related Work

In recent years, a host of research activities have been performedon coverage
analysis in sensor networks regarding to different objectives and metrics [38, 52,
59, 100, 101, 7]. These work can be divided into two classes of coverage analysis:
area coverage and event coverage [94].

Liu and Towsley in [59] defined three coverage measures to characterize area
coverage, node coverage and detectability in large-scale sensor networks. They
studied the coverage problem from a theoretical perspective and explored the fun-
damental coverage limits. In [52], the authors studied the problem of stochastic
coverage in heterogeneous sensor networks. By mapping the coverage problem to
the set intersection problem, they provided formulas fork-coverage in the cases
where sensors’ sensing regions can have any arbitrary shapes. Gupat et al. [38]
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investigated the problem of choosing the minimum number of sensors from a set
of sensors that are uniformly deployed such that the FoI is covered. In[100],
the authors have studied the asymptotic node density requirement for achieving k-
coverage in uniformly random deployment and Poisson process deployment. Fur-
thermore, Zhang and Hou [112] proposed a different method to derivethe sufficient
and necessary node densities for maintaining k-coverage for a given sensor network
under both random and deterministic deployment strategies.

Clouqueuret al. [23] formulated the target detection problem as an unautho-
rized traversal problem and proposed deployment strategies which canachieve the
required target detection probability and minimize the network cost. In the de-
ployment strategy, only part of the sensors are randomly deployed if those sensors
can ensure the coverage performance. In [103], the authors considered a hybrid
sensor network consisting of static and mobile sensor. Static sensors are fixed
to detect events and mobile sensors move closer to such events when they are de-
tected. In [53], the authors mapped the target detection problem in sensornetworks
to a line-set intersection problem. Based on that, the probability of detecting tar-
gets is analytically evaluated for both deterministic and stochastic deployment. In
[94], Snyderet. al proposed an efficient sensor movement strategy to detect the
dynamic events in sparse mobile sensor networks. The locations and durations of
events in the network are dynamic. Baiet al. [7] studied the problem of achieving
optimal multiple-coverage with minimum number of sensor nodes. Their proposed
results are helpful in constructing two-coverage deployment patterns withcertain
optimization.

4.3 Probabilistic Event Coverage

In this section, we derive the probability of event coverage when the sensors
and events are distributed according to the spatial Poisson process. In order to do
that, it firstly needs to derive the probability of area coverage.

4.3.1 System Model

Spatial Poisson Process

A spatial point process is a model for a random pattern of points ind-dimension
(d = 2 in this paper) space. It can be used as statistical models in the analysis of
observed patterns of locations of objects, such as animals in forests and sensors in
a building. One of the most popular spatial point processes is thespatial Poisson
process[5], which is formally defined as follows.



4.3. Probabilistic Event Coverage 81

Definition 4.1 Spatial Poisson Process:For an FoIA0 with areaF0, the spatial
Poisson process, with a uniform intensityλ > 0, is a point process inR2 such that

1) The number of eventsM(A0) in the FoIA0 has a Poisson distribution with
meanλF0;

2) If A1
0, · · · , Am

0 are disjoint regions inA0, thenM(A1
0), · · · , M(Am

0 ) are
independent.

The intensityλ is defined as the expected number of targets per unit area.

Network Model

Consider a two-dimensionField of Interest(FoI) A ∈ R2. Sensors are placed
inside the FoI randomly according to a spatial Poisson process of intensityλ > 0.
Thus for any regionAi ⊆ A, the number of sensors inAi is given by a Poisson
variable of meanλ |A ∩Ai|, where|A ∩Ai| is the area of the regionAi. Assume
all sensors have homogeneous sensing regions which can be irregularshapes. The
event occurrence in the FoI is also modeled by the spatial Poisson point process,
which is a random collection of points representing the location of events. A target
event is said to be covered if and only its distance to the nearest sensor is equal to
or less than the sensing range. Equivalently, given a target, the probability it is not
covered by any sensors is equal to the probability that it is not within the range of
any sensor or enough number of sensors. In event-driven sensornetworks, the pur-
pose is to detect event occurrences. Sensors start to work and collect information
only when there are events within their sensing ranges.

In some applications of sensor networks, the probability of event occurrence in
different regions of the FoI are different. In order to provide good coverage in these
networks, we adopt the heterogeneous sensor deployment method. Namely, the
density of sensor deployment in different regions of the FoI are different depending
on the event occurrence probability. Details are given in Section 4.3.5.

4.3.2 Area Coverage

Basically, the probabilistic area coverage can be formulated as follows: A num-
ber of sensors are randomly deployed in an FoI. The areas and perimeters of the
FoI and the sensing region of each sensor are given. We need to calculate the prob-
ability that a random point in the FoI is monitored by at leastk sensors, namely, it
is k-covered. In [52], the authors mapped this stochastic coverage problem into a
set intersection problem and proposed an analytic method to derive the probability
of k-coverage based on integrate geometry. The detailed descriptions are defined
as follows:



82 Chapter 4. Coverage and Deployment

Lemma 4.1Let A0 be an FoI with areaF0 and perimeterL0 on a plane.N
(N ≥ 1) sensors are uniformly randomly deployed in the FoIA0. The area and
perimeter of the sensing region of each sensor are denoted byFs andLs, respec-
tively. Let P1(N, k) andP2(N, k) represent the probability that a randomly se-
lected point inA0 is covered by exact and at leastk sensors, respectively. For
1 ≤ k ≤ N , we have

P1(N, k) =

(
N
k

)
(2πFs)

k(2πF0 + L0Ls)
N−k

[2π(F0 + Fs) + L0Ls]N
, (4.1)

P2(N, k) = 1−
k−1∑

i=0

P1(N, i) (4.2)

The boundary condition isP1(N, 0) = P2(N, 0) = 1. For simplicity, we as-
sume the sensing regions of all sensors are homogeneous. However, itis proposed
in [52], the derivations can be easily extended to the cases with heterogeneous
sensing regions as long as the area and perimeter of each sensor are given.

In our network model, sensors are deployed in the sensing field according to a
spatial Poisson process. The probability of k-coverage can be derived as follows.

Lemma 4.2Let A0 be an FoI with areaF0 and perimeterL0 on a plane. Sen-
sors are deployed in the FoIA0 according to a spatial Poisson process with intensity
λ. The area and perimeter of the sensing region of each sensor are denoted byFs

andLs, respectively. LetPex(λ, k) andPle(λ, k) denote the probability that a ran-
domly selected point inA0 is covered by exact and at leastk sensors, respectively.
We haveP ex

c (λ, 0) = P le
c (λ, 0) = 1, and fork ≥ 1,

Pex(λ, k) =
∞∑

j=k

(
j
k

)
e−λF0(λF0)

j(2πFs)
k(2πF0 + L0Ls)

j−k

j!× [2π(F0 + Fs) + L0Ls]j
(4.3)

Ple(λ, k) = 1−
k−1∑

i=0

Pex(λ, i) (4.4)

Proof: If the sensors are deployed according to a spatial Poisson process with
intensityλ, the probability that there arej sensors in the FoIA0 is given by,

P {N(A0) = j} =
(λF0)

j

j!
e−λF0 (4.5)
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Given there arej sensors, the probability of exact k-coverage is given by Eq.
(4.1) . By summing up all the possibilities, we can get

Pex(λ, k)

=
∞∑

j=k

P {N(A0) = j}P1(j, k)

=
∞∑

j=k

(
j
k

)
e−λF0(λF0)

j(2πFs)
k(2πF0 + L0Ls)

j−k

j!× [2π(F0 + Fs) + L0Ls]j

(4.6)

Consequently, the probability of at least k-coveragePle(λ, k) equals to one
minus the sum of the probabilities of less than exact k-coverage.

4.3.3 Event Coverage

The objective of this work is to study the probabilistic event coverage problem,
which is different from traditional area coverage problem in WSNs. Generally,
the event coverage is to quantify how well the events in an FoI is detected by
sensors. The probabilistic event coverage problem is described as: Given an FoI,
events may happen in any points of the FoI, and multiple sensors are deployed
in the FoI to detect the events. Both sensors and events are distributed according
to the spatial Poisson process. We need to compute the probability that a random
event can be detected by at leastk sensors. In this problem, the probability of event
coverage depends on not only the intensity of events but also the intensity of sensor
deployment. The event coverage is formally defined as follows:

Lemma 4.3In an FoIA0 with areaF0 and perimeterL0, sensors are deployed
according to a spatial Poisson process with intensityλ. The area and perimeter of
the sensing region of each sensor are denoted byFs andLs, respectively. Events
may happen inA0 and they are modeled by a spatial Poisson process with intensity
γ. Let Pe−cov(k) denote the probability that every event is detected by at leastk
sensors. Then, we have

Pe−cov(k)

=
∞∑

n=1

{P [M(A0) = n] [Ple(λ, k)]
n}

=

{
∞∑

n=1

(γF0)
n

n!
e−γF0 [1−

k−1∑

i=0

Pex(λ, i)]
n

}
(4.7)
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whereq0 denotes the probability that a given event is detected by less thank
sensors. The value ofk depends on the requirements of applications. For example,
k = 1 can meet the requirements of monitoring applications, while in tracking or
positioning applications,k might be2 or 3.

4.3.4 Boundary Analysis

For sensors deployed near the boundary of the FoI, part of the coverage regions
are outside the FoI. The coverage analysis should take this issue into account.

O

BCD

rs

(a)

(b)

Figure 4.3. Boundary analysis

Thenear boundary regionis defined as the the region with distancers to the
boundary (Fig. 4.3-(a)), wherers denotes the maximum sensing distance of the
sensors. As shown in Fig. 4.3, a sensors is located at pointO which is inside
the near boundary region of the FoI. Letz (0 < z < rs) denote the distance
between the sensor and the boundary of the FoI (OC = z). From basic geometry
knowledge, we know that the value of∠BOC equals toarccos(z/rs) .
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Therefore, the area of the shadow region (⌢ DBC) in Fig. 4.3-(b) is calculated
by,

Fshd = r2s arccos
z

rs
− z
√
r2s − z2 (4.8)

For the sensors located in the near boundary region, the ratio of the coverage
region inside the FoI is calculated by,

ηz = 1− r2s arccos(z/rs)− z
√
r2s − z2

πr2s
(4.9)

For a randomly deployed sensor in the near boundary region, the probability it
is located in a strip (dz) with distancez to the boundary is given by,

qz =
(L0 − νz)dz

F0 − F
′

0

(4.10)

whereF
′

0 denotes the area of the FoI excluding the near boundary region,ν is a
constant depending on the shape of the FoI. If the FoI is a rectangle, thevalue ofν
is 8. If the FoI is a circle, the value ofν is 2π. Hence, the mean coverage ratioη0
is calculated by,

η0 =

∫ rs

0

L0 − νz

F0 − F
′

0

[
1−

r2s arccos
z
rs

− z
√

r2s − z2

πr2s

]
dz (4.11)

The detailed computation of Eq. (4.11) is described in the following.
Eq. (4.11) can be re-organized as follows,

η0 =

∫ rs

0

L0 − νz

F0 − F
′

0

dz

+

∫ rs

0

νr2sz arccos
z
rs

− L0r
2
s arccos

z
rs

(F0 − F
′

0)πr
2
s

dz

+

∫ rs

0

L0z
√
r2s − z2 − νz2

√
r2s − z2

(F0 − F
′

0)πr
2
s

dz

(4.12)

In the above equation,rs, F0, F
′

0, L0, ν are non-integration variables. It is easy
to compute the first part of Eq. (4.12) as follows,
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∫ rs

0

L0 − νz

F0 − F
′

0

dz =
2L0rs − νr2s
2(F0 − F

′

0)
(4.13)

According to the formula (306) in Chapter 7.4 of [28], we have

∫
z arccos(az)dz =

z2

2
arccos(az)

− 1

4a2

[
arccos(az) + az

√
1− a2z2

]
.

(4.14)

Based on the formula (304) in Chapter 7.4 of [28], we have
∫

arccos(az)dz = z arccos(az)− 1

a

√
1− a2z2. (4.15)

Consequently, the second part of Eq. (4.12) can be calculated based on the
above formulas.

Based on the formula (142) in Chapter 7.4 of [28], we can get,
∫

z
√
c2 − a2z2dz = − 1

3a2
(c2 − a2z2)3/2 (4.16)

Moreover, from the formula (143) in Chapter 7.4 of [28], we have

∫
z2
√

c2 − a2z2dz =− z

4a2
(c2 − a2z2)

3

2 +
c2z

8a2

√
c2 − a2z2

+
c4

8a3
arcsin(az/c).

(4.17)

Therefore, the third part of Eq. (4.12) can be computed accordingly.
Based on the above formulas,η0 can be calculated.
So the amended event coverage probability with the consideration of boundary

condition can be derived by the following equation,

P
′

e−cov(k) =
F

′

0 + (F0 − F
′

0)η0
F0

· Pe−cov(k) (4.18)

4.3.5 Probabilistic Event Coverage in Heterogeneous Networks

In traditional coverage analysis methods, the heterogeneity of events areusu-
ally not considered and the sensors are uniformly deployed with the same density
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over the FoI. In many sensor network applications, there are surveillance regions
with different types of events which require different numbers of sensors. More-
over, in some scenarios, the probabilities of event occurrence in different regions
of the FoI are different. For example, the studies in [39] show that wildfireevents
occur in clusters. For those applications with heterogeneous event distributions, it
is better to deploy various numbers of sensors in different regions of theFoI. In the
following, we present the coverage analysis for sensor networks with homogeneous
and heterogeneous sensor deployment.

Event Coverage in Heterogeneous Networks

In heterogeneous sensor networks, the probabilities of event occurrence in dif-
ferent parts varies. Considering the heterogeneity of event occurrence, the sen-
sor deployment is also heterogeneous. Let the FoI be divided into multiple sub-
FoIs A1, A2, · · · , AH . The area, perimeter and event density of the regionAh

(1 ≤ h ≤ H) areFh, Lh, andγh, respectively. Letλh denote the sensor density in
regionAh. If we consider the difference of event densities and deployment sensors
with different densities, the probability of event coverage in the regionAh can be
expressed as,

P cov
h (k) = Q ·

{
∞∑

n=1

(γhFh)
n

n!
e−γhFh [1−

k−1∑

i=0

Pex(λh, i)]
n

}
(4.19)

wherePex(λh, i) is derived by Eq. (4.3).Q is the emendatory coefficient, which is
computed by (refer to Section 4.3.4 for details),

Q =
F

′

h + (Fh − F
′

h)η0
Fh

(4.20)

whereF
′

h denotes the area ofAh excluding the near boundary region.
In the homogeneous deployment case, the heterogeneity of event occurrence is

not considered and the sensors are deployed with the same density. The compu-
tation of event coverage probability is similar except that the values ofλh in Eq.
(4.19) are equal. It is a special case of heterogeneous deployment.

The overall event coverage probability of the network can be calculatedby the
geometric mean of the event coverage probabilities of all the regions,

P cov
net (k) =

H

√√√√
H∏

h=1

P cov
h (k) (4.21)

.
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The use of a geometric mean normalizes the ranges being averaged, so that
no range dominates the weighting, and a given percentage change in any of the
properties has the same effect on the geometric mean.

Overlap between Sub-FoIs

In Section 4.3.4, we derive the coverage analysis with the consideration of
boundary condition. However, the boundary analysis can not be directly applied
to the heterogeneous network since there are coverage overlaps between sub-FoIs.
So we propose a method to analyze the overlap between sub-FoIs.

Figure 4.4. Coverage overlap

The two-sub-FoI case is taken as an example. As shown in Fig. 4.4, the FoIA0

is divided into two sub-FoIs,A1 andA2. LetF1, L1, andγ1 be the area, perimeter
and event density ofA1, respectively. LetF2, L2, andγ2 be the area, perimeter and
event density ofA2, respectively. We consider the difference of event densities and
deploy sensors with different densities (denoted byλ1 andλ2) in A1 andA2.

According to the analysis in Section 4.3.4, for a sensor located in the near
boundary region ofA2 with distancez to the boundary, the ratio of its coverage
region overlapping withA1 can be calculated as,

ζz = 1− ηz =
r2s arccos(z/rs)− z

√
r2s − z2

πr2s
(4.22)

For a randomly deployed sensor in the overlap region, the probability with
which it is located in a strip (dz) with distancez to the boundary is given by,

q
′

z =
l1,2

F2 − F
′

2

dz (4.23)
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whereF
′

2 denotes the area of theA2 excluding the overlap region,l1,2 denotes the
length of the border ofA1 andA2. So the average coverage contribution from a
sensor inA2 is,

ζ1,2 =

∫ rs

0
ζz

l1,2

F2 − F
′

2

dz (4.24)

The computation ofζ1,2 can be found in the Appendix. Therefore, the event
coverage probability is calculated by,

P̃ cov
1 (k) = P cov

1 (k) · F
′

1λ1 + (F1 − F
′

1)λ2ζ1,2
F1λ1

(4.25)

whereP cov
1 (k) is calculated according to Eq. (4.19). AndP cov

2 (k) can be similarly
computed.

The overall event coverage probability of the whole FoIA0 is computed by,

P cov
net (k) =

√
P̃ cov
1 (k) · P̃ cov

2 (k) (4.26)

We extend the analysis to a multi-sub-FoI network where a sub-FoI may have
multiple neighbors (i.e., adjacent sub-FoIs). LetAh denote the sub-FoI which
has multiple neighbors (denoted byNBG(Ah)). For any of the neighborAi, the
average coverage contribution from a sensor inAi to Ah is derived by ( according
to Eq. (4.22), (4.23), (4.24)),

ζh,i =

∫ rs

0

r2s arccos(z/rs)− z
√
r2s − z2

πr2s
· lh,i

Fh − F
′

h

dz (4.27)

Consequently, the event coverage probability can be computed by,

P̃ cov
h (k) = P cov

h (k)
∏

Ai∈NBG(Ah)

Qh,i (4.28)

whereQh,i is derived by

Qh,i =
F

′

hλh + (Fh − F
′

h)λiζh,i
Fhλh

. (4.29)

After we compute the event coverage probability of each sub-FoI, the overall
event coverage probability of the FoI can be calculated according to Eq.(4.21).
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4.3.6 Experimental Results

To evaluate the coverage analysis method and to show the benefits and accuracy
of the analysis method in heterogeneous sensor networks, numerical experiments
and simulations are conducted. The analytic and simulation results of the probabil-
ity of event coverage are presented and compared under different settings of sensor
and event densities.

Analytical Results

In the following experiments, the probability of event coverage in homoge-
neous sensor networks is studied, namely, the sensor density and eventdensity in
different locations of the FoI are the same. The FoI is a rectangle with lengthand
width of 20 m and16 m, respectively. The sensing region of each sensor is a disc
with radius3 m. So the area and perimeter of the sensing region are28.3 m2 and
18.8 m2, respectively. The sensor densityλ denotes the average number of sensor
in an unit area. Similarly, the event densityγ represents the average number of
event in an unit area.
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Figure 4.5. Probability of event coverage: 1-coverage

Fig. 4.5 and Fig. 4.6 illustrate the probabilities that every event in the FoI is
covered by at least one sensor and two sensors, respectively. As we can see in
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both figures, for the same event density, the probability of event coverage increases
when the sensor density increases. For the same sensor density, when the event
density increases, the probability of event coverage decreases. Given the event
density in an application and the requirements on event coverage, these analytic
results can be useful in determining the density of deployment and the total amount
of sensors.
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Figure 4.6. Probability of event coverage: 2-coverage

Fig. 4.7 shows the probabilities that every event in the FoI is at leastk-covered
(k = 1, 2, 3, 4) when the event density changes. The sensor density is set to0.3.
Similar with those in Fig. 4.5 and Fig. 4.6, we can find in this figure that the
probability of event coverage decreases when the event density increases. More-
over, when the requirement onk-coverage is increased, the probability of event
coverage significantly decreases. For example, when the event densityis 0.15, the
probability of 1-coverage and2-coverage are0.73 and0.16, respectively. These
results indicate that if the applications have higher coverage requirements,much
more sensors need to be deployed. Consequently, the total deployment costs can
be significantly increased.

The following experiments are performed to show the benefits of heteroge-
neous sensor networks. The coverage region of a sensor is the same as that in the
previous section. In the network settings, the FoI is divided into sub-FoIs, and the
event densities in different sub-FoIs are different. In homogeneousdeployment, the
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Figure 4.7. Probability of event coverage with different values ofk (λ = 0.3)

sensor density in all sub-FoIs is the same. In heterogeneous deployment,the sensor
density in different sub-FoIs are different. In order to implement fair comparisons,
the average sensor density in the FoI of these two deployment scenarios are set to
be equal. The overall event coverage probability of the network is calculated by
the geometric mean of the probabilities of all the sub-FoIs (Eq. (4.21)).

In Fig. 4.8, we compare the probabilities of1-coverage (1-cov) and2-coverage
(2-cov) under homogeneous and heterogeneous deployment in a two-sub-FoI net-
work. We also consider the overlapping between adjacent sub-FoIs in the hetero-
geneous deployment. From this figure, we can see that the probabilities of both
1-coverage and2-coverage of heterogeneous deployment are better than those of
homogeneous deployment. It indicates that heterogeneous deployment can achieve
better coverage performance. Moreover, considering overlapping between adja-
cent sub-FoIs can improve the event coverage probabilities since the sub-FoI can
get coverage compensation contributed by the sensors in the near boundary region
of its adjacent sub-FoI. In addition, the simulation results show that the results of
overlapping analysis are accurate.

In this experiment, the FoI is divided into sub-FoI 1 and sub-FoI 2. The event
density in sub-FoI 1 isγ1 = 0.03, and that (γ2) in sub-FoI 2 is changed from0.04 to
0.16. In Fig. 4.9, we can see that the event coverage probabilities in heterogeneous
deployment are larger than those in homogeneous deployment. Moreover,when
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Figure 4.8.Event coverage probabilities in two-sub-FoI networks ( event densityγ =
0.03, 0.06). ’hom’ denotes homogeneous deployment; ’het’ denotes heterogeneou
deployment; ’ovl’ means ’overlapping’ between adjacent sub-FoIs are considered.

γ1 = 0.03, γ2 = 0.16, the gap of the event coverage probability between the two
deployment methods are bigger than those forγ1 = 0.03, γ2 = 0.12(0.08/0.04).
The comparisons indicate that the coverage performance of heterogeneous deploy-
ment is better than that of homogeneous deployment. And the improvement is
more significant when the heterogeneity of event density is more obvious.

The following experiment is conducted to check the scaling property of the
heterogeneous deployment method. The FoI is divided into8 regions with the
event densities in regioni beingγi = i × 0.02 (i = 1, · · · , 8). In Fig. 4.10,
′Hom′ denotes homogeneous deployment;′Het − j′ denotes heterogeneous de-
ployment withj sub-FoIs(j = 2, 4, 8). The average sensor densities in the above
four cases are the same. As we can see from the figure, the coverage probabil-
ity of Het − 8 is bigger than all the others cases. It means, for the network with
heterogeneous event occurrence, heterogeneous sensor deployment leads to better
coverage performance. The results of our analysis method can provideguidelines
for constructing sensor deployment strategies in real applications.
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Figure 4.9. Comparison of the event coverage probabilities of homogeneous and
heterogeneous sensor deployments in two-sub-FoI networks (γ1 = 0.03, γ2 are
changed)
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Figure 4.11.Boundary analysis (γ = 0.03)

In order to validate our proposed analytical method, numerical experiments
and simulations are conducted with the same settings. The experiments are also
used to study the impact and accuracy of boundary analysis (Section 4.3.4). Fig.
4.11 shows the comparison of event coverage probability in two cases: ignore the
boundary of FoI, and consider the boundary conditions. The event density is set
to 0.03. From the figure, we can see that the probability of both1-coverage and
2-coverage are bigger if the boundary of FoI is ignored. Moreover, the difference
between those two cases becomes larger and larger with the increase of sensor den-
sity. It means that the event coverage is over-estimated if the boundary condition is
ignored, and the sensor density has impacts on the accuracy of the coverage prob-
ability. In addition, the simulation results are coincident with the numerical results
of boundary analysis. It indicates good accuracy of the proposed event coverage
analysis with boundary condition.

As shown in Fig. 4.11, there is over-estimation of the coverage probability
if we do not consider the boundary of the FoI. In the following experiment,we
investigate how the size of the FoI impacts the ratio of over-estimation (relative
difference). The area of FoI changes from200 m2 to 400 m2. The percentage (Y-
axis) denotes the relative difference of the event coverage probabilitybetween the
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Figure 4.12.Relative error of boundary analysis(γ = 0.03)

ignoring boundary case and the considering boundary case. From Fig. 4.12, we can
see that the relative different decreases when the size of FoI increases. It means that
for small-scale sensor networks, event coverage analysis with boundary conditions
can give much more accurate results. Moreover, with the same sensor density, the
relative difference between the two cases is bigger if the event density is larger. In
summary, the comparisons between the numerical and simulation results validate
the accuracy of our proposed event coverage analysis method.

4.4 Deployment Strategies

WSNs generally have two fundamental application scenarios: tracking and
monitoring. In both applications, it is essential to ensure that information of the
target or the environment can be discovered and collected by sensors.To achieve
good coverage, sensors are usually densely deployed. Moreover,the lifetime of
WSN is determined by the energy budgets of sensors. To obtain longer network
lifetime, more energy budgets should be assigned to sensors. Since sensors are
usually equipped with batteries which are limited and expensive, deploying spare
sensor nodes would cause high installation and maintaining costs. Therefore, in
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order to deploy minimum necessary sensors that can achieve the requirements, it is
important to evaluate these performance metrics of a WSN before its deployment.

Performance analysis such as coverage, connectivity, energy consumption, cost
for sensor networks has been studied by many researchers. In [20], the authors pro-
posed a general framework for the analysis of the network lifetime and costs for
several network deployment strategies in sensor networks. They investigated de-
ployment strategies to maximize the network lifetime by mitigating the hot-spot
traffic problem around the data sink. The coverage problem in sensor networks has
been extensively investigated by researchers [112, 8, 72]. Zhang and Hou [112]
studied the problem of deriving the node density for maintaining k-coverage for a
given network area in both random and deterministic deployment strategies.How-
ever, most of the attentions focused on analyzing the minimum coverage. In [88],
the authors proposed an analytical method to model the event coverage problem
in sensor networks. In [72], the authors investigated the coverage, energy con-
sumption and message transfer delay of large-scale WSNs. They considered the
square grid based deployment scheme which shows very good coverage perfor-
mance and the Tri-Hexagon Tiling (THT) deployment strategy. Their schemeout-
performs other schemes for energy consumption and worst-case delay.However,
the THT scheme shows poor performance for coverage and planning overhead.
Moreover, since the topology of THT is more complex than the mesh-based de-
ployment scheme, it is more difficult and expensive to configure and maintainthe
network.

In this section, we introduce techniques for analyzing the coverage, network
lifetime and cost of random deployed and regular sensor networks. Different from
most works which focused on the minimum k-coverage analysis, we put empha-
sis on analyzing the coverage represented by average k-coverage and the variance
of exact k-covered points, which can describe the coverage performance more ac-
curately than minimum k-coverage. Moreover, energy model and cost model are
applied to investigate the network lifetime and installation cost of WSNs with dif-
ferent deployment strategies. Our results can be useful in the following aspects.
First, our method is capable of evaluating the advantages and disadvantages of
different deployment strategies. Second, our results can provide guidelines in de-
signing deployment schemes which can satisfy the performance requirements.
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4.4.1 Definitions and Models

This section contains descriptions of network topology, node deployment schemes,
and sensing and coverage model.

Network Topology

In a large scale sensor network, the sensors can be organized in various topolo-
gies, such as mesh, star, and cluster-based topologies. Moreover, they can be orga-
nized as combinations of these topologies. One of the most popular candidates is
the cluster-mesh topology [54], which merges the advantages of mesh and cluster
networking. The cluster-mesh WSN contains three types of nodes:sink, cluster
head (CH), and sensor node(SN). Like in most sensor networks, the sink can be
located either inside or near the FoI. The sink is responsible for controllingthe
network and aggregating the sensing data from all the other nodes. The network
is composed of multiple clusters. A cluster is constructed by grouping a cluster
head and multiple sensor nodes within a geographic neighborhood. Insidea clus-
ter, the information sensed by sensor nodes is firstly sent to the cluster head and
then delivered to the sink through neighbor cluster heads.

Sink

Sensor

Cluster

Head

Cluster

Figure 4.13.System Architecture.

Node Deployment Schemes

According to the features of the FoI, the sensor nodes can be deployedin either
random or deterministic manner. For example, in the volcano and forest monitoring
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application of WSNs [104, 4], sensor nodes may be thrown out from an airplane,
which can lead to a random deployment. While in applications of WSNs for bridge
or building monitoring [68], sensors can be deterministically deployed according
to regular patterns.

Figure 4.14.Uniform random Figure 4.15.Rectangle mesh

In this work, we consider the uniformly random deployment scheme (Fig. 4.14)
which is a typical random scheme, and the rectangle mesh scheme (Fig. 4.15)
which belongs to the deterministic deployment category. In the uniformly random
scheme, each SN has equal probability of being placed at any point. While in
the rectangle mesh scheme, SNs are placed according to a regular mesh. In[72],
the author considered the square grid based deployment scheme which shows very
high coverage performance. Here, we extend the work by consideringthe rectangle
mesh pattern, which can be more useful and applicable than the square gridscheme.
In [72], the author introduced the Tri-Hexagon Tiling (THT) deployment strategy,
which outperforms other scheme for energy consumption and worst-casedelay.
However, it shows poor performance for coverage and planning overhead. The
planning overhead includes time and labor for deployment. Moreover, since the
topology of THT is more complex than the mesh-based deployment scheme, it is
more difficult and expensive to configure and maintain the network. That iswhy we
choose the rectangle mesh as the representing deterministic deployment scheme.

4.4.2 Sensing and Coverage Model

The popular disc-based sensing model [6] is adopted, where each SN has a
sensing range ofrs. Any point within the circle of radiusrs centered at a SN is
covered by it. An FoI is said to have k-coverage if every point of it is covered by
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at leastk sensor nodes. Assume that the maximum communication range of a SN
is bigger than its sensing range.

In the following, we introduce the analysis of three performance metrics: cov-
erage, lifetime and cost. The variables are defined in Table 4.1.

4.4.3 Coverage Analysis

Since the minimum k-coverage is not accurate enough to represent the actual
coverage performance, a method is proposed to investigate the average k-coverage
and its variance. Our method can be more accurate in evaluating the coverage
performance of WSNs than the minimum k-coverage method. For example, if the
values of minimum k-coverage of two deployment schemes are the same, their
coverage performance could be different if their average k-coverage values are
different. Moreover, even if the average k-coverage of two WSNs are the same,
their coverage performance may be different if their variances of k-coverage are
different.

In the rectangle mesh scheme (Fig. 4.15), Fig. 4.16 shows the k-coveragemap
of all possible k-coverage values of a rectangle cell. It is assumed that the sensing
range equals to the width of the rectangle. In order to guarantee full coverage,
there should be some overlap among the sensing regions of sensors. Theamount
of overlapping can be determined by the coverage requirements.

1-A1

4-A4

3-A3

2-A2

2-A2’

Figure 4.16.k-coverage map.
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Figure 4.17.k-coverage map for
calculation

In order to compute the average k-coverage value and its variance, we need
to compute the area of each part, i.e., the values ofA1, A2, A

′
2, A3, A4. The k-

coverage problem can be modeled by using basic geometry (Fig. 4.17). Assume
the width and length of the rectangle arel1 andl2, respectively. The sensing range
rs = l1. In order to ensure full coverage, i.e., every point in the FoI is covered
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Table 4.1.Variables and Descriptions

Variable Description

N0 Total number of sensor nodes

Ns Number of sensor nodes in a cluster

Nc Number of clusters

SNi Sensor nodei

CHi Cluster headi

Anet Total area of the network

dSNmax Maximum transmission distance of a SN

dCH
max Maximum transmission distance of a CH

r Sensing range of a SN

dk0 Distance between sensork to its cluster head

Di Data generation rate of SNi

ESN
i Initial energy of SNi

ECH
i Initial energy of CHi

dij Distance between cluster headi andj

Ecir Energy of electronic circuit for transmit/receive one bit

ǫa Transmitter amplifier coefficient

θ Path loss exponent

θ1 Path loss exponent (intra-cluster)

θ2 Path loss exponent (inter-cluster)

CSN
i Cost ofSNi

CCH
i Cost ofCHi

Cnet Total cost of the network
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at least by one sensor,l1 andl2 should satisfyl1 ≤ l2 ≤
√
3l1. Let ϕ denote the

value of∠ECO. Let ϕ1 denote the value of∠NCP . As shown in Fig. 4.17, let
Aa, Ab, Ac, Ad, Ae denote the area of shapêFGEHF, ̂EBCIFHE, B̂JCB, ĈJIC,
M̂NIM, respectively. We can compute the area of each part (Fig. 4.16) using the
following equations.

Aa = 2ϕl21 −
1

2

√
(3l21 − l22)(l

2
1 + l22)

Ab =
π

4
l21 −Aa

Ac =

(
π

3
−

√
3

4

)
l21

Ad =
π

4
l21 −Ac

Ae = ϕ1l
2
1 −

1

2
l1l2 sin(ϕ1).

(4.30)

whereϕ = arctan
[√

(3l21 − l22)/(l
2
1 + l22)

]
andϕ1 = ∠NCP = arccos [l2/(2l1)].

Hence, the areas ofA1, A
′
2, A2, A3, A4 can be calculated as following:

A1 =
1

2

(
l1l2 −

π

4
l21 −Ab

)

A′
2 = l1l2 −

π

4
l21 −Ad − 2A1

A3 =
π

4
l21 −Ae −A1 −A′

2

A2 =
π

4
l21 −Aa −A1 −A′

2 −A3

A4 = Ae −A2 − 2A3.

(4.31)

The average k-coverage is defined as the total k-coverage divided by the total
area.

k̃rm =
1

l1l2

[
4A1 + 4(A2 +A′

2) + 12A3 + 4A4

]
(4.32)

Accordingly, the variance of the k-coverage value can be calculated by,

var(k̃rm) =
1

l1l2

[
4A1(1− k̃rm)2 + 2(A2 +A′

2)(2− k̃rm)2

+ 4A3(3− k̃rm)2 +A4(4− k̃rm)2
] (4.33)

The values of̃k andvar(k̃) above are calculated from the rectangle which is
composed by four sensor nodes. For large scale sensor networks, the boundary
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conditions can be ignored. Thus, the average k-coverage and its variance of the
whole network can be accurately expressed byk̃ andvar(k̃), respectively.

Different from the deterministic deployment strategy, in the uniform random
deployment strategy, it is difficult or impossible to guarantee full coverage. From
this aspect, the uniform random deployment is not as good as the deterministic
deployment. The average k-coverage can be calculated by,

k̃ur = N0πr
2
s/Anet (4.34)

Since the sensors are randomly scattered in the network, it is very difficultor
impossible to explicitly compute the variance of k-coverage, but it can be calcu-
lated through simulations.

4.4.4 Lifetime Analysis

In order to compute the network lifetime, we first need to introduce the en-
ergy model. We adopt the most popular two-order model [75], where the en-
ergy consumption of nodei for transmitting one bit over distancedij is eTx

i =
Ecir + ǫa(dij)

θ, whereθ denotes the path loss exponent. And the energy for re-
ceiving one bit iseRx

i = Ecir.
In the system architecture, a sensor directly sends data to its cluster head,and a

cluster head directly sends data to the central server. Under this model, thepower
consumption of a SN (j) and a cluster head (i) can be expressed by,

PSN
j =

[
Ecir + ǫa(dj0)

θ1
]
Dj

PCH
i =

NS∑

j=1

Dj

[
2Ecir + ǫa(di0)

θ2
] (4.35)

wheredj0 denotes the distance between sensorj to its CH, anddi0 denotes the
distance between CHi to the central server;Dj (bit/s) denotes the data generate
rate of the sensorj. If the sensors can vary transmission power to accommodate the
distance over which they transmit, the transmission power required to deliverdata
from the sensorj to its CH will be controlled in such a way that the transmission
distancedj0 equals the physical distance. If the sensors use a fixed transmission
power level, then the transmission distance can be considered asdj0 = dSNmax.

In general, lifetime of a sensor network is defined as the time after which cer-
tain fraction of sensor nodes run out of their energies, resulting in a routing hole
within the network. Moreover, death of a cluster head would also bring routing
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problems. Hence, the lifetime is defined as the time after which a certain fraction
of sensors run out of their energies or one cluster head runs out of itsenergy.

According to the power consumption model, the lifetime ofCH i andSN j
can be expressed as,

TCH
i =

ECH
i

PCH
i

, TSN
j =

ESN
j

PSN
j

(4.36)

Let TSN
th denote the time after which a certain fraction (denoted byq0) of SNs

run out their energy. Then, the network lifetime can be expressed as,

Tnet = min

{
min

1≤i≤Nc

TCH
i , TSN

th

}

TSN
th can be calculated in this way: assume there are totalN0 = 100 SNs and

q0 = 10%. We calculate the lifetimes of all SNs and sort them in the ascending
order. Then, we take the10th (⌈N0 ∗ q0⌉) value asTSN

th .

4.4.5 Cost Analysis

The cost of the network is composed of the costs of SNs, CHs, and the deploy-
ment overhead. For the SN and CH, the cost consists of hardware cost(circuit) and
energy cost (battery). For different types of sensor nodes and cluster heads, their
costs are different. For a cluster head of typei, the cost ofCHi can be modeled as
CCH
i = a0i + b0iE

CH
i , wherea0i andb0i denote the hardware cost and the propor-

tionality constant for the battery cost, respectively. For a sensor of the typej, the
cost ofSNj can be modeled asCSN

j = a1j + b1jE
SN
j , wherea1j andb1j denote the

hardware cost and the proportionality constant for the battery cost, respectively.
In order to consider the impact of deployment schemes, we define a parameter
Cover to model the deployment overhead. For example, the deployment overhead
a random scheme may be less than that of a deterministic scheme.

Depending on the applications, there are homogeneous and heterogeneous sen-
sor networks. For the homogeneous sensor network, there are only one type of
sensor node and one type of cluster head. The overall cost of a network can be
expressed by,

Cnet = Nc · CCH +Nc ·Ns · CSN + Cover (4.37)

For the heterogeneous sensor networks, there are multiple types of sensor nodes
and cluster heads. The overall cost of a network can be expressed by,

Cnet =
∑

i

N i
c · CCH

i +
∑

j

N j
s · CSN

j + Cover (4.38)
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whereN i
c denotes the number of CHs of typei, andN j

s denotes the number of SNs
of typej.

In the cost model, we take into account every aspect of setting up sensornet-
works. It is a simple but effective method for comparing different deployment
schemes on an equal basis [20].

4.4.6 Evaluation Results

To compare the three performance metrics of the random and regular node
deployment scheme, performance evaluation is conducted in this section. Ineach
experiment, a total number ofN0 = 128 sensor nodes are distributed in a rectangle
FoI with the sink placed in the center. For simplicity, the average data generation
rate for a sensor is set to unit rate, namelyDj = 1 bit/s. It is straightforward to
extend the analysis with other data rates. We conduct three types of experiments
with the network divided into 2, 8, and 32 clusters, which means that a CH controls
64, 16 and 4 SNs, respectively. The Dijkstra’s shortest routing algorithm is applied
to deliver the data from a source CH to the sink. Other parameters used in the
experiments are listed in Table 4.2 as following.

Table 4.2.Parameters

Variable Value Unit Variable Value Unit

Ecir 50 nJ/bit a1 10 -

ǫ1a 100 pJ/bit/m3 a2 100 -

ǫ2a 1000 pJ/bit/m2 ESN 20 J

θ1 2 - ECH 2e4 J

θ2 3 - b1 0.2 -

rs = l1 5 m b2 0.01 -
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Results of Coverage
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Figure 4.18.The average k-coverage and variance.

The comparisons of coverage performance of the network is shown in Fig.
4.18. In this figure, ’std’ means standard deviation, which is equal to the square
root of the variance expressed in Equ. (4.33). From the figure, we can see that the
performance of average coverage is similar in two deployment schemes. However,
the standard deviation of the rectangle mesh deployment scheme is smaller than
that of the uniformly random scheme. It indicates that the rectangle mesh scheme
has a better balanced coverage performance which is more useful in achieving
the tracking or monitoring purpose of WSNs in practical applications. Moreover,
the figure shows that the average k-coverage decreases when the network area in-
creases. Since the total number of sensor nodes and their sensing range are fixed,
the percentage of overlapped coverage area decreases when the total network area
increases. Therefore, by adopting the rectangle mesh deployment scheme, it is able
to adjust the coverage performance according to the requirements of the application
even if the sensing range of the sensors can not be adjusted.



4.4. Deployment Strategies 107

Results of Lifetime

In this experiment, two power schemes are adopted. In the uniform power
scheme, the transmission power of sensors is fixed. While in the power control
scheme, the transmission power of sensors are adjusted according to the transmis-
sion distances. The value ofq0 (refer to Section 4.4.4) is set to5%. The lifetimes
of CHs and SNs are shown in the following table.

Table 4.3.Lifetime

Lifetime of CHs and SNs (day)

- Rectangle Mesh Uniformly Random

- 2CH 8CH 32CH 2CH 8CH 32CH

Uniform CH 155 267 756 147 256 711

Power SN 182 842 3082 158 724 2661

CH:min 155 267 756 143 254 708

Power CH:max 155 516 2893 146 486 2087

Control SN:min 182 842 3086 161 730 2603

SN:max 3086 3086 3086 2758 2642 2715

In this table, ’CH:min’ and ’CH:max’ denote the minimum and maximum life-
time of CHs, respectively. Similarly, ’SN:min’ and ’SN: max’denote the minimum
and maximum lifetime of sensors, respectively. As we can see from the table,
the minimum lifetime of SNs and CHs in the uniform power and power control
schemes are almost the same. However, the maximum and minimum lifetime in
the power control schemes are different which indicates the uneven power con-
sumptions among SNs and CHs due to their positions.
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Results of Cost

According to the cost model, the installation cost of the network is determined
by the number of SNs and CHs and their initial energy assignments. Since the total
number of SNs and their initial energy in three cases is the same, the network cost
is 2392, 4192, and11392 when the number of CHs is2, 8 and32, respectively. The
values ofa1, b1, a2 andb2 are based on realistic models of the slave sensor node
and master sensor node [70] in the fresh food tracking project. These values may
be different in other applications of WSNs. However, the point is that, it is able to
estimate the deployment cost in an early stage based on our cost analysis method.

Discussions

There are trade-offs between the three performance metrics. If the users require
better coverage performance, more sensors should be deployed whichcan lead to
higher cost. Furthermore, from the results of lifetime and cost, we can find that
deploying more CHs can increase the network lifetime but it can also bring higher
cost. In order to design a cost-efficient network while fulfilling the users’require-
ments on coverage and network lifetime, we can design optimization algorithms
and do extensive computations on the performance metrics and then choosean ap-
propriate deployment scheme. That is where our performance analysis techniques
can be used.

4.5 Summary

In most previous work, the coverage analysis usually focused on areacoverage
which is to model how well an area is covered by sensors. Those types ofmeth-
ods are not suitable for event-driven networks, where the objective isto quantify
how well the events are detected by sensors. To this end, we propose a method
to study the event coverage problem in heterogeneous sensor networks, where the
sensor densities in different locations of FoI are different dependingon the event
densities. The sensors and events are distributed according to spatial Poisson pro-
cesses. Formulas are derived to calculate the probability of event coverage by
taking considerations of boundary conditions and overlapping. The numerical re-
sults illustrate the probabilities ofk-coverage with different settings of event and
sensor densities. Moreover, the results show that the heterogeneous deployment
can achieve better coverage than homogeneous deployment if the event occurrence
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in the FoI is heterogeneous. In addition, to validate the analytic method for proba-
bilistic coverage analysis, simulations are conducted and the results are compared
with the analytical results.

In addition, we present a method for analyzing the coverage, network lifetime
and cost of sensor networks under random and deterministic node deployment
strategies. We derive closed-form formulas for calculating the averagecoverage
and variance of rectangle mesh WSNs. Furthermore, energy model and cost model
are applied to analyze the network lifetime and installation cost of WSNs. Our
method is capable of evaluating the advantages and disadvantages of different de-
ployment strategies. Consequently, it can provide guidelines for networkdesigners
to implement an cost-efficient network while achieving requirements on network
lifetime and quality of coverage.
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Chapter 5

Summary and Future Work

This chapter concludes the thesis and outlines future directions.

5.1 Summary

Due to its non-deterministic and random characteristics, wireless sensor net-
work design presents several challenges while dealing with various requirements
and diverse constraints. To provide insight upon the design parameterseffecting
system behavior, such as data transmission delay and maximum required buffer,
performance analysis techniques are required. In this thesis, we present a perfor-
mance analysis method for WSNs based on network calculus. With this method,
some performance metrics can be analytically evaluated rather than by case-by-
case simulations. Moreover, we conduct investigation and analysis on event cover-
age and deployment schemes.

In chapter 2, we define traffic splitting and multiplexing models to character-
ize any traffic flowing scenarios in sensor networks. The worst-case delay bound
and backlog bound of these models are separately analyzed using network calcu-
lus. Based on the results of these models, a deterministic worst-case performance
analysis method is presented. Providing network parameters, our method can pro-
vide an effective way for a designer to estimate the worst-case performance and
buffer cost of sensor networks. Moreover, we have presented ananalytical tech-
nique to evaluate the maximum transmission delay and energy consumption of two
categories of retransmission schemes: hop-by-hop retransmission and end-to-end
retransmission. In order to validate the tightness of the two bounds obtained from
theoretical calculation, several experiments are carried out using Omnet++. The
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simulation results and analytical results are compared in the chain and mesh sce-
narios with various input traffic loads. From the results, it shows that the network
calculus can be useful and accurate for performance analysis of WSNs.

In chapter 3, we propose a method for modeling and QoS analysis of wire-
less channels subject to Rayleigh fading. The key challenge in analyzing wireless
systems is the temporal uncertainties inherent in fading channels. To this end,
this work applies stochastic network calculus to model Rayleigh fading channels
and derive stochastic delay and backlog bounds. The analysis method is validated
through simulations. In Section 3.5, we introduce a stochastic network calculus
based method for statistical bandwidth estimation of random service networks.
The statistical bandwidth is estimated from the measurement of statistical back-
log bounds through probe packet trains. We propose a step-by-step procedure on
how to estimate the bandwidth from backlog measurement. The method can be ap-
plied to any wireless networks with various channel characteristics. The estimation
results show good accuracy of our bandwidth estimation method.

In chapter 4, we propose a method to study the event coverage problem inhet-
erogeneous sensor networks, where the sensor densities in different locations of
FoI are different depending on the event densities. Formulas are derived to cal-
culate the probability of event coverage by considering boundary conditions and
overlapping. The numerical results illustrate the probabilities ofk-coverage with
different settings of event and sensor densities. Moreover, the results show that the
heterogeneous deployment can achieve better coverage than homogeneous deploy-
ment if the event occurrence in the FoI is heterogeneous. In addition, to validate
the analytic method for probabilistic coverage analysis, we conduct simulationand
compare their results with analytic results. The comparisons show that these re-
sults match well validating the accuracy of the analytic method. In addition, we
present a method for analyzing the coverage, network lifetime and cost ofsensor
networks under random and deterministic node deployment strategies. We derive
closed-form formulas for calculating the average coverage and variance of rectan-
gle mesh WSNs. Our method is capable of evaluating the advantages and disadvan-
tages of different deployment strategies. Consequently, it can provideguidelines
for network designers to implement an cost-efficient network while achieving re-
quirements on network lifetime and quality of coverage.

5.2 Future Work

Wireless sensor network is a relatively new scientific and engineering field.
Both technology and envisioned applications are changing at a rapid pace. The
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work presented in this thesis has many possibilities for future work. Below we
discuss some issues that is particularly interesting, some of which we have already
started pursuing.

• Experimental test platform

The validation of network-calculus-based performance analysis is imple-
mented by simulations in this thesis. Simulation is more controllable and
often simplified for modeling real system and application scenarios. But it
may be less accurate than prototype-based filed tests. It would be interesting
to design and implement WSN prototypes and validate further the perfor-
mance analysis under realistic experimental conditions. The experimental
platform will also help to validate the coverage and deployment analysis.

• Applications of stochastic network calculus

There has been a lot of research on the theoretic part of stochastic network
calculus. However, there is a large gap between the stochastic network cal-
culus theory and the wireless networks. How to apply stochastic network
calculus on real application scenarios is a very interesting and important re-
search direction. In recent years, cognitive radio network is attractinga lot
of research interests. It contains primary users who have priority to access
the spectrum and secondary users who can use the spectrum when available.
How to apply stochastic network calculus on such networks is worthy to
investigate.

• Fault tolerant sensor networks

Fault tolerance is a crucial issue in many applications of sensor network,
since sensors will directly interact with the environment and might be sub-
ject to a variety of physical, chemical, and biological forces. Moreover,
sensor networks often operate in an autonomous mode without human inter-
actions. Therefore, research in fault tolerant sensor networks should receive
a significant attention.

• Trade-offs between power consumption and transmission reliability

Reliable transmission is essential for many applications of sensor networks,
such as health care and intrusion detection. However, higher reliability re-
quires more power consumption of sensors, and thus the lifetime of the net-
work would be reduced. It is worthwhile to investigate the trade-offs be-
tween reducing power consumption and improving transmission reliability
for these applications.
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