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Learning is its own reward. Nothing I can say is better than that.

Michael S. Hart 





Abstract
The main aim of this thesis is to propose enhancing techniques for the per-
formance in Networks on Chips. In addition, a concrete proposal for a pro-
tocol stack within our NoC platform Nostrum is presented. Nostrum 
inherently supports both Best Effort as well as Guaranteed Throughput traf-
fic delivery. It employs a deflective routing scheme for best effort traffic 
delivery that gives a small footprint of the switches in combination with 
robustness to disturbances in the network. For the traffic delivery with hard 
guarantees a TDMA based scheme is used.

During the transmission process in a NoC several stages are involved. In 
the papers included, I propose a set of strategies to enhance the perform-
ance in several of these stages. The strategies are summarised as follows

Temporally Disjoint Networks is that a physical network, potentially, can be 
seen to contain a set of separate networks that a packet can enter dependent 
on when it enters the physical network. This has the consequence that we 
could have different traffic types in the different networks.

Looped containers provide means to set up virtual circuits in networks 
using deflective routing. High priority container packets are inserted into 
the network to follow a predefined, closed, route between source and desti-
nation. At sender side the packets are loaded and sent to the destination 
where it is unloaded and sent back.

Proximity Congestion Awareness reduces the load of the network by divert-
ing packets away from congested areas. It can increase the maximum traffic 
load by a factor of 20.

Dual Packet Exit increases the exit bandwidth of the network leading to a 
50 percent reduction in worst-case latency and a 30 percent reduction in 
average latency as well as a lowered buffer usage.
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Priority Based Forced Requeue prematurely lifts out low priority packets 
from the network to be requeued. Packets that have not yet entered the net-
work compete with packets inside the network which gives tighter bounds 
on admission with a reduction of worst case latencies by 50 percent.

Furthermore, Operational Efficiency is proposed as a measure to quantify 
how effective a network is and is defined as the throughput per buffers used 
in the system. An increase of the injection of packets into the network to 
increase the system throughput will have a cost associated to it and can be 
optimised to save energy. 



Reflection
Researchers have a strong resemblance with ants. In researching something 
completely different I came across a web page about ants [Greensmith]. 
When reading it, I was struck by the similarities between these ants and the 
research community. To make you see what I saw I’ve equipped their 
description of ants with more research-ish terms. Especially I’ve replaced 
the ants with researches, the queens with professors/senior researches and 
the workers/larvae with PhD students or PhD where appropriate...

The Researches

Researches are among the most successful people. Experts estimate that 
there could be 20,000 or more varieties of researches in the world. They 
have evolved to fill a variety of different scientific niches. They are found 
from the Arctic Circle to the tip of South America. They are interesting 
organisms that should be studied to better understand their unique behav-
iours and their roles in the earth's Societies.

The Research Community and Life cycle

Ants live in cooperative groups called colonies – the researchers call their 
cooperative groups communities. For both the ants and the researchers two 
or more generations overlap in the colony; adults – professors – take care of 
the young – the PhD students. The ants are divided into castes, specialized 
groups that take care of certain tasks; the researchers are divided into 
groups that attack different aspects of that particular community’s research 
problem. Researches do have reproductive castes too, the professors and 
senior researches – and non-reproductive castes – the PhD students.
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New Community Formation 

Once a community of researches matures, it can establish new communities 
through various methods. The most common are budding and swarming. 
Budding is the breakaway of a group of researches from a mature commu-
nity to form a new community. The group usually consists of one or more 
senior researches and some PhD students. Budding is common with species 
of ants that have multiple senior researches. Most researches establish new 
communities through swarming. Every now and then, mature research com-
munities generate large numbers of “winged” forms. These are the young 
researches and PhD students going off to mate. An inseminated queen/sen-
ior researcher with funding then rids herself of her wings and attempts to 
start a new nest. The senior researcher rears her first brood alone funding 
them with his funding. If successful, the first brood opens up the nest and 
brings in funding for themselves, the senior researcher, and subsequent 
broods, and the community/department grows. However, the percentage of 
senior researches that successfully begin new communities is thought to be 
very small.

And the similarities continue... However, this analogy with the ants is both 
comforting as well as depressing. The comforting part is that it makes you 
feel as a part of something bigger where the individuals collectively con-
tribute to the ant-hill of knowledge. This at the same time is the depressing 
part – if you did not publish that article somebody else will – if the pre-
sented idea, or your precious result, is useful and relevant enough for the 
community that is. I’m a strong believer in that the scientific progress is 
inevitable. That’s why it now and then pops up disputes who were the 
inventor behind something. Like, for example, the phone – was it Bell or 
Grey? or could it even have been Meucci? The truth is most likely that all 
did it, and if they would not have done it somebody else would; because at 
the point in time the collective ant hill had reached that level and the time 
was come for the telephone to be invented. So in that sense neither Bell nor 
Grey is greater than any ant that happens to put a straw on the top of the hill 
– it is inevitable that somebody will do it!

For the Network on Chip community, it has been the same – the early 
papers originate from 1999 and can if examined be seen as isolated out-
bursts of inevitability due to that the anthill had reached a particular height.



    xi
This reasoning could be easily extended and end up in the conclusion that 
due to this inevitability, it is no point whatsoever to get up in the morning 
and go to the ant-hill to struggle for getting that particular straw towards the 
top. There are, however, two rewards on your way – first we have the 
‘Columbi egg’ reward that is the immediate reward of getting your submit-
ted paper published; even though many could have written it – you did it! 
And second – the reward of having a part in something bigger – when you 
go home after a hard day’s work you can turn around and watch the silhou-
ette of the ant-hill in sunset...
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1
 Introduction
This introduction is actually two introductions in one – it is an introduction 
to the thesis as well as an introduction to the history leading to Networks on 
Chip. In the first part of the introduction, there is a very brief overview of 
the thesis and how, and where, my work has contributed. In the second part 
I will give a coarse historical view on system integration and describe my 
view on why the Network of Chip concept has emerged and why this has 
happened now. In addition, I will try to give an explanation why the con-
cept of Network on Chip has not entirely made its break through yet. Even 
though, it is starting to gain acceptance in industry.

Despite the unorthodoxly large page count of the thesis, it is actually still in 
the format of a collection. The reason for selecting this format is that the 
included papers are quite self contained and have already been scrutinized 
once. Moreover, the papers included have been published over a rather long 
time, and the early papers should hence be seen in the context and maturity 
of the NoC research of that time. Even though the thesis is in the format of 
a collection, I still feel that it deserves a larger Related Work section than 
usual. The related work section – the Networks on Chip chapter – naturally 
gets this size due to the, already mentioned, relatively large time span of the 
presented papers. The time span of the papers also called for a separate 
chapter of the Nostrum platform since none of the papers give a coherent 
picture of the platform that is valid for all the papers. Hence, Chapter A – 
Nostrum has been included.
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Furthermore, during the process of developing the material in the included 
papers various simulators were developed in order to test and proof differ-
ent ideas. For this reason, Chapter B – The Semla Simulator has been 
included.

These extra chapters of “information dross” could be seen as a complement 
appendix to the separate Network on Chip chapter where the background 
and the surroundings of the thesis are presented. These chapters do hope-
fully serve the purpose of giving a more coherent picture and better under-
standing of the presented papers.

In summary, the thesis could be said to have the following outline:

Chapter 1 – Introduction – Part II. As stated above this is my view on the 
system integration that led to the concept of Networks on Chips. In the sec-
ond chapter – Networks on Chips – the concept of Networks on Chips are 
introduced and various aspects of the concept are presented and discussed. 
In addition to being an introduction chapter to Networks on Chips I also try 
to give the background to the included papers as well as put them into a 
context. This chapter is followed by a chapter summarising and delivering 
some condensed conclusions. Last of the “ordinary” chapters is a separate 
chapter with a summary of the included papers together with a few words 
about the author’s contribution. 

The Nostrum chapter A will present the platform used for all the experi-
ments and implementation. In Chapter B, the simulator used for all the 
experiments throughout the thesis is described. 

With this said I really hope that you enjoy the chapters to come.



1.1    Introduction – Part  I – Thesis Contributions 3
The main aim of this thesis is to propose enhancing techniques for perform-
ance of the communication aspects in Networks on Chips (NoCs); also a 
contribution to the layered Network on Chip is made.

The Network on Chip platform that has been developed during the evolu-
tion of our ideas we have chosen to call Nostrum. Nostrum is a network of 
switch-resource pairs organised in a 2D-mesh. Each switch has five input 
and five output connections. Four in/output connections connect the switch 
to its nearest neighbours in the direction of the compass and one in/output 
connection is used to connect the switch to the resource. The resource is an 
umbrella term for any device that wishes to communicate over the network, 
e.g. microprocessors, DSPs, memories etc.

The Nostrum platform has the following key features

• Supports best effort and guaranteed throughput traffic delivery

• Reliable – no packet drop

• Deflective routing is employed for best effort traffic delivery which 
gives a small footprint of the switches

• A TDMA based routing scheme is used for traffic delivery with hard 
guarantees

Paper III is describing the layered platform Nostrum and paper VII, and VIII
give examples where the platform has been used. For the two latter papers 
the author's contribution is limited to the sections of the papers where the 
platform is concretely described. 

Transmission of messages from a sender to a receiver over a NoC involves 
several stages

• Packetisation/Segmentation – the messages are split into packets

• Ingress/Downstream Queuing, Arbitration and Network Admission

• Network Transportation – routing through the network

• Network Exit and Egress/Upstream queuing

• Depacketisation/Desegmentation

1.1 INTRODUCTION – PART I – THESIS CONTRIBUTIONS
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In the papers [I, II, IV, V, and VI] included in this thesis, I propose a set of 
strategies to enhance the performance in several of these stages. Further-
more I propose a measure to quantify the how effective a network is in 
paper V – Operational Efficiency.

The concepts presented in the papers [I, III, IV, and V] are quite general and 
not tightly bound to the deflective routing of our Network on Chip concept 
platform Nostrum. In this context, it should also be stressed that the contri-
bution of the thesis is to propose strategies to enhance the performance of 
the network. The contribution is NOT to promote the mesh topology nor the 
deflective routing strategy employed. In Figure 1.1 the contributions of the 
performance enhancing strategies are positioned in relation to where in the 
message transmission sequence they act.

Below is a sub sectioned list of the main contributions of the thesis and in 
what paper they appear.

Priority Based Forced RequeueBE

Admission Sorting & 
Desegmentation

Network

FIGURE 1.1. Thesis Contributions

Segmentation, Queuing
& Traffic Shaping

Transportation Exit

GT = Traffic with Guarantees

Proximity Congestion 
Awareness

BE

Temporarily Disjoint NetworksBE
GT

Looped ContainersGT

Nostrum Layered Protocol Stack

Resource and 
Network Interface

Resource and 
Network Interface

BE = Best Effort Traffic

Operational Efficiency Measure

+

+

Dual Packet ExitBE
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Nostrum Layered Protocol Stack

Contribution appears in: Paper III, VII and VIII 

Paper III presents a concrete proposal for a protocol stack within our Net-
work on Chip concept platform Nostrum. The paper motivates and includes 
a protocol stack with well defined service interfaces within the Nostrum 
realm.

This paper presents our Network on Chip concept Nostrum. The concept 
defines a packet switched network with support for best effort traffic packet 
delivery as well as support for guaranteed bandwidth traffic, using virtual 
circuits. Furthermore, it includes a layered protocol stack and a correspond-
ing nomenclature for describing the individual layers and their interfaces.

Within the concept, a concrete instance is described – the Nostrum Back-
bone. The backbone is a mesh based communication architecture defining 
Resources as hosts for communicating processes. The backbone defines the 
logical placement of these Resources and how they are connected. The 
Nostrum consists of Switch-Resource pairs connected in a two-dimensional 
grid. The relation between Resources, the Resource Network Interface, the 
Network Interface and the Switches is included. Our layered protocol stack 
uses a terminology heavily inspired by the OSI reference model. To prove 
the work of concept a distributed DSP application from industry was simu-
lated. The results showed that the protocol covers the need of the particular 
example. The concept is further elaborated in The Layered Approach to 
NoCs on page 84 and in Nostrum Layering on page 170.

Temporally Disjoint Networks

Contribution appears in: Paper II

The idea behind the Temporally Disjoint Networks is that a physical net-
work, potentially, can be seen to contain a set of separate networks that a 
packet can enter dependent on when it enters the physical network. A nec-
essary condition for the existence of these TDNs is that a position in the 
network can only be reached on a multiple of N hops where N must be 
greater than 1. As a consequence the number of TDNs that exist, N is equal 
to the number of hops it takes to leave a switch and then get back to the 
very same switch in such a network. 

In our case, these conditions will be fulfilled in a Manhattan network with 
logically identical switches that performs no reordering of packets. 
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If the network is a torus the number and rows and columns must be even to 
render more than one TDN.

To illustrate the idea three different routes have been layered out in the 
Manhattan network in Figure 1.2. Their respective path lengths are 2, 4, and 
10. Hence, the number of TDNs that exist in this network will be 2. This 
means that two packets that are sent out consecutively on the network (i.e. 
in cycle n and cycle n+1) will never be able to collide! This has the conse-
quence that we could have different types of traffic in the different TDNs to 
enable different guarantees on latency and throughput in the respective 
TDN. The concept is further elaborated in Network Transport on page 178.

Looped Containers

Contribution appears in: Paper II

Looped containers provide a means to set up virtual circuits in a network 
that employs a deflective routing policy. To give guarantees in latency and 
throughput for individual packets three separate, but linked, problems must 
be solved. (1) The packet must be able to enter the network at a given time; 
the packet must be transported over the network within a certain time, and 
(3) the packet must be guaranteed an exit from the network to be delivered 
properly. Failing in solving either of these problems means that limited or 
no guarantees on latency can be given! 

To solve these problems a proxy packet was inserted into the network – 
bound to follow a predefined, closed, route between the source and the des-
tination. This particular proxy packet was given the highest possible prior-
ity to guarantee precedence over any other packet. 

Once the packet visited the sender it was loaded and sent to the destination 
where it is unloaded – hence the name looped container.  

a.1

a.2

b.1 c.1

b.2 c.2

b.3

b.4

c.3

c.4

c.5

c.6

c.7

c.8

c.9

c.10

FIGURE 1.2. Temporally Disjoint Networks
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If some effort is put into the mapping process of senders, receivers, and 
container routes a set of different virtual circuits can be set up. In the case 
where the cycling time of different loops shares a smallest common divider 
they can overlap without risk of collision. In the case where this may not be 
possible the virtual circuits can be placed in different TDNs to guarantee an 
interference free behaviour. The concept is further elaborated in Network 
Admission, Routing and Exit on page 175.

Proximity Congestion Awareness

Contribution appears in: Paper I

Proximity Congestion Awareness (PCA) is used to reduce the total load of 
the network. The bufferless deflective routing policy of our platform Nos-
trum can create hot-spots in the centre of the network. The reason for this 
behaviour is that a super-set of all possible routing paths to and from all 
senders and receivers in the network will have an overrepresentation of 
potential paths in the centre of the network. The remedy to this is to try to 
divert packets away from congested areas. The solution we propose is based 
on the idea that all switches monitor their current load and distribute this 
information – the stress value – to its neighbouring switches. The stress 
value is the sum the number of incoming packets averaged over the last four 
clock cycles.
A comparison of the resulting FIFO load of the different setting is pre-
sented in textual form in the paper and shows that the reduced maximum 
average FIFO load is greatly reduced and that the load has a wider distribu-
tion over a larger area. Using the PCA concept results in a substantial 
improvement with a 20-time load reduction. The concept is further elabo-
rated in Network Transport on page 178.

Dual Packet Exit

Contribution appears in: Paper IV and V

Dual Packet Exit is a proposed solution to the problem that there exist an 
accumulation of packets at the exits of the Network. The problem was iden-
tified when the exit process of packets in Nostrum was analysed. Our solu-
tion to this is to increase the exit bandwidth. The result is a reduction in the 
worst case latencies, the average latencies as well as in a lowered use of 
buffers. From simulation the most beneficial increase in terms of enhanced 
performance versus cost was to double the exit bandwidth – hence the name 
Dual Packet Exit (DPE).
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Priority Based Forced Requeue

Contribution appears in: Paper VI

The focus is here set on the admission to the network. The main problem is 
that packets may have to wait indefinitely long to enter the network 
dependent on the current load of the network. The network may have a fair 
routing policy that gives priority to “old” packets to keep the worst case 
latency down. Unfortunately, this does not help the packet that has not yet 
entered the network. Our solution to this is to make the system more glo-
bally fair by introducing Priority Based Forced Requeue.

Forced Requeue is to prematurely lift out low priority packets from the net-
work and requeue them outside using priority queues. The first benefit of 
this approach, applicable to any NoC offering best effort services, is that 
packets that have not yet entered the network now compete with packets 
inside the network and hence tighter bounds on admission times can be 
given. The second benefit that is more specific to deflective routing in Nos-
trum is that packet reshuffling dramatically reduces the latency inside the 
network for bursty traffic due to a lowered risk of collisions at the exits. 

Operational Efficiency

Contribution appears in: Paper V

Operational Efficiency is a measure to quantify how effective the network 
is. The cost that we define is the use of buffers. The use of buffers is both in 
terms of required buffer capacity as well as the average number of buffers 
actively used. The required buffer capacity is the buffers that have to exist 
in the system to cover for any worst case scenario. The average buffers 
actively used is the average number of buffers that is currently holding a 
packet in the system. From the average buffers actively used in the system 
we derive and define the term Operational Efficiency that is a measure 
defined as the throughput per buffers used in the system. The greatest bene-
fit of this measure is that a graph plotting the Operational Efficiency vs. the 
packet injection ratio now has a clear sweet spot! This has the concrete 
impact that an increase of the injection of packets into the network to 
increase the system throughput will have a cost associated to it and hence 
can be optimised to save energy. Using this measure we show that the use 
of our Dual Packet Exit strategy can significantly increase the system band-
width without increasing the energy used. The concept is further elaborated 
in Service Characteristics on page 72.
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Today’s ever increasing integration of transistors into a single chip has cre-
ated a demand for intelligent communication on-chip. To understand why 
this has happened, a historical perspective on integration is needed. The 
process of integration is a key component in the evolution of both micro-
processors and personal computers as well as for the more custom elec-
tronic system that today has become a System on Chip. 

The key is to understand that for both the computer as well as for the Sys-
tem on Chip realm integration is not only restricted to an increase in the 
sheer number of transistors but also encompasses the system as a whole. 
The process of integration made what used to be off-chip modules now 
become to be on-chip modules with much of their functionality intact. In 
short – what used to be a system on board is now a system on-chip!

Historical System Integration

This process of integration has been the companion of the hardware 
designer from the very beginning. During the 1950’s discrete transistors 
connected with wires gave logic gate functionality, and this was “the sys-
tem”. As soon as technology advance made it possible, transistors were 
integrated in monolithic devices, such as flip-flops, half adders, etc. These 
monolithic devices were now the modules and could be used to compose a 
system.

The transistors (and the wires) were integrated and sold as discrete compo-
nents – logic gates. Now the integrated logic gates could be used as compo-
nents in building a system giving more advanced functionality such as 
adders, controllers and complex custom logic functions. The most common 
of these macro-blocks where considered as systems and turned into compo-
nents.

1.2 INTRODUCTION – PART II – THE ROAD TOWARDS NOC
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The monolithic devices were developed and refined during the 60’s with 
milestones such as the Transistor-Transistor Logic (TTL) [Millman1987] in 
1963, which was a standardized Electric interface to ease integration and 
system composability as depicted in Figure 1.3

By the 1970s, almost all digital components were TTL compatible; this 
included all logic parts, memories and micro processors. In 1965 the stand-
ardized Dual In-line Package (DIP) [Millman1987] format significantly, 
which was a physical standardised layout, eased printed circuit board layout 
and reduced the system assembly cost (Figure 1.4).

FIGURE 1.3. Electrically Standardised In- and Outputs – Transistor-Transistor Logic (TTL)

FIGURE 1.4. Physically Standardised – Dual In-line Package
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During the 70’s the micro processor were introduced. One of the first micro 
processors to hit the market was Intel’s 4 bit 4004, which contained ~2000 
transistors. Now larger systems could be built targeted for the consumer 
market. Previously, the predominant customer had been the military and big 
companies using large main frame computers. With the advent of the 4004 
the consumer market opened and the Japanese manufacturer, Busicom’s 
desktop printing calculator, became the world’s first commercial product to 
use a microprocessor. The 4004 delivered the same computing power as the 
pioneer electronic computer, the ENIAC, built in 1946, which filled an 
entire room and used 18,000 vacuum tubes [Intel4004]. The 4004 had three 
companion circuits: the 4001 – a Read-Only Memory (ROM) chip for stor-
ing software; the 4002 – a Random Access Memory (RAM) chip for data 
storage and the 4003 – an input-output device.

In April 1973 came the 8 bit 8008 that had 3300 transistors. The instruction 
set of the 8008 eventually became part of the basis for the X86 architecture 
behind Intel chips today. The 8008 was to be followed by the 8080 in 1974. 
The 8080 was 4,500 transistors and became the basis of the Altair 8800 that 
some people regard as the ancestor to the modern personal computer. Of 
course Intel was not the only micro processor manufacturer of that time but 
the process of integration has been similar in any other computer brand.

The 8080 was followed by the 8086 and later by 80186 that had the major 
function to reduce the number of chips required by including features such 
as a DMA controller, interrupt controller, timers, and chip select logic – 
system integration!

TABLE 1.1. Scaling Terminology

Name Year # Gates

Single Transistor 1959 -

Unit Logic 1960 1

Multi-function 1962 2-4

Complex Function 1964 5-20

Medium Scale Integration 1967 20-200

Large Scale Integration (LSI) 1972§ 200-2000

Very Large Scale Integration (VLSI) 1978 2000-20000

Ultra Large Scale Integration (ULSI) 1989 20000-
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The steady increase in the number of transistors that could be placed on one 
chip has two components: improved process technology (1) gives smaller 
geometry in combination with larger chips (2). Scaling of transistors sizes 
down make them operate faster. The consequence of this combined effect 
was early recognized by the Intel co-founder Gordon Moore who predicted 
that the semiconductor performance would have an exponential growth. In 
Table 1.1 this exponential increase is depicted with the corresponding ter-
minology for that particular size

This evolution has progressed over the years and given faster and faster 
computers and systems. Throughout this development three key items can 
be identified

• Higher integration in terms of transistors

• Systems off-chip become Systems on-chip

• Standardization in interfaces, that enables composability and reuse

There is, however, a serious problem that arises in the process of integra-
tion. The logic itself becomes too big to handle – both from a designer’s 
perspective as well as from the clock distribution perspective. In order to 
solve the both these problems a GALS (Globally Asynchronous Locally 
Synchronous) [Hemani1999, Meincke1999,  Muttersbach1999] design 
style/methodology can be adopted. The basic idea of GALS is to divide the 
design into blocks, or regions, of approximately up to 100k gates. Each 
block will have a single synchronous clock but inter communication 
between blocks are handled asynchronously. 

This design style obviously requires means to handle the asynchronous 
communication. To facilitate this, a bus could be employed. The bus is a 
shared medium and hence enables multipoint communication. This solution 
rimes pretty well with the three key items identified since the bus is a com-
mon off-chip communication solution. In addition, it encourages and 
requires standardization of interfaces and protocols. Even so – as we will 
see – this will take us far but not all the way!
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The Bus

The bus has been present from the very beginning and the need for a shared 
medium was recognized even in the earliest machines like ENIAC (Figure 
1.5) [Goldstine1972]. With the invention of the bus, the need for a standard 
way of communication was apparent. The bus has developed over the years 
but still the bus is essentially a set of wires connected to all devices; and 
since it is a shared resource – one connection between devices reserves the 
whole interconnect. In Figure 1.6 the simplest variant of the bus is depicted. 

Simple, because the processor acts as a Master (marked with an M in the 
figure) exclusively and hence no arbitration is needed. The Master is the 
only device on the bus that is allowed to initiate any traffic to and from the 
Slaves. In the case of a system where multiple Masters are presents some 
kind of arbitration is needed. If fairness, bandwidth guarantees are desired 
the arbitration can become quite complex.

FIGURE 1.5. Eniac Schematics 
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In the case of several Masters that wish to utilise the bus, arbitration is 
required as depicted in Figure 1.7.

The strength of the bus is that it is a shared medium, which makes it capable 
of connecting any device attached to it to any other device. This is at the 
same time the buses’ weakest point since it has a very limited total system 
bandwidth. Moreover, the scalability from a physical perspective is limited 
since attaching more devices requires high fan-out and deep multiplexer 
logic and hence causes delays [Arifin2004]. In addition, the wires tend to 
be long, adding even more delay.

The Segmented Bus

One improvement that can potentially boost a bus based system is to divide 
it into independent segments and hence increase the system bandwidth – 
Figure 1.8. The precondition to achieve this is of course that the problem is 
possible to parallelise; otherwise the benefit of any bus-segmentation will 
only be a reduction of the depth of the multiplexer logic. In order to be an 
efficient solution, the inter-segment transactions should be quite rare and 
most of the operation should be done within the same segment. If no buffer-
ing is used in the bridges they could be implemented as simple tri-state 
buffers.

Memory DMA I/O Devices

Processor Processor

Arbiter

M M

S S S

FIGURE 1.7. Arbitrated Bus
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Except for the obvious benefit – that the segmented bus gives fast access as 
long as the target is in the same segment – the use of bus segmentation 
gives rise to, at least, three serious objections. 

• The Central Arbiter needs a thorough understanding of the system to 
be able to perform any “fair” arbitration

• Any arbitration will be too complex given the available time

• An inter-segment transaction will not only be slow but also stall or 
block any other transaction

If these initial objections are ignored, for the moment – What happens with 
the hierarchical segmented bus as a communication infrastructure when the 
system (on-chip) becomes bigger? For a system off-chip, such as the PC, 
the PCI (Peripheral Component Interconnect) has been used as a scalable 
solution [Dandamudi2002]. 
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FIGURE 1.8. Segmented Bus
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The Hierarchical PCI

The hierarchical PCI is typically built using PCI-to-PCI bridges. The bridge 
connects two independent PCI buses: a primary and a secondary. The bus 
closer to the CPU is called the primary PCI bus; the other is called the sec-
ondary. Each secondary PCI bus supports up to four PCI devices, as shown 
in Figure 1.9.

The bridge allows concurrent operation of the two PCI buses as well as traf-
fic filtering, which minimizes the traffic crossing over to the other side. The 
traffic separation along with the concurrent operation improves overall sys-
tem performance for bandwidth-hungry applications such as multimedia. 
Each PCI-to-PCI bridge has its own bus arbiter.

Would it be possible to migrate this solution as is into the chip to solve the 
problem of a too complex design? Unfortunately, the answer is no – this 
since the delay can be 10-20 clock across the chip. So if this is to be imple-
mented on chip any inter segment traffic would have to use a much down 
scaled clock for communication. One possible solution to run inter-segment 
communication at high speed is to equip the bridges will have with buffers 
and run communication in a pipelined circuit set-up fashion. Furthermore, 
any traffic crossing one or several segments/bridges would need some kind 
of system wide arbitration together with some header & routing informa-
tion appended to the messages.

PCI Bridge

FIGURE 1.9. Hierarchical PCI Bus
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System(s) on Chip

In parallel with the personal computer evolution, the concept of System on 
Chip (SoC) has evolved. Some would claim that a microprocessor could be 
called a SoC. However, what we today mean when we talk about a system 
on chip is a system where

• Components are reusable

• Components have already been tested and verified

• Designs specified at the highest possible level of abstraction – but can 
still be synthesized for implementation

In addition, it is desirable that the platform should be highly programmable.

A typical System on Chip is depicted in Figure 1.10 [SoC-Wiki]. The sys-
tem is controlled by a micro processor, an ARM Core (Advanced RISC 
Machine where RISC is an acronym for Reduced Instruction Set Computer) 
connected to the relatively fast System bus – the ASB (Advanced System 
Bus). 

FIGURE 1.10. ARM Based System on Chip
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The main components connected to the system bus are – except for the cen-
tral micro processor – the memory, the video handling devices, a Digital 
Signal processor, and the bridge to the peripherals bus. The peripherals are 
all connected to their own bus since their requirements are different from 
the components of the system bus. This set-up is a very common set-up and 
exists for several platforms. If we look into a somewhat old “modern” com-
puter the bus structure will be something like Figure 1.11. Please note the 
strong resemblance with the bus structure of the “typical” System on chip 
in Figure 1.10. Both systems have a fast bridging unit/bus connecting the 
memory and the micro processor. Furthermore, this fast bridge connects a 
“number crunching” unit. In the case of the personal computer, it is the 
graphic accelerator/video card. In the case of the system on chip it is usu-
ally some sort of DSP as seen earlier. The bridge is also connected to the 
system bus.

The Multi-core System on Chip

Moore's Law – the observation by the Intel co-founder Gordon Moore that 
the number of transistors on a chip will approximately double every 18 to 
24 months – has enabled a rapid increase in devices that can be fit onto a 
single chip. This circumstance, in combination with an ever increasing sys-
tem clock speed has enabled a rapid evolution of performance. 

CPU

NorthBridge

South Bridge

Memory Video Card

Modem Sound Card

Hard disk

PCI Bus

AGP BusMemory Bus

FIGURE 1.11. “Modern” Computer



1.2    Introduction – Part II – The Road Towards NoC 19
However, the ability to increase the global clock speed is butting up against 
the laws of physics. The reason is that clock speeds above a couple of GHz 
develop significant heat due to dissipated power. The power dissipation has 
two conceptually different components (i) The clock tree drivers needed to 
drive a clock at that speed to be simultaneous becomes huge. (ii) The high 
clock speed itself generates/dissipate power when distributed.

In the past, an increase in clock speed was matched with a scale down in 
supply voltages to keep down the dynamic power dissipation ruled by

Today, however, we have reached a point where the supply voltage is 
around 1V and further decrease is no longer possible due to that the transis-
tors become to leaky. In addition, the lowered voltage also heavily affects 
the noise margins of the circuit. This can be illustrated by Figure 1.12, 
depicting of the clock speeds of different Intel processor families 
[Patterson2008]. Please note the design decision made for the Dual Core 
processor of 2007 to actually lower the clock speed.

This has led to a natural paradigm shift since shrinking is no longer possible 
with increasing clock speeds and hence chip-global clock distribution is no 
longer possible. So instead of making the systems faster the strive is now to 
make them more parallel to utilise the abundance of transistors that the law 
of Moore yields. The problem is, however, that there exists a limited sup-
port for parallelism.

DynamicPower CapacitiveLoad Voltage2 SwitchingFrequency××=

FIGURE 1.12. Intel CPU Trends
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The Shared memory

As we have seen in this chapter the concepts that work off-chip are natu-
rally moved on-chip. With the concept of System on chip the off-chip bus 
naturally moved along into the chip. 

The main reason why the bus has lasted so long is that communication in a 
system on chip is done via a shared memory – the main memory. Since the 
memory is a common resource and – hence – naturally limits the systems’ 
bandwidth the bus is not the limiting factor on performance alone!

So why stick to one single memory if that is such a limiting factor? Sim-
plicity! The reason is that the sequential programming model has been the 
successfully taught in schools and by a majority of the software developer 
would be considered as the “natural” way to solve a programming task.

In the world of the hardware developers, the relation to parallelism is some-
what ambivalent. The Hardware Descriptive Languages (HDL) like VHDL 
or Verilog are supporting parallelism, since they are more or less just tex-
tual ways of drawing classic schematics; and the art of drawing schematics 
is inherently a way of describing a massively parallel system. However, 
when it comes to building a System on Chip the hardware designer falls 
back on a sequential, single memory model of the system despite the inher-
ent parallelism. Most SoCs that can be found on the web look something 
like Figure 1.10. A set of different components connected with two busses. 
One bus for memory traffic and one bus for peripherals. Most of the com-
munication over the processor bus goes via the main memory.

So if evolution is inevitable, why have we dragged along with the bus so 
long? Because a paradigm shift takes places due to necessity not of its pos-
sibilities. The one memory makes the bus to stay!

Patrick Gaughan and Sudahakar Yalamanchili early made a prediction in 
1993 that large scale parallel architectures would, by necessity, resort to 
physically distributed memories to provide scalable memory bandwidth 
[Gaughan1993]. These scalable memories would in turn require an efficient 
use of high bandwidth interconnections. The target for their projection was 
the parallel computers, but it will also be valid for the Systems on Chip.
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In 1995 William Wulf and Sally McKee realized “the same” thing from 
another viewpoint. They recognized that rate of improvement in microproc-
essor speed exceeds the rate improvement in DRAM memory speed and 
hence will lead to the inevitable – the hit of the memory wall! [Wulf1995]

A paradigm shift takes place due to its necessity NOT as a merit of its 
potential!

Networks on Chip

The Network on Chip (NoCs) is the natural extension of the on-chip bus. 
Natural, both, from the system integration evolution perspective as well as 
from a performance perspective. The system integration evolution makes 
the off-chip network migrate into the chips. These on-chip networks borrow 
from wide area computer networks, backplane networks, dedicated parallel 
computer networks, et cetera. 

Performance-wise the increase in communication led to the inevitable – the 
system grew out the non-hierarchical bus. Furthermore – as mentioned to 
be one of the driving forces behind Moore’s law – the chip sizes are not 
scaled down with technology – rather the opposite, thus it takes multiple 
clock cycles for data signals to traverse across a chip. Furthermore – logic 
will be/is today partitioned into multiple synchronous clock regions that 
will make data signals only have to traverse a small fraction of the chip area 
to solve the problem of interconnect effects [Sylvester2001, Kumar2002]. 
Hence, now the time is right for the introduction of the on-chip network.

Networks on Chip have the key features of

• Scaling well (low order topologies for traffic that is locally dominated) 

• Naturally separates communication from computation

• Inherently supports a GALS methodology (Globally Asynchronous, 
Locally Synchronous) which is a necessity for larger System on Chip

• Potentially predictable electric characteristics

• Better utilisation of wires compared to point-to-point networks

• Inherent support for parallelism
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Additional to this some NoCs have

• A packet based delivery scheme

• Guarantees on communication

To further stress the importance of Network on Chips as an evolutionary 
step it can be mentioned that the ITRS (International Technology Roadmap 
for Semiconductors) [SIA-Design2007] has identified on chip networks as 
the potential solutions for upcoming system-level design problems like

• SoC reconfigurability – To provide flexible, reconfigurable communi-
cation structures

• Design block reuse – Standardised communication structures and inter-
faces support reuse: IPs with standardized interfaces can be easily inte-
grated and exchanged, and communication structures reused.

The upcoming chapter Networks on Chip is intended to cover the major 
aspects on Networks on Chip and its potential as well as giving an in-depth 
introduction to the topic.



2
 Networks on Chip
Since the thesis is about architecture enhancements for providing communi-
cation within a Network on Chip a separate chapter about Networks on 
Chip (NoC) seems proper. In this chapter I will discuss why NoCs are 
needed and what is so special about Network on Chip – in comparison to its 
siblings off chip. Furthermore, I will talk about the characteristics of the 
Network Layer in Networks on Chip which I would say is defined by the 
Topology in combination with how packets are delivered by the network. 
The packet delivery has the steps of Segmentation/Packetisation, Ingress 
Queuing, Admission, Routing, Exit, Egress Queuing, and Desegmentation 
in combination with Arbitration. Once this is presented the concept Quality 
of Service will be discussed and the chapter will be finished with a few 
words about the layered approach to Network on Chip.

The motivation, need, and inevitability of Networks on Chip have been 
stated in more or less any publication in the area. I have tried to collect the 
most convincing and representative papers that cover most of the main 
arguments used. 

The problem of scaling the interconnect was first articulated in the “early” 
NoC publications. In Pierre Guerrier and Alain Greiner’s paper A Generic 
Architecture for On-chip Packet-switched Interconnections [Guerrier2000], 
they stated the “obvious” fact that busses are inherently non-scalable; and 
this for the two main reasons (1) the bandwidth of the bus is shared by all 
attached devices (2) the clocking frequency for wiring becomes tightly con-
strained by the electrical properties of the deep sub-micron processes. 

2.1 WHY NOCS?
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Furthermore, they also pointed out that every device connected adds para-
sitic capacitance and hence the electrical performance degrades with 
growth; even the arbitration becomes slower with an increasing number of 
masters. Despite that the network approach they advocated would consume 
more area than the corresponding bus, they still claimed it to be better since 
the aggregated bandwidth scales with network size and the same router 
could be used as a modular component for any size of network. In addition, 
they saw the advantage of enabling faster BIST and higher throughput 
thanks to the pipelined fashion in which packets were distributed.

In William J. Dally and Brian Towels paper Route Packets, Not Wires: On-
Chip Interconnection Networks [Dally2001] the predictability of the electri-
cal characteristics were pointed out as a main advantage; the predictability 
results in low crosstalk and opens for high-speed aggressive signalling cir-
cuits. Moreover, the advantage of the use of standard interfaces is pointed 
out as well as the fact that dedicated wires are highly underutilised.

The problem of increasing wire delay was articulated by Luca Benini and 
Giovanni De Micheli in Powering Networks on Chips [Benini2001]. They 
recognized that global wires spanning a significant fraction of the chip will 
carry signals whose propagation delay will exceed a clock period. Further-
more, the distribution of the clock signal from a single source will be 
extremely hard to achieve without introducing large skew. This led them to 
suggest a GALS methodology for System on Chip. GALS (Globally Asyn-
chronous Locally Synchronous) refers to the idea that the design should be 
divided in smaller synchronous blocks that communicate asynchronously 
with other synchronous regions [Meincke1999 and Muttersbach1999]. Jens 
Muttersbach et al. also articulate that choosing the ideal period for a hypo-
thetical global clock will be difficult since a global clock is used in anything 
from memory accesses to high-performance pipelined data paths.

Kees Goossens et al. saw four major main advantages of the NoC design 
scheme in comparison to a system composed of dedicated wires in their 
paper Networks on Silicon: Combining Best-Effort and Guaranteed Serv-
ices [Goossens2002]. (1) First, a NoC would reduce the wire congestions 
around the resources since wires/channels now could be reused. (2) Second, 
the worst case dimensioning could be calculated based on an average for 
the traffic flows potentially utilising a channel instead of as a worst case for 
every single traffic flow. (3) As third comes the benefit from a designer’s 
layout perspective where the design of the router and network could be 
fixed.  
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(4) The last and most important benefit was that the communication could 
be decoupled from the computation which would enable compositional lay-
out and timing closure of the different resources/IPs of the system. This in 
concrete means that the NoC infrastructure can be reused and its design 
cost can be amortized over multiple designs.

The global wire delays in relation to the clock made Paul Wielage and Kees 
Goossens [Wielage2002] suggest that an architecture that would be future-
proof had to be constructed from processing nodes (Resources) that did not 
grow in complexity with technology – instead the processing nodes would 
scale in numbers. The reason is that the global wire delay stays at best con-
stant under technology scaling and hence these wires become effectively 
slower in comparison to the gate delay. As an example they state that for a 
50 nm technology crossing a chip takes about between 6-10 clock cycles – 
this clearly invalidates the idea of a fully synchronous chip. As a feasible 
size for these processing nodes that would scale with technology 50k-100k 
gates are suggested [Ho2001 and Sylvester2001]. Even though we could 
make these global wires – they would be very costly from an energy per-
spective since repeaters would have to be inserted; this since the propaga-
tion delay of wire increases quadratically with its length for a given energy.

This wire scaling problem can be illustrated with Figure 2.1 taken from the 
ITRS (International Technology Roadmap for Semiconductors) published 
by SIA (United States Semiconductor Industry Association) [SIA-
Interconnect2005] where the gate delay of Metal layer 1 is plotted together 
with local and global wire delays. As it can be seen the global wiring delay 
gets worse with shrinking geometries but the gate delay together with the 
local wire delay get smaller. 

FIGURE 2.1. Delay for Metal 1 and Global Wiring versus Feature Size 
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From what is stated above it is easy to conclude that the inevitable down-
scaling is the root of all problems or as Ron Ho et al. put it “One interesting 
view of scaling is that the real problem is not the wire, but rather the 
increasing complexity that the scaling enables” [Ho2001].

Off chip networks have been around for a long time and come in many fla-
vours. Typically, we have telephone networks, wide area computer net-
works, dedicated parallel computer networks et cetera. Of these networks, a 
NoC interconnect topology mostly resembles the interconnect architecture 
of high performance parallel computer systems since the telephone and 
wide area networks do not posses local proximity in combination with that 
they exhibit more nondeterminism [Benini2002]. However, there exist a 
fundamental difference – in a high performance computer network the 
energy is usually not a matter of concern but the wires are; for the Network 
on Chip, it is the opposite. Both the NoC and parallel computer networks 
provide mechanisms for data transfer between processing nodes or between 
processors and memory modules [Grama2003]. The NoCs, however, do 
also possess the ability to facilitate energy-efficient local communication 
patterns due to their modular structure, which make them, especially suita-
ble for Multi Processor Systems on Chip (MPSoC) solutions [Pande2005]. 
Unfortunately, the power restrictions of NoCs in comparison to high per-
formance computers make the NoC limited in bandwidth. According to Ste-
fano Santi et al. [Santi2005] many high performance computing networks 
do not have any support for Quality of Service. The two presumed ration-
ales are (1) that the very high-speed links in high performance networks are 
providing capacity well above what it expected for any typical application. 
(2) High performance computing networks are optimised for giving the best 
average performance due to the expected cost of giving hard guarantees.

The two biggest differences between a ‘typical’ off-chip network and 
today’s on-chip networks are the, aforementioned, power aspect and the 
requirement of a planar topology. Today, however, the need of planar topol-
ogies  is  somewhat  al leviated with the advent of  3D networks 
[Pavlidis2007]. Another important aspect is the requirement of a limited 
buffer space. The reason these differences are of significance is that other-
wise already established technologies could have been brought – with small 
or no changes – on board on the System on Chip. Now the situation is 
somewhat more intricate and calls for special solutions dedicated to NoCs.

2.2 SO WHAT’S SO SPECIAL ABOUT NETWORKS ON CHIP?
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The limited buffer space requirement was a point made by William J. Dally 
and Brian Towles [Dally2001] and refers to that the buffer space in an on-
chip network directly impacts the power and are overhead and hence must 
be kept to a minimum; in traditional off/inter chip networks the area has not 
been an issue but instead the pin count of the chip has been the bottleneck. 
This means that the channels used for on-chip communication can be rela-
tively wide in comparison to the 8-16 bits used for the inter-chip networks.

In addition to the power aspect – or the energy constraint – Luca Benini et 
al. [Benini2001] also make the observation that the NoCs differ when it 
comes to design time specialization. With design time specialization, they 
envision a vertical design process where all layers of the design are special-
ized and optimised for the target application domain. In comparison with 
the off-chip network standardization is only employed for specifying the 
abstract network interfaces for the end-nodes and hence the network itself 
can be highly customized for the application domain. In a traditional off-
chip network, the different sub-components would have been built with 
standard interfaces to support full modularity.

Another point made by Andrei ˘Radulescu and Kees Goossens is that for 
off-chip networks out-of-order delivery is the typical scenario due to reor-
dering and packet drop in the switches [Radulescu2004]. In NoCs, it is pos-
sible to circumvent this by using e.g. static routing or with a Virtual Circuit 
scheme. Further they point out that deadlocks that may occur in off-chip 
networks could be circumvented in the NoC by using an “intelligent” rout-
ing strategies e.g. the Turn model [Glass1992].

2.2.1 Parallel Computer Clusters → MPSoC → SoC

Despite that it is a known fact that Networks on Chip are suggested to be 
used in systems ranging from heterogeneous custom designed ASIC like 
Systems-on-Chip to quite homogenous and regular Multiprocessor System-
on-Chips (MPSoC) as well as in the communication infrastructure in high-
end FPGAs this is very rarely articulated in the collected NoC literature; 
this even though the requirements of a Network on Chip will change quite 
dramatically in terms of traffic patterns, throughput, and latency as well as 
in the mapping process. It is hard to come up with a solution that fits all but 
some groups have done some observations: Srinivasan Murali et al. have 
articulated the idea that the more predictable the traffic patterns are at 
design time the more appropriate a custom topology is [Murali2006].
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Jerry Tao Ye et al. have analysed the requirements on the on-chip communi-
cation infrastructure for the traffic of an MPSoC system employing a shared 
memory paradigm [Ye2004]. They characterise a typical MPSoC system to 
consist of several processor nodes connected by an on-chip network. Each 
node consists of a Central Processing Unit (CPU) – and possibly a Floating 
Point Unit (FPU) – employing a two level local cache. All nodes logically 
have their “own” memory but that can physically either be a common mem-
ory block or a distributed memory. This means that most of the on-chip 
memory traffic will be write, read, or cache related operations. Among their 
findings, they found a mesh based structure employing a contention-look 
ahead routing scheme to be appropriate. For a SoC based system this may 
not have been the case.

Another observation that can be made is that the Multiprocessor system is 
easier to map onto a regular structure due to its homogenous nature. The 
traditional Systems on chip often have a set of components or building 
blocks of vastly varying sizes, which make them hard to “squeeze” into e.g. 
a mesh like structure. For the mapping of an SoC, the Æthereal is a good 
example of an appropriate architecture, since there are few restrictions 
when it comes to mapping [Goossens2005].

2.2.2 Message Passing vs. Memory Sharing

Since a “typical” NoC in some sense is a parallel architecture it will inherit 
concepts from the traditional parallel (computer) architecture field as well. 
In this field several different parallel programming models exist and Shared 
Address Space together with Message Passing are the two most important. 

The idea behind the Shared Address Space aka the Shared Memory model is 
that parallel instances communicate via a bulletin board where everyone 
can post information to be shared by peers. The big advantage of a Shared 
Memory architecture is that no special hardware is required. It inherits the 
‘simplicity’ of sharing data on a memory attached to a bus. The disadvan-
tage is that it requires the programmer to handle the synchronization.
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Typical examples of shared memory architecture are the Multiprocessor 
Systems-on-Chips (MPSoC) that have been used in high performance 
embedded systems such as network processors and parallel media proces-
sors. This kind of architecture will have a traffic behaviour that are very 
much concerned with the updating and flushing of local caches against 
some main memory (Cache and memory transactions and Cache coherence 
operations). This kind of architecture will require “short” packets for notifi-
cations and memory request as well as “long” packets for actual data writ-
ten or read [Ye2003 and Ye2004].

For the message passing approach data transactions are performed explic-
itly. This approach requires primitives for send, receive, etc. together with 
an API supporting this – preferably in hardware. The best known API for 
message passing is MPI [MPI1993]. Message passing conceptually inherits 
its behaviour and implementation from traditional network of cooperating 
workstations, or clusters. The advantage of message passing is that it is eas-
ier to optimise programs since all communication is explicit.

Some groups (us included) have implemented primitives for message pass-
ing in hardware since it enables a rapid development of adopters to other 
communication standards, e.g. AXI [Millberg2004b]. Andrei ˘Radulescu 
and Kees Goossens did, however, point out that existing protocols such as 
OCP, AMBA are not directly applicable; the reason is that these protocols 
assume an ordered transport of data. If one Master initiates requests in a 
specific order they will automatically arrive in that order – for NoCs special 
care needs to be taken if this is to be guaranteed [Radulescu2004]. In a later 
publication Andrei ˘Radulescu at al. suggest that a shared memory abstrac-
tion via transactions could be used to provide a smooth transition from tra-
ditional buses to NoCs [Radulescu2005]. These transactions, or request 
messages, are issued by master IP modules and handled by the addressed 
slave modules which reply with response messages. This not only provides 
backward compatibility with existing bus protocols such as AXI [AXI] or 
OCP [OCP] it also allows efficient implementations of future protocols.

Even though there are several ways to implement memory sharing on a 
message passing architecture, and vice versa, it is important to understand 
the mechanisms used and provided by a particular NoC to be able to utilise 
it in the most effective way. Furthermore, this distinction is of high impor-
tance when two NoCs are to be compared – a NoC providing primitives for 
Message Passing will most likely not perform well in a benchmark written 
in a Shared Memory style (and the other way around).



30 CHAPTER  2     Networks on Chip
The topology is defined by how the switching elements of the network are 
connected as well as how the network interfaces are connected to the net-
work. By topology, we hereby mean the logical interconnection structure of 
the network graph. The logical structure often has a one to one mapping to 
the physical layout.

NoC Lingua

In order to be able to discuss the topology issue I feel that some NoC lingua 
could be of use. The terminology used within the NoC community may 
have converged over the years but still there is no consensus of what 
expression to use, e.g. switch or router? This, in combination with, that any 
document referring to older documents has to tackle the problem of how to 
denote things in a consistent way. To avoid confusion when discussing, and 
referring to, various articles I have chosen to adopt to the currently used lin-
gua in the article. This, on the other hand, comes with the penalty that the 
terminology used throughout this thesis will not be consistent. In the 
upcoming pages, I will try to shed some light around the NoC lingua. 

A typical System on Chip (SoC) of today contains Resources like Proces-
sors, Digital Signal Processors (DSPs), Memory Controllers, I/O units, 
Memories, etc. These resources are centred around one or more communi-
cation infrastructure devices – typically bridged busses. Back in 1997 
Rajesh K. Gupta and Yervant Zorian defined these resources or cores as 
pre-designed, pre-verified hardware pieces that can be used as composable 
parts of a larger system on chip [Gupta1997]. If the context is a System on 
Chip or a Network on Chip the resources may be referred to as IPs (Intel-
lectual Properties) or Processing Nodes [Wielage2002] as well. Some 
authors have chosen to further divide these resources into Processing Ele-
ments (PEs) and Memories.

2.3 NETWORK ON CHIP TOPOLOGIES
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In Figure 2.2 a “typical” SoC is represented by a system utilising the IBM 
Core Connect [CoreConnect]. If this scenario would be moved into the 
“typical” NoC realm the bus based communication infrastructure would be 
replaced with a network and the resources would be equipped with Network 
Interfaces (NIs) to access the network. A cluster of a resource/Network 
Interface/Switching element would be called a Node as depicted in Figure 
2.3. The Nodes are further connected to each other with links – basically a 
set of wires.

In the traditional bus based system participants are defined as either Mas-
ters or Slaves where the masters are the initiators of communication. The 
actual transfer of data in communication is called a transfer. 

In Networks on Chips these transfers take the form of packets or messages 
where messages are the containers from the application’s point of view.  
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FIGURE 2.2. “Typical” SoC – The IBM Core Connect
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The packets are the entities of communication at the network level and a 
message may be composed of several packets that can be sent independ-
ently over the network (See Store-and-Forward or Packet Switching on 
page 64). Packets (or Messages) could also be divided into flits (flow con-
trol digits) that are sent through the network in a pipelined fashion (See Vir-
tual Cut-through on page 65 or Wormhole switching on page 66).

Communication Mechanisms – Switching and Routing

In the collected NoC literature, the concepts of Routing and Switching are 
used interchangeably even though they are different things. The reason is a 
clash in how to define things within the NoC realm and how they are used 
in the internet realm. Traditionally switching (or bridging) is an activity 
that is handled by the second layer, (L2 – data link), within the OSI model 
and involves moving packets between devices by using the physical 
address. The concept of routing is handled by the network layer (L3). This 
is how the concepts of routing and switching are used within the internet 
[Cisco2003]. An internet switch can decide where a packet should be sent 
by examining the MAC address (Media Access Control) within the data 
link header of the packet (the MAC address is the hardware address of a 
network adapter). A switch maintains a database of MAC addresses and 
what port they are connected to. This means that a switch only can forward 
a packet to a port in its database; a packet with unknown address is simply 
dropped – no intelligence here!

A router, on the other hand, can decide where to send a packet using the 
Network ID within the Network layer header. It then uses the routing table 
to determine the route to the destination host. Routers communicate with 
one another and maintain their routing tables through the transmission of a 
variety of messages. The routing update message is one such message that 
generally consists of all or a part of a routing table. By analysing routing 
updates from all other routers, a router can build a detailed picture of net-
work topology. 

On the internet, the process of routing involves two basic activities: deter-
mining optimal routing paths and the transportation of the packets that con-
tains the real data from source to destination. In the context of the routing 
process, the latter of these is referred to as packet switching. Although 
packet switching is relatively straightforward, path determination can be 
very complex.
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Given this information above clearly most NoC architectures are having 
routers that are performing a very basic variant of routing close to the bor-
der of switching. For instance, a communication mechanism like Wormhole 
switching (see Section “Wormhole Switching,” on page 57) is actually per-
forming routing of the head flit but switching on the body flits! So to avoid 
hair-splitting in the process of describing different aspects of the Networks 
on chips I have chosen to stick with the respective terminology of the paper 
currently discussed, and hence I am using the terms routing and switching 
interchangeably. Consequently, the same applies for the terms router and 
switch as well! 

Communication Infrastructure Classifications

When classifying communication infrastructures and networks three basic 
topology types – together with a hybrid superset – can be identified as 
depicted in Figure 2.4

• Shared Medium – e.g. busses

• Direct Network – e.g. meshes and trees

• Indirect Network – e.g. multistage interconnection networks

• Hybrid Network

The definition of a shared medium is straight forward – if the “network 
interfaces” are sharing the medium, i.e. no switching element is present 
then the communication infrastructure is classified as Shared Medium. 

If all switching elements in the network are connected to at least one net-
work interface the network is said to be a direct network; if the network has 
more switching elements than network interfaces it is classified as indirect. 
Any mix of the aforementioned topologies would be a hybrid.

In the parallel computer network community, a direct network is a network 
that consists of point-to-point communication links between processing 
nodes; whereas the indirect network is a network utilising communication 
links connected by switches [Grama2003].

All classes of topologies, of course, have their benefits and weaknesses. 
The main components that decide a particular topology’s suitability are the 
number of nodes in combination with the traffic pattern.
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Shared Medium

If the number of nodes is small and/or there is no parallelism in the system 
a “shared” topology is an excellent choice; typical example is the tradi-
tional SoC with one memory and no utilised parallelism. The shared 
medium requires very little hardware, i.e. no switching or routing elements. 
For a traditional bus, an arbitrator is however required. Furthermore, the 
shared medium offers a very natural way of broadcasting information. The 
shared medium’s two major drawbacks are the lack of scalability – both 
from a bandwidth perspective as well as from an electrical perspective; 
long wires mean high capacitance means power loss/slow speed.

Direct Network

Direct networks can be seen as a collection of small point-to-point net-
works between subsets of nodes in a network. The nodes are, as mentioned 
earlier, the collective names for a switch, a network interface and a resource 
“bundled” together. The immediate benefit of the direct network in compar-
ison to the shared network is that the total bandwidth of the network scales 
with the increased number of nodes. I addition, the direct network offers a 
natural path diversity that adds robustness to the network. Typical examples 
of direct networks are the mesh, the torus and the hypercube.

DirectShared

(1,1)

Indirect

FIGURE 2.4. The Shared Medium, Direct, and the Indirect Network
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Indirect Network

In the indirect network, some of the switches are not connected to any net-
work interfaces and have the sole purpose of being intermediate switches to 
alleviate communication. The indirect network has their history in tele-
phone networks where connections between peers in a system are set up 
and torn down. In the world of SoC, they have been used as high perform-
ance interconnect structures for advanced bus based systems e.g. AMBA 
(Advanced Microcontroller Bus Architecture) where several outstanding 
transactions can be performed in parallel. In NoCs indirect networks have 
been used in SPIN [Guerrier2000], which is a fat-tree implementation, the 
Butterfly Network used by Partha Pratim Pande et al. [Pande2003] and the 
Hierarchical Star Topology used by Se-Joong Lee et al. [Lee2005b].

Hybrid Network

The hybrid networks are an umbrella term for combinations of the three 
network types above. An example of a hybrid network could be a “stand-
ard” NoC topology – e.g. a mesh – that is used for packet based global 
interconnections connecting local buses for nearest-neighbour communica-
tions between e.g. a micro processor and a local memory [Kumar2002]. In a 
strict sense most networks could be called hybrid since the switches them-
selves internally is small indirect networks and hence a typical NoC com-
posed of switches would fall into this category.

Network Characteristics

When characterising a network several different metrics can be used. The 
relative importance of these metrics highly depends on the intended appli-
cation. Some metrics can more or less easily be analytically determined 
from the topology of the network. Other important characteristics need to 
be derived from simulation e.g. throughput, latency, etc.

These characteristics, however, tend more to be consequences of the partic-
ular service employed than real characteristics that stem from the topology 
and hence will be referred to as Service Characteristics – see Service Char-
acteristics on page 72.
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Below is a summary of the most common network characteristics used:

• Diameter – largest distance between any pair of nodes in the network. 
This will heavily affect applications with global traffic patterns whilst 
applications with mostly local communication will be unaffected. 

• Bisection bandwidth – the smallest bandwidth across any bisection of 
the network. The bisection must divide the network into two almost 
equal halves. The two opposites in this “contest” are the shared bus 
that possesses the minimal bisection bandwidth of 1 and the fully con-
nected network has a bandwidth that scales with the number of nodes. 
In general for traffic patterns without locality the network’s bisection 
bandwidth will become a limiting factor unless the network scales with 
both the number of nodes and growing average distance. If the bisec-
tion bandwidth is divided by the number of nodes in the network it 
gives an interesting measure of how well the bandwidth of the network 
scales with an increasing number of nodes – bisection bandwidth per 
node. 

• Redundancy/Path diversity – a redundant network has the potential of 
being tolerant of faulty links as well congestions in the network; this 
under the condition that it that also facilitates a flexible routing 
scheme.

• Aggregated bandwidth/throughput – the total bandwidth of the whole 
network. This is an upper bound of how well a network will suit an 
application with a lot of parallel communication. This measure is inter-
esting in combination with other metrics; for instance, a network with 
no path diversity and/or a low bisection band width may not be able to 
be used at its full potential.

• Regular vs. Irregular – a regular network topology is defined in terms 
of some sort of regular graph structure (such as rings, meshes, hyper-
cubes, etc.)

• Link Bandwidth – the rate at which data can be transferred over a sepa-
rate link/node to node connection.
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• Blocking vs. non-blocking – A non-blocking network will support that 
N source nodes can connect to N destination nodes in any one-to-one 
combination. A non-blocking network will always be able to make a 
connection between any pair of non-busy nodes regardless of any 
already existing connections. Example: a 2×2 mesh will be non-block-
ing since any pair-wise combination of three sources to three destina-
tions can never block a fourth connection pair to be set up. This is 
obviously only true if the path set-up mechanism is intelligent enough 
to find the “free” path. On the other hand; a 4×4 will be blocking due to 
a limited bisection bandwidth. In other words: if the network is cut in 
half, there are eight nodes on the right side and eight on the left side. 
The number of links connecting these two halves are only four – hence 
connecting more than four nodes from one side to any four nodes on 
the opposite side will not be possible. This is, on the other hand, obvi-
ously true at all times regardless of how intelligent the path set-up 
mechanism is since no “free” path can exist.

• Switch degree – how many links/pairs of in- and out-puts every switch 
has. The higher degree the more flexible routing decisions – but at the 
price of a higher implementation cost per switch.

• Symmetry – does the network looks the same from every node? A typ-
ical example of a symmetric network is the torus.

• Homogeneity – all the nodes and links are identical. As it can be seen 
above the list of different characteristics is rather long, and it may be 
very hard to foresee all the possible implications when the choice of 
the network type is done. However – to articulate the characteristics 
early in the design process may rule out the worst surprises.
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2.3.1 Network / Communication Infrastructure Types

Traditionally, systems on chip have either employed a bus structure or a 
custom wiring scheme (point-to-point). Qualitatively this was identified as 
a bottleneck by Pierre Guerrier & Alain Greiner [Guerrier2000] and can be 
seen as the starting signal for the NoC research community. Later Evgeny 
Bolotin et al. quantitatively made a comparison of the bus, the segmented 
bus, the point-to-point, and the mesh [Bolotin2004a]. Their findings can be 
summarized in Table 2.1 where asymptotic cost functions of the different 
architectures are presented.

In the analysis, they assume that the resources are of equal size and 
arranged in a grid. Further they assume a uniform traffic distribution for the 
traffic between the resources; to simplify the analysis the load capacitance 
of the interconnection architecture is assumed to depend only on the link 
length. From this they derive a set of analytical expressions for area, power 
and operating frequency for each interconnection scheme. In Table 2.1 I 
have chosen to show only the asymptotic limits of these functions. The sur-
prisingly large area for the bus and the segmented bus is explained by with 
”... the NS-bus requires an excessive bus width [...] to compensate for the 
lack of parallelism and for the low operating frequency due to its larger 
load capacitance” [Bolotin2004a].

Total AreaTopology

Bus

Segmented Bus

Mesh

Point-to-Point

Power Dissipation Operation Frequency

O n3 n( ) O n n( ) O
1

n2
-----

⎝ ⎠
⎛ ⎞

O
1
n
-----

⎝ ⎠
⎛ ⎞

O 1( )

O
1
n
-----

⎝ ⎠
⎛ ⎞

O n n( )

O n( )

O n n( )O n2 n( )

O n( )

O n2 n( )

TABLE 2.1. Asymptotic Limits for Area, Power and Frequency



2.3    Network on Chip Topologies 39
One substantial difference between traditional off chip networks and the 
Network on Chip is the assumed “restriction” on a planar topology 
[Santi2005]. Since the NoC is restricted to a 2D layout – due to the silicon 
mapping constraint – low order topologies are preferable since they have 
natural planar mappings [Culler1999]. Even though we are constrained by a 
planar topology, there are still many options when the network topology is 
to be chosen.

In order to characterize the communication infrastructures (point-to-point, 
busses, and NoCs) that is used, or proposed, the subsections below are 
devoted to that. The motive for choosing the variants below are that they 
are either traditionally – or contemporarily – used in SoC design, or they 
are the most common NoCs [Salminen2008, Bjerregaard2006, and 
Moraes2004]. Since the mesh is the topology that has been used in my work 
the mesh is also dealt with in most depth.

• Point to point

• Shared and Bridged Bus

• Fat-tree

• Extended Bidirectional Ring

• Custom Topologies

• Mesh and Torus
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Point to point

Together with the bus the point-to-point connection scheme has been the 
most common in traditional SoC design. For a moderately sized design, it 
works well but since every new design needs a completely different layout 
for its wiring scheme the point-to-point becomes expensive in terms of 
design effort over several designs. The reason is that a point-to-point wiring 
scheme by necessity must be ad-hoc. With shrinking geometries the two 
design phases of logic synthesis and placement can no longer be separated 
due do non-neglectable wire delays and hence it is crucial to be able to esti-
mate wire delays already during synthesis [Atienza2008] 

The more dense/complete the point-to-point graph is the higher aggregate 
bandwidth. For the fully connected graph, the diameter is as low as one but 
the wiring cost grows as N(N-1) – see Figure 2.5. As pointed out by Kees 
Goossens et al. [Goossens2002] dedicated point-to-point wires suffer from 
three major problems. (1) These wires must be dimensioned for worst case 
conditions both from the electrical perspective (cross talk and wire spacing) 
as well from the perspective of the sheer volume of traffic. (2) Since some 
resources will be connected to multiple other resources they will suffer 
from wire-congestion. (3) This type of architecture is inherently non-scala-
ble since it exists an implicit dependency between the resources from a 
mapping perspective which is layout specific. One further point made by 
Christian Grecu et al. is that the propagation delay of long wires will exceed 
the limit of one clock cycle – this can be overcome by the insertion of FIFO 
buffers. However, the insertion tends to be very ad hoc and hence will make 
the design hard to generalize or scale [Grecu2005]. 

FIGURE 2.5. Point-to-point Networks of Varying Density
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Shared and Bridged Bus

As mentioned above – the bus is traditionally the most commonly used 
platform for communication for inter and external chip communication. 
The bus comes with some nice features and some less nice properties.

On the positive side – the bus is very simple and requires little hardware 
except for a mechanism handling arbitration. In addition, the bus offers a 
very natural way of broadcasting information. 

Since the bus is a shared medium it also shares the shared medium’s major 
drawback – lack in scalability. Neither does it support multiple concurrent 
communications and can therefore, not utilise any inherent parallelism of 
the system.

One way to reduce the length of the bus – and hence the capacitance – is to 
split it as depicted on the left side in Figure 2.6. By segmenting the bus not 
only the length is shortened, transfers of data are now possible to perform in 
parallel in the different bus-segments. This, however, comes at a cost – the 
more segments the more control (hardware) is needed to route the data to 
the right destination; the segmented bus will more and more resemble a net-
work! The problem with this approach is that it tends to become very ad 
hoc and this means that solutions are locally optimised and hence become 
hard to automate, port, or scale [Grecu2005]. Paul Wielage and Kees Goos-
sens suggest that the bus could serve as a first, local layer of communica-
tion infrastructure [Wielage2002]. This local bus should be equipped a local 
bridge to a global network connecting all the busses. The gain is twofold: 
the network interfaces are often over-dimensioned for any IP connected to 
it – several IPs could beneficially communicate locally before the need for 
a network actually arises. Moreover, a bus interface is normally much 
cheaper than a network interface.
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FIGURE 2.6. The Shared Bus and the Bridged Bus
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Fat-Tree

The most famous fat-tree architecture in NoC history is the SPIN architec-
ture (Scalable Programmable Integrated Network). SPIN origins from one 
of the first NoC papers – Pierre Guerrier & Alain Greiner's paper  
A Generic Architecture for On-Chip Packet-Switched Interconnections 
[Guerrier2000]. The fat-tree is a typical example of an indirect network; the 
topmost layer of switching elements are only indirectly connected to the 
resource elements and have the sole purpose of being “bridges” between 
different parts of the network as shown in Figure 2.7; the path “upwards” is 
dynamic but fixed “downwards”. 

This particular network of eight nodes has a diameter of three and a bisec-
tion bandwidth per node of 1, which is relatively high – hence the name; a 
traditional tree network would have a bisection bandwidth per node that 
rapidly decreases with network size since the bisection bandwidth is con-
stant. In general fat-tree networks have a diameter that is proportional to 
log2N-1. The choice of architecture was motivated by that Charles E. Leis-
erson had formally proven that the fat-tree would be nearly the most cost 
efficient for VLSI realisations from a routing perspective [Leiserson1985]; 
this decision was, however, re-evaluated in their sequel architecture DSPIN
(Distributed, Scalable, Programmable, Integrated Network) where they 
decided to move to a mesh-based architecture. The major shortcomings of 
SPIN were (1) that it was a very inflexible architecture since it was hard to 
modularise; (2) also it was difficult to synthesise and (3) the routing deci-
sion was centralised and hence did not work in within a GALS paradigm 
[Panades2006].

5 6 7 81 2 3 4 D E F G9 A B C

FIGURE 2.7. 16 Node Fat-tree
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Extended Bidirectional Ring

The traditional bidirectional ring is actually the simplest form of a torus, 
that is, an N-ary 1-cube. For the ring the process of routing is straightfor-
ward – the clockwise or counter-clockwise direction are simply selected 
depending on the shortest path. The benefits of the ring is a small footprint 
thanks to a very uncomplicated routing process in combination with being a 
sparse network with low degree (2) – the wiring cost hence grows as N. 
Also the physical mapping process can be simple in an SoC with processing 
elements of varying sizes in the same way the bus is/was. On the down side 
is a large diameter and a limited bisection bandwidth.

Extended Bidirectional Ring – The Spidergon

An interesting architecture that tries to overcome the weaknesses of the tra-
ditional bidirectional ring whilst keeping its benefits is the Spidergon NoC 
of ST Microelectronics [Coppola2008]. In the Spidergon the degree of the 
nodes have been slightly increased (3) with a bidirectional “shortcut” to the 
opposite side of the ring. The obvious gain is a lowered diameter (N/4) in 
combination with a slightly higher bisection bandwidth. At a glance the 
extended ring appears hard to map onto a 2D surface due to the many cross-
ing connections in the centre as depicted in Figure 2.8b. However, if the 
network is “cut in half and twisted” the many crossing connections are 
straightened out so that only one crossing remains (Figure 2.8c). This sim-
ple change of viewpoint now enables even the Extended ring to be mapped 
in a similar manner to the traditional ring.

Even though the switches are simpler than the traditional mesh thanks to 
the lower degree (3 in comparison to 4) the wiring cost is of the same mag-
nitude if the Spidergon NoC is used to connect resources of a traditional 
mesh layout.
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Custom topologies

In the literature, there are several examples of custom topologies used 
[Bertozzi2005, Jalabert2004, and Murali2006]. Groups that have imple-
mented custom topologies report that in comparison to the “standard” 
topologies (mesh, torus, etc.) they have achieved improved performance 
and less power and area overhead when used for SoCs.

In Antoine Jalabert et al.’s paper about ×pipes they put forth the following 
reasons for choosing an irregular topology [Jalabert2004]; Since many 
SoCs involve heterogeneous cores – having varied functionality, size, and 
communication requirements – a regular interconnect, designed to match 
the requirements of a few communication-hungry components will be 
largely over-designed with respect to the needs of the remaining compo-
nents. As a concrete example they put forward their implementation of an 
MPEG4 decoder. In this decoder, the embedded memory (SDRAM) is 
much larger than all other cores and is also the critical communication bot-
tleneck. As seen in Figure 2.9 the block sizes are highly non-uniform they 
would not match a regular, tile-based floorplan [Murali2006]. Also, many 
neighbouring blocks do not need to communicate and hence the regular 
structure will over-provision the communication facilities; that is, there is a 
significant risk of under-utilizing many tiles and links.

Srinivasan Murali et al. – on the other hand – argue that regular and redun-
dant topologies are required for on-chip systems where the traffic character-
istics of the system cannot be predicted statically, as in multiprocessor 
systems. For most SoCs the system is designed with static (or semi-static) 
mapping of tasks to processors and hardware cores and hence the commu-
nication traffic characteristics of the SoC can be obtained statically. 

FIGURE 2.9. Custom topology mapped Video Object Plane Decoder of Srinivasan Murali et al.
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Among other reasons for using NoCs is the fact that the interconnect struc-
ture and wiring complexity can be well controlled. When the interconnect is 
structured, the number of timing violations that occur during the physical 
design phase is decreased. Such design predictability is critical for today’s 
SoCs for achieving timing closure. Early works on NoC topology design 
assumed that using regular topologies (such as the mesh) would lead to reg-
ular and predictable layouts. While this may be true for designs with homo-
geneous processing cores and memories, this is not true for most SoCs as 
they are typically composed of heterogeneous cores. This because the core 
sizes of the SoC vary and the floorplan of the design does not match the 
regular, tile-based floorplan of standard topologies.

Srinivasan Murali et al. implemented a set of six different SoC benchmarks 
consisting of e.g. a video processor, an MPEG decoder, a Video Object 
plane decoder, etc. The six designs were implemented on (1) a traditional 
mesh, (2) a mesh where the “unnecessary” links have been removed and (3) 
a custom NoC. An excerpt of their findings is presented in Table 2.2, and as 
it can be seen it is in favour of the custom NoC in terms of area, power and 
performance.

TABLE 2.2.  Topology Comparison for VPOC, MPEG, and VODP of Srinivasan Murali et al.

Application Topology Power (mW) Average Hops Area (mm2)

VPROC custom
mesh
opt-mesh

79.64
 301.8 
136.1

1.67
2.58 
2.58

47.68
51.0
50.51

MPEG4 custom
mesh
opt-mesh

27.24
96.82 
60.97

1.5 
2.17
2.17

13.49
15
15.01

VOPD custom
mesh
opt-mesh

30.0 
95.94 
46.48

1.33 
2.0 
2.0

23.56
23.85
23.79
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Davide Bertozzi et al. did a similar exercise to Srinivasan Murali et al. in 
2005 and their conclusions agree. They also report significant area and 
power improvements with an automatically synthesised custom NoC 
[Bertozzi2005]. The main reason for the improvement was that fewer 
switches were used and the switches that were used had a smaller size in 
comparison to the corresponding mesh switches. 

As driver application they used a Video Object Plane Decoder (VOPD) – as 
depicted in Figure 2.10 – where only about half of the cores communicated 
to more than a single core. This motivates the configuration of this custom 
NoC, having less than half the number of switches than the mesh NoC; also 
the custom NoC has lower packet latency as the number of switch and link 
traversals is lower.

Mesh and Torus

Most NoCs presented in literature have a physical layout that resembles a 
mesh or a torus as seen in Figure 2.11 [Salminen2008, Bjerregaard2006,
and Micheli2006].

FIGURE 2.10. Custom topology mapped Video Object Plane Decoder of Bertozzi et al.
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The main reasons for choosing a mesh are:

• Fits a planar chip

• Short and predictable links

• Easy routing – addresses become positions in the grid!

• Scalable

• Intuitively Appealing

Nikolay Kavaldjiev and Gerald Smit did a study in 2003 where they ana-
lysed how well different topologies were suited for NoC purposes 
[Kavaldjiev2003]. Their conclusion was that low dimensional topologies 
like the mesh and torus are the best candidates thanks to that they scale, 
have an efficient layout, and are energy-efficient as well.

The 2D mesh and torus networks are the most common topologies and have 
been implemented by various groups within the NoC community 
[Bolotin2004b, Felicijan2004, Hu2005, Kumar2002, Liang2000,
Mello2005, Millberg2004b, Moraes2004, Sgroi2001, Soteriou2006, and 
Wolkotte2005] (mesh) [Dally2001, and Marescaux2002] (torus).

If the torus and the mesh are to be compared it has been shown that the 
torus both has a higher throughput as well as a lower average latency 
[Yang2008]. On the other hand, Partha Pratim Pande et al. [Pande2005]
came to the conclusion that even though the torus may have a higher 
throughput the mesh is more effective from an energy perspective (lower 
bit energy) due to the folded torus doubled link length.  
William J. Dally and Brian Towles came to a similar conclusion – if the 
wire transmission power dominates over the power in the routers meshes 
are more power efficient [Dally2001].
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 A Few Words about Mapping onto a Mesh based NoC

An effective process of mapping is essential for the performance of the 
NoC. From our observations based on different simulated traffic patterns 
the mapping has a profound impact on performance; in comparison with 
routing strategy chosen the impact of a reasonable mapping is dominating. 
With this said I do not claim the routing strategy to be of no/small impor-
tance – rather highlight two observations.

• A clever mapping is essential for good performance

• If two NoCs are to be compared e.g. to evaluate, which routing strategy 
is the most efficient this becomes very hard. This, despite that the two 
NoCs utilizing the same workload/benchmark the impact of mapping 
will be so dominant that it makes it very difficult to analyse and make 
any claims about the benefits of either routing strategy

Mapping is not only restricted to the spatial mapping of cores onto a chip; it 
does also involve the routing of the communication between these cores as 
well as mapping of the individual traffic flows into appropriate Guaranteed 
or Best Effort channels that the platform provides so that requirements on 
latency, throughput can be fulfilled.

Lap-Fai Leung and Chi-Ying Tsui argue that to satisfy the hard dead-line 
requirements under worst case conditions, the network resource allocation 
and scheduling of guaranteed services have to be done off-line, i.e. under 
the static mapping phase to minimize the network resource usage 
[Leung2006]. 
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FIGURE 2.12. How to Make an Efficient Mapping?
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When it comes to the process of mapping a detailed study is out of the 
scope of this thesis but to make any statement here I fully agree with 
Andreas Hansson et al. in their claim that the process of mapping must be a 
unified approach in that the different aspects of mapping have to be consid-
ered simultaneously [Hansson2005]. In their paper, they present a holistic 
mapping process that also involves the TDMA slot allocation for the provi-
sion of latency and throughput guaranteed services

The idea of a regular mesh (torus) based NoC is intuitively appealing but 
the more “SoC-ish” a system becomes, i.e. the more heterogeneous the 
cores are the less suitable the mesh seems due to different sizes of the cores. 
This was correctly pointed out in Radu Marculescu et al.’s survey of Out-
standing Research Problems in NoC Design. Regarding topology the size 
and shape of the cores vary widely hence a regular topology will waste area 
[Marculescu2008]. A CMP/MPSoC system is more easily adapted.

To attack this problem of heterogeneity in size, sacrifices have to be made. 
If the logical structure of the full mesh does not have to be kept and the 
switches in the network can make intelligent choices and route packets 
around missing/removed links a more clever design can be made. A NoC 
that adopts this scheme is the QNoC of Technion (Israel) depicted in Figure 
2.13 [Bolotin2004b].
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FIGURE 2.13. QNoC Mapping with “missing” links
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The potential cost of this approach is obviously that the switches need to be 
explicitly aware of how to route the packets. In the traditional, complete, 
mesh, the routing is – for natural reasons – not a matter of concern since the 
routing is simply based on the position in the grid [Bolotin2005 and 
Bolotin2007]. For a network where some links are missing routing tables 
are needed to avoid that packets are routed into “dead ends”. These routing 
tables are potentially costly, since they grow with network size – this 
regardless if they are located in the routers or in the sources. The QNoC 
hence employs a hardware-efficient routing technique that is based on a 
combination of a fixed routing function and reduced routing tables with 
entries that are created only for destinations whose routing decisions differ 
from the output of the routing function.

If the logical structure of the mesh is to be kept with an acceptable waste of 
silicon area the mapping can be done in such a way that the links no longer 
have to be of the same length – see Figure 2.14. This approach will keep 
most of the benefits of the mesh or torus with (maybe) the exception of the 
predictable characteristics of having links of equal length. This does, how-
ever, add one further dimension to the mapping process and the waste area 
might not be of significant size dependent on (1) how efficiently the 
resources can be mapped into a grid with given sizes of rows and columns 
(2) how well the other requirements of the mapping process can be fulfilled.
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FIGURE 2.14. Regular Mapping with Waste Areas
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The Energy Perspective of Meshes vs. Tori

Since meshes and tori are common topologies a small comparison could 
come handy. In 2005 Hangsheng Wang et al. suggested a framework for the 
study on the energy consumption of different topologies [Wang2005]. Their 
“simple” assumption was that the average energy consumed by transporting 
a single flit/packet – Eflit – could be expressed as either (1) or (2). These 
equations are variants of the one that William J. Dally used to motivate the 
choice of a Torus [Dally2001]

Where Havg is the average number of switches/routing elements a flit has to 
traverse in the system; ER the average routing traversal energy and EL is the 
average link traversal energy per channel, i.e. the cost of transferring a flit 
between two switches. Moreover, Davg is the average distance from source 
to destination and EL0 is the average link traversal energy per unit length 
and determined by signalling technique and process technology. 

In their study, they evaluated meshes and tori of different dimensions as 
well as hypercubes, hierarchical meshes (aka hypercubes). In hierarchical 
meshes and tori, channels not only connect adjacent nodes but also connect 
v-node away neighbours in each dimension. These connections are called 
express channels and the distance v is referred to as the express interval.

Their findings could be summarized in that

• From an energy standpoint, high dimensional tori should never be 
selected over hierarchical tori or express cubes.

• As the process geometry shrinks the express interval of the hierarchical 
tori should be increased to keep the hierarchical tori the most energy-
efficient.

In both conclusions above the assumption is made that the average hop dis-
tance Havg scales with the size of the network, i.e. that the application run-
ning on the system is fully parallelisable to present an even load to the 
network. From a SoC perspective, this is however doubtful. Despite this 
objection, I have chosen to use the Havg as defined by Hangsheng Wang et 
al. and by William J. Dally.

1( )Eflit Havg ER EL+( )=

2( )Eflit Havg ER Davg E⋅
L0

+⋅=
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If the n×n 2D mesh is compared with the folded 2D torus equation (2) gives

Mesh with Havg=2n/3

Torus with Havg = n/2 and the channel length doubled

As it can be seen the torus consumes 25 percent less routing energy, ER, but 
50 percent more link energy, EL, in comparison to an equally sized mesh. 
This means that the ratio between link and routing energy determines which 
alternative that is the most energy-efficient. However – this is under the 
assumption that the traffic pattern is uniform and this is most likely not the 
case for an average SoC. If locality in the traffic pattern is assumed – and it 
should be if a low order topology is to be chosen – then the mesh becomes 
more advantageous since the Havg no longer scales with the size of the net-
work. Davide Bertozzi et al. came to a similar conclusion in their work but 
with “realistic” traffic patterns [Bertozzi2005]. They applied their design 
methodology NetChip onto four different video processing applications: 
a Video Object Plane Decoder (VOPD) mapped onto 12 cores, an MPEG4 
decoder mapped onto 14 cores, a Picture-In-Picture (PIP) application 
mapped onto eight cores (PIP), and a Multi-Window Display (MWD) appli-
cation mapped onto 14 cores. The traffic patterns of these applications are 
rather local – as seen in Figure 2.15 – and hence the mesh outperforms the 
torus in terms of both area and power for all four cases despite that the aver-
age hop count is about 10 percent smaller for the torus.
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FIGURE 2.15. 
Core graphs of video processing applications. 
(a) MPEG4 core graph, (b) VOPD core graph, 
(c) PIP core graph, and (d) MWD core graph.
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Bottom Line

In the collected literature on Network on Chips, there is no “obvious” win-
ner when it comes to the choice of topology [Marculescu2008]. If the com-
monly available NoC proposals are investigated at least some have an 
articulated reason behind their choice of topology.

Despite that higher order networks may have theoretical advantages over 
the low order networks they are ruled out due to the layout constraints that 
exist on a planar space such as the chip. 

Fortunately, the communication pattern of a traditional SoC exhibit locality 
[Bertozzi2005] and hence low order topologies could be advantageously 
used [Culler1999]. In particular accesses to memory displays a high degree 
of both temporal and spatial locality of data accesses; this in combination 
with that since SoCs traditionally heavily rely on systems communicating 
via memory the low dimensional topology NoC is a natural choice 
[Kavaldjiev2003].

Despite what is said about how appropriate different topologies are in 
terms of the architecture’s ability to scale and of layout and energy-effi-
ciency I would say that the two most important factors when making the 
choice of topology still is how well it matches the traffic pattern of the sys-
tem in combination with the possibility to efficiently map the system in 
question to this particular topology.
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Since the purpose of this chapter is to put the papers and concept presented 
in my publications into a context it will only be a brief introduction to net-
work characteristics and in no sense a complete description. The reader is 
encouraged to study (at least) the introduction chapters of the book Princi-
ples and Practices of Interconnection Networks by William J. Dally and 
Brian Towles and/or the Interconnection Networks: An Engineering 
Approach by Jose Duato et al. for a good overview and a thorough treat-
ment of the topic [Dally2003 and Duato1997]. In Networks on Chip, Gio-
vanni De Micheli and Luca Benini treat the concept of Networks with the 
focus set on Network on Chips [Micheli2006]. These three books will 
greatly improve the reading experience and understanding of this chapter.

During the transmission of messages from a sender to a receiver over a 
NoC several stages are involved as shown in Figure 2.16

• Packetisation/Segmentation – the messages are split into packets

• Ingress/Downstream Queuing, Arbitration and Network Admission

• Network Transportation – routing through the network

• Network Exit and Egress/Upstream queuing

• Depacketisation/Desegmentation

Even though all of these stages are essential, the network transportation is 
the part that has been given the most attention. Innumerous papers have 
been devoted to how to efficiently transport data over the network in terms 
of Topology selection, Routing algorithms, Router micro-architectures, 
Arbitration, Throughput guarantees, Power and energy issues, Fault toler-
ance and reliability issues, Timing and so forth.

Most of these aspects are analysed from the perspective of data transporta-
tion with or without guarantees. Very little is, however, written about how 
to guarantee network Admission and Exit for Best Effort traffic efficiently.

2.4 PACKETISATION, ADMISSION, ROUTING AND EXIT
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 Even though the stages are the same the situation is somewhat different for 
traffic allocated to Best Effort versus traffic that is assigned to a service 
class with some given guarantees (for a more elaborative description of 
these concepts see Section 2.5, “Quality of Service – QoS,” on page 70 ff.). 
For traffic with “hard” guarantees the messages are treated as first class cit-
izens and hence will be winners in the arbitration process in the Network 
Interfaces as well as in the network. 
For the transportation through the network different schemes can be used 
such as  Vir tual  Circui ts  [Mello2005],  TDMA based schemes 
[Goossens2005 and Millberg2004a], etc. One potential problem is that if 
the guarantees given, only apply to the transportation – but not the access to 
the recipient (Master – Slave data rate mismatch). In these cases end-to-end 
flow control might be needed.

For the Best Effort traffic, the situation is very much dependent on the traf-
fic situation in the rest of the network, and it is very hard to achieve “glo-
bal” fairness in the system. 

FIGURE 2.16. Packetisation, Admission, Routing and Exit
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By global fairness, I mean that all packets in the system, that is, in the net-
work and in all Network Interfaces (NI) of the system are competing on the 
same premises. The reason is that the arbitration is local to the network 
interfaces; hence packets that reside in different Network Interfaces are not 
competing on the same premises. As a consequence all decisions inside the 
respective network interfaces only (at best) guarantee local fairness. Nei-
ther are the packets in the NIs competing on the same conditions with the 
packets inside the network. In our publication from 2009 we introduced the 
concept of Priory Based Forced Requeue to make the fairness more global 
[Millberg2009]. The idea is to make the packets inside the NI queues com-
pete with packets in the switch attached to that Network Interface. By doing 
this the global worst case latencies are significantly reduced.

Another problem that may arise for Best Effort traffic is that the packets 
inside the network may have difficulties to get out, due to contention at the 
exit node. The contention not only affects the packet that currently wants 
out but may cause congestion and the formation of a saturation tree. The 
simple but effective solution that we introduced was the Dual Packet Exit
concept which basically means that the exit bandwidth is doubled, which 
results in a performance boost of the system [Millberg2007a and 
Millberg2007b]. 

Except for our publications, I have not been able to find any relevant publi-
cation attacking the problem of admission and exit from the network for 
Best Effort traffic.

2.4.1 Packetisation / Segmentation 

During the Packetisation stage, the message is segmented into packets and 
routing information is appended to the packet. Depending on routing strat-
egy the scenario is a little different. In the case of a virtual cut-through or 
wormhole switching strategy the packets consist of a header, payload and a 
tail; these parts are further divided into flit as seen in Figure 2.17 and in 
Figure 2.18. In the case of a deflective routing strategy, the flits are the 
same as packets and all packets have their own header – Figure 2.19.

The routing information added in the packetisation stage is further depend-
ent on whether source routing or distributed routing is employed. For the 
source routing the explicit routing path is appended to the packet and for 
the distributed routing only the destination address is needed – for more 
information see Section 2.4.3, “Routing,” on page 59.
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Wormhole Switching

In 2004 Aline Vieira de Mello et al. did a survey on switching algorithms 
on mesh based NoCs where they, among other things, analysed the trade-off 
between packet size and the average time to deliver these packets.

In their study, they used a 5×5 NoC with an XY routing algorithm where 
they varied the number of flits that contained one packet (10, 100, 1000 and 
10000 flits respectively). The average time it took to deliver one flit was 
13.2, 4.6, 79.4 and 105.47 clock cycles, respectively. The conclusion they 
draw from this was that “Small packets have the advantage to induce a 
small number of blocked paths, with a corresponding reduction in packet 
delivery times. Larger packets present the opposite behaviour. However, 
small packets impose larger overheads for segmentation and reassembly in 
the IP core wrappers. Also, arbitration/routing is executed more frequently 
in this case. As a conclusion, medium size packets (up to 500 flits) represent 
a good trade-off between packet size and the time required to deliver these 
packets with the XY routing algorithm.” [Mello2004].
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FIGURE 2.17. Wormhole switching – Message Split into 2 Packets Split into 3 Flits
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Deflective Routing

A deflective routing algorithm will, naturally, be more effective the smaller 
a message is, that is, the less packets that are to be assembled at the recipi-
ent. This, since the deflective routing strategy is non-minimal and hence, 
most likely, introduces a packet reordering. Due to this drawback of packet 
reordering all packets have to be equipped with sequence numbers to ena-
ble the message assembly at the recipient. For this reason, a deflective rout-
ing strategy will strongly benefit from having a small worst case latency. 
We have attacked this problem both at the sender side with an admission 
policy based on the Priority Based Forced Requeue-concept as well at the 
receiver side with the Dual Packet Exit-strategy [Millberg2009 and 
Millberg2007b]. Despite our efforts, the deflective routing will most likely 
have to be accompanied with some sort of data transport facility for long 
messages, e.g. cache transfers as well as for streaming media like multime-
dia application. Our proposed solution to this problem is based on looped 
containers that utilise a TDM based scheme and hence can coexist with the 
Deflective Routing transport scheme that is primarily intended for short and 
instant message delivery with Best Effort characteristics [Millberg2004a].

2.4.2 Ingress and Egress queuing

The queues (or buffers) in the network interfaces have two purposes: (1) 
they absorb the differences in speed and burstiness between the resource 
and the NoC; (2) they hide the network internals such as the packetisation, 
arbitration, and end-to-end flow control from the application. The size of 
the buffers must, of course, be sufficiently large but not too large since buff-
ers are a major contributor to the energy consumption and area in the Net-
work Interfaces [Coenen2006]. The sizing of these buffers could be based 
upon extensive simulation or with analytical methods [Hansson2008].

Message

Packet

FIGURE 2.19. Deflective Routing – Message Split into 6 Packets
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2.4.3 Routing

Routing is the process of selecting paths in a network from a source to des-
tination along which to send network traffic. The route can be predeter-
mined – static routing – or a function of the network traffic – dynamic 
routing. If only the shortest possible paths are allowed the routing is said to 
be minimal otherwise non-minimal. If the routing decision is made in the 
sender node of the packet it is referred to as source routing alternatively the 
decision is taken locally in the switches along the way of the packets, and 
hence it is called distributed routing. Regardless whether the routing is pre-
determined, minimal or where the switching decision is taken the process of 
routing should be both free of livelocks as well as deadlocks. Deadlock is a 
circular dependency between packets that prohibit further progress, i.e. the 
packets are waiting for each other in a cycle. Livelock means that packets 
proceeds indefinitely, but never arrive – this is only possible for an adaptive 
non-minimal routing.

Given the characteristics above several different communication strategies 
are possible. The most common communication strategy in the realm of 
Network in Chips is the Wormhole switching strategy followed by Circuit 
switching and Deflective Routing. It should also be mentioned that worm-
hole switching is referred to as wormhole routing in the literature as well.

Static vs. Dynamic / Deterministic vs. Adaptive

The properties of a Network on Chip will very much depend on the routing 
scheme it uses. Routing falls into the two categories static or dynamic.
Static routing must take the worst case scenario into account, whereas the 
dynamic routing can get away with dimensioning for the average traffic 
volume [Goossens2002].

Depending how a path is defined, routing can be classified as deterministic
or adaptive. In deterministic routing, the path is completely specified from 
the relative position of source and target addresses. If the decision of the 
path is made without any information about the current status of the net-
work it is called oblivious. In adaptive routing on the other hand, the path is 
a function of the network traffic. Routing in irregular topologies is typically 
accomplished using routing tables. These tables can be located in the rout-
ers or in the sources. 
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Global routing, that uses static routing, has the advantage of being able to 
avoid both contention – and hence congestion. Contention means that two 
packets want to utilise the same link/router at the same time – this may 
result in congestion. Congestion is that the network “clogs” up which leads 
to that other packets in the system gets affected and results in a degraded 
performance of the system. Traditionally global system routing means that 
connections are set up statically – circuit switching. Dynamic routing is 
more flexible and is implemented with packets.

Jingcao Hu and Radu Marculescu argue that the most appropriate routing 
techniques for NoC should be static since a NoC would only be used on a 
small class of applications and hence a designer will have a good under-
standing of the traffic characteristics and can use that information to avoid 
congestion by wisely mapping the IP cores and routing paths. Therefore, a 
static routing technique is the obvious choice [Hu2004]. Further they claim 
that the implementation of a dynamic scheme requires far more resources
and that the packet reordering will require huge buffering space. Unfortu-
nately, they back up their claims with neither numbers nor references 
[Hu2003].

Luca Benini and Giovanni De Micheli take the opposite standpoint and 
claim that favour adaptive routing is the best choice for special-purpose 
SoCs. The reasons for this point of view are that future on-chip micro-net-
work designs will emphasize speed and decentralisation of routing deci-
sions. Furthermore, properties such as robustness and fault tolerance will 
also be highly desirable. These factors, and the observation that traffic pat-
terns for special-purpose SoCs tend to be irregular, seem to favour adaptive 
routing. But, as a saving clause they also state that when traffic predictabil-
ity is high and nondeterminism is undesirable, deterministic routing may be 
the best choice [Benini2002].

Aline V. de Mellos et al.’s publication from 2004 makes a comparative 
study on a deterministic routing scheme vs. a set of three adaptive routing 
schemes. The packet switching technique was wormhole switching based 
(see Wormhole switching on page 66) and the topology was a mesh. Their 
results indicate that, the total time to deliver all packets was in favour of the 
deterministic routing. However, the partially adaptive algorithms can 
potentially speed up the time to deliver individual packets, but from a glo-
bal point the deterministic routing was superior. The reason behind the 
shortcoming is the tendency of the adaptive protocol to concentrate the traf-
fic in the centre of the network, increasing the number of blocked paths. 
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Worth mentioning is that the size of the network was comparably small 
(5×5) [Mello2004]. One way to circumvent the problem of the packet con-
centration in the centre of the network is to employ a scheme where the 
routers are communicating their current workload to their neighbours and 
hence enables better routing decisions like our Proximity Awareness con-
cept [Nilsson2003].

In Jingcau Hu’s thesis, he moves the decision of using a dynamic or static 
protocol into the router [Hu2005]. The concept he calls DyAD (Dynami-
cally switching between Adaptive and Deterministic modes) and means that 
each router in the network continuously monitors its local network load to 
dynamically decide which protocol to use; if the network is uncongested a 
low latency deterministic mode is chosen. For the congested network, the 
DyAD router switches to the adaptive routing mode and thus avoids the 
congested links by exploiting other routing paths to ensure a higher net-
work throughput. The area overhead reported is a modest 7 percent 
increase.

Source Routing vs. Distributed Routing

Source routing means that the entire path is decided before the packet is 
sent and the routing information is appended to the packet header. This has 
the advantage of using very simple routers, since they can be stateless and 
identical and hence do not require any configuration [Radulescu2005]. The 
drawback is that the path cannot be changed after the packet has been sent 
plus that the routing information will be present in the packet headers and 
therefore, makes the packet headers larger.

Distributed Routing means that the router has to take the decision how the 
packet should be routed. The potential benefit is that this decision can be 
dynamically changed dependent on the status of the network. The drawback 
is that the router either (1) has to have routing tables or (2) implement a 
more or less complex decision logic.

Deadlock and Livelock

One potential problem with the wormhole switching protocol – or rather – 
any adaptive protocol, is the possible risk of a livelock or deadlock. Dead-
lock means that two, or more, packets are having a cyclic dependency so 
that no forward progress can be made. Livelock means that one or more 
packets are circulating the network without ever making any progress 
towards their destination. 
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The potential for a locking situation, can, however, be avoided if the right 
measures are taken. In 1994 Christopher J. Glass and Lionel M. Ni pre-
sented the Turn Model which was proven to be both live and deadlock free 
[Glass1992]. The “trick” they used was that some paths/routing decisions 
were declared illegal and hence the routing algorithm went from fully adap-
tive to partially adaptive. Variants of this have later been implemented in 
several NoCs e.g. the odd-even routing algorithm [Hu2003].

Another way to solve the deadlock problem is to use virtual channels 
[Duato1997]. In this approach, one physical channel is split into several 
Virtual Channels (VCs). By making the channel dependency graph acyclic 
via routing restrictions deadlock can be avoided. By using VCs high per-
formance can be achieved. However, this scheme requires larger buffer 
space for the waiting queue of each VC and hence can make it costly.

However, the solutions above does not fully solve the problem; the dead-
lock identified above only means that there does not exist cycles in the 
dependency graphs of the network. Even though the dependent graphs of a 
NoC and an IP utilising it may be cycle free in isolation the system as a 
whole is not guaranteed to be deadlock free when put together as Andreas 
Hansson et al. point out [Hansson2007b]. They tackle this problem by mak-
ing a holistic analysis of message dependences to detect these cycles.

Switching

For network based communication there exist three commonly used con-
ceptually different main approaches: Circuit switching, packet switching (or 
store-and-forward), and virtual cut-through switching. For completeness 
both the store-and-forward and virtual cut-through strategies are presented 
even though they have been shown to be inappropriate for Networks on 
Chip. The most common switching strategy for on chip communication is 
Wormhole switching that is a variant of virtual cut-through switching. In 
general the choice of a source-destination path can be separated from com-
munication mechanism.
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Circuit-switching 

Circuit-switching implies that a path from the source to the destination is 
initially established. The circuit will be kept alive, at least, until the entire 
message is transmitted. Circuit switching can use physical circuits, where 
each physical link is reserved for the duration of the message, or virtual cir-
cuits, where only virtual links are reserved. In pure virtual circuit switching 
the message will only be sent when a circuit acknowledgment has been 
received by the sender. Circuit-switching is most effective when messages 
are long. Minimum message latency is proportional to the sum of the mes-
sage length and some constant multiple of the path length plus the time it 
takes to set up the circuit. In the world of NoCs this method is quite uncom-
mon and represented by e.g. the containers of Nostrum [Millberg2004a] or 
the circuit switched network of Pascal T. Wolkotte et al. In their work, they 
explicitly target streaming applications where they statically set up the cir-
cuits [Wolkotte2005].
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Store-and-Forward or Packet Switching 

Store-and-forward means that a message is segmented and sent as packets 
over the network. As the name suggests all the packets belonging to the 
same message are stored in the switch before they are forwarded. Packet-
switched methods are generally advantageous when messages are short 
and/or infrequent [Gaughan1993]. The potential benefit is that the switch 
can make content aware decisions. The drawback – that rules out multi-
packet message store-and-forward to be used in Networks on Chip is that it 
introduces a minimal delay that is proportional to the product of the number 
of switches the packets have to traverse and the message length; also it 
requires an unacceptable amount of buffers in the switches since capacity 
must be reserved for storing multiple complete messages [Tota2006]. For a 
network off chip this strategy is viable since buffer space is relatively cheap 
but wires are expensive and hence packets/messages need to be sent in a 
serialised fashion. In the world of NoC the packet switching technique is 
represented by e.g. “pure” store-and-forward and deflective routing – see 
below.

FIGURE 2.21. Store-and-Forward or Packet-Switching 
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Virtual Cut-through

The virtual cut-through could be seen as a variant of the store-and-forward 
approach [Kermani1979] or as a combination of packet switching and cir-
cuit switching. The message is broken into small pieces called flow control 
digits – or flits – that are pipelined through the network. The requirement of 
having the complete message being stored before it can be forwarded has 
been relaxed with the option that it is legal to start delivering packets to the 
sequent router if a route exists and buffer space is available. If either of 
these conditions is unfulfilled the virtual cut-through is reduced to store-
and-forward with its inherent weaknesses; this since only the header con-
tains routing information and therefore, each incoming data flit is simply 
forwarded along the same output channel as its predecessor. Thus, trans-
mission of different packets cannot be interleaved or multiplexed over one 
physical channel. In addition, this also has the implication that all routers 
must have the capacity to buffer the entire message since a router contain-
ing a stalled header flit have no means of stopping subsequent incoming 
body flits.

At heavy loads, virtual cut-through routing tends to behave like packet-
switching protocols; at light loads, it behaves more like circuit-switching 
protocol [Gaughan1993]. Despite its known weaknesses, it has been used 
for NoC purposes – even though just for evaluation by e.g. Jingcao Hu and 
Radu Marculescu [Hu2004]
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Wormhole switching

Wormhole switching was developed by William J. Dally and Charles L. 
Seitz and is the evolution of the virtual cut-through strategy [Dally1986]. 
Originally, it was designed to be used in parallel computer clusters because 
of its comparable small delay and reduces the buffer requirement in contrast 
to virtual cut-through. Minimum latency is proportional to the sum of the 
message length and the path length.

Each packet/message is divided into flits (flow control digits); the header 
flit sets up the routing path at each router. The buffers at the intermediate 
nodes are the size of a message header. The body flits will when follow the 
path set up by the head flit; the tail flit will finally release the path set up. 
Hence the name wormhole switching since all flits will follow the same 
path in a consecutive way. The wormhole switching could be seen as a var-
iant of cut-through routing since flits can be forwarded by the switch, as 
soon as they are available but this is under the condition that there exist a 
free link to the next switch and buffer space in that very switch. If no output 
link is disposable, flits are buffered at intermediate nodes. If the buffers are 
large enough to hold the entire message, the message is buffered at the 
blocked intermediate node and no links are held. If the buffers are not large 
enough, the message will be buffered across several intermediate nodes. 
This has the negative consequence that a worm/flit that does not fulfil either 
of these last two conditions will get stalled and lock up network resources 
(buffers). 
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In the presence of hot modules, the hop-by-hop backpressure mechanism of 
wormhole switching cause buffers to be filled up and become stalled block-
ing new arrival to this router. This creates a domino effect that spreads over 
the network creating a saturation tree [Pfister1985]. Hot modules in this 
context are modules that are bandwidth limited and in high demand of other 
modules in the network. Isask’har Walter et al. have recognized this prob-
lem and suggest a solution based of credit based distributed access regula-
tion scheme [Walter2007]. Another solution suggested by Jose Duato et al. 
involves dynamically allocated separate buffers for the congested flows 
[Duato2005]. Srinivasan Murali and Giovanni De Micheli acknowledge the 
problem with the statement that the use of a wormhole flow control results 
in a non-linear increase in latency (due to blocking of paths in case of con-
tention, creating a domino-effect) with decreasing link bandwidth 
[Murali2004]. As Jennifer Rexford and Kang G. Shin put it “... a blocked 
wormhole stalls in the network, effectively dilating its length until its outgo-
ing channel becomes available. As a result wormhole network typically uti-
lise only a fraction of the available network bandwidth” [Rexford1994]. As 
a consequence packet based routing outperforms wormhole switching at 
higher network loads at a cost of increased packet delays and buffers. Still 
wormhole switching is well suited for Best Effort switching due to its low 
latency and small buffer requirements.

The wormhole switching scheme is by far the most commonly used in NoC 
design as seen in Erno Salminen’s survey of 2008 [Salminen2008]. The 
performance of the wormhole switching is, however, heavily affected by 
the number of available buffers [Leung2006]. But buffers are expensive 
from an energy perspective and cannot be increased without significant cost 
[Ye2004]. In the HERMES switch paper, Fernando G. Moraes et al. report 
that in a switch utilising a flit-size of 32 the buffers occupy 96 percent of 
the total switch area [Moraes2004]. This in combination means that a 
switch utilising wormhole switching is a relatively expensive in terms of 
area – and hence energy – if good performance is desired.
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Deflective Routing (or Hot potato)

Deflective routing is an adaptive routing protocol where the route of indi-
vidual packets is not only restricted to the shortest path. That is – if a switch 
is unable to route a packet in the most preferable direction a switching deci-
sion that routes a packet in any other direction is legal [Feige1992]. This 
has the implication that the switch does not have to have explicit buffers for 
packets that currently cannot be forwarded. There is, however, no restric-
tion that a deflective routing scheme automatically means that the switches 
cannot have buffers. In the case that the switches lack explicit buffering the 
deflective routing can be called Hot potato routing since the packets now 
have to be treated as potatoes too hot to hold. The two obvious benefits of 
this scheme are that (1) the switches can be made very small since no 
explicit buffers have to be implemented; (2) the routing scheme becomes 
robust since packets potentially can be routed around hot-spots and conges-
tions in the network.

As with anything the deflective routing scheme has its drawbacks as well – 
the most commonly articulated in literature is (1) the potential cost of reor-
dering since packets belonging to the same message eventually have to be 
reordered; (2) Deflection means that the path length is no longer minimal. 
On the other hand, Smaragda Konstantinidou and Lawrence Snyder showed 
that these misroutes have a small impact on the overall performance 
[Konstantinidou1994]. The deflective routing scheme they used in their
Chaos router employed virtual cut-through routing with a randomised 
deflection scheme (3) Also there exist a potential risk of livelock, this is, 
however, not an issue if the packets are equipped with e.g. hop-counters to 
guide the routing process. In a wormhole switching scheme the livelock sit-
uation is normally handled by restricting the routing decisions to minimal 
paths only – clearly this is not an option for deflective routing.

To further avoid hot-spots and congested areas of the network we suggested 
a scheme for the switches to broad cast their current load to their neigh-
bours – we called the concept Proximity awareness [Nilsson2003]. By aver-
aging the load over time for neighbouring switches, we managed to cut the 
number of packets caught in local “traffic jams”. Later Jerry Tao Ye et al. 
got inspired by this scheme and made variant for wormhole switching – 
they did, however, choose to call it Contention-look-ahead routing 
[Ye2004]. In their paper from 2004 they report saving in terms of both buff-
ers, network latency as well as in total execution times.
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One interesting, recent, variant of the deflection routing scheme is the buff-
erless routing concept BLESS of Thomas Moscibroda and Onur Mutlu. 
They present two variants of their routing scheme – one, which is the tradi-
tional single flit based and one, which is a mix of a deflective and worm-
hole switching [Moscibroda2009]. Their main motives behind their 
approach are that the buffers consume significant energy and the increased 
complexity of the router. Among other findings, they report energy savings 
up to 40 percent compared with other existing routing algorithm utilising 
buffers. Within their study, the incorporated an energy model capturing the 
energy consumption of additional hardware required by BLESS. They paid 
special attention to accurately model the energy consumed by the extra 
buffers needed on the receiver side. In addition they also incorporated the 
increased link width to transmit header information together with the logic 
to reorder flits of individual packets in the receiver. To make a comparative 
study they divided of the energy consumption into network energy, buffer 
energy, router energy and link energy; the energy model was capturing the 
dynamic as well as static components. The buffer energy included, both, the 
input buffers of the routers and the receiver-side buffers needed to reorder 
packets for in-order delivery. The router energy included, both, routing and 
arbitration energy components. In the case of buffer energy, dynamic buffer 
energy is consumed whenever a flit is written to or read from a buffer.

Regarding the reordering problem at the receiver side they start out by mak-
ing the observation that this likely increases the number of flits/packets that 
need to be buffered. In addition, in-order delivery of packets requires buff-
ering of packets that arrive out-of-order, both in bufferless and buffered 
routing. They finish their treatment of the topic with the statement: “The 
increased receiver-side buffering requirements of BLESS and the additional 
logic to reorder flits reduces the energy reductions obtained by eliminating 
input buffers in routers. However, our evaluations show that the energy 
reduction due to eliminated router buffers outweighs the energy increase 
due to increased receiver-side buffers.” [Moscibroda2009].
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Quality of Service (QoS) is often used synonymously with Guaranteed 
Services i.e. services with strictly defined properties in comparison to the 
Best Effort services with only statistical properties; this even though the 
Quality in QoS – in my humble opinion – may refer to statistical properties 
as well. Without risking a too serious clash with the terminology used by 
the NoC community, I’d like to use the term Quality in the same way that 
its synonyms Inherent feature or property is used. Quality of Service is 
hence just a recognition that a certain service will possess some properties. 
Further I’d like to define the Guaranteed Services as services that have 
known and definite values/properties with 100 percent certainty within a 
given time interval. Best Effort services are consequently, the services that 
have known and definite value/property with less than 100 percent certainty 
within a given time interval. Given this rather loose definition it is possible 
to make the transition between the Guaranteed and Best Effort by changing 
the time interval.

With this said I’d like to leave this semantic hair-splitting and simply state 
that the concept of Quality of Service is of essential importance if a net-
work on chip is going to work as an interconnection platform that inher-
ently supports composability.

Kees Goossens et al. formulated a set of good reasons why guaranteed serv-
ices are beneficial/necessary for the building of a composable system 
[Goossens2002]. The first three reasons concern the programmability of the 
IPs, whereas the two latter deals with the composability. (1) Some IPs have 
strict requirements when it comes to data throughput and/or timing. (2) 
Guaranteed services make the dependencies of the interconnect explicit, 
which eases the structuring, design and programming. (3) The IPs can be 
made simpler since no negotiation with the interconnect is needed – either 
the service request is granted or not! (4) Services granted to an IP are unaf-
fected by the traffic from other resources in the network. (5) The implemen-
tation cost of the Network becomes known early in the design process since 
accurate models of the traffic behaviour of the IP are required to give the 
aforementioned guarantees. Hence a good estimate in terms of resources 
required by the interconnect can be given. Edwin Rijpkema et al. also argue 
that a flexible and efficient solution to the communication problem requires 
at least two service classes by the network; the guaranteed throughput and 
the Best Effort [Rijpkema2001].

2.5 QUALITY OF SERVICE – QOS
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The problem with guaranteed services is that they are costly to realize; 
either an extremely detailed knowledge is required about the system and its 
traffic behaviour so that the traffic can be orchestrated in such a way that 
given guarantees really can be guaranteed. The problem with this approach 
is that systems of today are far from predictable and hence very hard to 
orchestrate in any reasonable way. The alternative to detailed orchestration 
is that the interconnect system has to be grossly over dimensioned to give 
guarantees on latency and throughput. Any possible scenario must be cov-
ered for in terms of hardware. One noteworthy observation made by Ste-
fano Santi et al. is that high performance, state of the art, computing 
interconnects lack support for QoS; this despite that this kind of architec-
tures, often, require high throughput as well as low latency [Santi2005]. 
The reason behind this design decision is that the network is over dimen-
sioned in such a way that network congestions will not occur. For Network 
on Chips this kind of luxury is, however, not affordable due to limited sili-
con area as well as a constrained power budget.

To ease these requirements on the interconnect two major approaches can 
be taken: Traffic scenarios/Use-cases and diversification/classification of 
the traffic streams. The use of Use-cases (or Traffic scenarios) means that 
early in the design process the different subset of possible traffic streams 
originating from various applications in the system that can coexist in the 
system at a given point in time are identified. By grouping the traffic 
streams into these subsets an estimate of the network resources needed can 
be given. This reduces the complexity of the problem of orchestrating the 
traffic at the expense of reducing the freedom in which way the system can 
be used. The use of use-cases may make it easier to guarantee QoS within
the use-case. The transitions between different use-cases are, however, 
problematic. As Andreas Hansson et al. point out – all running applications 
are disrupted during use-case transitions, even those continuing operation. 
One solution proposed by the authors is to use a partial re-configuration to 
guarantee an undisrupted QoS for applications that have a life time that 
spans over one or more use-case transition [Hansson2007a].

The diversification, or classification, of the traffic streams aims to identify 
the different needs and requirements that the individual streams may have. 
Some streams, e.g. live video may have requirements on throughput and 
others may have it in latency. 
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Since a high (useful) utilisation of the network is desired, any over dimen-
sioning of the network should be avoided. Utilisation at this degree comes 
at a price. If the network starts to saturate the behaviour of traffic, which is 
packet based and not circuit based will start to show variations in latency 
and throughput hence it is very important to identify the requirements of the 
individual streams that really need guaranteed services. Any assignment of 
a stream that could do with a Best Effort like service to a guaranteed service 
means that the network potentially has to be over dimensioned.

The problem, with combining best effort service with guarantee services 
has been recognised by e.g. Jennifer Rexford and Kang G. Shin as inher-
ently hard [Rexford1994]. The reason put forward is that the low-level pol-
icies of the routing will highly influence how the traffic classes interact. 

Luca Benini et al. even suggest that the concept of Quality not only should 
include performance but reliability as well since Systems on chip will be 
increasingly involved in different control applications [Benini2001].

2.5.1 Service Characteristics

When discussing Quality of Service or Guaranteed Services it is important 
to articulate: what is it that is guarantee? That is – what characteristics 
could be said to be part of a guaranteed service? From literature latency and 
throughput are the most obvious and common but there are others. If we 
superset over what several research groups have suggested the following 
characteristics crystallises [Rijpkema2003, Vellanki2004, Bolotin2004a,
and Goossens2005]:

Data integrity

Data is delivered uncorrupted.

Lossless Data Delivery

All data is delivered by the interconnect. 

For the GT services, Lossless Data Delivery is a quite obvious property but 
Edwin Rijpkema et al. also claim that this is a desired property for the BE 
service as well. The reason is that since the BE service normally has no 
time to go through a connection set-up phase – before the real data is trans-
mitted – lost data cannot be detected at the receiver side and hence the con-
nection should be lossless [Rijpkema2001].
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In-Order Data Delivery

This means that the data is delivered in the same order that they were sent. 
A service can have the property of in-order data delivery for the individual 
data that belong to the same message but at the same time provide out-of-
order data delivery for different messages e.g. AXI [AXI].

Latency

By latency, we mean how long it takes for a packet from the time it is sent 
to the time it is received. However, latency could further be divided into 
system and network latency. By system latency, we mean the total time 
from a sender to a recipient. With network latency, we mean the time the 
packet spends in the network – NI queuing time excluded. If we have a 
guaranteed latency then that is an upper bound on the worst case latency. 
The average latency is the average latency for a set of packets over a – fixed 
– time interval. Some situations will, however, require a fixed latency; one 
example is reconfiguration of a part of the chip. During reconfiguration a 
bit-stream may be read from an internal source, e.g. an off-chip flash mem-
ory to be used in the process of updating the re-configurable part of the chip 
[Goossens2008].

Jitter Delay

Variation in latency; unregulated platforms usually have a delay pattern as 
depicted in Figure 2.24 where a majority of the packets has roughly the 
same delay with some variation and some packets suffer from an “arbitrar-
ily” long delay – the heavy tail of the distribution. 

FIGURE 2.24. “Typical” Best Effort Traffic Latency Distribution with Heavy Tail
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Figure 2.24 is taken from Praveen Vellanki et al.’s paper and plots the vari-
ation in packet latency for destinations that are uniformly 3 hops away in a 
4×4 mesh based NoC architecture at an injection rate of 0.05 packets/cycle/
node [Vellanki2004]. As it can be seen the worst latency deviates rather 
much from the average latency. From my experience, this type of heavy tail 
latency distribution is quite “typical” for Best Effort traffic and is unaccept-
able for many NoC implementations.

Throughput (or bandwidth)

Throughput is the amount of data that is transferred from a sender – 
receiver pair during a finite time interval. The system throughput is the 
amount of data that is transferred from a set of sender – receiver pairs (pos-
sibly all). If we have a guaranteed throughput then that is a lower bound on 
the latency over a finite time period.

Operational Efficiency

In our publication from 2007 – Increasing NoC Performance and Utilisa-
tion using a Dual Packet Exit Strategy, we defined the term Operational 
Efficiency [Millberg2007b]. As stated above – the network throughput is 
the average number of packets the system can deliver per clock cycle. If the 
injection rate is increased the throughput increases accordingly until the 
network is saturated. Above saturation a stable network continues to deliver 
the peak throughput; however, if a network is loaded above saturation the 
packet delay becomes potentially unbounded and hence renders the net-
work unusable. For an unstable network, the throughput drops beyond satu-
ration, e.g. a network that is allowed to drop packets [Tanenbaum2003]. 
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Given this fact it is easy to jump to the conclusion that the best performance 
is achieved by driving a stable network as close to the saturation point as 
possible! However, loading the network to this extent must come with a 
cost. The cost is the increase in average buffers needed to transfer a packet 
through the system, together with a potentially higher worst case latency. 
Ignoring the worst case latency, we propose the measure of Operational 
Efficiency to capture the Throughput per Buffers Used in the network. 

The idea is that an underutilised as well as an over-utilised network will 
give a bad ratio between the throughput delivered and number of buffers 
used. By making this definition it is now possible to find a ‘sweet-spot’ in 
the graph. In Figure 2.26 the concept of Operation Efficiency is illustrated 
with a comparison between a mesh network utilising our Dual Packet Exit 
(DPE) concept and one without. The graph shows the packet injection rate 
versus the Operational Efficiency. The Buffers Used per Packet is defined 
as the average number of buffers needed to transfer a packet from source to 
destination; this could also be interpreted as the average packet latency. 
Since the Operational Efficiency is derived from 

The immediate observation that can be made in Figure 2.26 is that with the 
DPE the throughput of the network can be increased while still using the 
same number of buffers. 

FIGURE 2.26. Operational Efficiency
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Furthermore, it can be seen the network utilising the DPE approach is more 
effective. If we define a region where the network operates within 95 per-
cent of its optimum that region is considerably moved in a higher through-
put area ( [0.44..0.59] vs. [0.53..0.67] ) and the drop-off of in efficiency also 
happens much closer to the saturation point of the DPE network.

Partha Pratim Pande et al. were thinking along the same lines when they 
defined the Bit energy per throughput [Pande2005]. This does, however, 
not give any ‘sweet-spot’ in the graph and served the purpose of being a 
comparative measure between different topologies.

Traffic Classes

The measures above, however, do not exist in isolation – often the traffic 
(or flows) utilising a guaranteed service could be characterised to belong to 
one of the aforementioned traffic classes where one or several of the guar-
anteed characteristics above are components. This means that even though 
a service that is characterised as Best Effort may as well posses Guaranteed 
service characteristics such as Data integrity, In-Order Data Delivery, etc. 
In QNoC (Quality of Service NoC) the traffic is divided into four Service 
Levels (SLs) according to different types of communication requirements 
[Bolotin2004b]. By making this division it eases the life for the system 
architect since it may be easier to sort the traffic into these service levels 
than to have to be explicit in a detailed traffic characterisation. They sug-
gest the following traffic levels:

Signalling covers urgent messages like interrupts and control signals and 
very short packets that are given the highest priority in the network to 
assure the shortest latency. 

Real-Time service level guarantees bandwidth and latency to real-time 
applications, such as streamed audio and video processing. This service is 
packet based; a maximal level of guaranteed bandwidth is allocated to each 
real-time link and should not be violated.

Read/Write (RD/WR) service level provides bus semantics and is 
designed to support short memory and register accesses.

Block-Transfer service level is used for the transfer of long messages and 
blocks of data, such as cache refill and DMA transfers.
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In QNoC a priority ranking is established, where Signalling is given the 
highest priority and Block-Transfer the lowest. The QNoC employs pre-
emptive communication scheduling where data of a higher priority packet 
is always transmitted before that of a lower service level (a round-robin is 
employed within service levels). This gives a service that has soft (statisti-
cal) guarantees.

How to Measure?

Without going too deep into the realm of measurement I would like to make 
some remarks on this rather big topic. For the interested reader, I could 
point to the simulation chapter of Principles and Practices of Interconnec-
tion Networks by William J. Dally and Brian Towles for a more thorough 
introduction to interconnection network simulation [Dally2003]. Some of 
the service characteristics above are “obvious” in their nature and given by 
the implementation of the network e.g. Data integrity, Lossless Data Deliv-
ery, In-Order Data Delivery, etc. Other characteristics are determined by 
the implementation of the network in combination with the current traffic 
e.g. Throughput, Latency, Jitter delay, etc. Often it is possible to give some 
theoretical upper/lower bounds on these characteristics, but they tend to be 
over pessimistic. The measurements that can be done are often not only 
restricted to a single number – rather the results tend to be distributions 
from where numbers such as average, worst case, best case, confidence 
intervals, variances, etc. could be derived. Sadly, it does not end with these 
distributions, packets within a traffic flow tend to have temporal correla-
tions as well, that is, it may be more likely that, given a particular packet 
has a certain latency, a consecutive packet may have a similar latency.

Useful vs. Background Traffic

To characterise and understand the networks behaviour it is necessary to 
make measurements – but what/how to measure? One simple set up could 
be to inject traffic/a flow into a loaded network, i.e. a network with some 
background traffic, and simply make some easy measurement on that par-
ticular flow. This may give some useful information about that very flow 
but does not capture whether that particular flow impairs the “background” 
traffic. This means the traffic is actually divided into two sets – the traffic 
that is currently under measure – the useful traffic – and the background 
traffic. By varying the amount of traffic belonging to the respective traffic 
sets a landscape of interesting measurement points can be defined. 
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The first and easiest thing to measure on is the “empty” network – no back-
ground traffic. This will give some lower bound on the best case scenario 
for any traffic flow. By gradually increasing the useful traffic the saturation 
point of the network will be found in terms of latency, throughput and jitter 
delay.

Spatial Characteristics

Not only the amount of traffic injected into the network will be of impor-
tance – the points where the traffic is injected and ejected will greatly affect 
the result as well. The spatial characteristics will give heaps of useful infor-
mation how well the particular network distributes the traffic and how it 
responds to congestion.

Temporal Characteristics

The most natural temporal characteristic is the traffic bursts. A network will 
most likely respond very differently to short and long messages – that is – 
consecutive packet sequences that belong to the same message. If the net-
work lacks e.g. virtual channels or the possibility to utilise non-minimal 
paths the result of long messages may be that the network stalls and a satu-
ration tree is formed that drastically reduces the overall performance of the 
network. On the other hand – too many short messages may be costly for a 
network that requires that a connection is set up before transmission.

Synthetic vs. “Real” Traffic Scenarios

Moreover, the choice of traffic scenario will affect the behaviour. A purely 
synthetic random traffic generator may give valuable insights in early 
stages of development but turns out to be completely useless in the process 
of analysing the network suitability for a given application. On the other 
hand – analysing a real application trace might not say anything about the 
characteristics of a particular network just how a specific trace behaves on 
this particular network.

Half Full or Half Empty?

The conclusion to draw from what is said above is that measurements are 
easy to perform but to choose the right measurement seems extremely hard. 
Not only that the universe spanned by the combinations of all the scenarios 
that could potentially be used for measurements are huge. 
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The results from any single simulation could potentially be analysed in a 
multitude of ways. So – dependent on the mind-set of the network devel-
oper the possibly enormous set of simulation scenarios could either be 
viewed as an asset or as a hinder. Within the NoC community there has 
been attempts to tackle these and similar problems of characterisation of 
networks and applications e.g. by Vassos Soteriou et al. [Soteriou2006]

2.5.2 Best Effort

What comes to mind when discussing Best Effort performance is why pro-
viding a service that comes with no guarantees? The existence of the Best 
Effort actually stems more from consequences than from the need. First of 
all – the Best Effort is cheap – virtually indefinitely cheap since no prom-
ises are made! More practically it does have a cost, but, it is low. If a plat-
form for communication exists it can be employed directly – without 
changes – to deliver Best Effort performance. The second reason for the 
existence of Best Effort is that it is a possibility to use unreserved or unused 
capacity of a guaranteed service. This, since, the guaranteed services have a 
strong tendency to become expensive in terms of over-allocation of 
resources.

When discussing the Best Effort service the characteristic that is assumed to 
be of a Best Effort nature is often throughput or latency – implying that, e.g. 
the Data integrity and the Lossless Data Delivery characteristics are guar-
anteed. Once again, it is of importance to articulate what we actually mean 
with guarantees. A service that claims to have the characteristic of e.g. 
Lossless Data Delivery, in reality, also have implied that there exists an 
upper bound on the worst case latency – otherwise such claim is meaning-
less! 

The characteristics of the Best Effort services are often based on average 
cases in comparison to the Guaranteed Services that has to take the Worst 
case into account. The worst case is very likely much lower that the average 
case, and hence we get the aforementioned over-allocation of capacity for 
the guaranteed services.

Some groups have implemented a ‘Bastard’ variant of Best Effort that they 
call a Guaranteed Service where they offer a “guarantee’ that a packet is 
delivered with a latency less than a fixed number with a probability of 99.5 
percent [Santi2005]. In relation to what I “defined” in the opening of this 
chapter I would rather refer to this as a Best Effort Service. 
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In their experiment, they implemented a simple priority mechanism that 
gave priority to the Guaranteed Service over the plain effort service. The 
ratio in terms of traffic devoted to the different service classes was 10 per-
cent respectively 90 percent. The idea is appealing but would rather be sold 
as two classes of BE with different characteristics where the high priority 
class is guaranteed to pre-empt the other.

Platforms that both offer BE and “true” GT services and utilises the “spare” 
capacity for the Best Effort services is our Nostrum, the Æthereal platforms 
and the NoC of Praveen Vellanki et al. In Nostrum the guaranteed traffic 
utilises a TDMA scheme and any unused capacity is devoted to a deflection 
routing scheme [Millberg2004a]. In Æthereal and the NoC of Vellanki et al. 
both services is handled by a TDMA based scheme with the Best Effort uti-
lising un-allocated time slots [Goossens2005 and Vellanki2004].

2.5.3 Guaranteed Services

There exist a number of platforms of today that implement some sort of 
Guaranteed Service. There are several different options; Æthereal and our 
Nostrum uses a TDMA (Time Division Multiple Access) based scheme, the 
MANGO (Message-passing, Asynchronous Network-on-Chip) NoC of 
Tobias Bjerregared et al. [Bjerregaard2005a] and the NoC router presented 
by Tomaz Felicijan and Steve B. Furber [Felicijan2004] have chosen to 
implement Virtual Circuits to serve the purpose – both platforms are clock-
less.

To provide enough bandwidth to honour committed network service guar-
antees often means over allocation of network resources. For the “tradi-
tional” GT this seems inevitable since the user of the service may not use its 
given guarantees fully. One way to get around the problem is to introduce a 
“new” service that mixes the properties of the Best Effort with the tradi-
tional GT. One example of this is the SuperGT of Théodore Marescaux and 
Henk Corporaal [Marescaux2007]. Their idea is to provide a packet based 
in-order delivery service with a guaranteed base-level, of throughput. On 
top of the base-level, it is possible to inject traffic on a particular SuperGT 
connection but this has in-order Best Effort guarantees. Since their 
SuperGT is based on Æthereal the GT part is done by pre-allocating slots in 
the TDMA based scheme. The BE part is then handled by claiming “free”/
un-allocated slots [Goossens2005]. Marescaux and Corporaal report an 
increased throughput up to 35 percent at a cost of 6 percent extra area. How 
their solution would affect other traffic in the network is, however, unclear.
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2.5.4 The Process of Allocation

When providing Best Effort Services and Services with some guarantees 
the process of allocating capacity for the service and the process of putting 
the service into use deserves a few words. In a paper from 2004 we have 
chosen to make the following distinction [Millberg2004a]

• Static Allocation – The mechanisms behind the service are hard-coded, 
decided at design time or at least in the start-up phase of the system. In 
our case, with our looped containers, the routes of the containers would 
be hard-coded in the switches and all the containers would be launched 
in the start-up phase of the system

• Semi-static Allocation – Same as above with the exception that the 
containers would be launched when needed. This implies that any 
“guaranteed” service would only provide guarantees after all the nec-
essary containers have been successfully launched. 

• Dynamic Allocation – The set-up of the mechanisms for the service 
would be programmed on ‘the fly’. In our case, the container packet 
routes in the switches would have to be programmed once needed as 
well as the launch of the containers. Such complex mechanism would 
have to be orchestrated by some central operating systems that would 
either analyse any request during runtime or have to be responsible for 
reprogramming the network utilising a use-case based approach.

Radu Marculescu et al. make a similar division of how to administer guar-
anteed services into three distinct groups [Marculescu2008]. (1) Virtual 
Circuits can be pre-reserved and allocated statically off-line. (2) Multiple 
priority levels can be used to favour high priority traffic. (3) The Network 
interfaces can be made aware of current traffic load and hence regulate traf-
fic to ensure the guaranteed services.

Axel Jantsch and Zhonghai Lu have chosen to group the resource allocation 
techniques into three main categories: Circuit switching, Time Division 
Multiplexing, and Aggregate Resource Allocation [Jantsch2009]
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• Circuit switching – All necessary resources are allocated for the entire 
life time of a connection. In every switch, there is a table that defines 
the connections between input ports and output ports. The output port 
is exclusively reserved for packets from that particular input port. With 
few exceptions such as SoCBuS [Wiklund2003] and Crossroad 
[Chang2006] circuit switching has not widely been used in NoCs 
because only few applications justify the exclusive assignment of 
resources to each connection. 

• Time Division Multiple Access (TDMA) – Resources are exclusively 
allocated to a specific user during well-defined time periods or time 
slots. The time slots often have the granularity of clock cycles. The 
allocated time slots are encoded in a slot allocation table with one table 
for each shared resource, e.g. a link. The authors identified two major 
drawbacks with this scheme. First, there is a trade-off between detail of 
bandwidth allocation and table size since a finer granularity for band-
width requires larger slot tables. Second, it exists a direct relation 
between granularity of allocatable bandwidth and maximum delay. If 
the bandwidth allocated is k/n with k out of n slots allocated, a packet 
has to wait n/k − 1 cycles, in the worst case, for the next slot to appear. 
In the word of NoCs the TDMA is employed in e.g. our Nostrum plat-
form, in Æthereal and in the NoC of Vellanki et al. [Millberg2004a,
Goossens2005, and Vellanki2004].

• Aggregate Resource Allocation – Each resource is assigned a traffic 
budget for both sent and received traffic. The reasoning is that, if all 
resources comply with their budget bounds, the network is not over-
loaded and can guarantee minimum bandwidth and maximum delay 
properties for all the flows. Traffic budgets can be defined per resource 
or per flow, and they have to take into account the communication dis-
tance to – correctly – reflect the load in the network. Aggregate alloca-
tion schemes are flexible but give looser delay bounds and require 
larger buffers than finer grained control mechanisms such as TDMA 
and circuit switching.

By statically allocating capacities to each flow better utilisation and tighter 
QoS bound can be achieved. Zvika Guz et al. analysed the link capacities 
off-line in their wormhole based NoC platform and came up with an imple-
mentation that meets all dead lines for the individual flows [Guz2006]. 
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The analytical model of their NoC was shown to be very close to the simu-
lated results. Offline is obviously to prefer if the SoC has a predictable 
behaviour that can be analysed off-line. The same methodology used may 
be employed while allocating capacity for the aforementioned use-cases (or 
traffic scenarios).

The statical assignment process does, however, assume a very detailed 
knowledge about the system that can be used in the analysis process. This 
assumption about the statically known (and schedulable) system by Guz 
has been assumed by many others [Hu2004 and Liang2000]

2.5.5 Packet Reordering

The GT can involve guarantees on the different measures like the ones 
listed above, latency, throughput, etc. but can also include other properties. 
One such property is in-order delivery. The reason this may be of impor-
tance is the cost associated with the potential reordering of packets. The 
problem of packet reordering, and the assumed associated cost of reorder 
buffers in the NI has been articulated by many authors – Israel Cidon et al., 
Huimin Hu et al., Mieszko Lis et al., Andrei ˘Radulescu et al., Erno 
Salminen et al., Radu Stefan and Kees Goossens [Cidon2005, Hu2003,
Lis2009, Radulescu2005, Salminen2008, and Stefan2009]. There is, how-
ever, to my knowledge, only one analysis with numbers presented on this 
assumed cost in the context of NoCs. The paper is A Case for Bufferless 
Routing in On-Chip Networks, of Thomas Moscibroda and Onur Mutlu and 
gives a detailed quantitative analysis of the associated cost of reordering 
[Moscibroda2009]. Their conclusion is that the gain of a bufferless 
approach is higher than the cost – see Section “Deflective Routing (or Hot 
potato),” on page 68 for further information.

Sergio Tota et al. identify the problem and think it is manageable but that 
further analysis is needed [Tota2006 and Tota2007]. In our article about 
Priory Based Forced Requeueing, we made an estimate on the implementa-
tion cost of a reorder buffer [Millberg2009]. The presented numbers on the 
implementation cost are most probably over pessimistic due to that the 
implementation assumed a continuously sorting reorder buffer of a depth of 
an observed worst case delay. In a reorder buffer in the NI (on the receiver 
side) the message lengths are most likely smaller; this because the stream 
based data transfers are more suitable to be sent over a Virtual Circuit not as 
Best Effort traffic!
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To master the increasing complexity of today’s billion transistor Systems on 
Chip the orthogonalisation of concerns are essential. Kurt Keutzer et al. 
recognised this in their article from 2000 [Keutzer2000]. In this article, they 
articulate the necessity of decoupling computation from communication. 
This decoupling enables the computing components like micro processors, 
DSPs, etc. to be designed independently from the communication part – the 
NoC. This decoupling, however, requires that the services that could be 
expected from the network on chip are well-defined and independent of the 
real network implementation – the decoupling of function from implemen-
tation. Further the NoC itself may need to be divided into more or less 
autonomous parts that hide implementation details. For a deeper discussion 
see Drew Wingard’s text, that gives a good introduction [Wingard2005].

In order to separate the different concerns that exist when implementing a 
Network on Chip a layered approach can be taken. This has been articulated 
by us [Millberg2004b] as well as by others [Sgroi2001, Goossens2002,
Benini2002, and Benini2001]. In general the upper layers of the stack are 
done in software and the lower layers are in hardware. The lower layers 
manifests as the Network Interface, the switches and links of the Network. 

If networks are to be compared with buses the added functionality of the 
networks will require a protocol stack to manage the complexity of the net-
work as well as being able to offer differentiated services. The pressure to 
keep the protocol stacks small is, however, higher on chip than off chip due 
to the relatively modest size of the attached IP blocks [Radulescu2005].

Since there was no real reason for reinventing the wheel the OSI protocol 
stack [Zimmermann1980] was early identified as a strong candidate to use 
as a reference model when describing the different layers needed in a NoC 
protocol/hardware stack. The Open Systems Interconnection Reference 
Model (OSI Reference Model or OSI Model) is a conceptual, abstract 
description for layered communications and computer network protocol 
design. The original OSI model protocol stack is primarily not used as a 
“real” protocol stack – it works more like a reference used to position other 
protocol stacks. Nevertheless, there exists a very precise definition of the 
responsibilities of the different layers defined by ISO in a series of docu-
ments where e.g. the X.200 standard describes the OSI – Basic Reference 
Model [ISO1994].

2.6 THE LAYERED APPROACH TO NOCS
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Within the original OSI model, there are seven layers defined as depicted in 
Figure 2.27. The three lowest layers of the OSI protocol stack (Physical, 
Data Link & Network) are the ones that are the most concerned with the 
transportation of data and are very much dictated by the hardware architec-
ture. The transport layer will work as an interface between the “pure” hard-
ware world and the potential software oriented application set, whereas the 
topmost ones function as wrappers and formatters of data for the resource.

Within the collected NoC literature most papers that could be discussed 
within the context of the OSI would fall into the Data Link, Network or 
Transport layers. I will exclude the Physical layer since it mainly defines 
the electrical and physical characteristics of devices, which are more of lay-
out issues than a specific NoC problem. The interested reader is referred to 
the article of Luca Benini et al. [Benini2001].

Layer 2 – Data Link

“The Data Link Layer provides the functional and procedural means to 
transfer data between network entities and to detect and possibly correct 
errors that may occur in the Physical Layer.” [Jennings1993] 

In our NoC realm, this concretely means guaranteeing the transport of flits 
from one switch to another. This may involve handshaking and distribution 
of back pressure signalling. Potentially, error detection and correction are 
encompassed by the data link later as well. If an error is detected and not 
corrected, upper layers must be informed so that measures can be taken.
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Layer 3 – Network

“The Network Layer provides the functional and procedural means of 
transferring variable length data sequences from a source to a destination, 
via one or more networks while maintaining the quality of service requested 
by the Transport Layer. The Network Layer performs network routing, flow 
control, segmentation/desegmentation, and error control functions.” 
[Jennings1993].

The network layer is hiding the network internals such as topology routing 
scheme for the communication IP modules. As identified by us and Kees 
Goossens et al. this can be divided into two parts [Millberg2002 and 
Goossens2002]. The first, and the most essential part, involves packet 
delivery, routing congestion control as well as scheduling. The second part 
has more of a maintaining character and involves network management and 
collection of statistical data for diagnosis of the network functionality. Even 
issues of fault tolerance could be characterized as a responsibility of the 
Network Layer. The two extremes of switching policy that could be imple-
mented by the Network layer is circuit switching versus packet switching. 
If the traffic flows of the network are persistent, that is, that they are likely 
not to change, or if they have very specific demands on latency or through-
put the circuit switching is the technique to use. On the other hand, if the 
traffic pattern changes during run-time packet switching have to be consid-
ered due to the potentially very high cost of setting up circuits that will be 
underutilised. These issues are a central part in the process of the system 
design to minimize the energy consumption. In networks on chip the Net-
work Layer is implemented in the Network Interface (NI). To keep the cost 
of the NI as low as possible Andrei ˘Radulescu et al. suggest that it should 
be fully implemented in hardware. In their implementation – Æthereal – the 
Network layer of the protocol stack is called the NI-core [Radulescu2005].
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Layer 4 – Transport

“The Transport Layer provides transparent transfer of data between end 
users, providing reliable data transfer services to the upper layers. The 
Transport Layer controls the reliability of a given link through flow control, 
segmentation/desegmentation, and error control. Some protocols are state 
and connection oriented. This means that the Transport Layer can keep 
track of the segments and retransmit those that fail.” [OSI-Wiki].

The Transport layer in the world of NoC will work as the boundary between 
the resource and the network; also it is a divider between the pure hardware 
oriented network and the software based upper part of the protocol stack. 
This layer will be responsible for the packetisation/depacketisation of the 
messages/data that is sent over the network. If a multipath, and/or a reorder-
ing strategy on routing, is being employed the packet reordering will poten-
tially be an issue for this layer as well. The packet size employed can be 
application specific within one SoC and has been identified as having an 
impact on the energy consumption of the network [Ye2003]. Further this 
layer will be responsible for the flow control of the network and the admin-
istration of Best Effort vs. guaranteed services. In the world of our Nostrum 
platform, the Transport layer is implemented in the RNI (Resource Network 
Interface) which could be both implemented in both hard and /or software 
dependent on what services it is supposed to deliver to the upper layers. In 
Æthereal this is handled by something that the authors call a shell which is 
connected to  one more  of  the  Por ts  of  the  Network interface  
[Goossens2008].

Further the Transport layer will serve as an interface in that it enables syn-
chronisation between the different clock domains of the network and the 
resource. This enables a GALS (Globally Asynchronous Locally Synchro-
nous) design style. In its purest sense, it has been implemented in the 
MANGO platform since that NoC is asynchronous or clockless 
[Bjerregaard2005b]. For other platforms employing a clocked network it is 
simply a place for synchronisation and buffering to compensate for varia-
tions in the data up- and downstream flows. These buffers of the Network 
interfaces have been identified as a major contributor to the area of the NoC 
[Coenen2006]. In addition, these buffers constitute a boundary between the 
conceptual realms of communication and computation. Some work has 
been done in trying to reduce the sizes of these buffers. For example, Mart-
ijn Coenen et al. suggest that a credit based system could be used for end-
to-end traffic control [Coenen2006].
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The purpose of the software oriented top most layers is to provide the 
resources with an abstraction of the underlying hardware platform and offer 
system oriented maintenance services. Luca Benini et al. [Benini2001]
envisioned that the software layers of the protocol stack would play the role 
of system software and should implement some sort of Dynamic Power 
Management in order to offer different service levels. Furthermore, they 
suggested that this system software should handle dynamic information 
flow management that could re-configure the network at run-time to meet 
changing demands of throughput, etc.

Since NoC design and its accompanying complexity will not automatically 
be solved by a clever platform and a set of layers this also has to be comple-
mented with a methodology. Marco Sgroi et al. identified this at an early 
stage and hence proposed that methodologies and tools for NoC develop-
ment must be able to handle and avoid protocol implementations that are 
incorrect (e.g. due to deadlocks and race conditions), or sub-optimal (e.g. is 
power-hungry or introduce unacceptable latency) [Sgroi2001]. To tackle 
this, they suggest that a methodology:

• When applied should add discipline to on-chip communication design 
and hence enable the transition from ad-hoc SoCs to disciplined IC 
platforms.

• It should be based on formal Models of Computation and support a 
correct-by-construction synthesis design flow and a set of analysis 
tools for broad design exploration.

• Maximize reuse within the definition of a set of interfaces between lay-
ers

• Provide an application programmer with a set of APIs abstracting 
architecture details.
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The concept of Networks on Chips (NoCs) has been proposed as the future 
communication platform for large Systems on Chip with potentially hun-
dreds of communicating peers as well as for Multi Processor Systems on 
Chip. NoCs possess attractive properties as being inherently scalable, regu-
lar and predictable. Furthermore, NoCs provide standardised interfaces that 
encourages reuse and a structured design style. This, in combination with a 
natural decoupling between the computation and communication in a lay-
ered fashion eases product development as well as reducing timing closure 
issues.

Even though Networks on Chips borrows from parallel computer networks 
as well as from traditional off-chip networks the constraints of the on-chip 
networks differ. On chip networks of today have a limited power budget, 
limited buffer capabilities as well as having requirements on a planar topol-
ogy and switches of low degree.

Several topologies have been proposed for Networks on chip, most of them 
having simple layouts due to the two-dimensional mapping that a on-chip 
layout requires. The most common topologies are variants of meshes and 
custom topologies. Meshes are favoured for their predictability in layout 
and routing; custom topologies for their ability cope with an irregular lay-
out.

Except for the topology, care must be taken when the routing and switching 
policy is chosen. Routing is the process of selecting paths in a network from 
a source to destination along which to send network traffic; switching 
involves the actual transportation of data. Within the NoC community the 
routing and switching policy and the corresponding hardware solutions 
have been the inspiration for numerous publications. 

2.7 SUMMARY



90 CHAPTER  2     Networks on Chip
To be able to cope with the varying demands that different communication 
peers may have support for Quality of Service characterised communica-
tion has been developed. If this scenario is to be painted with the broadest 
strokes the services provided by the NoC could be classified as Best Effort 
(BE) and Guaranteed Throughput/bandwidth (GT) where GT is mainly 
used for communication that have specific demands on bandwidth, 
throughput and/or latency and a set-up time for the communication link can 
be accepted. Best effort is used for “the rest” of the traffic that requires a 
quick means for instant communication and the actual performance is of 
less importance.

To enable separation of different concerns a layered approach is taken. The 
layered approach help in separating communication and computation as 
well as function from implementation.Withing the layered approach the OSI 
reference model has been successfully utilised as a source of inspiration 
and the result is presented in many publications and is represented in many 
reference designs 

Today the Network of Chip research community is a mature community 
with a history that spans more than a decade. Several companies – Arteris, 
Sonics, Inocs to name a few – are today providing full on chip communica-
tion infrastructure solutions with tool suits that support entire design flows 
from early system designs pre-simulations to post synthesis verification. 
Many commercial platform inherently have support for the most common 
communication protocols. like AXI, OCP, AHB etc.
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 Conclusions
Contemporary System-on-chip platforms usually contain bus based inter-
connection infrastructures, where a designer can create a new system by 
configuring and programming the cores connected to the busses. However, 
global on-chip communication is becoming a problem as future silicon 
chips become larger, technology scales down, and the clock frequency 
increases. Bus based platforms suffer from limited scalability and poor per-
formance for large systems. Network-on-Chips (NoCs) are the network 
based communication solution for SoCs. They inherently encourage reuse 
of the communication infrastructure across many products thus reducing 
design-and-test effort as well as time-to-market. 

However, if these NoCs should be useful, different traffic classes must be 
offered due to the various requirement from the SoC. Typically, these traffic 
classes fall into two categories – Best Effort and traffic classes with Guar-
antees. These guarantees include bandwidth, throughput, latencies, jitter, 
etc. To be able to offer these traffic classes a Network-on-Chip communica-
tion platform must be both flexible and efficient.

To meet these specifications we have developed a Network on Chip plat-
form – Nostrum. Nostrum is a layered architecture that inherently supports 
both Best Effort as well as Guaranteed Throughput traffic delivery. The 
layout of Nostrum is based on a planar Manhattan structure which gives a 
straight forward mapping process. Planar topologies can with advantage be 
used if the traffic pattern possess a certain locality.
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During the development of Nostrum the concept of a modular, layered 
design with clear interfaces has shown to be of utter importance. Any 
changes – like extensions to the protocol, routing strategy etc. – have rela-
tively easy been incorporated in the design. The modular structure also ena-
bled and simplified cooperation in the design process. I believe that the 
benefits are even greater when a full system is to be designed due to the 
inherent separation between the communication and computation realms.

Transmission of data from a sender to a receiver over a NoC involves sev-
eral stages. The data has to be segmented into packets and put in the down-
stream queue waiting for the arbitrator controlled admission to the network. 
Once out on the network the packet needs to be transported in a safe and 
effective way over the network to finally be delivered to the designated des-
tination. To deliver good performance attention needs to be paid to all of 
these stages.

In Nostrum the traffic classes with guarantees are handled by Virtual Cir-
cuits. The Virtual Circuit gives guarantees on latency and throughput and 
employs a variant on Time Division Multiple Access (TDMA). The concept 
– we call it looped containers – utilises proxy packets that are going back 
and forth between the sender and receiver. In this way a certain amount of 
the networks capacity is always claimed for this virtual circuit since the 
container packet guarantees an unbroken connection between the sender 
and receiver. This looped container solution covers – and guarantees – 
Admission, Transport as well as Exit from the network. The cost of imple-
mentation is very small with very little extra hardware and an extra packet 
payload of only 2 percent.

For the for Best Effort traffic delivery Nostrum employs a deflective rout-
ing scheme that gives a small footprint of the switches in combination with 
robustness to disturbances in the network. The deflective routing does how-
ever introduce a potential reordering of packets within a message as a natu-
ral side effect to its flexible routing scheme. To minimise the cost of this 
effect the best effort traffic delivery should first and foremost be used for 
short messages. Stream based data should be assigned to the Virtual Circuit 
based services. Hence, the deflection routing policy is a competitive policy 
thanks to its modest hardware requirements and flexibility; but it should be 
complemented with a traffic delivery scheme that has support for stream 
based data delivery.
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The non-reordering packet policy in the switches1 of the deflection routing 
scheme creates something that we call Temporary Disjoint Networks 
(TDN). The TDNs make the network to be separated into several independ-
ent networks. These separate networks can be utilised for different traffic 
classes with different guarantees, e.g. a network with little traffic naturally 
has a lower bandwidth but tighter bound on delivery for instance. Once 
again – any platform that aspire to be a competitive platform the Systems on 
Chip communication of the future must inherently support several traffic 
classes due to the varying demands and diverse requirements of the applica-
tions. Since the TDN is a characteristic of the platform and not an imple-
mented feature no extra hardware is required. 

For the Admission phase of the Best Effort I have proposed the concept of 
Priority Based Forced Requeue (PBFR). PBFR increases the fairness in the 
system by making the packets waiting for admission to the network com-
pete with the packets already in the network. The concept gave a 50 percent 
reduction in worst case latencies in the system which gives tighter bounds 
on latency in the communication process.
To enhance the Transport phase for Best Effort traffic we suggest the Prox-
imity Congestion Awareness (PCA) as part of the solution. PCA further 
enhances the flexible capabilities of the deflective routing scheme to incor-
porate the possibility to actively avoid congestion if possible. The PCA 
make the individual switches aware of the load in their immediate sur-
roundings of the network. The neighbouring switches communicate their 
current load by sending out a stress value to be used in the routing process. 
Utilisation of PCA was shown to reduce the maximum average load in the 
downstream queues of the network with up to 20 times.

Finally, to enhance the Exit phase performances from the network I propose 
Dual Packet Exit (DPE) as a remedy. DPE simply means that two packets 
per clock cycle are let out from the network from every switch in the net-
work instead of one. The DPE gives a 50 percent reduction in terms of 
worst case latency and a 30 percent reduction in terms of average latency as 
well as an increased throughput both from a system and network perspec-
tive. These very significant improvements stems from the fact that the net-
work should not be used as a storage space for packets but only for 
transportation. The cost associated with DPE is that packets now need to be 
stored outside the network instead of inside.

1.The switches does not reorder packet but due to the flexibility in routing paths dif-
ferent packets may take different paths and hence arrive out of order.
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Despite that the thesis to a large extent is abut how to enhance performance 
in different parts of the network a still feel that I must emphasise the impor-
tance of a good mapping and a well carried out system analysis. During the 
development of the presented strategies in the thesis the importance of the 
mapping has been evident many times. An ill-mapped system often worsens 
the performance to a much larger extent than a badly chosen routing strat-
egy. So, to utilise the network at its full potential both a good mapping and 
a well functioning packet delivery service is of utter importance!

In conclusion – the Networks on Chips will make their major break through 
when the chip sizes become too big and the bus based system no longer can 
cope with the traffic size and the various demands of different traffic sce-
narios. However, even though the thesis may advocate the Networks on 
Chips as the communication platform of the future I still believe that the bus 
will stay to handle local traffic of chip. Hence, it will not be replaced by the 
Networks on chips but rather be complemented with NoCs handling the glo-
bal traffic on chip.
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4.1 PAPER I – LOAD DISTRIBUTION WITH THE PROXIMITY 
CONGESTION AWARENESS IN A NETWORK ON CHIP

Design Automation and Test in Europe – DATE 2003

Authors: Erland Nilsson, Mikael Millberg, Johnny Öberg and Axel Jantsch

This is the full length version of the paper that was submitted to DATE 
2003. A shorter version of this paper was accepted to the poster session.

This paper describes the concept of Proximity Congestion Awareness (PCA)
that is used to reduce the total load of the network. The paper also intro-
duces the average FIFO usage of a network. The main result of the paper is 
the substantial improvement with about 20-time load reductions when 
using the PCA concept.

In the paper, a discussion is carried out how the bufferless deflective rout-
ing policy of our platform Nostrum can create hot-spots in the centre of the 
network. The reason for this behaviour is that a super-set of all possible 
routing paths to and from all senders and receivers in the network will have 
an overrepresentation of potential paths in the centre of the network. The 
remedy to this is to try to divert packets away from congested areas. The 
solution we propose is based on the idea that all switches monitor their cur-
rent load and distribute this information – the stress value – to its neigh-
bouring switches. The stress value is the sum of the number of incoming 
packets averaged over the last four clock cycles. The related hardware cost 
is reported to be very moderate in relation to the benefit. Synthesis of the 
switch was made using lsi10k technology. When optimised on speed, an 
area of 21 029 and a gate depth of 48 was achieved.
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Further, the switch design is described to explain the experiments on the 
three modes of operation that were tried out. The three settings are: no 
stress value, one cycle stress value, and averaged stress value over four 
cycles. 

A comparison of the resulting FIFO load of the different setting is presented 
in textual form in the paper and shows that the reduced maximum average 
FIFO load is greatly reduced and that the load has a wider distribution over 
a larger area. We report a 20-time average load reduction when using the 
PCA concept.

Thesis author contributions: In this paper, I’m a major contributor with a 
heavy role in the development of the concept, experimental set-up as well 
as in the initial VHDL development even though Erland Nilsson did most of 
the writing.

4.2 PAPER II – GUARANTEED BANDWIDTH USING LOOPED 
CONTAINERS IN TEMPORALLY DISJOINT NETWORKS

Design Automation and Test in Europe – DATE 2004

Authors: Mikael Millberg, Erland Nilsson, Rikard Thid and Axel Jantsch

This paper addresses the problem on how to implement services with guar-
antees such as throughput and latency in a bufferless deflective network. In 
the paper two separate concepts are presented (1) the Temporally Disjoint 
Networks (TDNs) and (2) the looped containers.

The idea behind the Temporally Disjoint Networks is that a physical net-
work, potentially, can be seen to contain a set of separate networks that a 
packet can enter dependent on when it enters the physical network. A nec-
essary condition for the existence of these TDNs is that a position in the 
network can only be reached on a multiple of N hops where N must be 
greater than 1. As a consequence the number of TDNs that exist, N is equal 
to the number of hops it takes to leave a switch and then get back to the 
very same switch in such a network. 

In our case, these conditions will be fulfilled in a Manhattan network with 
logically identical switches that performs no reordering of packets. If the 
network is a torus the number and rows and columns must be even to render 
more than one TDN.
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To illustrate the idea three different routes have been layered out in the 
Manhattan network in Figure 4.1. Their respective path lengths are 2, 4, and 
10. Hence, the number of TDNs that exist in this network will be 2. This 
means that two packets that are sent out consecutively on the network (i.e. 
in cycle n and cycle n+1) will never be able to collide! This has the conse-
quence that we could have different types of traffic in the different TDNs to 
enable different guarantees on latency and throughput in the respective 
TDN.

The second concept that was presented in the paper – the looped containers 
– provides a means to set up virtual circuits in a network that employs a 
deflective routing policy. To give guarantees in latency and throughput for 
individual packets three separate, but linked, problems must be solved. (1) 
The packet must be able to enter the network at a given time, the packet 
must be transported over the network within a certain time, and (3) the 
packet must be guaranteed an exit from the network in order to be delivered 
properly. Failing in solving either of these problems means that limited or 
no guarantees on latency can be given! 

To solve these problems a proxy packet is inserted into the network – bound 
to follow a predefined, closed, route between the source and the destination. 
This particular proxy packet is given the highest possible priority in order 
to guarantee precedence over any other packet. Once the packet visits the 
sender it is loaded and sent to the destination where it is unloaded – hence 
the name looped container. If some effort is put into the mapping process of 
senders, receivers, and container routes a set of different virtual circuits can 
be set up. In the case where the cycling time of different loops shares a 
smallest common divider they can overlap without risk of collision. 
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FIGURE 4.1. Temporally Disjoint Networks
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In the case where this may not be possible the virtual circuits can be placed 
in different TDNs to guarantee an interference free behaviour. This is the 
second use of the Temporally Disjoint Networks presented in the paper.

The increased relative hardware cost of implementing virtual circuits using 
looped containers is less than 2 percent in term of additional gates. The 
effective relative payload for a packet with 128 bits is more than 98 percent 
due to the additional two extra bits to implement the concept. Simulations 
also show that background traffic in the network is very little affected by 
the VCs; but for the assigned to the VCs, the VCs give a tremendous boost 
in guaranteed latency and bandwidth. The average bandwidth of the traffic 
assigned to the VCs is not changed – but now it is guaranteed! As expected, 
the latency of AB goes from being exponential to become constant.

Thesis author contributions: In this paper, I’m a major contributor of the 
Nostrum backbone concept as well as in the concepts of the Temporally 
Disjoint network and the looped containers. Furthermore, I’ve contributed 
to a large extent in the experimental set-up. I also did most of the writing.

4.3 PAPER III – THE NOSTRUM BACKBONE – A COMMUNICATION 
PROTOCOL STACK FOR NETWORKS ON CHIP 
The Seventeenth International Conference on VLSI Design 2004 

Authors: Mikael Millberg, Erland Nilsson, Rikard Thid, Shashi Kumar and 
Axel Jantsch

This paper presents our Network on Chip concept Nostrum. The concept 
defines a packet switched network with support for best effort traffic packet 
delivery as well as support for guaranteed bandwidth traffic, using virtual 
circuits. Furthermore, it includes a layered protocol stack and a correspond-
ing nomenclature for describing the individual layers and their interfaces.

Within the concept, a concrete instance is described – the Nostrum Back-
bone. The backbone is a mesh based communication architecture and 
defines Resources as hosts for communicating processes. The backbone 
defines the logical placement of these Resources and how they are con-
nected. 
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The Nostrum mesh consists of Switch- Resource pairs connected in a two-
dimensional grid. Moreover, the relation between Resources, the Resource 
Network Interface, the Network Interface and the Switches is included. Our 
layered protocol stack uses a terminology heavily inspired by the OSI refer-
ence model. To prove the work of concept a distributed DSP application 
from industry was simulated. The results showed that the protocol covers 
the need of the particular example.

A standard protocol stack allows the separate, independent development 
and validation of resources, communication network and applications as 
long as they comply with the defined protocols.

This clear separation enables systematic reuse of resources, communication 
infrastructure and application features. We have defined such a protocol 
stack within the concept of Nostrum. The protocol stack is defined from the 
physical to the transport layer and, based on this; the layered Nostrum sim-
ulator is developed. The simulator allows experiments with different proto-
col variants because individual layers can be replaced without affecting 
other parts.

Thesis author contributions: This paper has to a big extent been based on 
my technical report on the subject [Millberg2002]. I’m a major contributor 
of the Nostrum concept as well as the backbone. In addition, I’ve contrib-
uted, to a large extent, in the experimental set-up. I also did most of the 
writing.

4.4 PAPER IV – A STUDY OF NOC EXIT STRATEGIES 
First International Symposium on Networks-on-Chips – NOCS 2007

Authors: Mikael Millberg and Axel Jantsch

In this paper the exit process of packets in our Network on Chip platform 
Nostrum is analysed. The analysis gave that there exist an accumulation of 
packets at the exits of the Network. Our solution to this is to increase the 
exit bandwidth. The result is a reduction in the worst case latencies as well 
as in the average latencies. This paper was accepted as a poster and could 
be considered as a pre-study to the sequel paper Increasing NoC Perform-
ance and Utilisation using a Dual Packet Exit Strategy.

Thesis author contributions: In this paper, I’m the major contributor and 
did most of the writing.
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4.5 PAPER V – INCREASING NOC PERFORMANCE AND UTILISATION 
USING A DUAL PACKET EXIT STRATEGY

10th Euromicro Conference on Digital System Design – DSD 2007

Authors: Mikael Millberg and Axel Jantsch

In this publication we further stresses the benefit of an increased exit band-
width. From simulation the most beneficial increase in terms of enhanced 
performance versus cost is to double the exit bandwidth – hence the name 
Dual Packet Exit (DPE). In addition to the previous reported reduction in 
worst case latencies as well as in average latencies this paper also stresses 
the lowered use of buffers. The lowered use is in terms of required buffer 
capacity as well as in the average number of buffers actively used. The 
required buffer capacity is the buffers that have to exist in the system to 
cover for any worst case scenario. The average buffers actively used is the 
average number of buffers that is currently holding a packet in the system. 
From the average buffers actively used in the system we derive and define 
the term Operational Efficiency that is a measure defined as the throughput 
per buffers used in the system. The greatest benefit of this measure is that a 
graph plotting the Operational Efficiency vs. the packet injection ratio now 
has a clear sweet spot! This has the concrete impact that an increase of the 
injection of packets into the network to increase the system throughput will 
have a cost associated to it and can be optimised to save energy. Using this 
measure we show that the use of our Dual Packet Exit strategy can signifi-
cantly increase the system bandwidth without increasing the energy used.

To prove the work of the DPE concept extensive simulations were carried 
out. For a 4×4 mesh the average system latency is reduced from 14 to 9 
clock cycles and the observed worst case latency is reduced from 85 to 45 
clock cycles at an injection rate of 0.63. In concrete this means a 50 percent 
reduction in terms of worst case latency and a 30 percent reduction in terms 
of average latency as well as an increased throughput both from a system 
and network perspective. If we set for an average latency of 10 cycles the 
network with DPE gives roughly 25 percent higher injection rate for the 
same latency compared to a system without. The validity of the chosen 
approach is not restricted to uniformly random traffic patterns on meshes 
but also applicable to “any” topology where the traffic pattern involves 
potential network exit congestions due to multiple sources having the same 
destination or where multiple routing paths are possible.

Thesis author contributions: In this paper, I’m the major contributor and 
did most of the writing
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4.6 PAPER VI – PRIORITY BASED FORCED REQUEUE TO REDUCE 
WORST-CASE LATENCY FOR BURSTY TRAFFIC

Design Automation and Test in Europe – DATE 2009

Authors: Mikael Millberg and Axel Jantsch

The previous papers in the thesis have very much been focused on the 
transport and the exit from the network. In this paper, the focus is set on the 
admission to the network. The main problem that we solve here is that 
packets may have to wait indefinitely long to enter the network dependent 
on the current load of the network. The network may have a very fair rout-
ing policy that gives priority to “old” packets to keep the worst case latency 
down. Unfortunately, this does not help the packet that has not yet entered 
the network. Our solution to this is to make the system more globally fair 
by introducing a concept called Priority Based Forced Requeue.

Forced Requeue is to prematurely lift out low priority packets from the net-
work and requeue them outside using priority queues. The first benefit of 
this approach, applicable to any NoC offering best effort services, is that 
packets that have not yet entered the network now compete with packets 
inside the network and hence tighter bounds on admission times can be 
given. The second benefit which is more specific to deflective routing as in 
the Nostrum NoC is that packet reshuffling dramatically reduces the latency 
inside the network for bursty traffic due to a lowered risk of collisions at the 
exit of the network. 

Utilisation of the Priority 
Based Forced Requeue 
changes the characteristics 
of the observed system 
latencies in the system. To 
illustrate a graph is pro-
vided which is a histogram 
that depicts the latency.

As seen in the graph, and 
evident from simulation, data the experimental results show a 50 percent 
reduction in worst-case latency from a system perspective thanks to the 
reshaped latency distribution Noteworthy here is that the average latency is 
kept the same.

Thesis author contributions: In this paper, I’m the major contributor and 
did most of the writing.
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4.7 PAPER VII – A NETWORK ON CHIP ARCHITECTURE AND DESIGN 
METHODOLOGY

IEEE Computer Society Annual Symposium on VLSI 2002

Authors: Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, 
Mikael Millberg, Johnny Öberg, Kari Tiensyrja and Ahmed Hemani

In this paper a scalable Network on Chip platform is proposed. The plat-
form includes both the architecture and the design methodology. The archi-
tecture consists of a mesh populated by switch and resource pairs and 
communication between the switches is packet based. A resource is 
assumed to be a processor core, memory, an FPGA, or a custom hardware 
block, which fits into the available slot and complies with the interface of 
the NoC. The NoC architecture essentially is the on-chip communication 
infrastructure comprising the physical layer, the data link layer and the net-
work layer of the OSI protocol stack. The protocols within these layers 
must be implemented in the resource to network interface (RNI) for every 
resource in the NoC.

Within the architecture the concepts of regions is defined. A region is an 
area inside the NoC, which is insulated from the network and which may 
have different internal topology and communication mechanisms. The con-
cept of region allows for resources of larger size than the atomic slots in the 
mesh. Regions are connected to the ordinary NoC by special communica-
tion arrangements.

The NOC design methodology consists of two phases. In the first phase a 
concrete architecture is derived from the general NoC template. The con-
crete architecture defines the number of switches and shape of the network, 
and the number and kind of resources. The second phase maps the applica-
tion onto the concrete architecture to form a concrete product

Thesis author contributions: Even though the writing of the paper was 
coordinated and done mainly by the first authors of the paper the author of 
the thesis would still claim to be a contributor as being part of the discus-
sion and contributing with central ideas of this paper. The central ideas I felt 
I strongly contributed to and developed – in text as well as in discussions – 
are mainly in Section 3 – Network on Chip Architecture. In particular my 
work heavily contributed to the Network on Chip Architecture Section (3.1) 
and the Network Protocol Stack Section (3.3) in shaping them to their final 
form.



4.8    Paper VIII – Evaluating NoC Communication Backbones... 103
4.8 PAPER VIII – EVALUATING NOC COMMUNICATION BACKBONES 
WITH SIMULATION

NorChip Conference 2003

Authors: Rikard Thid, Mikael Millberg and Axel Jantsch

This paper describes a Network on Chip simulator that was developed to 
evaluate our NoC architecture Nostrum.

The simulator is divided into an application domain and a communication 
domain. The application domain contains Resource Models (RM) and a 
Resource mapper. The purpose of the RMs is to, as the name suggests, 
model the resources of the system. The RMs interact by sending and receiv-
ing messages over the network so that the behaviour of the network for a 
given workload can be studied. The placement of the Resources is managed 
by the Resource mapper. A designer can easily change the mapping of 
Resources since all mapping is done in the Resource mapper, and no other 
part of the simulator is directly affected by the mapping.

The communication domain consists of models of entities that implement 
the various layers of Nostrum together with a topology generator that 
instantiate and connect the entities. Four layers are represented in the simu-
lation environment – Transport, Network, Data link, and Physical layer.

To investigate how efficiently our Nostrum architecture can perform some 
small experiments were set up to compare how Nostrum performs in rela-
tion to a bus-based architecture. Nostrum, as well as the bus, was modelled 
within the simulator. Both Nostrum and the bus were exposed to the same 
workload model and it was shown that our Nostrum platform can operate at 
a much lower clock frequency than a shared bus platform. For the bus 
architecture, a bus clock faster than 1.8 GHz is required, and the Nostrum 
only needs 200 MHz to handle the workload.

Thesis author contributions: Even though the writing of the paper was done 
mainly by the first author, Rikard Thid, I would still claim being a contribu-
tor as being part of the discussion and contributing with central ideas of this 
paper. The paper is based on the Nostrum platform and a simulation setup 
combined. The author of the thesis is a heavy contributor to the Nostrum 
platform and the concept of layers as well as a main contributor to the con-
cepts manifested in the simulator. Even the experimental setup was a topic 
for discussion and could hence be classified as a joint effort even though 
Rikard Thid is the responsible for the actual writing of code.
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Laboratory of Electronics and Computer Systems / Royal Institute of Technology (KTH)

Email: �erlandn, micke, johnny, axel�@imit.kth.se

Abstract

In Networks on Chip, NoC, very low cost and high per-
formance switches will be of critical importance. For a
regular two-dimensional NoC we propose a very simple,
memoryless switch. In case of congestion, packets are emit-
ted in a non-ideal direction, also called deflective routing.
To increase the maximum tolerable load of the network,
we propose a Proximity Congestion Awareness, PCA, tech-
nique, where switches use load information of neighbouring
switches, called stress values, for their own switching deci-
sions, thus avoiding congested areas. We present simulation
results with random traffic which show that the PCA tech-
nique can increase the maximum traffic load by a factor of
over 20.

1 Introduction

On-chip communication becomes a challenge as the
number of transistor functions increases on a single silicon
die. Clock and data distribution over large distances is im-
possible to accomplish in a simple manner. Several research
groups propose packet switched Network on Chip [1] [2]
to address the problem with communication between Intel-
lectual Properties, where each IP-block is a Resource or a
part of a Resource. We propose the use of Nostrum, a two-
dimensional Network on Chip using hot-potato routing al-
gorithm as switching policy for datagram distribution [3].

Other ways to organise this mesh are for example the
flattened torus model [4], or a plain two-dimensional mesh,
the latter is also the model we have chosen to implement
Nostrum.

In the plain two-dimensional mesh, the number of pack-
ets passing through the centre of the mesh is significantly
higher compared to packets traveling along the edges. As
every Resource may transmit to any other Resource in the
mesh with equal probability, most packets will pass through
the centre, which becomes a hot-spot. Such a hot-spot is not
desirable.

However, hot-spots can be avoided by distributing con-
trol information over the network. We call this concept
Proximity Congestion Awareness, PCA. The simulations
made in this paper are based on random traffic where each
Resource has the same probability of communication to any
other Resource in either way.

2 Switch load distribution

The load can spread over a larger area by using different
routing rules. For example Round Robin [5], local active
deflection, and non-local deflection.

PCA can be used to make the load distribution more uni-
form. Information to help the Switches in their routing de-
cision is sent between the Switches. The informative value
PCA is using is called stress value and is sent from one
Switch to its neighbours in all directions. The stress value
relates to the load level in that Switch. The surrounding
Switches receives four such values from its closest neigh-
bours; this helps each Switch to get a picture of the sur-
roundings.

To avoid oscillations, i.e. a situation when two neigh-
bouring switches get a high stress value every other cycle,
causing a packet to bounce between the two switches, the
stress value should be averaged over a number of switch
cycles.

The incoming packets are sorted in priority order, which
in the current implementation is the number of switch cycles
the packet has been traveling for; the packet with the highest
priority gets to make the first choice of output and the fol-
lowing packets in descending order. The packets which pre-
ferred output is occupied by a higher priority packet must be
forced in a direction that contradicts to the desired.

3 Simulation results & Conclusion

Packets sent from the Resource are first put in a FIFO-
buffer. The study of all FIFOs in the network mesh is a
method to see how the load is distributed around a hot-spot.
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Figure 1. a) Average load i FIFOs without using stress value, largest average number is 3.2 packets.
b) Same simulation using stress value, largest average number is 0.9 packets. c) Average load using
four cycles averaged stress value, 0.1 packets waiting in FIFO.

The first model acts as a reference where PCA is not
used.

The second model is to use PCA with stress values. The
stress values are updated every switch cycle.

The third model is one where the stress values are aver-
aged over four cycles. Although, the third model is the most
advanced, the stress value averager is fairly small, about
2001 gates.

In the three cases, the same input data has been used with
a mesh size of �����. The packet probability is for the first
model close to the maximum possible on purpose, shown by
simulations [6], to create as much congestion as possible.

An average load of 0.01 tells us that the FIFO is occupied
by one packet every 100 switch cycle, which is fairly low.
The intention is to show the influence of PCA between the
three cases presented.

In figure 1.a, the hot-spot is pushed to the north-west
corner, if north is up in the figure. The reason for the
non-centered load is a result of the routing decisions in the
Switch. The output for the deflected packet is fixed, in this
case primarily to the West, secondary North, etc.

The stress value notifies the surrounding Switches about
how many packets the Switch handles during that cycle. Us-
ing stress values in this manner increases the performance
of the Switch since the outputs are ordered in the most
preferable order. Compare the maximum value on the x-
axis in figure 1.b, which has a maximum value2 of 0.9, to
the value in figure 1.a, which is 3.2.

In figure 1.c, it can be seen that load is distributed over
a larger area than before. With experience of the visualised
data, the maximum average load is estimated to be 0.15.
Compared to the implementation using stress value with no
averaging, the average load now achieved is six times less

1218 gates using the lsi10k-library.
2Observe the scaling of the x-axis since every bar in the whole figure is

scaled from the Switch with the maximum average load.

compared to the non averaged stress value. In relation to the
most basic implementation, it is enhanced with a factor of
more than 20.

It can clearly be seen from the previous discussion that
the implementation of a more balanced load using stress
values increases the network throughput and decreases the
packet delivery time. All simulations in this paper has been
made using random traffic. However, it is shown in further
experiments in preliminary results that the positive effect
of using PCA is also valid for a traffic model where the
probability for communication between nearby Resources
is higher compared to Resources on far distance.

Synthesis of the third model was made using lsi10k-
technology. Optimised on size resulted in an area of 13 964
with a critical path of 79. When optimised on speed, an area
of 21 029 and a gate depth of 48 was achieved.
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Abstract

In today’s emerging Network-on-Chips, there is a need for
different traffic classes with different Quality-of-Service
guarantees. Within our NoC architecture Nostrum, we have
implemented a service of Guaranteed Bandwidth (GB),
and latency, in addition to the already existing service of
Best-Effort (BE) packet delivery. The guaranteed band-
width is accessed via Virtual Circuits (VC). The VCs are
implemented using a combination of two concepts that we
call ‘Looped Containers’ and ‘Temporally Disjoint Net-
works’. The Looped Containers are used to guarantee
access to the network – independently of the current net-
work load without dropping packets; and the TDNs are
used in order to achieve several VCs, plus ordinary BE traf-
fic, in the network. The TDNs are a consequence of the
deflective routing policy used, and gives rise to an explicit
time-division-multiplexing within the network. To prove
our concept an HDL implementation has been synthesised
and simulated. The cost in terms of additional hardware
needed, as well as additional bandwidth is very low – less
than 2 percent in both cases! Simulations showed that
ordinary BE traffic is practically unaffected by the VCs.

1   Introduction

Current core based System-on-Chip (SoC) methodolo-
gies do not offer the required amount of reuse to enable
the system designer to meet the time to market constraint.
A future SoC methodology should have potential of not
only reusing cores but also reusing the interconnection
and communication infrastructure among cores.

The need to organise a large number of cores on a chip
using a standard interconnection infrastructure has been
realised for quite some time. This has led to proposals for
platform based designs using standardised interfaces, e.g.
the VSI initiative [1]. Platforms usually contain bus based
interconnection infrastructures, where a designer can cre-
ate a new system by configuring and programming the
cores connected to the busses. A concrete example of this
is manifested in Sonic’s μ-networks [2]. Due to the need

for a systematic approach for designing on-chip commu-
nication Benini and Wielage [3, 4], have proposed commu-
nication centric design methodologies. They recognise the
fact that interconnection and communication among cores
for a SoC will captivate the major portion of the design
and test effort.

As recognised by Guerrier [5], bus based platforms
suffer from limited scalability and poor performance for
large systems. This has led to proposals for building regu-
lar packet switched networks on chip as suggested by
Dally, Sgroi, and Kumar [6, 7, 8]. These Network-on-Chips
(NoCs) are the network based communication solution for
SoCs. They allow reuse of the communication infrastruc-
ture across many products thus reducing design-and-test
effort as well as time-to-market. However, if these NoCs
should be useful, different traffic classes must be offered,
as argued by Goossens [9]. One of the traffic classes that
will be requested is the Guaranteed Bandwidth (GB) that
has been implemented in, e.g. Philips’s Æthereal [9].

Our contribution is the service of GB, to be used within
our NoC architecture Nostrum, in addition to the already
existing service of Best-Effort (BE) packet delivery [10].
Nostrum targets low overhead in terms of hardware and
energy usage in combination with tolerance against net-
work disturbances, e.g. congestions. In order to achieve
these goals deflective routing was chosen as switching
policy. In comparison to the switch of Rijpkema [11], and
in Philips’s Æthereal, the need for hardware is reduced by
the absence of routing tables as well as in and output
packet queues.

The service of GB is accessed via Virtual Circuits (VC).
These VCs are implemented using a combination of the
two concepts called Looped Containers in Temporally
Disjoint Networks (TDN). The solution is cheap, both in
terms of header information in the packets, hardware
need, and bandwidth used for providing the service.

The rest of the paper is organised as follows. In section
2, we briefly describe the Nostrum NoC. Section 3 explains
the theory behind our concept. Section 4 presents how the
concept can be used and what possibilities this usage
gives. The section also includes synthesis and simulation
results. The last section is used for conclusions.
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2 Nostrum

We have developed a concept that we call Nostrum [12]

that is used for defining a concrete architecture – the Nostrum
Mesh Architecture. The communication infrastructure used
within the concept is called the Nostrum Backbone.

2.1.   The Nostrum Concept

Nostrum is our concept of network based communication
for ‘System on Chip’s (SoCs). Nostrum mixes traditional
mapping of applications to hardware with the use of the
communication infrastructure offered by Network-on-chip
(NoCs). Within Nostrum, the ‘System’ in SoC can be seen as
a system of applications. An application consists of one or
more processes that can be seen as functional parts of the
application. In order to let these processes communicate,
the Nostrum concept offers a packet switched communication
platform and it can be reused for a large number of SoCs,
since it is inherently scalable.

To make the packet switched communication practical
for on-chip communication, the protocols used in tradi-
tional computer networks cannot be employed directly; the
protocols need to be simplified so that the implementation
cost as well as speed/throughput performance is accepta-
ble. These simplifications are made from a functional point
of view and only a limited set of functions are realised.

2.2.   The Nostrum Backbone

The purpose of the backbone is to provide a reliable
communication infrastructure, where the designer can
explore and chose from a set of implementations with dif-
ferent levels of reliability, complexity of service etc.

In order to make the resources communicate over the
network, every resource is equipped with a Network Inter-
face (NI). The NI provides a standard set of services, defined
within the Nostrum concept, which can be utilised by a
Resource Network Interface (RNI) or by the resource
directly. The role of the RNI is to act as glue (or adaptor)
between the resource’s internal communication infrastruc-
ture and the standard set of services of the NI. Dependent
on the functionality requested from the Nostrum Backbone,
the Nostrum protocol stack can be more or less shallow. How-

ever, the depth of the custom protocol stack, which may
include the RNI, is not specified within the concept.

2.3.   Communication Services

The backbone has been developed with a set of differ-
ent communication protocols in mind e.g MPI [16]. Conse-
quently, the backbone can be used for both BE using single-
message passing between resources (datagram based com-
munication) as well as for GB using stream oriented data
distribution (VC). The message passing between the
resources is packet based, i.e. the message is segmented
and put into packets that are sent over the network. The
ordering of packets and de-segmentation of messages is
handled by the NI. In order to cover the different needs of
communication two different policies are implemented:

A. Best-Effort

In the BE implementation, the packet transmission is
handled by datagrams. The switching decisions are made
locally in the switches on a dynamic/non-deterministic
basis for every individual datagram that is routed through
the network. The benefit is low set-up time for transmission
and robustness against network link congestion and failure.
The policy is described in [10] and will not further be dis-
cussed.

B. Guaranteed Bandwidth

The GB is the main topic of the paper and is imple-
mented by using a packet type, which we call container. A
container packet differs from the datagram packets in two
ways. They follow a pre-defined route and they can be
flagged as empty.

2.4.   The Nostrum Mesh Architecture

The NoC Nostrum Mesh Architecture [13] is a concrete
instance of the Nostrum concept and consists of Resources
(R) and Switches (S) organised, logically and physically in

a structure where each switch is connected to its four
switch neighbours and to its corresponding resource as
depicted in Figure 2. From an implementation point of
view, the resources (Processor cores, DSPs, Memories, I/O

etc.) are the realisation of the Processes (P). A resource can
host single or multiple processes, potentially the processes
can belong to one or several different applications. How-
ever, the Nostrum Concept is not inherently dependent of the
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mesh topology, other possibilities might include folded
torus, fat-trees [14] etc. The reason why the mesh topology
was chosen stems from reasons of three types.

First, higher order dimension topologies are hard to
implement. As analysed by Culler [15], low dimension
topologies are favoured when wiring and interconnects
carry a significant cost, there is a high bandwidth between
switches, and the delay caused by switches is comparable
to the inter-switch delay. This is the case for VLSI imple-
mentations on the 2-dimensional surface of a chip and
practically rules out higher dimension topologies. The
torus topology was rejected in favour of a mesh since the
folded torus has longer inter-switch delays.

Second, there is no real need for higher order dimen-
sion topologies. We assume that all applications we have in
mind, e.g. telecom equipment and terminals, multi-media
devices, and consumer electronics etc. exhibit a high
degree of locality in the communication pattern. This is in
stark contrast to the objective of traditional parallel com-
puters; designed to minimise latency for arbitrary commu-
nication patterns.

Third, the mesh inhibits some desirable properties of its
own, such as a very simple addressing scheme and multiple
source-destination routes, which give robustness against
network disturbances.

3   Theory of Operation

The switching of packets in Nostrum is based on the con-
cept of deflective routing [17], which implies no explicit use
of queues where packets can get reordered, i.e. packets will
leave a switch in the same order that they entered it. This is
possible since the packet duration is only one clock cycle,
i.e. the length of packets is one flit. This means that packets
entering a switch at the same clock cycle will suffer the
same delay caused by switching and therefore leave the
switch simultaneously. However, if datagram packets are
transmitted over the network they may arrive in another
order than they were sent in; since they can take different
routes, this can result in different path lengths. The reason
for packets taking different routes is that the switching
decision is made locally in the switches on a dynamic basis
for every individual datagram that is routed through the
network – as stated earlier.

3.1.   The Temporally Disjoint Networks

The deflective routing policy’s non-reordering of pack-
ets creates an implicit time division multiplexing in the net-
work. The result is called Temporally Disjoint Networks
(TDNs). The reasons for getting these TDNs are The Topol-
ogy of the network and The Number of Buffer Stages in the
switches.

A. The Topology

Packets emitted on the same clock cycle can only col-
lide, i.e. will only be ‘in the same net’, if they are on a mul-
tiple distance of the smallest round-trip delay. Intuitively
this can be explained by colouring the nodes so that every
second node is black and every second is white. Since all
the white nodes are only connected to black nodes and all
the black nodes are only connected to white nodes, any
packet routed on the network will visit black and white
nodes interchangeably. Naturally, this means that two pack-
ets residing in nodes of different colour, at a point in time,
will never meet! That is, these two packets will never affect
each others switching decisions. This is illustrated in Fig-
ure 3 (A); the network of a 4x4 mesh is unfolded and dis-
played as a bipartite graph in (B) where the left-side nodes
only have contact with the right-side nodes and the oppo-
site ditto. Please note that all the edges are bidirectional.

This bipartite graph can further be collapsed into the lower
left graph (C) of Figure 3 where all the black and white
nodes are collapsed into one node respectively and the
edges now are unidirectional. Logically packets residing in
neighbouring time/space-slots could be seen as being in
different networks, i.e. in Temporally Disjoint Networks.
The contribution to the number of TDNs that stems from the
topology is called the Topology Factor.

B. The number of buffer stages in the switches.

In the previous case where the topology gave rise to two
disjoint nets, implicit buffering in the switches was
assumed, i.e. a switching decision was taken every clock
cycle. If more than one buffer is used in the switches, e.g.
input and output buffering is used, this also creates a set of
TDNs. In Figure 4, this is illustrated by taking the graph of

Figure 3 (C) and equip it with buffers. The result is that
every packet, routed on the network, must visit buffers in
the following order: white input (wi) -> white output (wo) -

Fig. 3. Disjoint networks due to topology
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> black input (bi) -> black output (bo), before the cycle
repeats. The result is a smallest round-trip delay of four
clock cycles and hence four TDNs exist; where both the
Topology Factor and the Buffer Stages contributes with a
factor of two each. So in general

A clever policy when dealing with these multiple dis-
joint networks will give the user the option of implement-
ing different priorities, traffic types, load conditions etc. in
the different TDNs.

3.2.   The Looped Container Virtual Circuit

Our Virtual Circuit is based on a concept that we call
the Looped Container. The reason for this approach is that
we must be able to guarantee bandwidth and latency for
any VC that is set up. The idea is that a GB is created by
having information loaded in a container packet that is
looped between the source and the destination resource.
The reason for this approach is the fact that it is very hard
to guarantee admittance to the network at a given point in
time as we shall see. This stems from two chosen policies

• Packets already out on the network have precedence
over packets that are waiting to be launched out on
the network.

• At a certain point in time the difference in the
number of packets entering a switch, and the pack-
ets coming out after being switched, is always zero;
that is, packets are neither created, stored, nor
destroyed in the switches.

In Figure 5 (A), the consequence of these two policies
is illustrated. The packet that wants to get out on the net-
work never gets the chance since all the outgoing links are
occupied. The switching policy, illustrated in Figure 5 (A),
of letting the incoming packets be deflected, instead of
properly routed, is not sufficiently for a proper network
operation; but the sum of incoming/outgoing packets are
the same, i.e. a deflected packet is occupying the same
number of outputs as a packet routed to any other output!

In Figure 5 (B), one link is unoccupied and the packet
can therefore immediately get access to the network.

In Figure 5 (C), the principle behind our VC using con-
tainers as information carriers is illustrated. One ‘empty’
container arrives from the east, information from the
resource is loaded, and the container is sent away.

In order to further illustrate the principle, Figure 6

depicts a VC going from the Source (1) to the Destination
(3); a container belonging to this VC is tracked during four
clock cycles. It is, in this example, assumed that the con-
tainer already exists. In the first clock cycle, the container

arrives to the switch connected to the Source. The con-
tainer is loaded with information and sent off to the east.
The reason why the information could be loaded instantly
was that the container already was there and occupied one
of the inputs. As a result of this, it is known that there will
be an output available the following clock cycle.

In the second clock cycle, the container and its load is
routed along its predefined path with precedence over the
ordinary datagram packets originating from the BE traffic.

In the third cycle, the container reaches its destination,
the information is unloaded and the container is sent back.
Possibly with some new information loaded, but now with
the original source as destination.

The fourth cycle is similar to the second.

3.3.   Bandwidth Granularity of the Virtual Circuit

If the Looped Container and the Temporally Disjoint
Networks (TDN) approaches are combined, we get a system
where a limited set of VCs can share the same link. The
number of simultaneous VCs, routed over a certain switch,
is equal to the number of TDNs. This means that on-chip we
can have many VCs, but only a limited set of VCs can be
routed over the same switch – this since only one VC can
subscribe to the same TDN on a switch output. To illustrate

the concept, Figure 7 depicts two VCs; VCA with black con-
tainer packets and VCB (path dashed) with grey ditto. In
switch [2,1] and [2,2] the containers of both VCs will share
the same links (and switch). The numbers inscribed in the
packets, denotes which TDN the respective packet belong
to; the numbers range from one to four since the number of
TDNs, in Figure 7, is four since we have a bipartite topology
and two buffer stages in every switch. As seen in Figure 7,
VCA have subscribed to TDN2 and TDN3, whereas VCA only
uses TDN4.

TDN Topology Factor Buffer Stages×=

Fig. 5. Launching a packet out on the network
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The smallest bandwidth, the BWGranularity, that is possible
to acquire, for any VC, is dependent on the VCRound-trip delay.
The VCRound-trip delay is the length of the circular VC path in
terms of buffers. In VCA the VCRound-trip delay is four and in VCB
twelve. The VCRound-trip delay is the same as the number of con-
tainers a VC can have in all existing TDNs. Since the con-
tainers represent a fraction of the maximum BW over one
link, the BWGranularity becomes

The BWMax is the switching frequency times the payload
in the system, usually in terms of Gbit/s. The BWMax that
exist within one TDN is

Of course several containers can be launched on a net-
work if more than the initial BWGranularity is desired. The
BWAquired then naturally becomes

If the VC only subscribe to one TDN, the total number
of containers is limited to

Regarding the individual characteristics of VCA and VCB

they are presented in Table 1.

4   Use of Concept

Accessing the VC is done from the NI. The set up of VCs
is, in the current implementation, semi-static, this means
that the route for the respective VC is decided at design time
but the numbers of containers used by every VC is variable.
That is – the bandwidth, for the different VCs, can be con-
figured at start-up of the network. To set up the VC, i.e. to
get the containers in the loop, the containers are launched
during a start-up phase of the network where no ordinary
datagram packets are allowed to enter the network. If more
bandwidth is needed during run time, this can be achieved
by launching more containers. However, in this case the
set-up time can not be guaranteed since “new” container
packets are not guaranteed access to the network. Natu-
rally, if less bandwidth is needed some containers can be
taken out of the loop.

Since the set-up of the VCs is based on a mutual agree-
ment between the source and the destination regarding the
information to be sent, no buffer overflow is assumed. That

is, the source knows at what rate it can send data/packets to
the NI and the destination knows what data rate it has to be
able to cope with. If several applications reside in the same
resource and need to be able to acquire bandwidth this
could be handled by setting up several Virtual Channels
residing in the same Virtual Circuit.

4.1.   Multi-cast and other functionality

By the use of VC, several services, except for the obvi-
ous sending of data from a source to a destination at a guar-
anteed rate, can be implemented.

Multi-cast can easily be implemented by having multi-
ple destinations along the VC path, as illustrated by VCB of
Figure 7, which has destinations in [1,1] and [2,3]. Even sev-
eral source/destination pairs can be formed along a VC path
subscribed to the same TDN as long as they are aligned so
that the source is followed by the destination.

Even busses might be implemented quite effectively
using the service of multi-cast. The sheer distribution of
data is not of any problem but what might become a bottle-
neck is the bus master implementation. The delay/latency
caused by the VC itself may reduce the bus master’s capa-
bility of granting/denying access to the bus due to latency.
However, if latency is acceptable, nothing hinders an effec-
tive implementation of a bus structure.

4.2.   Implementation

All services possible to implement using the VC con-
tainer based concept, e.g. source – destination data distri-
bution, multi-cast, or busses, utilises a combination of four
standard switch functions

• Source Loads an incoming container with data from
the appropriate NI output queue. Flags the packet as
non-empty. Sends the container along the VC path

• Destination (Final) Read the data from the con-
tainer and put it in the appropriate NI input queue.
Flags the packet as empty. Sends the container
along the VC path

• Destination (Multi-cast) Same as Destination
(Final) but the container is not flagged as empty

• Bypass Sends the container along the VC path

Internally the VC path is handled by a small look-up
table for every VC in the switch. In the current implementa-
tion, the VCs are set up semi-statically and the only extra
HW needed in the switches is the one of giving a container
packet the highest priority in the direction of its VC path.
Also extra HW is needed to set/clear the empty bit depend-
ent on the role of the switch (Source, Multi-cast Destina-
tion etc.) and whether to load/unload information. A switch
with only BE functionality uses 13695 equivalent NAND

gates for combinatorial logic (control), buffers excluded;
for the same switch with the added functionality of VCs the

VCA VCB

BWGranularity of BWMax 1/4 1/12

Launched containers 2 2

Used TDNs 2 1

BWAquired of BWMax 1/2 1/6

Table 1. Summary of VC characteristics
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BWMax

VCRound-trip delay
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BWMax(TDN)
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Container
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TDN
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gate count is 13896. So the relative extra HW cost is less
than 2 percent! The number of gates is derived from Syn-
opsys Design Compiler.

The additional cost, for implementing the VCs, in terms
of bandwidth is very low; only two bits are used as packet
header. The first bit identifies the packet as a container and
the second flags the packet/container as empty or not. This
means that the effective relative payload for a packet with
128 bits is more than 98 percent!

4.3.   Simulation Results

Simulations carried out so far extend to HDL simula-
tions with artificial, but relevant, workload models. The
workload models used, implements a two-way process
communication between A and B. In the first example AB
uses BE for communication and in the second the VCs of the
GB are employed. In both cases, the communication is dis-
turbed by having random BE traffic in the rest of the net-
work. As a vehicle for the simulation a 4x4 network was
chosen. The processes were placed so that A got position
[3,1] and B [2,4] in the 4x4 mesh. Both the background traffic
as well as the traffic between A and B was created with the
same probability, p. In the simulation p ranges from [0 .6],
above that the network becomes congested due to funda-
mental limitations in capacity of the network.

In Figure 8 the average latency is plotted against the
probability of the packet generation, p. The left graph
shows the background traffic and the right graph the AB

traffic. BE and GB in the figure relates the respective graph
to the traffic pattern used for AB traffic in the simulation.

As seen in Figure 8, the random background traffic in
the network is very little affected by the VC; but for the AB

traffic, the VC gives a tremendous boost in guaranteed
latency and bandwidth for increased traffic in the network.
The average bandwidth of the AB traffic is not changed –
but now it is guaranteed! and as expected, the latency of AB

goes from being exponential to become constant.
Of course, if more VCs were utilised, it would be theo-

retically possible to construct such traffic patterns and VC

route mapping combinations so that network congestions
are irreparable, but we found no interest in these artificial
corner cases.

5   Conclusions

We have implemented a service of guaranteed band-
width to be used in our NoC platform Nostrum. The GB uses

Virtual Circuits to implement the two concepts that we call
Looped Containers in Temporally Disjoint Networks. The
VCs are set up semi-statically, i.e. the route is decided at
design time, but the bandwidth is variable in run-time. The
implementation of the concept was synthesised and simu-
lated. The additional cost in HW, compared to the already
existing BE traffic implementation and the cost in terms of
header information were both less than 2 percent.

Simulations showed that the VCs did not affect BE traffic
in the network significantly but gave a guaranteed band-
width and a constant latency to the user of the GB. Also the
cost of setting up the VC was very low.

Possible drawbacks are the potential waste of band-
width in the returning phase of the container in the loop,
since the container might travel empty if the BE traffic is
one-way. Also, the limited granularity of bandwidth possi-
ble to subscribe to, might become a problem. Future work
includes a method for clever traffic planning to avoid the
possible waste of bandwidth when the VCs are set up.
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Abstract

We propose a communication protocol stack to be used in
Nostrum, our Network on Chip (NoC) architecture. In order
to aid the designer in the selection process of what parts of
protocols, and their respective facilities, to include, a lay-
ered approach to communication is taken. A nomenclature
for describing the individual layers’ interfaces and service
definitions of the layers in the protocol stack is suggested
and used. The concept includes support for best effort traf-
fic packet delivery as well as support for guaranteed band-
width traffic, using virtual circuits. Furthermore an
application to NoC adapter is defined, as part of the
Resource to Network Interface, and is used to communi-
cate between the Nostrum protocol stack and the application.
An industrial example has been implemented, simulated,
and the results justifies the suggested layered approach.

1   Introduction

Current core based System-on-Chip (SoC) methodolo-
gies do not offer the required amount of reuse to enable the
system designer to meet the time to market constraint. A
future SoC methodology should have potential of not only
reusing cores but also reusing the interconnection and
communication infrastructure among cores.

The need to organise a large number of cores on a chip
using a standard interconnection infrastructure has been
realised for quite some time. This has led to proposals for
platform based designs using standardised interfaces, e.g.
the VSI initiative [1]. Platforms usually contain bus based
interconnection infrastructures, where a designer can cre-
ate a new system by configuring and programming the
cores connected to the busses. Due to the need for a sys-
tematic approach for designing on-chip communication
communication centric design methodologies have been
proposed in [2, 3] where interconnection and communica-
tion among cores for a SoC will captivate the major por-
tion of the design and test effort.

As recognised in [4], bus based platforms suffer from
limited scalability and poor performance for large systems.

This has led to proposals for building regular packet
switched networks on chip as proposed in [5, 6, 7]. These
Network-on-Chips (NoCs) are the network based commu-
nication solution for SoCs. They allow reuse of the com-
munication infrastructure across many products thus
reducing design-and-test effort and time-to-market.

In order to enhance reusability and to ease programma-
bility, all NoC proposals recommend standardised and lay-
ered protocols for communication among cores. While
some of these papers discuss the protocol layering on a
conceptual and abstract level [2, 6, 8] others have only elab-
orated and implemented the lower protocol layers [5, 12].

In this paper, a concrete instance of a full communication
protocol stack for Nostrum, our NoC architecture, is proposed.
The protocol stack ranges from physical to transport layer
and offers the designer the possibility to customise the,
respective, layers’ functionality with respect to the actual
needs of the application. One important aspect of our
approach is the strong connection to geometry and imple-
mentation, which will help us to find efficient solutions.

2   Nostrum

2.1.   The Nostrum Concept

We have developed a concept called Nostrum [13] that is
used for defining a concrete architecture – the Nostrum Mesh
Architecture. The communication infrastructure used
within the concept is called the Nostrum Backbone. Nostrum
mixes traditional mapping of applications to hardware with
the use of the communication infrastructure offered by
Network-on-chip (NoCs). Within Nostrum, the ‘System’ in
SoC can be seen as a system of applications consisting of
one or more processes. In order to let processes communi-
cate, Nostrum offers a packet switched communication plat-
form that can be reused for a large number of SoCs.

To make the packet switched communication practical
for on-chip communication, the protocols used in tradi-
tional computer networks cannot be used directly; they
need to be simplified so that the implementation cost as
well as speed/throughput performance is acceptable. These
simplifications are made from a functional point of view
and only a limited set of functions are realised.
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2.2.   The Nostrum Backbone

The purpose of the backbone is to provide a reliable
communication infrastructure, where the designer can
explore and chose from a set of implementations with dif-
ferent levels of reliability, complexity of service etc.

In order to make the resources communicate over the
network, resources are equipped with a Network Interface
(NI). The NI provides a standard set of services that can be
utilised by the Resource Network Interface (RNI) or by the
resource directly. The role of the RNI is to act as glue (or
adaptor) between the resource’s internal communication
infrastructure and the standard set of services of the NI.
Dependent on the functionality requested from the Nostrum
backbone, the Nostrum protocol stack can be more or less
shallow, but the depth of the custom protocol stack, which
may include the RNI, is not specified within Nostrum.

The backbone can be used for both best-effort traffic
using single-message passing between resources where
switching decisions are made locally in the switches on a
dynamic basis for every individual datagram routed
through the network, as well as for guaranteed bandwidth
traffic using virtual circuits.

2.3.   The Nostrum Mesh Architecture

The NoC Nostrum Mesh Architecture (described in [14])
is a concrete instance of the Nostrum concept and consists of
Resources (R) and Switches (S) organised, logically and
physically in a structure where each switch is connected to

its switch neighbours and to its resource as depicted in Fig-
ure 2. From an implementation point of view, the resources
(Processor cores, DSPs, Memories, I/O etc.) are the realisa-
tion of the Processes (P). A resource can host one or many
processes, potentially the processes can belong to one or
several different applications. However, the Nostrum concept
is not inherently dependent on the mesh topology, other

possibilities include folded torus, fat-trees [9] etc.
The mesh topology was chosen for three reasons:
First, higher order dimension topologies are hard to

implement. As analysed in [10], low dimension topologies
are favoured when wiring and interconnects carry a signifi-
cant cost, there is a high bandwidth between switches, and
the delay caused by switches is comparable to the inter-
switch delay. The torus topology was rejected in favour of a
mesh since the folded torus has twice as long inter-switch
delays.

Second there is no real need for higher dimensional
topologies since it has been shown that two the dimen-
sional mesh topology is quite efficient for a large number
of important applications in the area of signal and multi-
media processing.

Third, the mesh inhibits some desirable properties of its
own, such as a very simple addressing scheme and multiple
source-destination routes, which give robustness against
network disturbances.

3   The Layered Communication Approach

In order to make different processes communicate a
standard needs to be defined for the format of communica-
tion. The requirements are quite diverse; the process com-
munication mechanism needs to be able to deal with
different data formats, different priorities, the interaction
with the underlying network etc.

In order to implement this functionality a vertical set of
layers has been defined, with each layer providing the layer
above and below with a set of services. This layered
approach to communication enhances to great extent the
possibilities of performing simulations and implementa-
tions of the different layers in a multitude of design lan-
guages. It also alleviates changes in the protocol stack.

3.1.   Terminology

In order to describe the functionality of the different
layers we use a terminology where similar functionalities
are grouped into layers and a service is defined as an
agreed functionality, which the particular layer has to pro-
vide. The services a layer offers could further be divided
into functions implemented in that particular layer. The
functions within a layer are collected into groups called
entities. These entities, within the same layer communicate
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with their peers using one or more peer protocols as seen in
Figure 3. These units of information used to implement the
protocol are called Protocol Data Units (PDUs), i.e. the PDU

is the agreed data format, used by peers. In order to provide
these services, an interface to the upper and lower layer has
to be defined. These interfaces are called Service Access
Points (SAPs).

4   The Nostrum Protocol Stack

As a starting point for the layers employed in the Nostrum
backbone protocol stack, the abstraction levels of the OSI

reference model is used as a basis. However, these layers
only exist as a conceptual aid in the design process. Once
the design is set, the layers might be collapsed at a logic
level in order to enhance the possibility of hardware imple-
mentation optimisations. Within the concept of the Nostrum
backbone resides the three “compulsory” layers; Network,
Data Link, and Physical Layer. These three layers provide
the service of delivering packets with a Destination Process
Identifier (DPID) as the destination address.

4.1.   Physical Layer

The lowest layer is the Physical Layer with the purpose
of moving a word from the output of a switch to the corre-
sponding input of the next. From a simulation point of
view, this gives the possibility of error introduction.

4.2.   Data Link Layer

The Data Link Layer (LL) provides the reliable transfer
of information across the physical link. The LL is responsi-
ble for the transmission of frames with the necessary syn-
chronisation, error control, and flow control.

4.3.   Network Layer

The Network Layer’s (NL) responsibility is to provide
the delivery of packets from the transmitting resource’s NI

through the network to the receiving resource ditto and the
intermediate packet routing needed. The NL also has the
responsibility of managing and mapping the resource
addresses to the process identifiers associated with the
processes in the different resources. This management
involves the mapping/re-mapping of the process-resource
pair, either at system set-up or during run-time.

At the NL two different services can be requested. The
first service is the datagram service delivery; any packet
sent to the NL will get routed dynamically through the net-
work using a variant of deflection routing [11, 14].

The second service is the Virtual Circuit (VC) service.
On request, a VC between the transmitter and the receiver is
set up. This VC is implemented as a modified TDMA where
the VC can allocate fractions of the total bandwidth.

4.4.   Transport Layer

The Transport Layer (TL) handles the establishment of
communication. In the case of VC it issues an establishment
of a connection and handles the transfer of data by ensuring
a virtual point-to-point connection. It also provides traffic
control, i.e. the load of the network is detected and over-
load of the network is hence avoided.

5   The Nostrum Simulator

A simulator has been developed in order to prove the
Nostrum concept. The simulator implements the different
layers of the protocol stack “independently”, i.e. different
layers are implemented as separate plug-ins. The choice of
the plug-ins is a part of the design process. Within one
design, several different plug-ins can be used for imple-
menting the same layer dependent on the communication
requirements. To test the Nostrum simulator a relatively large
industrial example in the form of a distributed DSP core was
employed. The purpose of a real-life example is twofold; it
justifies Nostrum as a concept and it justifies the use of the
simulator as a platform to demonstrate the working of our
ideas.In the current simulation set-up only the Application
and the Network Layer (NL) were fully simulated. Due to
this, packets are passed directly to the NL, ignoring the
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intermediate layers. In a full simulation, the diversity in
message sizes would force us to split and merge the mes-
sages in the TL.

5.1.   The Distributed DSP Application Model

Ericsson Radio Systems provided a typical application
from the real world. It is a relatively large industrial exam-
ple in the form of a distributed DSP application.

The application has 12 serial inputs and 12 serial out-
puts. The input streams are de-serialised, characterised and
sent to the appropriate Queue. After these respective data
streams have been processed by FPGAs and DSPs they are
re-serialised and sent out on one of the outgoing channels.
The Control Processor, which loads all the system compo-
nents with data at start-up hosts the monitor and control
facilities, after start-up the traffic that it generates is negli-
gible. The characteristics of the messages between the
FPGAs and DSPs are shown in the Table 1.

5.2.   Conclusions drawn from Simulation

The simulations performed show that:
• The protocol stack fully covers the need of the

application when simulating different traffic classes.

• The simulator correctly implements the protocol
stack.

• We can simulate fairly complex applications on a
very high abstraction level, which only captures the
traffic pattern between processes.

In addition to the experiment with the protocol stack
and the validation of the simulator, several conclusions
about requirements imposed by applications on the Nostrum.
could be drawn. The two most important are: First, the traf-
fic is indeed highly local, provided that we have a sensible
mapping of tasks into resources. Second, multi-cast mes-
sages have the potential of significantly decreasing the
communication load and improve performance, because,
data streams are often fed to several consumers which

process data in parallel. Since these streams constitute high
traffic loads it is beneficial to split the streams into multiple
copies as close to the consumers as possible.

6   Conclusions

A standard protocol stack for a Network-on-Chip plat-
form allows the separate, independent development and
validation of resources, communication network and appli-
cations as long as they comply with the defined protocols.
This clear separation enables systematic reuse of resources,
communication infrastructure and application features.

We have defined such a protocol stack within the con-
cept of Nostrum. The protocol stack is defined from the phys-
ical to the transport layer and, based on it, the layered
Nostrum simulator is developed. The simulator allows exper-
iments with different protocol variants because individual
layers can be replaced without affecting other parts. Fur-
thermore, a real application have been modelled, and simu-
lated, on a very high level of abstraction only capturing the
traffic pattern between tasks and resources. This enables
analysis of application requirements in order to optimise
the protocol stack and the Nostrum architecture. Also the
assumption of the feasibility of using a 2D-mesh as topol-
ogy for a complex real life example holds!
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Table 1.  Channel Characteristics

Type Bit- width Rate (MHz) Class
a 128 32 Continuous
b, c 16 32 Burst
d 64 32 Burst
e 32 16 Burst
f 16 8 Burst
g 16 4 Burst
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The throughput of a network is limited due to several  
interacting components. Analysing simulation results 
made it clear that the component that was worth 
attacking was the exit bandwidth between the network 
and the connected resources. The obvious approach is 
to increase this bandwidth; the benefit is a higher 
throughput of the network and a significant lowering of 
the buffer requirements at the entry points of the 
network; this because worst case scenarios now 
happens at a higher injection rate. The result we 
present shows significant differences in throughput as 
well as in average and worst case latency. 
 

Offering services with best effort performance, 
naturally, gives no hard guarantees due to the dynamic 
behaviour of any general purpose system. In order to 
make use of such services statistical performance 
measures are instead utilised. This leads to that the 
traffic often has to be below a certain threshold for 
which the desired statistical properties can be given. 
These properties can be derived, either, from a rigid 
reasoning based on the implementation or from an  
analysis of simulations. From this analysis the desired 
properties can be given with a safety margin. 

Given that we are bound to offer services with 
statistical characteristics on performance, how do we 
do this to a low cost? The cost in this context is the 
required buffers needed to guarantee no packet losses 
together with a safety margin in terms of injection rate 
to "guarantee" a worst, and average, case latency. 

The approach that we have chosen within, Nostrum 
[1], for giving the service of Best effort, is by utilising 
deflective routing, with no explicit buffering, to keep 
the size of the switches small[2]. Through simulations 
with uniform random traffic patterns, we observed that 
there seems to exist a "hard" limitation on the network. 
On a 4x4 mesh this limit is reached for an injection rate 
of 0.63 packets/node/cycle for the best performing 
routing strategy tried out. Once this limit is reached 
packets start queuing up at the entry points of the 
network and the worst case latencies grows 
exponentially. 

Analysing simulation results made it obvious that 
an increased bandwidth between the network and the 
connected resources would make the network perform 

better. The price for this solution is that packets now 
need to be buffered at the exits of the network, but 
from an overall perspective the total buffers required is 
lowered for a moderately to heavily loaded network. At 
the limit injection rate the average latency was reduced 
from 25 to 15 clock cycles and the observed worst case 
latency from 280 to 180 clock cycles. This will give 
better margins before the network saturates or a higher 
throughput with the previous margin kept. All this 
assumes that there no single node or bisection cut of 
the network are exposed to a static over-utilisation. 

The validity of the chosen approach is not restricted 
to uniformly random traffic patterns on meshes but 
also applicable to "any" topology where the traffic 
pattern involves potential network exit congestions due 
to multiple sources having the same destination and/or 
multiple routing paths are possible. 

The network exit strategy has not received as much 
attention as other parts of network design. Most work 
that in detail analyse cost and performance of a router 
and the network as a whole, e.g. [3, 4, 5] assume an 
ideal packet ejection model, which means that packets 
are absorbed by the receiving node as soon as they are 
delivered by the network. In [6] an ejection policy is 
studied that reduces the cost and complexity of the 
router while minimizing the impact on performance. 
However, to our knowledge no study about the trade-
offs involved in increasing the network exit bandwidth 
has been reported. 
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When designing a network the use of buffers is
inevitable. Buffers are used at the entry point, inside
and at the exits of the network. The usage of these buff-
ers significantly changes the performance of the system
as a whole. In order to enhance the buffer utilisation
the concept of letting more than one packet exit the
network at every switch each clock cycle is introduced -
Dual Packet Exit (DPE). The approach is tried on a 4×4
and a 6×6 mesh. We demonstrate the buffers used in
combination with different routing strategies for best
effort performance. The result we present shows a 50%
reduction in terms of worst case latency and a 30%
reduction in terms of average latency as well as an
increased throughput both from a system and network
perspective. We define the term Operational Efficiency
as a measure of the network efficiency and show that it
increases by roughly 20% with the DPE technique.

1.  Introduction
When offering services with best effort performance,

naturally, no hard guarantees can be given due to the
dynamic behaviour of any general purpose system. In
order to make use of such services statistical performance
measures are instead utilised. As a consequence the traffic
has to be kept below a certain threshold for which the
desired statistical properties can be given. These properties
can be derived from a rigid reasoning based on the current
implementation or from observed simulation results where
the offered services can be given with certain properties
within a safety margin.

If real guarantees are to be given the cost is often high
since the capacity of the network has to be allocated in
such way that the network is inherently bound to be over-
dimensioned for any general scenario. If the traffic pat-
terns are static and known prior to network setup the hard
guarantees often offer a good alternative, but due to the
dynamic behaviour of a general purpose system static traf-
fic patters are rare.

Given that we are bound to offer services with statisti-
cal characteristics on performance, how do we do this at
lowest possible cost? The cost in this context is the
required buffers needed to guarantee a no-packet-drop pol-
icy together with a safety margin in terms of injection rate
to “guarantee” a certain worst, and average, case latency.

The approach that we have chosen, within the mesh
based NoC Nostrum [1], for giving the service of Best
Effort at a low cost, is by utilising deflective routing in
order to keep the size of the switches small [2]. The small
size is a consequence of not employing explicit buffering.
Through simulations with uniform traffic patterns, we can
conclude that there seems to exist an upper bound on the
performance of the network. On networks of the sizes 4×4
and 6×6 this upper bound is reached for an injection rate of
0.63, and 0.45, respectively, for the routing strategies tried
out. Injection rate is defined as packets per node and clock
cycle. Once this limit is reached packets start queuing up
at the entry points of the network and the worst case sys-
tem latency grows exponentially.

In the course of extensive simulation and performance
analysis it became clear that the exit point from the net-
work is a severe bottleneck that keeps packets unnecessar-
ily long in the network. The obvious approach taken is to
increase this bandwidth; we call this solution Dual Packet
Exit. The benefit of the Dual Packet Exit is a higher
throughput of the network and a significant lowering of the
buffer requirements at the entry points to the network
because the worst case scenario now happens at a higher
injection rate.

The price for this solution is that packets now need to
be buffered at the exits of the network, but the need for
buffers at the entry of the network is reduced so that from
an overall perspective the buffers required in total is kept
constant (and even lowered) for a moderately to a heavily
loaded network. For the 4×4 mesh the average system
latency is reduced from 14 to 9 clock cycles and the
observed worst case latency is reduced from 85 to 45 clock
cycles at an injection rate of 0.63. This will give better
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margins before the network saturates or a higher through-
put with the previous margin kept. All this, of course,
assumes that there exists a balanced load in the network in
the sense that no single node or bisection cut of the net-
work are exposed to a static over-utilisation.

The validity of the chosen approach is not restricted to
uniformly random traffic patterns on meshes but also
applicable to “any” topology where the traffic pattern
involves potential network exit congestions due to multiple
sources having the same destination or where multiple
routing paths are possible.

The network exit strategy has not received as much
attention by researchers as other parts of network design.
Most work that in detail analyse cost and performance of a
router and the network as a whole, e.g. [2, 3, 4] assume an
ideal packet ejection model, which means that packets are
absorbed by the receiving node as soon as they are deliv-
ered by the network. In [5] an ejection policy is studied
that reduces the cost and complexity of the router while
minimizing the impact on performance. However, to our
knowledge no study about the trade-offs involved in
increasing the network exit bandwidth has been reported,
as we attempt in this paper.

The rest of the paper is organized as follows: We start
with giving a general overview of the platform used, to
help the reader to relate the results to other work in the
field. After this, we discuss how packets are generated and
buffered in the system together with two hard limitations
on what performance we could expect from “any” network
at best. Then we present the contribution of the paper
together with simulation results comparing Dual Packet
Exit with simple packet exit. Finally, some discussions
relate the approach to a general scenario in order to show
where it is valid and useful.

2.  System Overview
The topology that is chosen for the network is a n×n

mesh which employs deflective routing with no explicit
buffering (i.e. no queues) in the switches. Every switch is
connected to a resource in a pair-wise fashion and a
switch/resource pair is called a node. The total number of
nodes in the system is N = n·n. Packets are produced (gen-
erated) by the resource’s Packet Source process, sent over
the network, and later consumed by the Packet Sink proc-
ess at the destination resource.The switches are individu-
ally connected to its four neighbouring switches in the
direction of the compass. In addition we accept no packet
loss. In our simulator a packet will receive a multitude of
time tags for post simulation data analysis during its life-
time. The Packet Source generates λ packets, on average,
every clock cycle. The packet is assigned a sequence
number, tagged with a birth time, tB, and thereafter pushed
onto the resource’s Downstream Packet Queue waiting for
permission to enter the network. Once admitted to the net-

work, the packet gets a send timing tag, tS, and tries to
reach its destination with a minimal number of hops
according to the routing scheme described below. At the
destination node the packet is ejected from the network
and is pushed onto Upstream Packet Queue of the destina-
tion resource - this achievement renders the packet a
reception time tag, tR. The Packet Sink process polls the
queue and if a packet is found it is popped from the queue
and tagged with a finish time tag, tF.

Inside the switches there, conceptually, exist two sepa-
rate stages - Ejection and Routing.

Ejection The ejection stage examines the incoming
packets to detect if one (or more) have reached their desti-
nation and is to be delivered to the resource. In case of
competition the packet with the highest priority is deliv-
ered. Also it informs the Resource’s Admission process
whether there is room in the switch for a packet to enter
the network the next clock cycle. Since no explicit queues
are employed in the network, admission can only be
granted if the switch is currently holding fewer packets
than its output buffer capacity, i.e. four packets.

Routing The deflective routing scheme is carried out in
three phases: Priority Assignment, Favoured Outport
Selection & Permutation Routing

Priority Assignment In this phase the incoming packets
are dynamically assigned a priority, in our simulation the
Hop Count (HC) is used. Hop Count is the time that the
packets have spent in the network - a high HC means a
high priority.

Favoured Outport Selection The packets now use their
assigned priorities to select a desired outport. The priori-
ties are utilised as credits which enable the packets to give
different weights to favour a certain routing decisions in
the coming Permutation Routing objective function. Here
we try out two different strategies, Uniform and Propor-
tional. Uniform implies that the packets use their priorities
“uniformly” to select a favoured outport. That is, if a
packet has a destination in a direction Northwest it will put
a half of its priority to a routing decision where it gets
routed to the West and half of its priority to a routing deci-
sion where it gets routed to the North. In the Proportional
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strategy the packets favour a decision where the priorities
are assigned proportionally to the direction of destination.
An example: a packet has a destination two switches to the
North and one to the West. The packet now chooses to use
two thirds if its priority in favour of a decision where it
will be routed North and the remaining third in favour of
the West direction. The consequence of this strategy is that
a packet will try to move in a direction where the degrees
of freedom in routing is kept as long as possible to work
against misroute closer to the destination.

Permutation Routing The weighted priorities of all the
competing packets are summed to form the basis for select-
ing the best routing permutation. The number of permuta-
tions to select from in a four outport switch is 4! (= 24).

In order to slightly vary the routing strategy to make the
analysis and claims about the importance of the buffer use
stronger simulations are carried out with both the
described variants of Favoured Outport Selection.

3.  Packet Generation & Bounds on
network Performance

Packets are generated with an average rate of λ. A λ of
0.3 means that there is a 30% chance that a packet will be
generated during a clock cycle. The generation is “una-
ware” of the whereabouts of the network in the sense that
it will perpetually generate packets regardless of the
number of packets already in the Downstream Packet
Queues or in the network.

Since each resource generates packets with an average
rate of λ packets per clock cycle the total number of pack-
ets generated in the system every clock cycle is N·λ.

The destinations of the generated packets are spread
uniformly random over the network. This means that there,
on average, will be a balanced load in the network, from
the perspective of the source and destination nodes. The
implications and validity of this approach will be further
discussed in 8 - Discussions and future work.

3.1. The Bisection Cut Bandwidth
The bisection bandwidth of the network is equal to the

number of links crossing any bisection of the network [6].
The reasoning is the following: If all nodes emit pack-

ets with a uniformly random destination distribution half
of the packets will with 50% probability cross the bisec-
tion in one direction.

λ·N/4 ≤ n

λ ≤ 4n/N = 4n/(n·n) = 4/n

If n=4 ⇒ λ ≤ 1 and n=6 ⇒ λ ≤ 0.67 this is the first upper
bound of our network and it gives us a limit on how many
packets that can, under uniform load, be transferred over
the network per node.

4.  Buffering
Buffers exist at three places: in the Downstream Packet

Queue, in the network, and in the Upstream Packet Queue.
When talking about buffering we will discuss utilisa-

tion as well as minimum required capacity. Buffer utilisa-
tion is the average number of buffers utilised during the
simulation, the utilisation is coupled to the dynamic
energy consumption since we assume that energy con-
sumption, in the buffers, is mainly dependent upon
whether the buffers currently hold a packet or not. Regard-
ing the minimum capacity it is the number of buffers
needed to fulfil the requirement of no packet drop. For the
Up- and Downstream Packet Queues, (which are imple-
mented as FIFOs) the assumption of linear dependency of
power consumption and buffer utilisation is unrealistic
since they could be implemented in a memory structure as
circular buffers. The buffer capacities of the FIFOs are
derived from a worst case observed in the simulations pre-
sented in Section 7. The buffer capacity of the network, is
in general, equal to the number of switches times the
number of buffers they contain.

Since the switch uses two stages: Ejection and Routing
we have both in and output buffering (b=2). The number of
buffers for the network is

BC = switchBuffers+edgeBuffers = 4·b·n·m+2·b·(n+m)
In the case n=m we get

BC =4·b·n·(n+1)
In our case with n=4 and n=6 we have 160 and 336

buffers available, respectively.
The geometrical distance between any two switches is

denoted, dgeom. The distance in clock cycles is the geo-
metrical distance times the number of buffer stages, b,
used in the switches. In addition to this, clock cycles for
the buffer stages in the sender and receiver switches need
to be taken into account to make a complete analysis, these
are not, however, included in the formula below

d = b·dgeom
If all nodes are emitting packets with a uniform random
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destination, where the destinations are all other nodes
excluding the sending node, the average geometrical dis-
tance, in a n×n mesh, is according to [6]:

d geom = 2·n/3
The average distance in clock cycles is hence

d = b·dgeom = b·2·n/3
On our case, with double buffering in the switches we

get an average distance of d ≈ 5.3 (n=4) and d = 8 (n=6).
During the routing of a packet it will traverse a number of
buffers along its way. The longer distance a packet has to
travel the more buffers/network buffer capacity it will uti-
lise. This was first described by Little [7] and in our exam-
ple the average number of buffers utilised under
“minimal” routing is:

Bused = Ptot·d = λ·N·b·2·n/3 = 2·λ·b·n3/3

4.1. The Network Buffer Capacity
In order to satisfy the demand of Little’s formula the

available number of buffers in the network has to be higher
than the buffers required by the traffic. In the expression
below the buffers at the edges are removed since they are
not part of a minimal path.

Bused < n·n·b·4-(n+n)·2·b
2·λ·b·n3/3 < 4·b·n·(n-1)
λ < 6·(n-1)/n2

This is the second upper bound of our network and with
n= 4 we get λ < 9/8 and n=6 gives λ < 5/6

5.  The Contribution - Dual Packet Exit
The contribution of this paper is the observation that the

routing time for each packet inside the network has three
different components: Minimum routing distance, Deflec-
tion prior to reaching destination for the first time, Deflec-
tion after reaching destination.

The first component - the minimum routing distance is
not something that we can do much about, it is an lower
bound that stems from the mapping and the traffic pattern.

The second component is the deflection prior to reach-
ing destination. By this we mean the deflection that occurs
before it reaches its destination for the first time. Once the
packet has reached its destination for the first time and
potentially is deflected due to an exit congestion it is con-
sidered to be in the third category.

The second component is however, a consequence of
the competition for resources in the network. This in turn
is dependent upon the overall load of the network and
routing strategy. The load and routing strategy is tightly
coupled in a looped fashion in the sense that a good rout-
ing strategy gives a lower load which in turn improves the
possibilities for better routing. This component can easily
be reduced by lowering the load of the network or by
choosing a better routing strategy which is considerably
more difficult. The difficulty lies within the problem of
choosing a strategy that gives a good performance to any
traffic pattern.

The third component is the deflection after reaching
destination, which is the component that we here aim to
lower.

5.1. Exit Congestion Limit
If two (or more) packets will reach the same destination

node at the same time at least one of them will be deflected
which contributes to the routing distance used in Buffer
capacity bandwidth. The contribution will be four extra
clock cycles for that particular packet since we are
employing both in and output buffering of the switches.

The chance of two packets having the same destination
is 1/N, if their individual destinations are randomly chosen
in the range 1..N. If three random packets are chosen, {A,
B, C} the cases of packet A and B, packet A and C and
packet B and C having the same destination has to be taken
into the formula. As well as the possibility of all three
packets having the same destination has to be taken into
account. The last scenario with three competing packets
must be weighted with the penalty of two deflections. For
an increasing number of competing packets the scenarios
quickly becomes significantly more complex and a closed
expression that captures the penalty for multiple packets
having the same destination is hard to find. This problem
has strong resemblance with what’s referred to as the
Birthday Paradox, which is the, not intuitive, high chance
of two, or more, people having the same birthday in a group.
If n is the number of people the chance of two or more peo-
ple having the same birthday is given by the equation

For the Birthday Paradox, a closed expression for the
probability of coinciding birthdays apparently exist but
does not, naturally, incorporate expressions for penalties
varying with number of coinciding birthdays. In [12] this
is well described and also it is shown that the uniform dis-
tribution gives rise to the smallest number of coincidences.
For our problem this means that any non-uniform packet
distribution worsens the problem of congestion at the exits
of the network. However, this procedure of calculating the

deflection penalties is carried out with an increasing
number of packets competing and the number of deflec-
tions is depicted in Fig. 5.1. The horizontal axis shows the
number of competing packets and the vertical shows the
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average deflection penalty for each packet in a 4×4 and a
6×6 network. In short - this is the average penalty, in hops,
that every packet gets its routing distance increased due to
the exit node congestion!

If we compare these data with the circumstance that the
average minimum routing distance in a 4×4 network is
≈5.33 the penalty of 1-2 clock cycles becomes significant
due to the coupled load and average routing distance
which will even further worsen the penalty in clock cycles
due to the increased load, which will even further increase
the load, and so on.

The obvious remedy for the exit packet congestion
problem is to let more than a single packet exit the net-
work per clock cycle and node. The cost connected to this
is the dual wiring needed from the switch to the Resource
together with the Upstream Packet Queues and corre-
sponding logic. However this cost is relatively low com-
pared to the gains that can be made in the network and
Downstream Packet Queues as illustrated in Section 7.

6.  Simulation setup
The simulator used is fully written in SystemC [11] on

a cycle accurate basis. It implements the network as well
as the packet generators and the queues in the resources.

As mentioned before all resources generate packets
with a rate of λ packets per cycle, with a random uniform
destination pattern. All resources will generate 16000
packets each, in their respective, Source Processes. In
total Psystem = N*Pnode (N=16 ⇒ P=256000, N=36 ⇒
P=576000) packets will be generated during one simula-
tion. The simulation is stopped when all packets are deliv-
ered. The reason for sending 16000 packets per node is
that this is enough for making the effect of start-up and
empty phases insignificant to the total result. The parame-
ter that is changed from one simulation to the next, within
one simulation run, is the injection rate, that is swept from
0.3 - 0.7 in steps of 0.002 for the 4×4 mesh. This means
that we get 1+(0.7-0.3)/0.002 (201) measurement points
from every simulation run. For the 6×6 network the range
is 0.1 - 0.5 in steps of 0.004 which give 100 measurement
points. In some graphs presented not the full range of
measurement points are present in order to enhance the
readability of the interesting portions of the graph.

We describe the measurements that we have chosen to
present from two main perspectives: End User & System
Designer. The End User, is interested in Performance like
Throughput & Latency whereas the System Architect
which may be more interested in implementation costs,
like Required Buffer Capacity, and effectiveness measure-
ments. Of course both of these are closely related and the
Average Latency is an obvious shared concern since the
End User sees packet latency but the System Architect may
consider this as an increased cost in terms of energy due to
buffering and switching.

6.1. Performance - Worst Case Latency
The Worst Case Latency is the biggest difference in tB

and tF that we can find for any packet during the simula-
tion. In order to enhance readability the worst cases in
terms of latencies the graphs are made monotonously
increasing, this is also done for the Required Buffer
Capacity.

6.2. Average Latency
The average latency is the average of all packets’ indi-

vidual latencies. The System Latency and Network Latency
of a packet is derived from (tF-tB) and (tR-tS ), respectively.

6.3. Required Buffer Capacity
The Required Buffer Capacity has three components:

The sum of all Up- and Downstream Packet Queue sizes
and the buffer capacity of the network. The individual
sizes of all the downstream packet queues in the resources
are dimensioned from the observed worst case load of any
downstream packet queue during the simulation. E.g. if
one packet queue at any point in time held 10 packets all
the packet queues in the network are given that size. The
same is done for the up stream packet queues. In short:

6.4. Operational Efficiency -
Throughput per Buffers Used

The throughput (accept bandwidth) of the network is
the average number of packets the system can deliver per
clock cycle. When increasing the injection rate the
throughput increases accordingly until the network is satu-
rated. Given this fact it is easy to jump to the conclusion
that the best performance is achieved by saturating the net-
work! However, loading the network to this extent must
come with a cost. The cost is the increase in average buff-
ers needed to transfer a packet through the system,
together with a, potentially, higher worst case latency.
Ignoring the worst case latency, we propose the odd meas-
ure of Operational Efficiency to capture the Throughput
per Buffers Used in the network. The idea is that, both, an
underutilised as well as an overutilised network will give a
bad ratio between the throughput delivered and number of
buffers that is used. From a system perspective this is
expressed as

Since we do not have a realistic power model for the
current implementation of the network it is hard to give
any concrete numbers of how much energy a network will
require in order to give a certain throughput. Anyway this
measure will give a picture of the potential load of the net-
work that gives acceptable performance.

N DSLoadWorstCase USLoadWorstCase+( ) BC+⋅

OpEfficiency
PacketsTransmitted

TotalTransmTime BuffersUsedPerPacket 
------------------------------------------------------------------------------------------------------------------------------=
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7.  Simulation Results -
Comparisons and Discussion

7.1. Required Buffer Capacity
Both for the 4×4 and the 6×6 network it can be seen that

the Dual Packet Exit (DPE) based approach has a higher
buffer requirement at lower load, this since we get an early
contribution from the Up-stream buffers. When the injec-

tion rate increases the 4×4 DPE network breaks down later
than the non-DPE. This means that we, either can, drive
the network harder or give performance guarantees with
better margins! For the 6×6 network we get basically the

same behaviour both with and without the DPE. The reason
for not getting the improvements of the 4¥4 network is that
since the network is bigger the packets spend a proportion-
ally smaller time competing for ejection than on routing.

7.2. Average Total Latency
If we look at the average total latency in the system we

can see that all strategies have basically the same latency
for low loads but for higher loads the DPE outperforms the
other by far. If we set for an average latency of 10 cycles
for the 4×4 mesh to the strategy with no DPE and the DPE
gives roughly 25% higher injection rate for the same
latency. The main contributing factor is that packets, to
higher extent, are given access to the network. The contri-
bution of the Exit Congestion Limit, described in section 5
- The Contribution - Dual Packet Exit, can be seen if we
only look at the latency within the network, as depicted in
Fig. 7.5. The DPE clearly reduces this effect and hence
give a lowered average latency.

7.3. Performance - Worst Case Latency
As seen in Fig. 7.7 the worst case latency is reduced for

the full spectra of injection rates for both sizes of the net-
work. This result we consider to be the strongest benefit of
the DPE approach since the worst case latencies now is
within the same magnitude as the average case latencies.
Also the worst case latency of the “break down” injection
rate can be slightly shifted by the use of the DPE which
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can potentially give better margins before packet drop
occur due to buffer overflow.

7.4. Operational Efficiency -
Throughput per Buffers Used

Since the Operational Efficiency is derived from

the immediate observation that can be made in Fig. 7.9
is that with the DPE approach the throughput of the net-
work can be increased while still using the same number
of buffers. Also it can be seen the network utilising DPE is
more effective. If we define a region where the network
operates within 95% of its optimum that region is consid-
erably moved in a higher throughput area ( [0.44..0.59] ⇒
[0.53..0.67] ) and the drop-off of the effectiveness also
happens much closer to the saturation point of the DPE
network. For the 6×6 network the situation is similar even

though the relative effect is slightly reduced. Once again
the relative reduction stems from the fact the packets
spend relatively less time waiting for admittance in a
larger network.

8.  Discussions and future work
In this section we reason about the validity and general-

ity of out approach.

8.1. Input/output balance
In our simulation we have assumed the network load to

be statistically balanced. By this we mean that on average
there exists a balance between the number of packets des-
tined for a particular destination node in such way that if,
on average, λ packets are generated by each of the N par-
ticipating nodes at every clock cycle, λ packets will have a
particular node as destination node. As shown in 5 - The
Contribution - Dual Packet Exit there exists a variance in
the uniformity of the packet destination and due to this a
potential congestion at the exits of the network. This is the
reason for implementing the Dual Packet Exit. One might
argue that if we have a “true” balance in the sense that we
generated packets every λ clock cycle one “unique” packet
for every destination, i.e., the packets generation process
every λ is a permutation between the sets N16 ⇒ N16 will
the approach still hold? We claim that the answer is yes,
and reason as follows:

The time the packets spend in the Downstream Packet
Queues and in the network could for good reason be con-
sidered as random. For instance assume the latency for any
packet varies by 10 clock cycles. The start permutation
N16 ⇒ N16 would become N160 ⇒ N160, with 16 unique
symbols, and the “permutation balance” would be more or
less gone. This is not validated quantitatively and needs to
be investigated further.

8.2. Applicability to other routing strategies and
topologies

For any network that implements Best Effort and has a
jitter in latencies that stems from random admission queu-
ing times and/or there exist non-determinism in the routing

Fig. 7.7  Worst Case Latency - 4×4
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Fig. 7.8  Worst Case Latency - 6×6
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the problem of congestion at the output of the network will
occur. And hence would benefit from an increased “exit-
from-the-network” bandwidth.

We suspect that the effects for deterministic routing
techniques such as wormhole routing are basically the
same. Any worm denied exit from the network would be
locking up resources in the network. These resources
(buffers) would in turn, potentially, lock up other resources
and so on. It will be interesting to investigate this pre-
sumption in detail.

8.3. Size of the Network
The results presented could potentially be claimed to be

unrealistic due to the relatively small size of the network
but we have a strong conviction that the network in ques-
tion is quite realistic from the perspective of the uniform
load in the sense that the 4×4 network could be seen as a
subset of a bigger network where some nodes are employ-
ing an all-to-all communication pattern.

8.4. Uniform Load
The choice of uniform destination selection is most

questionable from a real world application perspective.
The obvious reason for choosing this pattern is simplicity
and the possibility of making general statements from a
relatively easily to describe approach. Up till now we are
not aware of any “official”, (by the NoC community
approved) benchmarks for measuring performance. Hence
any choice of traffic pattern that has some special charac-
teristics has to be rigorously motivated before any claims
can be made.

Except for the above mentioned difficulties we believe
that the uniform traffic pattern actually is some kind of
“best-case” pattern, because if we added burstiness to our
approach the effect of limited exit bandwidth would actu-
ally be worsened since we know, if a small portion of
packets get misrouted, will have a guaranteed exit conges-
tion.

The same is valid for any stream between any two
nodes since keeping the network under-utilised would be
the only guarantee against the effect of a misroute disturb-
ing the balance. Moreover, all experiments with specific
application traffic patterns will not allow to draw general
conclusions because any result may not hold for other traf-
fic patterns. Even tiny differences of the traffic patterns
may have a profound impact on cost and performance of
the network. Thus, in summary the uniform distribution is
a crude but robust assumption preferable to any other more
“realistic” but arbitrary traffic.

8.5. Hardware Cost
The hardware cost that has been discussed in this paper is

the relative cost of buffers. The cost due to extra wiring and
logic between the switch and the resource is not included
but our intention is to investigate this in future work.

9.  Conclusions
We present the concept of Dual Packet Exit in order to

increase the outgoing bandwidth between the network and
resources since it is identified as a bottleneck. The effect of
this increase in bandwidth gives better throughput and a
lowered buffer requirement. This, either can be utilised for
a higher packet injection rate offering better throughput
with the same margins to network breakdown; or it can be
utilised for a achieving a lowered load in the network for a
fixed packet injection with better margins when offering
QoS for the same throughput as result.

The buffers needed in order to buffer incoming traffic to
the network are reduced but instead buffering of outgoing
traffic is introduced. The net requirement of buffers is
however reduced for a fixed injection rate. Using the DPE
approach not only increases the throughput of the network
while still using the same number of buffers, also it can be
seen a system utilising DPE is more effective.

The generality of the approach is discussed Section 8
and we suppose that this bottleneck may exist in other net-
works than Nostrum as well. In addition to the future work
suggested we will also investigate effects of further
increase in the outgoing bandwidth.
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Abstract - In this paper we introduce Priority Based Forced
Requeue to decrease worst-case latencies in NoCs offering best
effort services. Forced Requeue is to prematurely lift out low prior-
ity packets from the network and requeue them outside using prior-
ity queues. The first benefit of this approach, applicable to any NoC
offering best effort services, is that packets that have not yet entered
the network now compete with packets inside the network and
hence tighter bounds on admission times can be given. The second
benefit � which is more specific to deflective routing as in the Nos-
t rum  NoC � is that packet �reshuffling� dramatically reduces the
latency inside the network for bursty traffic due to a lowered risk of
collisions at the exit of the network. This paper studies the Forced
Requeuing on a mesh with varying burst sizes and traffic scenarios.
The experimental results show a 50% reduction in worst-case
latency from a system perspective thanks to a reshaped latency dis-
tribution whilst keeping the average latency the same.

I.  INTRODUCTION

When offering best effort services naturally no performance
guarantees can be given. However, it is desirable to offer these
services with the best possible performance in terms of
throughput, latency, and worst-case behaviours. In this paper,
focus is set on improving the worst-case latencies for multi-
packet messages. Multi-packet messages manifest as traffic
bursts in the network and dramatically worsen the perform-
ance. Most real world traffic exhibits burstiness to some
degree. This does not constitute any problems if the traffic is
orchestrated in such way that traffic bursts in the system do not
collide on their way to destination. However, traffic that is uti-
lising the best effort services often does so because the traffic
behaviour is hard to predict in detail and hence, disqualified
from utilising a guaranteed service.

During a packet�s lifetime it will go through three separate
phases: admission to the network, transport through the net-
work, and exit from the network. Our previous work mainly
focused on the two latter phases [7, 9] whereas this paper
approaches the problem of admission. The approach that is
chosen within the NoC Nost rum  [8] for offering best effort
services at a low cost uses deflective routing to keep the size of
the switches small since no explicit buffers are used [4]. Most
NoCs today employ variants of wormhole routing in favour of
deflective routing mostly due to the packet reordering issue of
deflection routing. However, studies carried out by Tota et al.

shows the deflective NoC competitive, and possibly advanta-
geous, to wormhole routing in terms of area and power [10].
The performance is neither better nor worse than its competitor
on realistic multiprocessing benchmarks. In parallel to the deflec-
tive best effort services Nostrum also offers quality guaranteed
services using a TDMA based scheme relying on the concept of
Temporally Disjoint Networks [8]. During start-up of Nostrum
different traffic streams are assigned to the appropriate services.

The key problem that we address is that: Regardless of rout-
ing policy the best effort services inherently have a problem
giving statistical bounds on the admission time to the network,
i.e. bounds on the down stream queuing time before a packet
can enter the network. The reason is that it is hard to predict
the traffic in the switch connected to the resource where a
packet is to be injected into the network. In our earlier work [7]
a solution to the problem of a guaranteed throughput service
utilising the concept of looping containers was presented.
Here, a solution for the best effort case is proposed. The worst-
case waiting time is kept down by prematurely lifting out low-
priority packets from the network to be requeued. A successful
concept similar to ours is the Diverting Switch of Lang et al.
[6] where packets in a competitive situation are sent to an alter-
native destination in the network to be resent later.

The validity of the concept is demonstrated in simulations;
one using a uniform random pattern and another focusing on
traffic to centrally placed memories. Both scenarios explore
varying degrees of bursty traffic. In order to explain why bursts
are harmful to network traffic an estimate is derived on the
extra cost of congestion at the exits of the network as a func-
tion of the emission probability and the burst size. To our
knowledge, no work has been presented working on an esti-
mate on the delay due to multi-packet admissions in deflection
routing networks. However, a number of papers describing
upper bounds on delivery times in a network exist, e.g. the
work of Hajek [5] and Brassel [2].

The paper starts with an overview of the platform used to
help the reader in relating results to other work in the field
together with the technical contribution of the paper. Next, the
implication on the network performance in the presence of
bursts and an estimation on what performance that can be
expected from �any� network at best is discussed. Then, a hard-
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ware architecture with an �acceptable� cost is suggested and justi-
fied by simulations comparing a Forced Requeue system with a
system without. Finally, some discussions relate the approach to a
general scenario to show where it is valid and useful.

II.  SYSTEM OVERVIEW WITH PRIORITY BASED FORCED 
REQUEUE

The topology of our network is an n�m mesh employing
deflective routing with no explicit buffering, that is, no queues
in the switches. Every switch is connected to a resource. A
switch/resource pair is called a node. Packets are generated by
the resources� Packet Source process, sent over the network, and
later consumed by the Packet Sink process at the destination
resource. The switches are individually connected to its four
neighbouring switches in the direction of the compass. The
Packet Source generates �� packets, on average, every system
clock cycle. Generated packets are pushed onto the resource�s
Downstream Packet Queue waiting for permission to enter the net-
work. To simplify the analysis in the current setup only one out
of the four independent time-slots of the TDMA based network
is utilised and analysed. Hence, the system delays are scaled
according to the Packet Source process�s clock. At the destina-
tion node the packet is ejected from the network and pushed
onto the Upstream Packet Queue of the destination resource. The
Packet Sink process polls the queue and if a packet is found it is
taken from the queue and can be considered delivered.

Conceptually, inside the switches two separate stages exists
� Ejection and Routing. In the Ejection stage incoming packets
are examined to detect if they have reached their destination
and are to be delivered to the resource. In case of competition
the packet with the highest priority is delivered. Also, the Ejec-
tion stage informs the Resource�s Admission process whether
there is room in the switch for a packet to enter the network at
the next clock cycle. Since no explicit queues are used in the
network, admission can only be granted if the switch holds
fewer packets than its capacity of four packets.

In the Routing stage the incoming packets are dynamically
assigned a priority, in our simulation the Hop Count (HC) is

used. The HC is the time a packet has spent in the network � a
high HC means a high priority. The priorities of all competing
packets are used to select the best routing permutation.

A. Priority Based Forced Requeue (PBFR).
The contribution of this paper is the idea that low priority

packets/worms can be taken out from the network before they
actually reach their final destination. The packets that have
been forcefully taken out are requeued to be admitted to the
network later. By forcefully taking out packets, the worst-case
latencies that are caused by being in the downstream packet
queues, potentially indefinitely long, are significantly reduced.
The cost is mainly in hardware since a priority queue needs to
be implemented in the Network Interfaces. The priority queue,
however, does not have to hold all the packets of the Down-
stream Packet Queue. The packets originating from this very
resource are known to be sorted already and can be kept in a
separate queue. From a performance point of view, the penalty
for taking packets out of the network is an increased delay for
the individual packets that are forcefully requeued. From a
burst point of view this is a non-issue ¦rather the opposite
thanks to the phenomena of Section III.

III.  UNDERSTANDING THE EFFECTS OF BURSTY TRAFFIC

As can be seen in Section V., multi-packet bursts severely
decrease the network performance; this despite that the traffic
patterns, and the average packet injection rates, � (in packets
per cycle), are the same. Depicted in Fig. 2 are the increased
individual packet latencies as a function of the burst sizes. As
can be observed these latencies increase at least linearly with
increasing burst sizes and hence make the packets of the bursts
arrive at their respective destinations scattered in time. To
develop an intuition why this degradation of the network per-
formance occurs one must have knowledge about two related
phenomena: How often packets in a network have the same
destination and what is the cost incurred by this. We prioritise
intuition over theoretical rigor and hence, this section should
be considered a pointer in understanding the negative effect
bursts could have on a network. Also, in our analysis only the
effect of packet collisions at the destinations will be targeted,
i.e. excluding the effects of bursts on the potential misroute of
packets. Since the reasoning was developed with the deflective
routing in mind the word packet is used � the reasoning in the
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upcoming Subsection III - A. How Common are Common Desti-
nations? is, however, valid for a worm as well. The same holds
for Subsection III - B. What Does a Collision Cost? where the
burst size is changed into the length of the worm and a packet
is a flit in the case of wormhole routing.

A. How Common are Common Destinations?
Assume a uniform distribution of the packet destinatios.

How likely it is that packets will have the same destination?
The answer is that it is, non-intuitively, very likely! To demon-
strate, a very small network with only 4 nodes is chosen as a
starting point. The nodes are all sending and receiving packets.
If all permutations of destination patterns are transferred into a
table that displays the relative frequencies of one or more pack-
ets sharing destination we get:

This means that only 42% of the packets will not experience
any competition for destination whereas 58% will experience
competition from at least one other packet! This problem is a
variant of the Birthday Paradox [1] which is the, not intuitive,
high chance of two (or more) people in a group having the
same birthday. Intuitively one might object to that collision just
appears to be this common due to two reasons. First, the small
size of the network makes these numbers highly unrealistic.
Second, uniform traffic does not coincide with any �real� sce-
nario. To counter the first objection the competitions per pack-
ets for the 4x4 network are presented below.

This means that, on average, 9 out of 16 packets will com-
pete with other packets for any outcome. As it comes to the
second objection it turns out that uniformly random traffic pat-
tern actually gives the least number of coinciding destinations
among the random traffic patterns. So, in general, packets/
worms are most likely to share a destination under a random
traffic pattern.

B. What Does a Collision Cost?
Given the conclusion about shared destinations � how likely

is it that a packet will collide with other packets with the same
destination and what does the collision cost? In order to
develop an intuition some simplifications are made by only
assuming the potential collision to take place at the destination
nodes, i.e. ignoring effects of coinciding packet routes. Hence
it is assumed that the burst will be delivered to the destination

consecutively, i.e. it will not be split along its way. The validity
of this assumption will be discussed in Subsection III - D. The
Moderating Effect on the Cost of Collisions. Given these
assumptions a best case scenario is derived as it comes to coin-
ciding packet destinations.

To answer the question regarding the cost of collision burst
size and the packet emission probability has to be known. In
the case of not having bursts, i.e. the burst size is one; the
potential cost will develop from one single scenario. Here, a
packet denoted A competes with a packet denoted 1

The cost per packet (cpp) in this single collision scenario is that
one packet has to be queued per two incoming packets that col-
lide. In the formula below the burst size is denoted b. To derive

the average cost of having the same destination the emission
probability,��, is used to determine the interval length, i, in which
a potential collision scenario will occur according to i = b/�.

If the emission probability is 50% and the packets have the
same destination, each packet will suffer an extra 0.25 clock
cycle in delay due to competition for exit. If the burst size is
increased, e.g. b = 2, the following three outcomes of packet
collisions are possible.

In the general case, the total cost from all possible scenarios
grows as b3, which means that the average cost of a pair-wise
collision per packet (ccpp) can be reduced to:

In short � the cost for a collision increases linearly with the
burst size! One important note to make here is that the average
number of packets queued/in transit in the network per packet
sent actually corresponds to an increased routing latency with
the same amount of cycles.

C. The Combined Cost of Bursts
If the information about how often packets collide is com-

bined with the relative cost of collisions a bound on the
increase in latency due to the increased burst size is derived.
Since it is only claimed to be a lower bound it is reasonable to
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only consider all collisions to be pair-wise to simplify the anal-
ysis. For the 4x4 network the probability for a packet having a
coinciding destination with another packet was 62%. For the
Nos t rum  network, where switches are double buffered and
deflection routing is employed, a deflection at destination
means that the packet has to follow a minimal path of four hops
before it can make a new attempt. This detour means that the
penalty is quadrupled. If the penalty together with the relative
number of packets competing is taken into the formula cost of
collision per packets of Subsection III - B. it becomes: 

The graph of Figure 3 shows a family of plots over the
increased latency that originates from pair-wise deflections at
the destination vs. the emission probability. Depicted in Figure
3 are also the simulated corresponding �real� increased laten-
cies. These simulated incremental latencies are only the laten-
cies observed at the exits of the network due to bursty traffic.
Additional latencies due to the bursty traffic in other parts of
the network are not included; hence the situation is actually
worse! On the other hand, what is striking when examining the
graph closer is the rather distressing fact that the simulation
result actually is lower than the theoretical lower bound! The
main reason for this anomaly is that the effect of the increased
burst size at the destination nodes are moderated by an
increased degree of deflection for the packets on their way to
the destination, i.e. the preconditions of the analysis do not
hold � more on this in next section. In the case of wormhole
routing the cost of collision would be different since flits are
not deflected but simply buffered.

D. The Moderating Effect on the Cost of Collisions
With an increased burst size a moderating effect on the cost

of collision will manifest itself. The cause of this moderation
has two components. The first component is that the burst is
split up due to misrouting along a packet�s way from source to
destination. The second is caused by the senders� inability to
get packets that belong to the same bursts, out on the network
consecutively. The downside of the analysis of Fig. 2 is that our
assumption about having the continuous bursts only colliding at

the destination nodes does not hold since the burst obviously have
been spread out over time! The positive thing is that this moderat-
ing effect of spreading the burst to could be further be exploited
as a positive side effect to the Forced Requeue approach!

IV.  HARDWARE IMPLEMENTATION

The biggest objection to the use of the Priority Based Forced
Requeue is the cost of additional hardware. Any solution that is
going to operate at realistic speed will involve shift registers.
In our search for an acceptable solution there are two lucky cir-
cumstances. The first one is the fact that the shift registers do
not have to store complete packets but the packet�s individual
priorities together with a reference to a memory position where
that actual packet is stored. The second is that only requeued
packets need to be sorted. The packets originating from the
Resources hosting the queue is already sorted and hence, only
the heads of the individual queues need to be compared. Sev-
eral proposals have been suggested for implementing priority
queues � one appealing to our needs is the Sequencer Chip
originally developed for the ATM traffic shaper of Chao and
Uzun [3]. The basic idea is to keep sorting keys in registers and

in parallel compare any incoming element to all the keys to
determine which packets that needs to be shifted. From simula-
tion data it could be observed that the priority queue of the
individual network interfaces never exceeded 60 elements
despite quite substantial traffic loads. Hence, a reasonable
assumption is that 8 bits are needed for the sorting queues and
6 bits for memory references. This gives us the possibility to
administer 64 packets with a maximum latency of 256 cycles.
Each module will contain 14 bit registers and some combinato-
rial hardware. The combinatorial hardware needed is approxi-
mately 20k gates for the full sequencer. The memories required
for the requeued packets will not add any extra cost since it can
be observed from the simulations in Section V. that regardless
of whether the priority queues of the Forced Requeue is used or
not, roughly, the same number of packets will compete for

ccpp16 4 0.62 b � 2�� � � 1.24 b �� �= =

Fig. 3. �Theoretical Bound� on The Cost of Bursts
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admission to the network. For a network using wormhole rout-
ing the cost is significantly less since only one time-tag per
worm needs to be stored.

V.  SIMULATION RESULTS

Due to a limited space the result presented will focus on
showing the decrease in observed worst-case latency. Regard-
ing other aspects, such as average latency, throughput, etc. they
are unaffected. In summary the network performance is
claimed to be by no means worsened in any aspect due to the
PBFR. The only effect observed is a reshaped latency curve for
the delivered packets where the heavy tail is shortened and
packets with low latency have a slightly increased latency but
the average latency is kept constant.

A. Simulation Setup
Our cycle accurate simulator used is entirely written in Sys-

temC. As mentioned before, all resources generate packets
with a rate of � packets per cycle. The experiments cover two
different access patterns: (1) The Random Uniform Pattern
(RUP) where all Resource nodes (R) are communicating with
other nodes in the system with equal probability. (2) The Cen-
tral Memory Pattern (CMP) implements an access pattern where

the R is communicating with the centrally placed �memory�
nodes (M) located in the centre of the chip. For both scenarios
all nodes generate 2048 packets each, since it is enough to
make the effect of start-up and empty phases insignificant. The
parameter that is changed from one simulation to the next is the
injection rate. For the RUP the � increases from 0.100 - 0.400 in
steps of 0.001. This gives 301 measurement points from a simu-
lation run. For the CMP, the interval was 0.050 - 0.220 in steps
of 0.001 giving 171 points. The lower range of CMP is due to
the fact that the memory nodes are more heavily loaded. In
some graphs not the full range of measurement points is pre-
sented to enhance the readability.

B. Required Downstream Buffer Capacity 
The individual sizes of all Downstream Packet Queues in the

resources are dimensioned from the observed worst-case load
of any downstream packet queue during the simulation. E.g. if
one packet queue at any time held 10 packets all packet queues
of the network are given that size. In Fig. 7 it is seen that the
total required buffer capacity is independent of whether PBFR is
used or not. Also, the relative amount of traffic using the prior-
ity queues is depicted.

C. The Latency Distribution Shift
In order to understand what is happening with the latencies

within one single simulation Fig. 8 is provided which is a his-
togram that depicts the latency. As can be seen the latency is
shifted to the right when utilising Forced Requeue but with a
shortened heavy tail but with average kept. To enhance the
readability the graphs has been smoothed.

D. Performance � Worst-Case Latency.
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In order to enhance readability the worst-cases in terms of
latencies the graphs are made monotonously increasing, this is
also done for the Fig. 7. As it can be seen in Fig. 9 (RUP) and in
Fig. 10 (CMP), respectively the latency is roughly reduced by
50% if the PBFR approach is utilised.

VI.  DISCUSSION

For any NoC that implements best effort and is exposed to a
random traffic pattern are bound to get packets competing for
resources due to the phenomena described in Section III. The
effects for routing techniques such as wormhole routing are
basically the same. A worm denied exit from the network locks
up resources in the network. These resources could in turn,
potentially, lock up other resources and so forth. Hence, due to
that the single biggest source of delay is the admission queuing
time the Forced Requeue for routing techniques such as worm-
hole routing would be beneficial since tighter bounds on worst-
case delay can be given. This has not yet been studied nor has
the PBFR been implemented for wormhole routing.

A. Nost rum  - Full System Performances
To keep the analysis clean from effects that comes from

other improvements of Nost rum  they are left out. If PBFR is

combined with our Dual Packet Exit strategy [7] and a mild
traffic regulation is used the worst-case latencies of Fig. 11 is
presented and can be compared with Fig. 9.

VII.  CONCLUSIONS

The concept of Priority Based Forced Requeue is presented
due to that best effort services inherently have a problem giv-
ing statistical bounds on admission time to the network, i.e.
bounds on the time a packet has to spend queuing before it can
enter the network. The PBFR both reduces worst-case latencies
as well as the harmful effects due to bursty traffic in the net-
work. The contribution is the idea that low priority packets/
worms can be taken out from the network before they actually
reach their final destination to be resent later.

In order to give the reader an intuition about the harmful
effect of bursts a model for giving an estimate on the effect of
bursts is developed. The model shows that the cost in terms of
extra delay is linearly dependent of the burst size.

From simulation data we claim that there are no perform-
ance degrading penalties related to the use of PBFR. However,
there will be an extra cost in hardware and an implementation
based on shift registers is proposed. As can be observed in sim-
ulation; using the PBFR approach will reduce the worst-case
latencies by 50% while still using the same number of buffers!
This is demonstrated both for a uniform traffic pattern as well
as for a traffic pattern constructed to create hot-spots in the
centre of the NoC. The generality of the approach is discussed
and it is claimed that the performance improvements will exist
in other networks than Nost rum  as well.
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Abstract

We propose a packet switched platform for single chip
systems which scales well to an arbitrary number of
processor like resources. The platform, which we call
Network-on-Chip (NOC), includes both the architecture
and the design methodology.

The NOC architecture is a m × n mesh of switches and
resources are placed on the slots formed by the switches.
We assume a direct layout of the 2-D mesh of switches
and resources providing physical- architectural level
design integration. Each switch is connected to one
resource and four neighboring switches, and each
resource is connected to one switch. A resource can be a
processor core, memory, an FPGA, a custom hardware
block or any other intellectual property (IP) block, which
fits into the available slot and complies with the interface
of the NOC.  The NOC architecture essentially is the on-
chip communication infrastructure comprising the
physical layer, the data link layer and the network layer of
the OSI protocol stack. We define the concept of a region,
which occupies an area of any number of resources and
switches. This concept allows the NOC to accommodate
large resources such as large memory banks, FPGA areas,
or special purpose computation resources such as high
performance multi-processors.

The NOC design methodology consists of two phases.
In the first phase a concrete architecture is derived from
the general NOC template. The concrete architecture
defines the number of switches and shape of the network,
the kind and shape of regions and the number and kind of
resources. The second phase maps the application onto
the concrete architecture to form a concrete product.

1. Introduction

Current algorithm on chip and system on chip design
methodologies cannot respond to the needs of the billion-
transistor area. The design would take too much time and

mapping of applications to dedicated architectures would
be impossible. The possible solutions must be searched
from platform based design and computer system design,
which rely on the reuse of components, architectures,
applications and implementations. The essential issue is
the trade-off between generality and performance.
Generality provides reusability of hardware, operating
systems and development practices, while performance
(delay, cost, power, etc.) is achieved by using application
specific structures.

We propose a NOC platform, consisting of architecture
and design methodology, which scales from a few dozens
to several hundred or even thousands of resources. A
resource may be a processor core, a DSP core, an FPGA
block, a dedicated HW block, a mixed signal block, or a
memory block of any kind such as RAM, ROM or CAM.
We base this proposal on three assumptions:
1. Moore's law will continue to hold for another five to

15 years. In that case our platform should prove useful
in the time period 2005-2015 [1].

2. Single processors will not be able to utilize the
transistors of an entire chip. Single synchronous clock
regions will span only a small fraction of the chip area
[16, 2, 3].

3. Applications will be modeled as a large number of
communicating tasks. The different tasks may have
very different characteristics (e.g. control or data flow
dominated) and origins (most of them are reused from
earlier products or from external sources) [4]. This
will make a heterogeneous implementation with
different kind of resources for different tasks the most
cost effective solution.

From this we conclude that a large number of different
kinds of blocks, each of the size of a few hundred thousand
gates, will constitute the computational resources. They
have to be connected efficiently.

Increasing non-recurring cost of these chips require that
design cost of chips must be shared across applications.
Furthermore, the same or different variants of the same
application have to be mapped onto different variants of
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the product, each establishing a different solution of the
cost/performance/functionality trade-off. If this can be done
quickly and cost effectively, many product versions for
various market niches can be supported.  Physical level
and architectural level design integration will be very
useful for this. This implies that physical layout and
implementation issues are kept in mind while taking
architectural decisions, or the architectural design is carried
out within constraints of physical size and a floor plan.

The proposed NOC platform would effectively separate
the specification of inter-task communication from the
implementation of that communication; separate the
design, implementation and verification of individual tasks
from the rest of the application (a precondition for task
reuse); separate the development, optimization and
verification of the individual resource from the network
infrastructure. We argue that the consequent separation of
different concerns is a way to develop high-performance,
cost-effective products while boosting design productivity.

Here is not the place to speculate about the kind of
products to be expected within five to ten years. However,
we assume that the future devices will have the following
requirements and features:
1. Processing of multiple ultra high data rate (> 100

MB/sec) streams of data including audio and video
data. The devices will be required to store this data
and process it in real time.

2. Devices will be multi-functional. The functionality
could be a mix of entertainment (like games, music
instruments), communication, remote control,
surveillance etc.

3. Devices will have high-capacity wire line or more
likely wireless interfaces to standard networks like
telephone network, Internet, and will need to be able
to handle multiple communication protocols
simultaneously

4. Security and secrecy of data stored and flowing
through these devices will become important.
Clearly, a NOC based design will not always be the

preferred solution for all kinds of applications. We expect
that NOC based designs will provide good solutions for
flexible products that should be reconfigurable and
programmable; for designs which are the basis for several
product variants; for applications with a heterogeneous task
mix; for applications with stringent time to market
requirements; for products where reuse both at the block
and the function and feature level is considered valuable.

The design costs can be justified by increasing the
implementation volumes and it is likely that the billion-
transistor chips are not designed for single product
instances or single applications. The design methodology
must therefore support product family management.
Tolerance of incomplete specifications, management of
configurations and modifications, support for multiple
languages and methods, and capability to handle different
abstraction levels simultaneously are desirable
characteristics.

Verification and testing are ever increasing challenges in
today's design routines. With every new technology
generation they are becoming more pressing. We argue that
the NOC platform effectively addresses these challenges by
separating the computation resources from each other and
from the communication network for all issues of design,
verification and testing.

In section 2, we list some other research work related to
complex system design on a chip. In section 3 we describe
the basic ideas and concepts of our proposed NOC
architecture. In section 4 we describe the principles of
design methodology for NOC based systems. In section 5
we discuss issues of physical implementation and
performance for NOC architecture.

2. Related work

It is being realized, by all research groups involved in
system level design, that it is absolutely necessary to
allow reuse of already designed components or blocks.
Gajski et. al. [5] have proposed an IP-centric embedded
system design methodology. The major challenges in the
IP centric methodologies are the interface synthesis among
various IP blocks and system verification. Recently,
Platform Based Design methodology [6] has been
proposed which not only allows reuse of components but
also reuse of system architectures and topologies. The
basic idea is that an architecture, which is suitable and
efficient for one application will also be suitable and
efficient for many similar applications. The idea of using
the same architecture (platform) for development of
application not only speeds up application design but also
reduces its verification time. Keutzer et. al. [7] have
extended the idea of platform based design by including a
layer of software on top of the hardware platform to help
application development. This layer is called Software
Platform. The combination of hardware and software
platforms is referred as System Platform. It has also been
realized that the key to reuse and integration of IP
components is the communication from the physical to the
system and conceptual level, and consequently
communication centric architectures, platforms and
methodologies have been developed [8, 9, 10].

Many architectural templates have been proposed for
hardware platforms for future SoCs. There is a general
emphasis on providing efficient and standardized
communication infrastructure for connecting multiple
resources on the chip [11, 8, 9]. There is a trend to adapt
layered approach of OSI reference model towards on Chip
communication [12, 10, 13].

It is estimated that video and audio processing are
going to be common tasks in many applications. These
applications are going to require storage and processing of
large amount of data. It is predicted that memories are
going to take around two third of the chip area in future
system on chips [14]. Many researchers have concentrated
on analyzing hierarchical organizations of memories and
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optimization of memory sizes and data storage strategies
for data intensive applications [15]. Researchers have alos
simulated theoretically elegant shared memory model on
message passing parallel computers in order to develop
data intensive applications on them [19].

The future system on a chip, incorporating many
different types of processing and memory elements, has to
operate using Globally Asynchronous Locally
Synchronous (GALS) paradigm [16], at least at the
hardware level. GALS paradigm not only avoids the
problem of clock skew but also leads to lower power
consumption.

3. Network on Chip Architecture

The NOC architecture provides the communication
infrastructure for the resources. We have two main
objectives. Firstly, it is possible to develop the hardware
of resources independently as stand-alone blocks and create
the NOC by connecting the blocks as elements in the
network. Secondly, the scalable and configurable network
is a flexible platform that can be adapted to the needs of
different workloads, while maintaining the generality of
application development methods and practices.

3.1. The NOC network

We chose a simple mesh interconnection topology as
basic topology, because it is simplest from a layout
perspective and the local interconnections between
resources and switches are independent of the size of the
network. Moreover, routing in a two-dimensional mesh is
easy resulting in potentially small switches, high capacity,
short clock cycle, and overall scalability.

A NOC consists (Figure 1) of resources and switches
that are connected using channels as a mesh (Manhattan-
like structure) so that they are able to communicate with
each other by sending messages. A resource R is a
computation or storage unit or their combination.  A
switch S (Figure 2) routes and buffers messages between
resources. Each switch is connected to four other
neighboring switches through input and output channels.
A channel C consists of two one-directional point-to-point
buses between two switches or a resource and a switch.
Switches may have internal queues to handle congestion.
We call this approach Chip-Level Integration of
Communicating Heterogeneous Elements (CLICHÉ).

The precise layout and geometry depends on the
technology generation. We expect that the area of a
resource is the maximal synchronous region in a given
technology. It is expected to shrink with every new
technology generation. Consequently the number of
resources will grow, the switch-to-switch and the switch-
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2008, a 22mm × 22mm chip size, and a resource size of
2mm × 2mm and a minimum wire pitch of 300nm. A
NOC would accommodate 10 × 10 resources, each switch
would occupy 30μm × 30μm and the channels would be
30μm wide. Assuming that we can use 3 metal layers for
the switch-to-switch connection we have space for 300
wires. Since we need control, handshaking and signaling
bits will yield an effective data bus width of 256 bits.
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for data intensive applications [15]. Researchers have alos
simulated theoretically elegant shared memory model on
message passing parallel computers in order to develop
data intensive applications on them [19].

The future system on a chip, incorporating many
different types of processing and memory elements, has to
operate using Globally Asynchronous Locally
Synchronous (GALS) paradigm [16], at least at the
hardware level. GALS paradigm not only avoids the
problem of clock skew but also leads to lower power
consumption.
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the NOC by connecting the blocks as elements in the
network. Secondly, the scalable and configurable network
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different workloads, while maintaining the generality of
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We chose a simple mesh interconnection topology as
basic topology, because it is simplest from a layout
perspective and the local interconnections between
resources and switches are independent of the size of the
network. Moreover, routing in a two-dimensional mesh is
easy resulting in potentially small switches, high capacity,
short clock cycle, and overall scalability.

A NOC consists (Figure 1) of resources and switches
that are connected using channels as a mesh (Manhattan-
like structure) so that they are able to communicate with
each other by sending messages. A resource R is a
computation or storage unit or their combination.  A
switch S (Figure 2) routes and buffers messages between
resources. Each switch is connected to four other
neighboring switches through input and output channels.
A channel C consists of two one-directional point-to-point
buses between two switches or a resource and a switch.
Switches may have internal queues to handle congestion.
We call this approach Chip-Level Integration of
Communicating Heterogeneous Elements (CLICHÉ).

The precise layout and geometry depends on the
technology generation. We expect that the area of a
resource is the maximal synchronous region in a given
technology. It is expected to shrink with every new
technology generation. Consequently the number of
resources will grow, the switch-to-switch and the switch-
to-resource bandwidth will grow, but the network wide
communication protocols will be unaffected. Figure 1
illustrates the principles of the physical floor plan within
the NOC Consider a 60nm CMOS technology expected in
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the NOC by connecting the blocks as elements in the
network. Secondly, the scalable and configurable network
is a flexible platform that can be adapted to the needs of
different workloads, while maintaining the generality of
application development methods and practices.

3.1. The NOC network

We chose a simple mesh interconnection topology as
basic topology, because it is simplest from a layout
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like structure) so that they are able to communicate with
each other by sending messages. A resource R is a
computation or storage unit or their combination.  A
switch S (Figure 2) routes and buffers messages between
resources. Each switch is connected to four other
neighboring switches through input and output channels.
A channel C consists of two one-directional point-to-point
buses between two switches or a resource and a switch.
Switches may have internal queues to handle congestion.
We call this approach Chip-Level Integration of
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resource is the maximal synchronous region in a given
technology. It is expected to shrink with every new
technology generation. Consequently the number of
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3.2. NOC resources

The NOC would allow for arbitrary resources. Typical
examples would be embedded processor and DSP cores
provided with caches as well as local memories, dedicated
hardware resources, and configurable hardware resources.
Since the area of resource equals one synchronous clock

optimization of memory sizes and data storage strategies
for data intensive applications [15]. Researchers have alos
simulated theoretically elegant shared memory model on
message passing parallel computers in order to develop
data intensive applications on them [19].

The future system on a chip, incorporating many
different types of processing and memory elements, has to
operate using Globally Asynchronous Locally
Synchronous (GALS) paradigm [16], at least at the
hardware level. GALS paradigm not only avoids the
problem of clock skew but also leads to lower power
consumption.

3. Network on Chip Architecture

The NOC architecture provides the communication
infrastructure for the resources. We have two main
objectives. Firstly, it is possible to develop the hardware
of resources independently as stand-alone blocks and create
the NOC by connecting the blocks as elements in the
network. Secondly, the scalable and configurable network
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3.1. The NOC network

We chose a simple mesh interconnection topology as
basic topology, because it is simplest from a layout
perspective and the local interconnections between
resources and switches are independent of the size of the
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easy resulting in potentially small switches, high capacity,
short clock cycle, and overall scalability.

A NOC consists (Figure 1) of resources and switches
that are connected using channels as a mesh (Manhattan-
like structure) so that they are able to communicate with
each other by sending messages. A resource R is a
computation or storage unit or their combination.  A
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resources. Each switch is connected to four other
neighboring switches through input and output channels.
A channel C consists of two one-directional point-to-point
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Switches may have internal queues to handle congestion.
We call this approach Chip-Level Integration of
Communicating Heterogeneous Elements (CLICHÉ).
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technology. It is expected to shrink with every new
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illustrates the principles of the physical floor plan within
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The NOC would allow for arbitrary resources. Typical
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hardware resources, and configurable hardware resources.
Since the area of resource equals one synchronous clock

optimization of memory sizes and data storage strategies
for data intensive applications [15]. Researchers have alos
simulated theoretically elegant shared memory model on
message passing parallel computers in order to develop
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3.2. NOC resources

The NOC would allow for arbitrary resources. Typical
examples would be embedded processor and DSP cores
provided with caches as well as local memories, dedicated
hardware resources, and configurable hardware resources.
Since the area of resource equals one synchronous clock



150 CHAPTER  5    Included Publications Paper 7
domain, the resource can be a combination of all previous
types. The internal communication inside a resource is
synchronous. In Figure 3 RNI=resource network interface,
P=processor core, D=DSP core, c=cache, M=memory and
re=reconfigurable block.
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Figure 3. A typical NOC CLICHÉ featuring
various types of resources.

The model of computation is a heterogeneous network
of resources executing local computation. Communication
between the resources is implemented by passing messages
over the mesh network. Resources operate asynchronously
with respect to each other. Synchronization is provided by
synchronization primitives, which are implemented by
passing messages around the network. Even a non-local
memory is accessed through message passing.

In order to make the NOC interface with the outside
world dedicated resources such as I/O elements are needed.
The I/O could be of various kinds, they could glue many
NOC chips together, interface with external memory or
implement a TCP/IP interface. Interface modules also
handle data buffering and packet reordering.

3.3. Communication

Every resource has a unique address and is connected to
a network via a switch. It communicates with the switch
through a RNI. Thus, any resource can be plugged into the
network if its footprint fits into an available slot and if it
is equipped with an RNI. The NOC defines four protocol
layers:
1. The physical layer determines the number and length

of wires connecting resources and switches.
2. The data-link layer defines the protocol to transmit a

cell between a resource and a switch and between two
switches. Both, the physical and the data link layer are
dependent on the technology. Thus, for each new
technology new technology generation these two
layers are defined. Let w be the number of wires in the
physical layer and c be the cell size of the data link

layer. We expect that c=n(w-wc) with n=1,2,3 or 4.
For n=2,3 or 4 the channel would be pipelined,
accommodating n data link cells at any time instant.
wc is the number of control wires required by the
physical layer, e.g.  synchronization signals.

3. The network layer defines how a packet is transmitted
over the network from an arbitrary sender to an
arbitrary receiver directed by the receiver's network
address. This layer is again technology dependent and
each network layer packet, together with the
destination address, is exactly 1 data link cell. Thus,
taking up our previous example, we have w=300 and c
may be 290. We need roughly 10 bits for the address
and a few control bits (e.g. a hop count) for switching.
Hence, the network packet would be 256 bit.

4. The transport layer is technology independent. The
transport layer message size can be variable. The RNI
interface has to pack transport layer messages into
network layer packets.

The RNI implements all four layers towards the network.
The switch-to-switch interfaces implement only the three
lower protocol layers. The basic communication
mechanism envisioned among computing resources is
message passing. However, it is possible to add additional
protocols on top of the transport layer to provide for
instance a virtual shared memory abstraction, which will
help the programmers in development of data and
computation intensive application.

3.4. Regions and wrappers

A 2-D mesh topology provides access to all resources
of the NOC, it is scalable and it has a simple structure.
However, there are applications for which CLICHÉ
structure is not suitable for performance reasons. Examples
can found from parallel computation, digital signal
processing and data flow processing areas.

A region G is an area inside the NOC, which is
insulated from the network and which may have different
internal topology and communication mechanisms. The
concept of region allows for resources of larger size than
the atomic slots in the mesh. In this way development,
management, communication and instantiation concerns of
various regions can be separated. Regions are connected to
the NOC by special communication arrangements called
wrappers W, which route packets so that regions are
insulated from external traffic. Specific IO wrappers Wio

allow communication between the region and its
environment. It is also responsible for converting the
messages into appropriate format. Thus, the region concept
in NOC can be seen to address four aspects:
1. A region can be used to dedicate a set of resources and

a part of the network to a specific task like processing
of streaming-oriented data, processing of block-
oriented data or parallel processing.

2. One can arrange communication inside a region
differently than in the other regions. A NOC designer
may e.g. want to define a region with high
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communication capacity for efficient work-optimal
implementation of shared memory abstraction [20].

3. A region can be used to insulate a set of resources
from the traffic happening between the resources not
belonging to the region.

4. A region can be used for encapsulating a specific
technology into a NOC. For example an area dedicated
to FPGA or embedded memory could be larger than
the area of resource.

However, the shape of regions cannot be arbitrary but
their boundaries must be convex. This definition of
regions imply that resources requiring high-capacity
intercommunication need to be placed into the same
region, because wrappers between regions may cause some
constraints to capacity and latency of communication.
From the point of view of the network layer, regions do
not form separate sub-networks, instead they can be
considered as just lightweight mechanisms to organize
communication in a more efficient and rational way.

4. Backbone-Platform-System Methodology

Our NOC concept is based on the idea to have a
backbone based application specific platform where the
final applications can be mapped as software or
configurable hardware. Combination of design productivity
and system quality requirements has led us to the
backbone-platform-system design methodology (BPS). The
idea with the BPS is to encapsulate the design work into
reusable platforms. A NOC based system consists of a
hierarchy of structural and behavioral objects, e.g.
backbone, platform and system concepts. BPS has two
main phases, platform development and application
mapping, as depicted in Figure 4.

Even in a small 4x4 meshes of switches and resources
there are 16 subsystems with a complexity of current state-
of-the-art SOC design each. Management of such
complexity must be based on extremely structured
architecture and extensive reuse. In BPS methodology the
generic, structured architecture and system development
principles are described as a backbone concept.
Development of several SOC complexity level
subsystems, e.g. resources in CLICHÉ topology, must be
based on the reuse of optimized virtual components or
even computer systems. If we assume that current SOC
design has a moderate complexity of 10 million gates,
then even in small 4x4 mesh the hardware complexity
would approach 200 million gates.

The computational capacity of NOC based system
depends on the type of resources. If we assume that
resources are general-purpose processor based computer
systems with a capacity of 1000 MIPS each, the 4x4 mesh
would have a total capacity of 16 GIPS. In real system,
part of the capacity would be wasted due to
communication and allocation problems, but it is obvious
that reuse of applications, middleware and system
architectures is required.
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Figure 4. NOC based system design.

4.1. Backbone design

The NOC backbone encapsulates the topological and
communication issues such as channels, switches, and
network interfaces. The backbone is the development
platform for all NOC based systems, so it is important
that every system follows the basic operation principles
defined in the backbone.

During the backbone design the focus is the network
communication resources, e.g. switches and interfaces, and
NOC system services and performance of different region
topologies. From the definition of resource area follows
that the connections between neighboring switches and the
switch design are issues where physical design has an
important role. The system-level communication
challenges the technological limits. The amount of wires,
wire lengths, synchronization, and buffering are all
problems were physical layout and characteristics sets
constraints. Customized region topology enables NOC
based systems were the quality of the application mapping
is optimized in the beginning. Definition of region
requires that potential applications are analyzed and
modeled. Mathematical and performance analyses and even
performance simulations are the main tools to be used.

4.2. Platform design

The objective of platform development is to create a
computation platform for an intended application area.
Scaling of the network, definition or regions, design of the
resource nodes, and definition of the system control are the
main activities. It requires thorough understanding of the
functionality of the target systems, but due to the platform
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nature it is not possible to use exact applications as a
starting point for architecture requirement definition. Use
of optimized virtual components and knowledge of
application-area requirements are essential in managing the
complexity and performance requirements of the target
system. During the development the characterization of
application area domain and architecture and system
quality estimations are essential tools. The application area
specific platform encapsulates the hardware design
problems and serves as a manufacturing integration
platform for system developers.

For example, in 4x4 mesh CLICHÉ system, we have to
define and design 16 resources, e.g. 16 communicating
computer systems, if the NOC platforms would be used
for the parallel implementation of heterogeneous
applications. If we want to optimize the platform for some
specific application area, we certainly need very efficient
ways of making the right decisions and new figures of
merit to describe the quality of NOC. Currently used
metrics: performance, utilization, capacity must be adapted
to handle temporal and spatial effects that are inevitable
with target systems. For example with combined
communication and computing systems, the required
architectural features may vary from bit-based processing to
parallel manipulation of huge data sets. The
communication throughput and latency requirements are
different in the same way.

4.3. System design

In the application mapping the functionality of
application is mapped to the resources. The NOC concept
should ultimately support both dynamic and static
mapping of applications, but the main problems with both
are the resource allocation, optimisation of network usage
and verification of performance and correctness. Basically
these issues are rather similar to what distributed and
parallel system designers have to face.

The proposed NOC platform is very heterogeneous. The
resources can vary from configurable hardware to
multiprocessor computers of almost every type. Therefore,
several modeling languages should be supported by NOC
application development environment making it easy to
integrate different tools into the design flow. As with
platform design, the decision support and quality
validation needs special attention and new approaches.

4.4. Methods and tools

Implementation of the BPS methodology or any other
design flow for NOC systems will be a challenge for EDA
industry. The traditional SOC, platform, and intellectual
property based design flows must be extended to cover
network-related issues, e.g. distribution and parallelism
effects as described in Table 1.

Table 1. Design responsibilites during
different phases of NOC development.

Instance Responsibilities during design
Backbone
development

Region types
Communication channels and switches
Network interfaces of resources
Communication protocols (specification)

Platform
development

Region scaling
Resource design (units, interconnections)
Dedicated hardware blocks
System level control (implementation of
communication, diagnostics, monitoring)

Application
development

Resource level control (OS)
Functionality of resources (SW, configurable
HW)
Control of the network
Functionality of the network

Our NOC backbone defines the implementation of the
network. The main task for designer at system level is to
decide what to put into the NOC as resources, how to map
functionality into those resources, and how to validate the
decisions. The actual design relies on the reuse of virtual
components and intellectual property, and enhanced
methods and tools to support them are required. Especially
at system level it is important to use abstract models and
descriptions of both resources and applications. Otherwise
the computational complexity of analyses, estimations and
simulations will exceed the computational capacity of
design tools. In traditional system design approaches the
design space exploration has been done using with
analytical approaches or with similar design methods and
tools than the actual design. Most often, only the
abstraction level of system models has been different.

In NOC design, we propose a clear distinction between
decision making support, development and verification
methods and tools. The decision environment should
include methods for advanced complexity estimation,
resource selection, and network analysis. Complexity
estimation is needed for the scaling of NOC and for region
type selection. The characteristic of computation is one
issue that needs to be added to operational complexity. In
the resource selection the mappability of algorithms and
architectures is one alternative extension to currently used
performance metrics that could provide more knowledge on
the potential quality of the system. Similar analysis could
be used during application mapping. Analysis of network
behavior is a critical part of region definition and
allocation of resources to functions. Modeling of network
behavior, workload characterization and efficient
simulation are the potential methods, if adapted to NOC
concept. The development and verification environments
should provide a virtual machine and development
environment for software development, and tools for
hardware design. Complexity is the biggest challenge in
both. Abstraction, partitioning of problems and
distribution of computation looks as viable alternatives.
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5. Discussion

Design of a new product using NOC architecture is
similar to the problem of designing a computer network
with some computing and communication requirements.
We have adapted ns-2 from Univ. of Berkeley at
California, to study various design options in NOC
architecture and their effect on performance[ 17].
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We have used a homogeneous 5 x 5 NOC architecture
for our simulation experiments. In particular, we have
studied the effect of buffer size in switches and network
traffic (called network load) on delay and probability of
message loss. These simulation experiments have been
carried out using various types of network traffic cases like
random traffic and local traffic and mix of these.  The
figure below shows relationship between the probability of
a packet being dropped verses the size of buffer in the
switch for each direction. We have assumed that a link
between two switches supports a maximum traffic of
200Mbits/sec. Various lines in the graph show the drop
probability verses buffer size for various actual traffic rates.
We observe that for actual traffic of up to 100Mbits/sec,
the drop probability is very close to zero if a buffer size of
four packets is used. Traffic rate is controlled by
controlling the rate at which a subset of resources generate
packets and by controlling the destination address of the
generated packets. The traffic generated for this study had a
mix of local and random traffic. We have carried out many
other similar experiments [17].

These simulation studies have resulted in many
interesting conclusions: For moderate traffic, a buffer size
of 8 messages for each direction leads to almost zero drop
probability. Message delay increases with buffer size as
well as network load. Message delay is more sensitive to
network load than to buffer size. If the network load
increases beyond 50% of network capacity, then it is
impossible to avoid message drop even with large buffers.

This study helps us to decide size of buffer in switches.
It also emphasizes the need for good mapping of
applications to the NOC architecture so that the resulting
traffic is local to a small area of the NOC. This will reduce
network traffic.

5.1. Physical Aspects of NOC

We have investigated some physical issues in the
design of the switches and the inter-switch connections for
on-chip communication networks like NOC [18]. In
particular, we have compared two distinct layouts for a
switch, called “thin switch” and “square switch”. In thin
switch, the switch functionality is distributed around a
resource and wires are routed across the resources.  A
square switch is placed on the crossings in dedicated
channels left between resources. The wires are routed in
these channels.

We have considered wireability, delay and maximum
signal bandwidth between switches, positioning of pads
and positioning of repeaters in our study. The study has
been conducted based on the 60nm CMOS technology
expected in about 6 years. The main conclusion is that in
five years 10 x 10 NOC architectures will be feasible. It
will be possible to route 256 wires between a resource and
a switch and between two neighboring switches in the
mesh. The study also shows that the square switch option
is superior with respect to performance and bandwidth
while the thin switch requires relatively low area.

5.2. System development

The main objective for the NOC development
environment will be to separate different concerns and
activities and to shield some tools and design tasks from
details in other tools and tasks.

The BPS methodology tries to benefit from reuse as
much as possible and to give support for application
development. The idea has also been to find an optimal
balance between manufacturing and system level
integration platforms. The role of the backbone is to
provide a solid starting point for ASIC design with
guidelines and flexibility.

The NOC system development environment will
provide layered system services, which will shield an
application developer from the details of the NOC lower
level architecture. It will provide application level
communication, synchronization, memory management,
and resource management services.

Design tools, which map applications onto the NOC,
must eventually implement all communications between
resources by means of the three protocol layers provided by
the network. This can be considered as a contract. If the
applications comply with these protocols the network
guarantees the communication services. Ideally we would
like to extend this contract also to performance issues, for
instance with a contract where applications guarantee a
maximum number of messages per time unit and the
network guarantees a maximum transport delay of all
messages. It is part of our future work to define the
conditions under which such a contract is feasible.



154 CHAPTER  5    Included Publications Paper 7
6. Conclusions

In this paper we have described an architectural
template, called network on chip architecture, for
developing large and complex systems on a single chip.
The architecture supports physical level and architectural
level design integration. Basic communication mechanism
between resources is envisioned to be packet switched
message passing through the switches. NOC architecture
defines four layered inter-resource communication protocol
(physical, data-link, network and transport layer), which
are adapted from OSI standard. These protocols must be
implemented in the resource to network interface (RNI) for
every resource in NOC. We have also described a two-
phase design methodology for developing systems for the
proposed NOC architecture.

The NOC concept has been necessitated by three
factors: First there is the increasing demand of on-chip
interconnect bandwidth. The second equally crucial factor
is to amortize the enormous engineering cost involved in
designing such large chips over multiple applications. The
third factor is demand for easy-to-use methods to exploit

the parallel processing capacity provided by multiple
computational resources. Programmable interconnectivity
and efficient implementation of shared memory abstraction
are keys to provide this generality.

Before NOC architectural template can be used to
develop applications, one needs to work out the details of
architecture, communication, design flow, and system
services. Currently we are building many simulators for
evaluating various architectural and communication
options at different levels. We are also interested in
analytical analysis of architectural options for NOC.
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Abstract

This paper describes a Network on Chip simulator
that was developed to evaluate our NoC architecture Nos-
trum. It is shown how SystemC’s features for communi-
cation refinement is used to make a highly flexible simu-
lator. The simulator is reconfigurable so that it is possi-
ble to try different NoC platforms and different mappings
of workloads. In addition to the modeling of our Nos-
trum architecture, a bus-based architecture is modeled as
well, and the performance for a simple workload model
is compared.

1. Introduction

In the SIA silicon roadmap[1], it is predicted that the
increase in chip capacity will continue for at least an-
other 8-10 years and it will be possible to integrate sys-
tems with billions of transistors on a single chip. Current
System-on-Chip (SoC) methodologies do not offer the re-
quired amount of reusability to enable system designers
to meet the ever increasing time-to-market constraints.
The desired future SoC methodology should enable, not
only, reuse of traditional IP-cores but also communica-
tion infrastructure. Current bus-based platforms suffer
from limited scalability and poor performance for large
systems. In order to overcome these problems several ap-
proaches for networks on chip [2, 3, 4, 5, 6, 7] have been
proposed. They allow reuse of the communication infras-
tructure among many products thus reducing the design
and test effort and the time to market. In order to enhance
reusability and to ease programmability, most NoC pro-
posals recommend standardized and layered communica-
tion protocols for communication among cores.
The performance of busses versus NoC is mathemat-

ically analysed in [8]. A problem that arise when simu-
lating NoC platforms is how to co-simulate the network
with the rest of the chip. Our solution is based on the
channel based communication model that is used in Sys-
temC. This paper provides an simulation based compari-
son of busses and Nostrum to demonstrate the possibili-
ties with the flexible NoC simulator.
The rest of this paper is organized as follows. Section

2 presents our NoC platform named Nostrum. In Sec-
�

This work is a part of the joint Finnish-Swedish EXSITE research
program. This work was sponsored by TEKES, VINNOVA, Nokia Oyj,
Ericsson Radio Systems AB, and Spirea AB Kista.

tion 3, the NoC simulator is presented. The modeling of
workload models is described in Section 4. Section 5 ex-
plains and analyses the experiments that we perform. The
last Section concludes the paper.

2. Nostrum

The overall purpose with a NoC platform is to act as
host for a system that performs one or several tasks with
hardware components. In the Nostrum architecture, the
system is mapped to a set of Resources. A Resource is in
this context a microprocessor, a memory, a FPGA, a digi-
tal signal processor, or an I/O - resource. An I/O-resource
is a device that is connected to the chip’s pins for the
purpose of external communication. The Resources are
physically organized in a two-dimensionalmesh structure
as depicted in Figure 1.

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

S

R

NI

Figure 1. A Nostrum NoC with 16 Resources
and switches.

All Resources are equipped with a Network Interface,
which connects to the network in order to provide ser-
vices for Resource-to-Resource communication.
The Switches route packets through the network us-

ing a hot-potato routing algorithm [9], which reduces the
need for buffers within the switches. This is an attractive
property for us since we want the area overhead to be as
small as possible. Because of the ever increasing wire de-
lays, it is desirable that information travels as short dis-
tances as possible. Therefore, Nostrum does not use a
centralized router/arbiter such as many bus-based archi-
tectures. Instead all the routing decisions are made lo-
cally in the switches.
The Nostrum architecture is designed in a layered

fashion: this allows us to partition functionality onto dif-
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ferent layers, inspired by the OSI reference model. No-
tice that this does not necessarily mean that different lay-
ers are dealt with by different pieces of hardware or soft-
ware. Instead we can merge functionality from different
layers into the same piece of HW/SW. An Entity is the
unit that implements the functionality of a layer. An ex-
ample of an entity is a switch, which performs Network
layer functionality. The way that the entities are intercon-
nected is called topology.
A two dimensional mesh topology is used since it is

mappable to two dimensions. This is due to the physical
constraints of a chip, which does not allow more general
topologies such as high-dimensional hypercubes.

3. Simulation environment

3.1. SystemC

In order to evaluate our Nostrum architecture, we have
developed a SystemC based simulator. SystemC [10] is
a superset of C++ targeted at simulating whole systems
with both hardware and software components. In this pa-
per, we will only deal with SystemC’s properties as a sim-
ulation language.
Models in SystemC basically consist of modules

whose behaviour is defined in C++. Each module has any
number of ports that it uses to interact with other mod-
ules.
In order to cope with the increasing complexity of

communication, SystemC (from version 2.0 and forward)
has the ability to organize the communication into chan-
nels. Channels have interfaces that the modules use to
communicate through. An example of ordinary channel
is dedicated wires as depicted in Figure 2a. Hierarchi-
cal channels can connect to any number of modules and
implement several other, non-hierarchical channels. A hi-
erarchic channel could be for instance a bus (as in Figure
2b ) or a NoC infrastructure.

M1

M3

M2

(a)

M1

M2

M3

B
us

(b)

Figure 2. Three modules that are intercon-
nected by (a) several primitive channels or
(b) one hierarchical channel.

3.2. The simulator

The simulator is divided into an Application Domain
and a Communication Domain as depicted in Figure 3.

The system is distributed into Resources that are mod-
eled in SystemC by Resource models. The purpose of
them is to generate traffic so that the behaviour of the net-
work for a given workload can be studied. These models
interact by sending and receiving messages over the com-
munication platform. The placement of the Resources is
managed by the Resource mapper. A designer can eas-
ily change the mapping of Resources since all mapping
is done in the Resource mapper, and no other part of the
simulator is directly affected by the mapping.
The communication domain consists of models of en-

tities that implement various layers. Four layers are repre-
sented in the simulation environment, namely the Trans-
port(TL), Network(NL), Data link(LL), and the Physical
layer(PL).
A topology generator is used to instantiate and connect

entities with each other. The simulator has one topology
generator that creates Nostrum models of arbitrary size.
A small 2x2 example is depicted in Figure 4. There is
also a bus topology generator that uses the same TL, LL,
and PL entities as the Nostrum generator. However, while
the Nostrum NL entity models a hot-potato routing algo-
rithm, the bus NL entity uses a round-robin arbitration
scheme.
In order to interface with SystemC models of Re-

sources in a natural way, our simulator is a hierarchic
channel. Any SystemC modules that will use NoC for
communication does so using an interface. This inter-
face features, the opening of channels, blocking, and
non-blocking send and receive primitives. No knowledge
of the platform is necessary when writing the Resource
models, since all communication is handled through in-
terfaces. This enables a user to change the networkmodel
but still use the same workload models.
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Figure 3. The main components of the sim-
ulation environment.

4. Workload models

In order to study our Nostrum architecture, we de-
signed a simple workload model using SystemC. As the
communication platform interface is very small, it is easy
to write and integrate a simple workload model to the
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Figure 4. Entity interconnection in a 2x2
mesh topology.
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Figure 5. Workload model and its mapping
on a 4x4 mesh.

simulator. Our model consists of 16 identical Resources
that are logically interconnected in three rings as depicted
in Figure 5a. The Resources were placed so that the num-
ber of hops needed to send packets is reasonably low (but
not optimal). The placement is depicted in Figure 5b.
The Resources repeatedly sends a packet, then wait a ran-
dom number 1 of clock cycles before sending again. This
kind of behaviour is what a pipelined signal processing
application could look like. In average each Resource
sends a message every ninth clock cycle. With a Re-
source clock frequency of 1 Ghz, approximately 111 mil-
lion messages/second will be sent through the network
interface. As the network interface need only one clock
cycle per message, it may be possible to run the com-
munication network on a lower clock frequency than the
Resources, possibly saving power. Thanks to the flexi-
ble SystemC simulation engine it is easy to scale the fre-
quency of the network.

5. Experiments

The purpose of the experiments is to determine how
efficiently our Nostrum architecture can perform given
the workload model previously discussed. It is also inter-
esting to see how the Nostrum architecture performs in
relation to a bus-based architecture. What are the differ-
ences in latency and what clock-frequency is the lowest
that can be used without data loss due to low throughput?

1Normal distribution, mean value 9, standard deviation 2.

5.1. Clock frequency scaling

In order to minimize the power consumption on chips,
the clock frequency is generally kept as low as possi-
ble. Most of the power in CMOS is consumed during
the switching of logic gates. This is called the dynamic
power consumption and it is expressed with the following
formula: � � � � 	 � 
 � � �� � � � � �

(1)

The power consumption (
� � � �

) depends on the ca-
pacitive load (

� 

), the supply voltage (

� � � ), clock fre-
quency (

�
), and switching probability (

�
). Since an in-

crease in clock frequency requires the supply voltage to
be higher, we wish to run the clock as slow as possible.
In a network, we should not drop the frequency to low
since the performance will be lower and packets may be
dropped. The lowest possible clock frequencies for the
two discussed architectures for a specific workload are
investigated .

5.2. Method

The simulator was configured to run the Nostrum and
the bus-based architectures with the same workload mod-
els. The TL-entities, which are the highest entities in
the protocol stack and therefore experience the most la-
tency, measure the average and the maximum time be-
tween sending and receiving of data. The entities are
configured to report any loss of data that occurs when
more data is put into the system than it can handle. Multi-
ple simulations were run with different clock frequencies
for the respective communication infrastructures ranging
from 125 MHz to 4 GHz. The Resource models were al-
ways running at 1 GHz and therefore the same amount of
data was attempted to be sent. The average and the max-
imum latencies were recorded for each simulation. The
lowest possible frequency for each platform was noted.
The PL-entities, which represent the links between

wires measure how frequently data is transmitted over
them. This information represents

�
in Formula 1, and

together with the clock frequency the power can be cal-
culated.

5.3. Result

The results from the simulations are plotted in Figure 6
and 7. For the simulationswith too low clock frequencies,
the latencies are very high and they are not included in the
plots.
For the bus architecture, a bus clock faster than 1.8

GHz is required, and the Nostrum only needs 200 MHz
to handle all data. It is natural that the latency decreases
with longer clock periods. However, as shown in the right
figures in both cases the latency is not fixed in terms of
clock cycles. In the bus-based architecture the decreased
efficiency is explained with that packets may have to wait
until they become routed since only one packet is routed
each clock cycle. In the Nostrum architecture it is possi-
ble to route four packets in each switch simultaneously.
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The decrease in efficiency is explained by the conges-
tion that occurs when many wires are occupied. Figure
8 shows how occupied the links between switches are,
and how this affects the link power consumption. The
power figure is calculated with Formula 1, with

� � � and
� �
constant.

6. Conclusions

It was demonstrated that NoC simulation can be done
in a flexible manner thanks to the channel based com-
munication model in SystemC. Two different communi-
cation platforms were modeled with the same workload
model and it was shown that our Nostrum platform can

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

Li
nk

 o
cc

up
an

cy
 [%

]

0 1 2 3 4
1

1.05

1.1

1.15

1.2

1.25

Frequency [GHz]

N
or

m
al

iz
ed

 p
ow

er

Figure 8. Link occupancy and power in Nos-
trum wires.

operate at a much lower clock frequency than a shared
bus platform. Topics that are interesting for future works
include to study the impact of more workloadmodels and
comparison with other NoC platforms than Nostrum.
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A
 Nostrum
The purpose of this chapter is to give an orientation and a coherent picture 
of the latest version of the Nostrum Network on Chip communication plat-
form. Nostrum is referred to in most of the articles included in the thesis but 
since the platform is constantly under development it will change slightly 
from one paper to the next. In addition, the terminology used will also 
change over time. This, since new ideas are developed but also due to the 
Network on Chip community has matured and adapted to a more or less 
coherent terminology. The Nostrum and the chapter about Semla – our Net-
work on Chip Simulator will complement each other and – to some extent – 
overlap. The Nostrum chapter starts with a brief overview of the platform 
that is followed by some historical notes on the motives and initial require-
ment that were set on the platform to be developed. Further I will discuss 
the Nostrum layering and end the chapter with some information about the 
“real” implementation of Nostrum that has been done. 

The Nostrum Network on Chip (NoC) is a mesh based NoC, that supports 
both Best Effort traffic (BE) as well as Guaranteed Throughput (GT). The 
cornerstones when designing Nostrum has been to create a network with 
small switches to save power that employs a no-packet-drop policy.

The goal of having small switches is achieved by employing deflective 
routing, with no additional buffering, for the Best Effort traffic. For the 
Guaranteed Throughput, a TDMA-based scheme is used where Virtual Cir-
cuits can be set up by explicit switch configurations.

A.1 PLATFORM OVERVIEW
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In Figure A.1 a schematic overview of Nostrum can be seen. The core net-
work consists of switches connected in a grid fashion. To every switch, a 
Network Interface (NI) is attached. The purpose of the Network Interfaces 
is to provide the service of address translation and attachment of routing 
information. This, since the application does not know about the location of 
its communication peer – only its address, whereas the routing process, nat-
urally, needs the actual location. Internally, the network interface lacks any 
explicit buffers for the packets to use – instead it is equipped with grant sig-
nals that are sent upstream. A packet admission grant means that any entity 
communicating with the NI is guaranteed to have its packet delivered to the 
network that very clock cycle. 

On top of the Network Interface, there is the Resource Network Interfaces 
(RNI) which provides packetisation, traffic shaping, as well as buffering. 
The NI has a “standard” interface (standard to Nostrum that is) whereas the 
RNI could be equipped with an interface suitable for any resource that 
wishes to utilise the network. The communication between the RNI and the 
NI is packet based and the communication between the RNI and the appli-
cations are Message based (In the current implementation the Message 
sizes coincide with the packet sizes – i.e. no packet segmentation or deseg-
mentation is implemented).
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FIGURE A.1. Nostrum Schematic Overview
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In order to conceptually understand the RNI a brief description of one inter-
face that has been implemented can be given. The interface implemented in 
the RNI is a minimal form of message passing with the following functions

channelId = openChannel(channelType, source, destination)

status = read(channelId, message)

status = write(channelId, message)

When a channel is opened the channel type together with the source and the 
destination is given. The channel type can be either of a Best Effort kind or 
a Guaranteed Throughput (GT) kind. The GT can be implemented as a Vir-
tual Circuit inside the network.

One of the features of Nostrum is the facility of implementing four truly 
disjoint networks. All channels will belong to one or more of these net-
works. The separation of the networks is based on a TDMA scheme that we 
have chosen to call Temporally Disjoint Networks (TDN) – see Network 
Transport on page 178. The benefit of having four logically separate net-
works is that different kinds of characteristics can be given to these individ-
ual networks. The assignment a channel to a particular network is defined 
within the channel type.

FIGURE A.2. Nostrum – Resource Network Interface
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Conceptually, all buffering of packets is done within the RNI, and logically 
all channels are having their own separate packet queues. The arbitration in 
admitting packets to the network between the channels is based on channel 
type. A packet that belongs to a channel characterised as GT is automati-
cally tagged as a high priority packet. Inside the network, the performance/
detailed characteristic of a Virtual Circuit is defined by an explicit switch 
configuration – see Figure A.3. This configuration regulates, in detail, how 
packets are switched within a particular TDN. The process of setting up 
these Virtual Circuits, i.e. configuring the switches, is by no means auto-
matic but is an explicit configuration of the network at start-up.

From the Network’s perspective, all communicating entities in the system 
are denoted Processes (Even the term Atomic Communicators (ACs) has 
been used – see The Process of Mapping and Setting up Communication on 
page 199). All Processes are identified by a Process Identifier – a Pid. 
When a network is instantiated/created all the Network interfaces of the 
network are given a unique Network Interface Id – a Nid. In a fully dynamic 
network implementation, all Processes have to register to their respective 
Network Interface during the set-up phase to make the network aware of 
their presence and location. If the system is likely not to change a more 
static network implementation can be chosen – the presence and location of 
the Processes are then hard-coded into the system at network instantiation 
time. 
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FIGURE A.3. Nostrum – Virtual Circuits

A.2 SETTING UP COMMUNICATION – PROCESSES, CHANNELS, 
PORTS AND THE MAGIC OS
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All communication over the network is done in the context of Channels – a 
channel is a communication link between two processes with a well defined 
service level. The Channels are identified by a Channel Identifier – a Cid. 
The Cid does not have to be system wide unique – only unique to the Net-
work Interfaces hosting it. Once the network has become aware of the Proc-
esses in the system, a channel opening requests can be made. A channel 
opening request involves a sender process id, a receiver process id, channel 
information data from the upper layers, the service level, and – possibly – a 
port id. The channel information from the upper layers can be information 
about the message to be sent, sending policies and other meta information 
on the format of the data that is going to be transferred. The network will 
process as incoming requests and grant or decline them; in the case that the 
request is granted a channel identifier is returned. Depending on the knowl-
edge about the system at design and instantiation time the process of grant-
ing open channel request can be more or less complex. An implementation 
of a system that have been thoroughly analysed and dimensioned during the 
system design time will require very little from the network to grant chan-
nels; the granting merely becomes a notification to the receiver that a com-
munication peer process will have a certain channel id together with a 
registration/query to the networks “yellow pages”. The yellow pages is part 
of a centralised minimal Network Operating System (NOS) that holds a 
database that keeps track of the processes in the system and their location. It 
also holds information about the channels and is responsible for any config-
uration of the switches in the system. For a system that is likely to change 
and/or have undergone a very coarse system analysis the channel opening 
procedure can be quite complex. The reason is that a system that is not 
static has to be able to cope with very complex decisions on how to admin-
istrate its resources to be able to give certain guarantees. In this case, the 
network has to be equipped with some sort of more intelligent NOS. This 
NOS has to be capable of analysing all incoming requests during the con-
figuration phase of the network and act accordingly. 

In the current implementation, the NOS has not been implemented fully. 
Hence, the internal whereabouts of the current NOS is carried out in a 
“magic” way to give the illusion of an implementation with full analysis 
capabilities. In concrete – any query that is sent to the NOS in the current 
implementation is resolved by all function call to the simulator that proc-
esses the query and responds accordingly. In a full implementation the NOS 
would have to reside in a resource of its own and any query (and response) 
would be sent to this entity as packets over the network.



166 CHAPTER  A     Nostrum
In connection to the channel opening the concept of ports were mentioned. 
The port is a construct to aid in the process of orchestrating the granting of 
packet admission in the network interfaces that holds several channels. The 
Resource Network Interface (RNI) connected to a particular Network Inter-
face will most likely host a set of queues for packets that awaits admission 
to the network. These queues will be associated with channels. Without the 
use of ports the Network Interface would have to explicitly notify the RNI 
which channels that are granted admission to the network the next clock 
cycle. Since several channels may belong to the same service class – hence 
would allow access simultaneously – the interface would become very 
complex. The solution is the concept of a port. 

The port as a concept is an explicit association between a set of channels 
and a set of ports. If two (or more) channels are associated with the same/a 
similar service class they can be associated with the same port. The inter-
face of a single port is simply a wire – one bit – that will notify the RNI that 
the channels associated to this port is granted access to the network the next 
clock cycle. In Figure A.4 this is illustrated with the channels 2 and 3 that 
are connected to the same port. Both channels belong to a best effort service 
class and can, in this particular example, share admission to the network. 
Channel 1 in this example will have a port of its own due to other require-
ments. This has the consequence that the channels belonging to the same 
port also could share a queue in the RNI. Despite how it is illustrated in Fig-
ure A.4, please note that the concept of ports only provides means of grant-
ing access to particular channels – the individual packets of the different 
channels will have the same, single, physical entry-point to the NI!
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FIGURE A.4. Nostrum – Network Layer
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 Our work on a generic communication platform for System on Chip com-
munication began around 2000 with the motivation and hope that a Net-
work on Chip with clear interfaces would have advantageous properties

• Enhance and encourage reuse

• Enable a parallel design-flow

• Make the system easier to scale

• Give benefits to the next product generation

Particularly, when our Network on Chip platform Nostrum was created the 
following objectives were targeted – the Nostrum architecture should be

Layered

It should be natively layered to its nature with clear interfaces to enable all 
the advantages above. This is relatively “easy” accomplished – it is simply 
a matter of consistency and design style. 

Reliable

It should be reliable – no packets should ever be dropped. 

Minimal

The switch footprint should be minimal to minimise the area and power 
consumption. Deflective routing enables the use of a minimum number of 
buffers in the switches but requires reordering facilities for multi-packet 
messages in the network interfaces. Many research groups have later recog-
nised the demand of a small switch design e.g. Jingcao Hu and Radu Mar-
culescu in Application Specific Buffer Space Allocation for Networks on 
Chip ... [Hu2004]. In addition, it has been shown by Arnab Banarjee et al. 
that routers dissipate significant idle state power and that the dominating 
source is the data-path [Banerjee2007]. The leakage power is roughly pro-
portional to the complexity – that is the gate count. The dynamic power 
grows approximately linearly with the number of synchronous element in 
the design. Hence, it is of importance to keep the gate count down and – in 
particular – the number of buffers used. The low dimension network is jus-
tified by assuming a strong locality in the traffic patterns [Govind2006].

A.3 SOME HISTORICAL NOTES
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Provide Best Effort and Guaranteed Bandwidth Service Support

The network should be capable of offering both best effort and guaranteed 
bandwidth services. This since SoCs have needs for both single-message 
passing between Resources without set-up times for e.g. synchronising 
messages as well as for stream oriented data transport with requirements on 
latency and/or throughput.

The demand of a reliable and minimal platform in combination with the 
Best effort and guaranteed bandwidth service support required some think-
ing. Since these requirements have different implications for the different 
service scenarios. In addition, segmentation is needed because the possible 
mismatch between message size and the packet payload size, i.e. the mes-
sage might have to be sent as several packets due to a large size.

A.3.1 Best effort

The characteristics that were further decided desirable for the best effort 
traffic service class were the following

• No Set-up time

• Datagram based – to enable fast adoptions to changes in the Network 

• Connectionless

Since packets can neither be dropped nor queued in the switches the only 
realistic alternative is to use a deflection routing policy that permits the for-
warding of packets in a – potentially – wrong direction. The deflective rout-
ing policy also adheres to the additional requirements set up for the best-
effort service class. To simply drop packets is not an option either – as 
shown by Tomas Lang and Lance Kurisaki [Lang1990]. They discovered 
that the discarded traffic was reissued and followed the same path that was 
congested. Except for not being effective it also requires that the source 
buffers the outgoing traffic until it is acknowledged and requires the proto-
col to signal that a particular packet was dropped, and retransmission is 
needed. Instead they implemented a diverting routing scheme where pack-
ets got diverted to intermediate destinations before being sent to the final 
destination. Furthermore, the policy of deflection routing may suffer from 
problems associated with the need for reordering of packets at the receiver 
side if the individual order of packets is of importance (See “Deflective 
Routing (or Hot potato)” on page 68). 
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A.3.2 Guaranteed Bandwidth/Throughput Services

For the guaranteed bandwidth services, a set-up time is necessary and hence 
acceptable. The data transport should be handled by some sorts of Virtual 
Channels (VC) that are set up between heavily communicating peers. Once 
the VCs are set up the communication can be relatively fast thanks to pre-
dictability and deliver a steady data flow. In Figure A.5 an example com-
munication graph and the corresponding mapping of VC’s are depicted. 

Since the best effort traffic is utilising a deflection routing scheme and is 
going to utilise the same network as the guaranteed services, they must be 
able to coexist. This in combination with the requirement of small footprint 
switches effectively rules out the use of e.g. worm-hole based routing strat-
egies and suchlike. The solution that came up is based on the idea to use 
ordinary deflection routing packets as containers for the guaranteed service 
data. The container packets would have the highest possible priority and get 
routed along predefined paths/routes from source to destination. This is fur-
ther described in Guaranteed Bandwidth using Looped Containers in Tem-
porally Disjoint Networks within the Nostrum Network on Chip 
[Millberg2004a]
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In Nostrum the interfaces between the layers are called Service Access 
Points and act as contract brokers between the layers. An SAP provides a 
set of Services and, at the same time, requires the user of the service (the 
Service User Entity) to guarantee a set of services. The users of the services 
are called entities. Entities communicate with other entities on the same 
layer using Protocol Data Units (PDUs). The Protocol used is always sepa-
rated from the service it implements to enable a variety of implementations 
of the same service. These implementations can have different characteris-
tics/footprint sizes as well as being more or less refined to work as a vehicle 
for rapid parallel product development. The information in the PDU used 
by the layer needed to carry out its serve is called Header information and 
the data to transmit is called the Payload [Millberg2004b].

The layers that are explicitly utilised in the Nostrum platform are Upper 
and lower transport Layer and the Network Layer. The Data link and the 
Physical layers are defined as well but merely work as layers used within 
simulation. The PDU of these two lowest layers is simply payload.

• Physical – Models transmission

 Only for error and delay insertion for simulation purposes

• Data Link – Ensures reliable communication over the physical channel

 Determines the structure of data, i.e. Frame size

A.4 NOSTRUM LAYERING
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• Network

 Interconnects data link communication paths on the network, 
i.e. it handles the routing from source to destination

 Provides flow-control

• Lower Transport Layer

 Segmentation, desegmentation and queuing

• Upper Transport Layer

 Bookkeeping and Administration of Channels

 Application Protocol Adaptation

A.4.1 Network Layer

In Nostrum the network layer is implemented in the Switch and in the Net-
work Interface (NI) as seen in Figure A.7. The service it provides to the 
upstream layers is the transmission of “Packets” from source to a destina-
tion address. The destination within the network layer is identified by a 
Network Address – basically an (x,y) pair coordinate in the mesh. The rea-
son why packets are within quotation marks is that the actual write() call 
from the upstream SAP of the Network layer is done with two separate 
arguments – the Channel Identifier (CID) and data – and not a single packet 
argument as depicted in Figure A.8.  
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FIGURE A.7. Nostrum – Layer Layout
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More on the channel identifier in Section “Setting up communication – 
Processes, Channels, Ports and the magic OS,” on page 164. The call from 
the upstream SAP of the network layer is actually a conditional call – the 
caller is always notified on the clock cycle before the Network layer will 
accept a write from one or more specific channels. The contract of the SAP 
is defined in that way that the RNI connected to the NI is obliged to accept 
any incoming packets from the Network since the Network Interface does 
not have any buffering capacity.

The PDU of the network layer is called a packet that has a header that con-
sists of a destination address and Routing Enhancing Information (REI) like 
e.g. a hop-counter. The actual REI is dependent on the current configuration 
of Nostrum and has varied over time as new strategies for routing have 
been tried out.

A.4.2 Transport Layer 

Traditionally, the Transport Layer provides transparent transfer of data 
between end users, providing reliable, error-free virtual point-to-point con-
nection data transfer services to the upper layers. The transport layer con-
trols the reliability of a given link through flow control, segmentation/
desegmentation, and error control. In Nostrum, it also is responsible for the 
bookkeeping of the channels.

The implementation of the transport layer in the RNI of Nostrum is applica-
tion specific. The transport layer is implemented in two parts – the Upper 
and the Lower Transport Layer – see Figure A.9. The lower transport layer 
consists of a configurable Nostrum Add-on protocol stack and the upper 
transport layer is an Application Adaptor.  
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openChannel(src, dest, type)

DAddr 

Header Payload

FIGURE A.8. Nostrum – Network Layer SAP, and PDU
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The application adaptors work as proxies for the application to implement 
the desired application specific interface – e.g. AXI, MPI, etc. [AXI and 
MPI1993].

In Nostrum the RNI is the custom hardware/software used to connect the 
Nostrum backbone protocol stack with the communication protocols used by 
the Resource. The boundary between the applications and the RNI is, how-
ever, not regulated within the Nostrum architecture. The implementation of 
Nostrum protocol stack is configurable, i.e. if the application only requests a 
very basic functionality the stack can be more or less shallow.

Lower Transport Layer 

The purpose of the Lower Transport Layer (LTL) is to transport messages 
or streams from source to destination. The payload of the messages passed 
to the SAP is segmented into appropriate packet payload sized chunks to be 
forward to the SAP of the Network layer. The upstream SAP interface will 
also provide a Channel identifier and a Message id as seen in Figure A.10. 

The PDU of the transport layer is called a Lower Transport Layer PDU (LT-
PDU) packet that has a header that consists of Channel Id (CID), Message 
Id (MID), Packet Sequence Number (PSN), and Payload. Since the imple-
mentation of the transport layer is configurable the actual PDU and SAP 
may be different from one implementation to the next.

FIGURE A.9. Nostrum – Transport Layer
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The format of the messages being sent over a channel is either, hard-coded 
at instantiation time of the network, or included as channel information data 
in the initial open channel request. The channel information data cannot 
only describe the actual format but also explicitly state buffer requirement 
at the receiver side, data coding formats and suchlike.

Upper Transport Layer 

The purpose of the Lower transport is to work as an adapter between the 
Nostrum protocol stack and the Applications. It provides an error-free 
point-to-point connection between Processes and is responsible for the 
administration, maintenance, and book-keeping of channels. It also holds 
and maps information about the sender and receiver processes relevant to 
this particular application/resource. The Upstream Service Access Point 
will solely depend on the protocol that it implements. Within the Nostrum 
project, an MPI based implementation has been tried out. Moreover, an 
AXI/AMBA adapter has been implemented with success.
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Any packet transported over a network will conceptually have to undergo 
three phases: Admission, Routing and Exit. All three phases are critical to 
good network performance. To gain a better understanding in the nature of 
these phases within the concept of Nostrum a few words need to be said 
about the Switch and Network Interface. Inside the network part of Nos-
trum there, conceptually, exist two separate stages – Ejection and Routing.

Ejection 

The ejection stage examines the incoming packets to detect if one (or more 
packets) has reached destination and is to be delivered to the Resource. In 
case of competition the packet with the highest priority is delivered. Fur-
thermore, it informs the RNI, if there is possible for a packet to enter the 
network the next clock cycle. Since no explicit queues are employed in the 
network, admission can only be granted if the Switch is currently holding 
fewer packets than its output buffer capacity, i.e. four packets.

Routing

The deflective routing scheme is (conceptually) carried out in three phases:

Priority Assignment (1) In this phase the incoming packets are dynamically 
assigned a priority such as the Hop Count for example. 

Favoured Outport Selection (2) The packets now use their assigned priori-
ties to select a desired out-port. The priorities are utilised as credits, that 
enable the packets to give different weights to favour certain routing deci-
sions in the Permutation Routing objective function. 

Permutation Routing (3) The weighted priorities of all the competing pack-
ets are summed to form the basis for selecting the best routing permutation. 
For more information on this see Increasing NoC Performance and Utilisa-
tion using a Dual Packet Exit Strategy [Millberg2007b]

A.5 NETWORK ADMISSION, ROUTING AND EXIT
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Switch
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FIGURE A.11. Ejection and Routing Stages
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A.5.1 Network Admission

The process of network admission is a problem encountered in any network 
with limited buffer space and a no-packet-drop policy. The basic problem is 
that any packet that goes into the network also must come out; if it does not 
do so – at a sufficiently high speed – the network will get full and can no 
longer accept new packets. If the problem is seen from a more local per-
spective the limitation of one single switch can be illustrated as in Figure 
A.12. In Figure A.12(a) the packet that comes from the NI cannot enter the 
switch, due to the four incoming packets that going to occupy all outgoing 
links the next clock cycle. In Figure A.12(b) the packet from the NI can 
happily enter the network, since there will be one link available.

Within Nostrum the solution to the problem of guaranteeing network 
admission falls into two scenarios. The first is the Network Admission for 
Guaranteed Throughput, and the second is the Network Admission for the 
Best Effort scenario.

Network Admission for Guaranteed Throughput

The Network Admission has in the Nostrum case been dealt with using the 
concept of ‘looping containers’ introduced in Guaranteed Bandwidth using 
Looped Containers in Temporally Disjoint Networks within the Nostrum 
Network on Chip [Millberg2004a]. In short – outgoing link capacity is 
available through a container packet. The container packet continuously 
goes from the source to the destination and back in a closed loop fashion. 
Once the container packet enters the switch at the sender side it gets loaded 
and once it gets to the receiver side it is unloaded – see Figure A.12(c). The 
route of the packet is hard-coded into the switches along the way of the 
route.

NI NI NI 

a b c

FIGURE A.12. Network Admission
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Network Admission for Best Effort

For the Best Effort traffic, the problem of network admission has been 
transformed into a problem of global fairness. The basic idea is that packets 
waiting for admission into the network should compete with packets 
already inside the network. In this implementation, the packet priority is 
based on age; older means higher priority. Once the packets arrive at a 
switch they get sorted in priority order. If no packet has reached its destina-
tion – the corresponding Network Interface that is – the youngest packet is 
forcefully taken out of the Network and delivered to the Network Interface 
– depicted in Figure A.12(d). If there is no outgoing packet from the RNI 
the packet that was forcefully taken out is reinserted into the switch. If there 
is a packet that is waiting for admission in the RNI that packet is delivered 
to the switch and the forcefully taken out packet is requeued in the RNI to 
be delivered to the network at a later time. The concept is called Forced 
Requeue and is described in more detail in Priority Based Forced Requeue 
to Reduce Worst-case Latency for Bursty Traffic [Millberg2009].
Utilisation of the Priority Based Forced Requeue changes the characteris-
tics of the observed system latencies in the system. To illustrate a graph is 
provided which is a histogram that depicts the latency. 

As seen in the graph and evident from simulation data the experimental 
results show a 50 percent reduction in worst-case latency from a system 
perspective thanks to the reshaped latency distribution. Noteworthy here is 
that the average latency is kept the same.
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A.5.2 Network Transport

Network transport is the process of delivering a packet from its source to its 
destination within the network. Once again, the problem falls into two sce-
narios – Guaranteed Throughput and Best Effort Scenario. Common for 
both scenarios are the benefits that come with the concept of the Tempo-
rally Disjoint Networks (TDNs). The TDNs are a consequence of the 
deflection routing policy, the queue-less switches and the topology. 

Temporally Disjoint Networks

The idea behind the Temporally Disjoint Networks is that a physical net-
work, potentially, can be seen to contain a set of separate networks that a 
packet can enter dependent on when it enters the physical network. A nec-
essary condition for the existence of these TDNs is that a position in the 
network can only be reached on a multiple of N hops where N must be 
greater than 1. As a consequence the number of TDNs that exist, N is equal 
to the number of hops it takes to leave a switch and then get back to the 
very same switch in such a network. 

In our case, these conditions will be fulfilled in a Manhattan network with 
logically identical switches that performs no reordering of packets. If the 
network is a torus, the number and rows and columns must be even to 
render more than one TDN.
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To illustrate the idea three different routes have been layered out in the 
Manhattan network in Figure A.14. Their respective path lengths are 2, 4, 
and 10. Hence, the number of TDNs that exist in this network will be 2. 
This means that two packets that are sent out consecutively on the network 
(i.e. in cycle n and cycle n+1) will never be able to collide!

These individual networks could be used to enhance overall network per-
formance in many different ways.

• Different traffic loads in different networks give different Quality of 
Service behaviours in terms of network throughput, latency and jitter.

• Different spatial mapping of senders and receivers reduces the chances 
of traffic congestions, i.e. make adjacent receivers reside in different 
networks

The TDN scheme has smaller packet buffers compared to the alternatives 
such as rate based routing or deadline based packet switching 
[Rijpkema2003]. The details of the concept are described in Guaranteed 
Bandwidth using Looped Containers in Temporally Disjoint Networks 
within the Nostrum Network on Chip [Millberg2004b].

The increased relative hardware cost of implementing the TDN scheme 
using looped containers is less than 2 percent in term of additional gates. 
The effective relative payload for a packet with 128 bits is more than 98 
percent due to the additional two extra bits to implement the concept. Simu-
lations also show that background traffic in the network is very little 
affected by the looped containers. The average bandwidth of the traffic 
assigned to the looped containers is not changed – but now it is guaranteed! 

a.1

a.2

b.1 c.1

b.2 c.2

b.3

b.4

c.3

c.4

c.5

c.6

c.7

c.8

c.9

c.10

FIGURE A.14. Temporally Disjoint Networks



180 CHAPTER  A     Nostrum
Network Transport for Guaranteed Throughput

The Network transport for the Guaranteed Throughput is handled by the 
looped Containers as described in Section “Network Admission for Guar-
anteed Throughput,” on page 176. Virtual Circuits (VCs) are set up 
between source and destination pairs by configuring routing tables in the 
switches along the path of the Virtual Circuit. This allows slots to be 
reserved consecutively in a series of routers. Any packet tagged as a looped 
container will get routed according to these tables. To enable overlapping 
VCs they are placed into different TDNs. Figure A.15 depicts two VCs; VCA
with black container packets and VCB (path dashed) with grey ones. In 
switch [2,1] and [2,2] the containers of both VCs will share the same links (and 
switch). The numbers inscribed in the packets, denotes which TDN the 
respective packet belongs to; the numbers range from one to four since the 
number of TDNs, in Figure A.15, is four. The reason for having four TDNs 
stems from the bipartite topology in combination with two buffer stages in 
every switch. As seen in Figure A.15, VCA have subscribed to TDN2 and TDN3, 
whereas VCA only uses TDN4.

Network Transport for Best Effort

The main problem of the network transport phase is congestion. The prob-
lems of congestion are relatively easily solved in lossy networks, e.g. the 
internet, since packets can be dropped if congestion occurs, thus preventing 
the build up of saturation (or congestion) trees. For NoC this may not be an 
option for two reasons. (1) Packet drops will create, potentially, very long 
delays, which may not be acceptable. (2) The cost of implementation an 
end-to-end protocol for the detection of lost packets may be too costly. For 
parallel computer clusters this has led to the use of loss-less networks that 
are greatly over dimensioned to guarantee a low latency network. However, 
for NoC this is not acceptable due to the limited power budget. 
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Within the NoC community, the wormhole routing strategy is the most 
common solution for the lossless network transport phase. The switches of 
the wormhole routing have the advantage that they – potentially – can be 
configured to have very few buffers and hence give a small foot-print. This 
minimal switch does, however, come with the potential drawback of a bad 
network utilisation. This as a consequence of that a packet may be blocked. 
The solution is to add virtual channels in the input and out-put ports but this 
comes at the cost of increased buffer size [Tota2006]. Despite the flexibility 
that the use of Virtual Channels gives, this strategy still is unable to avoid 
congested areas in the network due to the Head of Line (HOL) blocking 
problem [Duato2005]. Solutions have, however, been proposed, e.g. the 
switch of José Duato et al. in A New Scalable and Cost-Effective Conges-
tion Management Strategy for Lossless Multistage Interconnection Net-
works but these solutions give a significant foot-print. The area of the 64-
entry Content Addressable Memory (CAM) and the area of the associated 
logic of their switch is approximately 2mm2 in 0.18μ technology 
[Duato2005]. This should be seen in relation to the 0.28 mm2 area of the 
Nostrum switch described in Section A.6, “Nostrum Implementations,” on 
page 184. Obviously there exist smaller implementations of wormhole 
switches but this seems to be the only implementation that is capable of 
avoiding the HOL blocking problem. 

In Nostrum the network transport phase for best effort traffic is handled by 
the deflection routing policy. The result is a relatively flexible solution with 
a small footprint due to the absence of buffers. To further enhance the adap-
tive characteristics of the deflective routing policy, we introduced the con-
cept of Proximity Congestion Awareness (PCA) in Load distribution with 
the Proximity Congestion Awareness [Nilsson2003]. The basic idea is that 
all switches keep a running average as a measure of the current local net-
work load – a stress value. 
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FIGURE A.16. Adaptive Best-Effort Routing using 
Proximity Congestion Awareness
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The stress value is the sum of the number of incoming packets averaged 
over the last four clock cycles. This stress value is continuously forwarded 
to all neighbouring switches; the neighbouring switches can now use this 
information to favour routing decisions that do not route packets into 
already congested areas. When utilising the PCA concept a substantial 
improvement with about 20-time load reductions has been observed. The 
related hardware cost is very moderate in relation to the benefit. When opti-
mised on speed, an area of 21 029 and a gate depth of 48 was achieved.

A.5.3 Network Exit

The importance and impact of the Exit strategy have not been much empha-
sized in the collected NoC literature. The most likely reason for this is that 
the very process of getting information out from the network has been bun-
dled together with the network transport phase. The cause might be the 
same – the contest for access to shared resource – but the cost and nature of 
the solution are different. In Increasing NoC Performance and Utilisation 
using a Dual Packet Exit Strategy we have shown that the exit phase could 
potentially be a severe bottleneck, and we also propose a solution to be used 
in the context of Best Effort [Millberg2007b]. 

Network Exit for Guaranteed Throughput

The Network Exit for the Guaranteed Throughput is handled “automati-
cally” using the aforementioned Looped Container concept. 

Network Exit for Best Effort

Isask'har Walter et al. formulated the problem of the network Exit as a 
bandwidth problem for so called hot-modules in Access Regulation to Hot-
Modules in Wormhole NoCs [Walter2007]. Hot-modules are entities in a 
system that are bandwidth limited and in high demand by other units. Typi-
cal hot-modules could be e.g. DRAM controllers or floating point units. In 
their work, they claim wormhole-based systems to be very sensitive to hot-
modules due to the hop-by-hop back-pressure, associated with wormhole 
routing. The back-pressure causes buffers at the router close to the hot-
module to be filled up and become stalled, blocking new arrivals to this 
router. This will create a domino effect and saturation tree-to be formed. 
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The saturation tree-tree is – as the name suggests – a cluster of saturated, or 
blocked, routers in the constellation of a tree with the hot-module at its root. 
I claim that this forming of these saturation trees would form in other net-
works as well.

The solution that we propose in In Increasing NoC Performance and Utili-
sation using a Dual Packet Exit Strategy is simply to increase the exit band 
width of the network and handle the buffering of packets destined to these 
hot-modules in the RNI instead of in the network [Millberg2007b]. 

To prove the work of the Dual Packet Exit concept extensive simulations 
were carried out. For a 4×4 mesh the average system latency is reduced 
from 14 to 9 clock cycles and the observed worst case latency is reduced 
from 85 to 45 clock cycles at an injection rate of 0.63. In concrete this 
means a 50 percent reduction in terms of worst case latency and a 30 per-
cent reduction in terms of average latency as well as an increased through-
put both from a system and network perspective. If we set for an average 
latency of 10 cycles the network with DPE gives roughly 25 percent higher 
injection rate for the same latency compared to a system without. The valid-
ity of the chosen approach is not restricted to uniformly random traffic pat-
terns on meshes but also applicable to “any” topology where the traffic 
pattern involves potential network exit congestions due to multiple sources 
having the same destination or where multiple routing paths are possible.
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Even though the full Nostrum protocol stack only exists as a model it is 
suggested that (at least the) lower parts of the protocol stack are imple-
mented in hardware. Below is a summary of different variants of the syn-
thesised variants of Nostrum where the results and findings are touched in 
brief.

A.6.1 PANACEA

In 2005 a prototype of Nostrum was implemented in silicon – the PANA-
CEA; the purpose was to prove the concept of the Nostrum NoC but also to 
investigate the area, power consumption, and the latency of the switch. The 
implementation was to a large extent based on the Master’s thesis of Erland 
Nilsson – Design and Implementation of a Hot-potato Switch in a Network 
on Chip [Nilsson2002]. The project was carried out as a semester thesis at 
the Integrated Systems Laboratory (IIS) at the Swiss Federal Institute of 
Technology Zürich [Guindi2005 and Nilsson2006].

The PANACEA NoC is a 4×4 mesh network with 16 Switch/Resource pairs 
implemented in a 0.250 µm technology depicted in Figure A.17. The switch 
is employing deflective routing and is enhanced with Proximity Congestion 
Awareness [Nilsson2003]; further it is dual buffered with separate Ejection 
and Routing stages. In this rather small example, the total packet size was 
only 13 bits. The area of the switch is linearly dependent on the number of 
bits in the packet payload with 3 750 µm2 per bit for a network of 16 
switches. 

A.6 NOSTRUM IMPLEMENTATIONS

FIGURE A.17. PANACEA –  
A Nostrum Implementation
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The switch area has a bias-area of 50 000 µm2. Hence, the resulting area of 
the 13 bit packet switch is 100 000µm2 – that is 0.1mm2 – and it has a criti-
cal path length of 5.8 ns, which corresponds to a gate depth of 48 gates. In 
general, the area of the buffer-space of the switch grows linearly and the 
area of the decoder logic grows logarithmically with the address space. A 
very rough estimate on the area for the128 bit packet switch that was dis-
cussed in The Nostrum Protocol Stack and Suggested Services Provided by 
the Nostrum Backbone [Millberg2002] would then be 0.53mm2 given the 
0.250 µm technology – the resulting number of equivalent gates is hence 
~35.5k gates1. For a 0.18μ this would roughly translate into an area of 0.3 
mm2 per switch; this is to be compared with the switch of José Duato et al. 
in A New Scalable and Cost-Effective Congestion Management Strategy for 
Lossless Multistage Interconnection Networks with an area of approxi-
mately 2 mm2 in a 0.18μ technology [Duato2005].

A.6.2 The Parameterisable Switch

In 2006 Vineeth Govind, Jaan Raik, and Raimund Ubar presented another 
synthesised implementation of the Nostrum Switch [Govind2006]. They 
used the Nostrum switch as a vehicle for their scalable test bench that was 
claimed to provide high-fault coverage test patterns for network implemen-
tations. For a single buffered 128 bit payload switch, they report a total area 
of 21k gates where the area of the non-combinatorial logic is ~12k gates. 
For a dual buffered switch, this would translate into a switch that is approx-
imately 33k gates, which is in line with the results of previous subsection.

1. The approximate conversions between area and gates of the 0.18 and the 0.25 technologies are 
based on the UMC Free Library where the 0.18 and the 0.25 have a raw gate density of 110k and 
67k gates/mm2, respectively.
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A.6.3 The Thin Switch vs. the Square Switch

In 2004 Dinesh Pamunauwa et al. did an investigation of how to physically 
implement the Switch of Nostrum [Pamunuwa2004]. The two alternatives 
that were elaborated were the Thin switch and the Square switch. The thin 
switch was first proposed by William J. Dally and Brian Towles in 2001 
[Dally2001]. This proposed routing layout places the network wires on top 
of the resources in dedicated metal layers as depicted in Figure A.18a. The 
resources are the grey areas in the pictures and the combinatorial logic and 
the registers are the striped areas. The thin switch has no area overhead 
associated with the network wires, but routing the wires over the resource 
does impose a few restrictions on the design methodology of the resource; 
also the placing of repeaters may interfere with imported IP cores.

In the square switch, the wires run in dedicated channels as depicted in Fig-
ure A.18b. This strategy grants the signal integrity of the wires but is more 
costly in terms of the area dedicated for the network. In summary, the find-
ings of this paper could be expressed with that the network will occupy a 
relatively large extent of the chip and the power consumption of the net-
work will be substantial. 

FIGURE A.18. The Thin Switch and the Square Switch

a b
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Some of the advantages and disadvantages of the two architectures are 
given in Table A.1 below.

Square Switch Architecture 

• Area overhead between 10-20 percent for the 
network

• All metal layers can be freely utilized by the 
resource 

• No routing/pin congestion over resource due to 
network

• Dedicated channel allows repeater insertion, 
shielding and explicit signal return planes, guar-
anteeing signal integrity

• Max. link bandwidth of 1.5 Tbit/s in any direction 

Thin Switch Architecture

• Area overhead of roughly 5 percent

• Number of available metal layers or available
fractions of two metal layers reduced for
resource

• Routing/pin congestion introduced by network

• Repeater insertion and shielding more of a
problem. More susceptible to noise coupling
from above and below

• Max. link bandwidth of 1.1 Tbit/s

TABLE A.1. The Thin Switch vs. the Square Switch
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 The Semla Simulator
Given the complexity and cost of a System on Chip today simulation is for 
most cases the only realistic way to test, evaluate and analyse new architec-
tural ideas. This statement is even truer in an academic environment since 
the researches are targeting novel ideas with scarce resources in terms of 
man-power as well as in time – e.g. the duration of a PhD. Simulators are 
flexible and easy to parametrise to gather statistical data for analysis. This 
chapter is written with the intention of being a support to understand the 
context in which the included papers of the thesis were developed.

To understand and appreciate any simulator the purpose of the simulator 
must be clear. Most simulators fall into either of the two categories (1) they 
are meant to investigate and test an existing system (2) they are meant to 
investigate architectural ideas of a system that do not yet exist – our Nos-
trum NoC Simulator Semla falls into the latter category.

For natural reasons this chapter will, to some extent, overlap the previous 
Nostrum chapter since it will be very hard to discuss the Semla simulator 
without putting it into a Nostrum specific context.

Since the development of Semla has been an evolving process that has 
spanned almost a decade it is hard to deliver the right snap shot in time cap-
turing the most relevant surroundings to the papers included in this thesis.

B.1 THE SEMLA SIMULATOR
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Today, Semla is an object-oriented discrete event simulation tool imple-
mented in C++ with the aid of SystemC. Semla has the purpose of being 
the vehicle in the development of the protocol stack and architectural fea-
tures of our Network on Chip platform Nostrum. The Semla simulator is the 
core of a simulation tool-chain with the capability to, in detail, specify and 
customise the Nostrum platform as well as the applications. The tool-chain 
has three main components. (1) The Simulation Generator is a script based 
tool that parses a “high level” description of the experiment that the 
designer wishes to perform and generates an xml-description for the Semla 
tool to use as an input. The high-level description of the experiment carries 
information like

• System Information – Clock frequencies, conditions for aborting simu-
lation, etc.

• Nostrum Specific – Which switching policy to use, what topology, 
what interface the RNIs should be equipped with, buffer sizes, etc.

• Application – How many and what kind of application(s) to run and 
with what parameters together with a description of what simulation 
parameter(s) to use, e.g. the packet injection intensity. 

• Logging input – Which events to log (if any) and to what extent the 
individual packets should be traced. 

• Simulation meta data – Contains meta-data about if the individual sim-
ulation runs should be remotely run on other servers and if and how 
many simulations runs that should be run in parallel. 

• Output data treatment – Which results that should be presented, and in 
what format. The format could be graphs showing various results like 
latencies, congestions, queue sizes, with time-line plots, means, stand-
ard deviations, histograms, etc.

The Simulation generator then launches a set of Nostrum Semla core (2) 
instances together with the appropriate xml data input files. As said before 
Semla is the real workhorse of the tool-set and is the Nostrum platform in 
flesh – more on this in Section “The Semla-Nostrum Implementation,” on 
page 194. The last part of the tool-chain is the Simulation Output Data Ana-
lyser and Visualiser.
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Some History

The trip that led to the final simulator used for the development of Nostrum 
has been quite long and has gone in different directions since the immediate 
goals and requirements for the simulator have shifted over time. To moti-
vate why the Simulator is written in the way it is, and why SystemC/C++ 
was chosen, I feel I must make some historical notes on the development of 
the simulators. 

Our first attempts on a simulator were more directed towards modelling the 
behaviour of a potential switch in VHDL. The choice of language/model-
ling environment was an easy one, since we had a clear background as 
hardware designers and possessed an in-depth knowledge and expertise in 
VHDL and ModelSim [ModelSim]. Over the years several different lan-
guages and environments were tried out – often in parallel. 

2001-2003 VHDL – highly accurate, synthesiseable and very good for 
implementing and verifying the behaviour of the switches and links. The 
problem was, however, that relatively small changes in the design took long 
time to implement and even longer time to verify. When the simulator/plat-
form grew and a Network Interface with a protocol stack was needed the 
time for development, and turnarounds, became too large. Now, we were 
interested in a graphical front-end as well as support for statistical analysis 
and hence Matlab was chosen for a parallel version of the simulator [Mat-
lab]. The VHDL version was actually the model and the Matlab implemen-
tation the first simulator since it only simulated the behaviour of hardware 
and not the hardware itself – even though it was cycle accurate.

2001-2003 The Matlab based simulator served its purpose well since it 
gave us a good graphical view of how the network behaved in different sit-
uations from one clock cycle to the next. Furthermore – the built-in support 
for statistical analysis enabled us to spot and correct the weaknesses of the 
various routing algorithms tried. The VHDL based simulator was devel-
oped/updated in parallel to incorporate stable improvements. The Matlab 
simulator did, however, not support any rapid development even though it 
was considerably faster than developing in VHDL. Time to get back to the 
drawing desk and try something different.
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2003-2004 Since the goal now was rapid prototyping of a protocol stack the 
choice fell on Python [Python]. Python is a dynamic object-oriented pro-
gramming language that can be learned in a few days. Python has the 
advantage of being extremely intuitive and comes with extensive standard 
libraries. This new language further decreased the time for development 
and investigation of novel ideas in comparison to Matlab; also it offered 
packages for graphical user environments, statistical packages, support for 
scripting, possibilities of creating advanced traffic generators et cetera. So 
what could possibly go wrong? Nothing – if you want to live in isolation... 
except for some low-level RTL projects in Python nobody did use it for 
hardware development at that point so the Python implementation of the 
simulator was abandoned and could, in retrospective, is considered a side-
track. Nowadays, there exist a set of interesting Hardware Descriptive Lan-
guages (HDLs) in Python like e.g. MyHDL that both resemble – and can be 
converted into – Verilog [MyHDL,  and Decaluwe2004].

2001-2009 In order to be compatible with the rest of the world, in 2003, I 
decided to join a colleague – Rikard Thid – in his effort in developing a 
simulator in SystemC [SystemC]. The name he had chosen for the simula-
tor was Semla (Simulation EnvironMent for a Layered Architecture) 
[Thid2003, and Thid2006]. As a starting point Semla was, as the acronym 
suggests, much focused on a layered design; the layers here are referring to 
the layers of the OSI stack. The layered design style makes it easier to 
develop different parts of the network independently of already existing 
parts or parts to come. Clear interfaces and responsibilities alleviate a dis-
tributed design style where a natural refining process can take place. More 
on layered design in Section 4.6 on page 78

To sum up, this historical view I could say that the conceptual focus of the 
simulator has shifted in a subtle way over time – in the beginning, we 
implemented the Nostrum platform in VHDL – what we later ended up with 
was a simulator simulating an implementation of the Nostrum platform!

B.1.1 SystemC

Since the Semla simulator is written in SystemC it deserves a few words. 
SystemC is a C++ class library and has been developed to both be a func-
tional Hardware Description Language (HDL) as well as being capable of 
modelling software to support system level design. In order to cope with the 
shortcomings of Verilog and VHDL, SystemC can, natively, simulate both 
hardware and software to allow even large systems to be modelled. 
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The class libraries of SystemC implement a scheduler that emulates concur-
rency between processes; processes in this context are small pieces of code 
that concurrently coexist in a system and could either be describing hard-
ware or software. One of the key features is the ability to support models at 
different abstraction levels; for rapid prototyping very high level descrip-
tions could be used. As the specification is verified to work, a more detailed 
description of the models could be employed to support the final design. 
Moreover, the capability of simulating at different levels of detail is essen-
tial for the fast verification of the system from a simulation perspective.

The models written, e.g. processes are encapsulated in modules. Modules 
are the building blocks of SystemC – the modules can consist of other mod-
ules in a hierarchical manner. Each module has any number of ports that it 
uses to interact with other modules. To enable complex communication 
between modules SystemC has the ability to organize the communication 
into channels as shown in Figure B.1 Channels are equipped with interfaces
that the modules use to communicate through. The simplest channel is used 
to emulate the behaviour of plain wires as depicted in Figure B.1. More 
complex channels such as the hierarchical channel can connect any number 
of modules and implement several other, non-hierarchical channels. The 
hierarchical channel can contain processes, ports, and other modules. 
Examples of hierarchical channels are the model of a bus or a NoC infra-
structure. The hierarchical channel is conceptually depicted in Figure B.2. 
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If a bus or a NoC would be implemented by a hierarchical channel, in the 
simplest fashion, according to the Master-Slave model, it may look like 
Figure B.3. 

B.1.2 The Semla-Nostrum Implementation

The Semla-Nostrum simulator is conceptually divided into an Application 
domain and a Communication domain as depicted in Figure B.4. The appli-
cation domain contains the Resources that send and receive traffic utilising 
the communication infrastructure. The communication domain contains the 
communication infrastructure Nostrum. The purpose of the Resources of 
the Application domain is to generate traffic so that the behaviour of the 
network for a given workload can be studied. The implementation of the 
Resources can, potentially, span

•  Very detailed models of “real” IPs

•  Reactive traffic models

•  Traffic generators emitting recorded “real” traffic traces

•  Very simple models generating random traffic

FIGURE B.3. SystemC – Hierarchical Channel used as a NoC  
   or Bus Communication Infrastructure
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The resources interact by sending and receiving messages over the commu-
nication platform in the communication domain – Nostrum.

As it can be seen in Figure B.4, the Nostrum platform is conceptually 
divided into three parts

• Network

• Network Interface – NI

• Resource Network Interface – RNI

The protocol of the network is independent of the application using it – 
even though the topology may vary. The network communicates with the 
outside world via the Network Interfaces (NIs). The API of the Network 
Interfaces is Nostrum-specific and will be hidden from the applications by 
the Resource Network Interfaces (RNI). The implementation of the RNI is 
application specific and consists of a configurable Nostrum Add-on proto-
col stack in combination with an Application Adaptor. The application 
adaptors work as proxies for the application to implement the desired appli-
cation specific interface – e.g. AXI, MPI, etc. [AXI and MPI1993].
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The configurable Nostrum Add-on protocol stack is a custom subset of pre-
defined components needed to fulfil the requirement of this very applica-
tion adaptor. By only selecting a subset of these components the RNI can be 
customised at a minimal cost. The individual components are providing dif-
ferent behaviours like stream oriented communication, message oriented 
communicating, FIFO queue-sizes, acknowledgments, traffic shaping func-
tionality, etc.

The Network and the Network Interface

From the outside, the Network is a black box equipped with Network Inter-
faces to connect with the outside world. The purpose of hiding the internals 
of the network is twofold. It explicitly enforces an independence from the 
actual implementation detail of the network such as topology, protocol, etc. 
Also this independence works the other way around – it is easy to relocate 
applications running in a resource to another location without having to 
change the network1. To facilitate this flexibility the traffic uses Connection 
(or channel) Identifiers (CIDs) to address the desired receiver application. 
Each network interface, consequently, has to have a look-up table where the 
CID is translated into a Network Address. 

1. This relocation is done off-line for the purpose of analysing how different mappings of 
application will affect the traffic behaviour of the network.
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The look-up table only has to keep a record of the Channels associated with 
its respective application. A channel constitutes a contract between the 
communicating applications and the communication infrastructure with 
certain guarantees and characteristics attached to it.

Internally – in the current implementation – a two-dimensional mesh net-
work structure is realised. Figure B.6 shows an implementation view of a 
corner portion of this network. The ports connecting the Network Interfaces 
(NI) to the switches (Sw) is a pure modelling construct; in a “real” design 
the switches and NI would be tightly integrated. The purpose of the wire 
element is to enable modelling of ‘physical’ implications such as the intro-
duction of wire delay, bit errors, dead links, etc. The existence of the Edge 
elements is optional, and if they are present they will serve as an extra set of 
buffers in the network. Simulations have shown that the presence of these 
buffers will enhance the overall performance of the network. 

The choice of topology is done in the start-up phase of the simulation. Dif-
ferent models, mappings, and topologies could easily be selected thanks to 
a modular structure combined with highly customisable, xml based, config-
uration files. However, in the current implementation of Nostrum the 2D 
mesh was the most thoroughly investigated even though an implementation 
of the tori topologies have been tried out. The ease of customising the net-
work has been extensively used throughout the project to analyse different 
routing and buffering strategies.
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The Resource Network Interface – The RNI

The RNI mainly implements the functionality of the transport layer and 
functions as an adapter between the network and its Nostrum specific pro-
tocol and the Applications. 

Traditionally, the Transport Layer provides transparent transfer of data 
between end users, providing reliable, error-free virtual point-to-point con-
nection data transfer services to the upper layers. The transport layer con-
trols the reliability of a given link through flow control, segmentation/
desegmentation, and error control. In Nostrum, it also is responsible for the 
bookkeeping of the channels.

In Nostrum the RNI is the custom hardware/software used to connect the 
Nostrum backbone protocol stack with the communication protocols used by 
the Resource. The RNI handles all the application specific communication 
issues. Some examples: In the case of the application being a memory the 
RNI could act as an arbiter or DMA. If the application is a processor, e.g. an 
ARM core [Furber2000] the RNI could act as a bridge between e.g. AMBA 
bus and the NI. In addition, the RNI can act as a bridge between already pro-
posed standards for communication and the Nostrum, e.g. the VSI Alliance 
[VSI2001]. The boundary between the applications and the RNI is, how-
ever, not regulated within the Nostrum architecture. The Nostrum protocol 
stack can be implemented with an ‘arbitrary’ depth, i.e. if the application 
only requests a very basic functionality the stack can be more or less shal-
low.

Other groups that have implemented an adapter between the applications 
and the network are Tobias Bjerregaard et al. [Bjerregaard2005b]. Their 
Network Adaptor (NA) functions as an OCP compliant interface between 
their NoC architecture MANGO and any system complying with the OCP 
standard of communication. Their NA decouples communication from 
computation and provides an interface between their asynchronous mes-
sage-passing based network to the Memory mapped synchronous interface 
of OCP. Even they have chosen a layered approach to the design of their 
network with the argument that it enhances system level composability; this 
despite the overhead of packetisation/depacketisation since it enhances 
design productivity.
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Below is a very coarse description of the process of getting from a simple 
description of the system to be simulated to the working process when the 
simulation starts and all the channels are set up.

In order to explain the mechanism used when a channel is set up a basic set 
of “definitions” are needed. Below some definition together with a general 
flow in mapping of Atomic Communicators and their respective communi-
cation is described.

Raw Task Graph

Everything starts with the ‘Back of a napkin’ description of the system 
where the different communication entities are present. The Raw Task 
Graph only identifies the existence of communication (Figure B.7).

Atomic Communicator (AC)

Communicating entities that are the end users of the system that from a sys-
tem perspective are atomic when it comes to communication. The ACs are 
identified from the Raw Task Graph. An application can be seen as can be 
seen as one (or several) Atomic Communicators. All ACs have a unique 
Atomic Communicator ID (ACID) – Figure B.8.

B.2 THE PROCESS OF MAPPING AND SETTING UP COMMUNICATION
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Channel Mapped Task Graph & Channels

Once the existence of communication between AC has been identified the 
actual needs for communication is analysed and the requirements are 
expressed as Channels (C). With a channel comes direction and desired 
QoS properties (e.g. bandwidth, latency, time of communication, etc.) 

Resources (R)

The Resources of the system are the entities where the applications will be 
run, and the different ACs will be implemented. A Resource can hold one 
or more ACs, with or without internal communication.

Resource Mapped Task Graph

Now it is possible to make an attempt towards a mapping where some of 
the ACs are placed in a single Resource (R), and other ACs can share one 
resource. The inter-Resource communication is handled by the intercon-
nect, e.g. Nostrum whereas the intra-Resource communication is custom. 
This mapping is called the Resource Mapped Task Graph (Figure B.9). 
From this mapping, an analysis can be carried out in order to determine the 
feasibility of the mapping and a performance estimation can be made. This 
is entirely done offline and currently not part of the Semla-Nostrum Simu-
lator tool-chain.

From the perspective of the interconnect it needs to know the location of 
the AC, i.e. the AC → Resource mapping as well as the QoS requirement 
of the different channels. This information is handled to the interconnect at 
the start-up of the simulation as we will see.

FIGURE B.9. Resource Mapped Task Graph
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The Channel Mapping Process

This far nothing is said about how the interconnect “knows” how to locate 
the receiver of a message. Hence, this very brief section will touch upon the 
subject. 

In Nostrum every RNI is equipped with an interface to the resources – the 
application adaptors. This interface can be of different kinds dependent on 
the particular needs of the applications inside the Resources. The applica-
tion adaptor that most resembles the native interface of the adaptive Nos-
trum Protocol stack is the message passing interface. The development of 
this basic interface has been inspired by the Message Passing Interface 
(MPI) [MPI1993] and hence will be referred to as mp_if.

The following assumptions are made:

• The discussion will be carried out without going into detail of the 
requested Quality of Service (QoS) of the channels and the process of 
granting/guaranteeing QoS done by the interconnect. Currently, all 
QoS calculations are done offline and hence no application will ever 
ask for a QoS that cannot be fulfilled. So whatever QoS level that is 
requested they are granted!

• The Atomic Communicators are all aware of their communicating 
peers and identify them with their respective ACID.

FIGURE B.10. Resource Mapped Task Graph
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To set up the interconnect to function the following is needed. First all 
Atomic Communicators initially perform a requestAndRegisterAcid(Acid 
myAcid) call – this will notify Nostrum in which Resource the different 
ACs resides. After that the application will make an openChannel(Acid 
source, Acid destination, ChannelType) request. The ChannelType is a pre-
defined Quality of Service descriptor that can be understood by the inter-
connect. Once the request is processed by the interconnect and a Channel Id 
(CID) is returned to be used as a handle through which communication 
(read or write) can be handled – e.g. write(CID, Data). The administration 
and bookkeeping of the channels, atomic communicators, packet routes and 
suchlike are handled by an “invisible” operating system that is beyond the 
scope of this thesis.

A simulation run with the Semla simulator involves execution of a few log-
ical phases as shown in Figure B.11

• First all the necessary parameters need to be extracted to be able to 
build the simulated system. The system here is Nostrum with its RNIs, 
NIs and network and the connected resources with its applications. The 
parameters are collected by a container instance – simParams – using 
the xmlHandler to parse all the xml input data read from the file that 
was previously created by the Simulation Generator. The simulator 
and the components that will be generated will heavily rely on the 
information that now resides within the container instance simParams 
since this information is the core of how the simulator will look and 
behave.

• The first thing that is being configured based on the content of simPar-
ams is the LogHandler that has the responsibility to log and trace exe-
cution as well as individual packets. The LogHandler will keep a 
record of all this information in a database for later processing. The 
reason for implementation this very dedicated logHandler is that an 
implementation of a network will be composed of many identical com-
ponents like switches, wires, etc. This creates a challenging task when 
it comes to logging and debugging code since the very same source 
code will be used to create a multitude of instances where the only 
thing that is distinguishing one instance from another is the instance 
name. Hence the logHandler is capable of creating different logging 
information based on the instance names.

B.3 SEMLA SIMULATION ORDER
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• Once the logger is configured Nostrum is created. The Nostrum 
instance in turn creates, and connects, the RNI and the Network. The 
Network – once created – will consequently, create and connect the 
necessary Network Interfaces, Switches, Wires and Edge elements. 
The size, configuration in terms of switching policy, buffer-sizes, etc. 
is completely dictated by the information in the simParams instance.

• The same procedure is then repeated with the Resources that create and 
connect the sender and receiver parts of the applications. Finally, all 
Resources are connected with Nostrum.

• The simulation now can start and will stop as soon as all sent packets 
have been received or if the simulation times out. The reason can be 
that the number of packets/data to be sent is not limited, or the simula-
tion has run havoc due to an “unexpected event” (read – bug) in the 
network implementation, or a dead-lock situation in the resources. 
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FIGURE B.11. Semla Simulation Order
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When the simulation has finished the messageHandler collects the 
requested raw and statistically derived data concerning packet and mes-
sages and writes it to a file. The logHandler will also output its raw data or 
a summary report of interesting events to a file.

Packet Logging

During a typical simulation run traffic will be generated in an application, 
get transferred over the network to finally be consumed by another applica-
tion. To make correct and meaningful measurements it is important to know 
what and where to measure. To achieve this; a set of tags are attached to 
each individual packet. The tags are a pure simulation construct and will 
not be included in the packet payload.

At creation all packets get a unique packet id. This identifier is used 
throughout the simulation and later in the post data processing to keep track 
of the whereabouts of individual packets. 

Let's first assume, for simplicity, that all communication has the granularity 
of packets. By that I mean that whatever quanta of information the applica-
tion wishes to send is it is in the form of packets. During a packets lifetime, 
it will be tagged with various time stamps as depicted in Figure B.12.
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• tbirth – Once the packet is created it will get tagged with its time of 
birth. The packet will now, potentially, undergo traffic shaping and will 
be put in a down-stream queue waiting for admission onto the network.

• tsend – As soon the packet is granted admission to the network the tsend 
tag will receive its value.

• treceive – Set when the packet is leaving the network. The packet is now 
put into the upstream reception buffers.

• tfinish – Set as soon the receiving application is accepting the packet, 
and the packet leaves Nostrum.

With the aid of these time tags, it is now easy to calculate individual and 
accumulated latencies of the System (tfinish- tbirth), the Network (treceive- 
tsend), Downstream Queuing times (tsend- tbirth) etc.

In the case that the application wants to transmit data that will not fit into 
one single packet a message is created. All packets that belong to this par-
ticular message will get a Message Id (MID). The message identifier will 
later be used in the data post processing stages to associate packets belong-
ing to the same message. From the collected knowledge about the individ-
ual packets belonging to the same message, delivery times, latencies, queue 
size requirements, etc. can be deduced.

Birth Send

System

FinishReceive

Queue Traffic 
Shaping Admission Routing Exit 

Policy
Sort & 

Desegment

NetworkFIFO

FIGURE B.12. Packet Time Tags
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For the sake of being complete the graphical front-end NNSE of Semla 
deserves a few words [Lu2005]. NNSE (Nostrum Network-on-Chip Simu-
lation Environment) was built to aid in the process in selecting a network 
architecture that suits a particular application. In Figure B.13 the work flow 
of NNSE is illustrated.

Furthermore, it gives easy access to Semla’s configuration parameters and 
presents the output of a simulation in a comprehensive way. NNSE was 
written in Python as a wrapper to the Nostrum Semla core; this means that 
it does not utilise the aforementioned Simulation Generator or the Simula-
tion Output Data Analyser and Visualiser. From the Graphical User Inter-
face (GUI) of NNSE it is easy to configure the network with respect to 
topology, flow control, routing algorithm, etc. In addition to customise the 
network parameters the network should be evaluated extensively with vari-
ous regular and application-specific traffic patterns, hence the traffic pat-
terns are configurable from the GUI that gives access to a set of pre-defined 
patterns.

B.4 NNSE
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Network Configuration

During configuration phase one the user has to select topology, switching 
mode and routing algorithm. In our current implementation, the selectable 
topologies are limited to two dimensional meshes and tori, and the switch-
ing modes implemented are deflective and wormhole routing. The worm-
hole routing option is further customisable when it comes to the number of 
Virtual Channel (VCs) and the depth of these channels.

Traffic Configuration

The traffic patterns in NNSE can be either regular or application specific. 
The application-specific traffic is set up on a per-channel basis and can be 
used to configure user defined irregular traffic. The communication charac-
teristics of each channel can hence be explicitly defined and tuned.

FIGURE B.14. NNSE Network Configuration

FIGURE B.15. NNSE Traffic Configuration – Based on Channels



208 CHAPTER  B     The Semla Simulator
The regular traffic patterns are divided into uniform and locality traffic. The 
uniform traffic is distributed over the network nodes uniformly. Whereas 
the locality traffic is based on a locality index that controls the communica-
tion probability between nodes at different distances. Further it is possible 
to specify the spatial characteristics, temporal characteristics, and the sizes 
of the messages to be sent over the network. 

Performance Evaluation

Once the network is configured, and the traffic pattern defined the simula-
tor is built and run. The evaluation is based on the kernel simulation results 
and presented as graphs. The main performance measures are latency and 
throughput. Typical figures include average latency vs. offered traffic, 
throughput vs. offered traffic, etc.

The NNSE also offers the possibility to store network and traffic configura-
tions to be reused. To facilitate data exchange, they are stored as XML files.

FIGURE B.16. NNSE Traffic Configuration – Regular Patterns
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Simulation Speed and The Validation Issue

Semla’s detail comes at a cost of slow simulation speed – a limitation 
shared by most detailed/low-level simulators. As stated by Christopher J. 
Hughes et al. in their paper about their simulator RSim “... the execution 
times predicted from simulation deviate significantly from real hardware 
results and the tuning of these simulators to match the hardware require 
considerable effort.” [Hughes2002]. In their paper, they acknowledged the 
idea a hardware implementation should be built to validate the final ideas 
developed from simulation to be good but potentially controversial. The 
reasons why there might be a problem in selecting a reference architecture 
are essentially the three listed below with a twist to adopt it to our applica-
tion:

• Technology and ideas evolve very quickly. Once the effort is put in 
building a hardware prototype, new ideas and a new desired hardware 
implementation has made it obsolete.

• There is no consensus on the ideal architecture – in our case this means 
that we don’t know what to optimise the hardware architecture for; this 
since we do not have any reference applications.

• Most machines/network on chips have architectural features that in 
hindsight were considered incorrect or non ideal for the current traffic 
pattern. If “real” performance numbers should be given these imperfec-
tions should/must be removed.

There have been a few reports on Network on chip emulators in the litera-
ture. For example, Nicolas Genko et al. built a support system on a FPGA 
board that delivers a complete environment for HW-SW NoC Emulation. 
The synthesiseable switches are generated by using the ×pipes compiler 
[Jalabert2004]. On board on their emulator platform are controller, traffic 
generators and receptors as well. During emulation, they report speed-ups 
up to four orders of magnitude in comparison to traditional HDL simula-
tions [Genko2005]. In their paper, they report rapid turn-around times when 
it comes to changing parameters in their design like packet sizes, number of 
switches, etc. There is however not much said about the cost of changing or 
developing protocols. 

B.5 SIMULATION SPEED, VALIDATION AND TRAFFIC PATTERNS



210 CHAPTER  B     The Semla Simulator
Another way to increase the simulation speed is to replace the IP’s simu-
lated with corresponding Traffic Generators. By capturing the type and 
timestamp of communication events at the boundaries of an IP core in a ref-
erence environment the Traffic Generator can later emulate the IP’s com-
munication pattern. Shankar Mahadevan et al. reports of simulation time 
speed-ups above a factor of two with close to 100 percent accurate to the 
original IP [Mahadevan2005]. 

A second reason for using traffic generators is that a full system might not 
fit onto a single prototyping chip. Erland Nilsson and Johnny Öberg used 
16 traffic generators in the Nostrum prototype chip called PANACEA 
[Nilsson2006]. For more information see Section 5.4 on page 92.

Regardless if a hardware version of the architecture is to be built the simu-
lation should always be accompanied by a theoretical model or at least a 
reasoning of the expected outcomes of the simulations. In retrospective I’ve 
come to realise that most of the development time of the simulator has actu-
ally been spent on validating and verifying that the outcomes of a simula-
tion are sane and “true”. That is – is the simulator really behaving as 
expected and is this behaviour correct? Surprisingly often the results have 
appeared to be correct and in line with the assumed results in statistical 
terms but later discarded due to an erroneous implementation. With errone-
ous I mean “buggy” from an implementation language point of view or not 
in line with the hardware the simulator it is supposed to simulate.

Moreover, the choice of traffic patterns/behaviours is a big issue when it 
comes to measuring the performance of a simulator. When the papers in the 
thesis were written there were no benchmark suits available, which meant 
that it has been very hard to give any reasonable numbers on the speed of 
the simulator under realistic loads. With available benchmark suits, I mean 
that no benchmark suits had been presented that had reached a common 
acceptance within the NoC community. If the problem with realistic traffic 
patterns is ignored and a synthetic, uniform random traffic pattern is 
accepted, we could present raw performance numbers in terms of packet 
traversals per second. Packet traversals per second is the throughput in the 
number of packets the simulator is capable of accepting multiplied with the 
average routing distance/hops. Semla as of today gives a raw performance 
of 2800 packet traversals (hops) per second if it is run on a 3200 Pentium 
with 2 GB of memory (no swap). The number of packet traversals per sec-
ond is almost independent of the network size and traffic pattern.
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The Choice of Traffic Patterns

The traffic pattern consists of a communication graph and the traffic char-
acteristics on the respective edges of the graph as described in e.g. Section 
“The Channel Mapping Process,” on page 201– see Figure B.17.

Network traffic modelling is an approach suggested by many [Genko2005
and Mahadevan2005]. The reasons are that (i) full system modelling/simu-
lation usually gives too slow emulation speed; (ii) the system to be simu-
lated may not exist yet. Network modelling is a key component in 
understanding the power /performance characteristics of the network.

Network traffic generators range from the simplest synthetic traffic pattern 
to a very sophisticated full system emulator. The simple models could well 
be used for evaluation of the network during the early developments of the 
network concept. Models such as uniform random, weighted random, Poi-
son and permutation and suchlike provide the means to stress and measure 
profound network characteristics in the early design phases. These models 
are regular, predictable and hence aid the NoC designer in acquiring 
insights of the network in questions strengths and weaknesses. However, as 
Vassos Soteriou et al. so well point out – they do not represent real-life traf-
fic and cannot be used to drive realistic network design space exploration! 
[Soteriou2006]

FIGURE B.17. Channel Mapped Task Graph
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Soteriou et al. instead proposes a model that is based on a 3-tuple to capture 
the traffic’s, both, spatial and temporal behaviour. The triplet captures the 
statistical parameters of hop-count, burstiness, and packet injection distri-
bution. The values of the 3-tuple are statistically derived from a set of full-
system simulation. The values can later be used in two ways. First they can 
give valuable insights on the characteristics of the NoC traffic pattern in 
question; second they can be used for creating synthetic traffic for NoC 
evaluation. They report a 95 percent accuracy of their simulation traces 
from synthetically generated traffic with respect to the “real” full system 
simulation.

In addition, analysis of the system execution traces could be used as a basis 
for identifying critical communication events [Lahiri2000]. The traces can 
be analysed to examine the impact of individual (or groups of) communica-
tion events on the system’s performance. Communication events which are 
on the system “critical paths”, and whose delays significantly impact the 
specified performance metrics can be classified as critical events. By 
assigning appropriate priority levels to these communication events the sys-
tem’s performance can be enhanced.

In the work of Sergio Tota et al. they decided to adopt an emulation 
approach for the following reason: the communication of an MPSoC is 
truly bidirectional – regardless if shared memory model or message passing 
paradigm is used. The circular interdependencies hence cannot be captured 
by a random traffic generator – no matter how sophisticated! The traces 
they used were derived from real-life applications running on a multiproc-
essor system [Tota2006].
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Abstract

In networks on chip, NoC, very low cost and high per-
formance switches will be of critical importance. For a reg-
ular two-dimensional NoC we propose a very simple, mem-
oryless switch. Packets are never lost. In case of conges-
tion packets are emitted in a non-ideal direction, which is
called deflective routing. To increase the maximum toler-
able load of the network, we propose a Proximity Conges-
tion Awareness (PCA) technique, where switches use load
information of neighbouring switches, called stress values,
for their own switching decisions, thus avoiding congested
areas. We present simulation results with random traffic
which show that the PCA technique can increase the maxi-
mum traffic load by a factor of over 20.

1 Introduction

On-chip communication becomes a challenge as the

number of transistor functions increases on a single silicon
die. Clock and data distribution over large distances is im-

possible to accomplish in a simple manner. Several research

groups propose packet switched Network on Chip [1] [4] [5]
to address the problem with communication between Intel-

lectual Properties, IP [10], where each IP-block is a Re-
source or a part of a Resource.

We propose the use of Nostrum [8], a two-dimensional

Network-on-Chip with the hot-potato routing algorithm ap-

plied as switching policy for datagram distribution [7]. The
hot-potato results in a no-queue system where packets may

be deflected in directions contradicting the optimal path in
case of a tie between concurrent packets arriving at the same

switch cycle [2]. The mesh consists of Switch-Resource

pairs where each Resource is able to transmit and receive
packets. However, preliminary experiments show that our

proposed PCA based switching policy also has a positive

effect on the maximum load even for more realistic traffic
scenarios based on more localised communication.

There are many ways to organise this mesh. Examples
are the flattened torus model [3], where boundary connec-

tions are wrapped around the edges to the opposite side.

Another model is a plain two-dimensional mesh [4], where
boundary connections are reconnected into the same Switch

of origin, this is also the way we have choosen to implement

our NoC. In the plain two-dimensional mesh, the number
of packets passing through the centre of the mesh is sig-

nificantly higher compared to packets travelling along the
edges. As every Resource may transmit to any other Re-

source in the mesh with equal probability, most packets will

pass through the centre, which becomes a hot-spot. Such a
hot-spot is not desirable.

However, hot-spots can be avoided if often intercom-

municating Resources are placed within proximity to each
other. Another way is to make each Switch aware of the

load of all neighbouring Switches, by letting a cellular au-
tomata select the “best” direction to route each packet. We

call this concept Proximity Congestion Awareness, PCA.

PCA uses control information called stress values that are
sent between nearby Switches. The control information is

a measure of the workload of a particular Switch. This in-

formation is evaluated on each Switch and transmitted to the
four most adjacent Switches every packet cycle. We assume

that the ideal Switch should be able to switch all incoming
packets in one clock cycle, i.e. one switch cycle is equal to

one packet cycle. The simulations made in this paper are

based on random traffic where each Resource has the same
probability of communication to any other Resource in ei-

ther way.

The rest of the paper is organised in the following way.

In section 2, we describe the routing methodology used in

our Switch. In section 3, we describe three different imple-
mentations of our Switch, two which are using stress values

and one reference Switch which does not. In section 4, we



    235
Submitted to DATE 2003

present results of simulations of the load distribution in the

network using the three Switch implementations. Finally
in section 5, we draw some conclusions and discuss future

work.

2 Switch load distribution

A main objective is to keep the final Switch very sim-
ple. The Switch is responsible for communication up to

the network layer, in the terminology of the OSI reference
model [6]. Every little intelligence added in the Switch re-

sults in a larger design, which is expensive in area, speed

and not at least power. In later stages, improvementsmay be
added if the benefits exceed the cost. The number of gates

between the input and the output of the Switch is the switch

gate depth. A higher number of gates through the Switch,
larger gate depth, the lower clock frequency is the Switch

possible to run at. If a packet is supposed to be delivered
in one clock cycle, no buffers used for pipelining can be

used. The control logic needs a certain time to make the ap-

propriate decisions and set the multiplexers controlling the
outputs. The frequency of packets must not be higher than

the corresponding time period. To achieve as short set up

times as possible, many tasks must be executed in parallel.
On the other hand, it may still be preferable, that improved

intelligence that gains the network utilisation may decrease
the highest possible packet frequency.

The load in the centre of the mesh is much higher com-

pared to the total average. The maximum number of pack-
ets transmitted for a Resource is limited by its load. If the

number of packets on transit in a Switch is decreased, the

Resource connected to that particular Switch are able to
transmit more packets. With lower load, less packets will

be deflected and the maximum number of packets that si-
multaneously can reside in the network can be significantly

increased, hence the network throughput is increased.

The load be spread over a larger area by using different
routing rules. Examples of routing rules can be:

• Round Robin

• Try to avoid congestion

• Force avoidance

The first rule, Round Robin [11], can be useful when

there is some built-in locality of the Resources, i.e. the dis-

tance between normally communicating Resources is short.
However, in a situation where the source and destination of

every packet is more distributed, there will be congestions
that limit the network performance.

By trying to avoid congested areas, the network through-

put can be improved. For larger networks, there are almost
always two directions that are preferable. The cost of tak-

ing the other two directions is two switch cycles, one when

going in the wrong direction and another one to return back

on track again. Depending on the load in the two directions
to which a packet is heading, the direction where there is

least congestion is the preferred one.

The concept of Proximity Congestion Awareness, can be
used to make the load distribution more uniform. Informa-

tion to help the Switches in their routing decision is sent
between the Switches. The information is sent from one

Switch to its neighbours in all directions. That is the re-

sult of a calculation that relates to the load level in that
Switch. The surrounding Switches get information from the

Switches in all four directions; this helps the Switch to get

a picture of the surroundings, see figure 1. The informative
value PCA is using is called stress value.

S S

S

S

R

R

R

R

S

Figure 1. Stress value distribution. The un-
filled arrows represents the stress values that
are sent between the Switches without inter-
action of the Resources.

The load information from each Switch progress over the

network in the manner of a cellular automata. Cellular au-
tomata is basically a concept for making status information

about one cell progress to its surroundings. One cell in a

mesh can tell its most adjacent neighbours about its status,
such as its load. Other cells will not know about one specific

cell, instead the status information from several cells are
combined and transmitted further. This helps each Switch

to decide in what direction each packet should be sent to

avoid the hot-spots; where the load is high for a longer time.
The status information will not only be about one specific

cell, but in addition about how loaded a larger area is in that

particular direction.
The evaluation of the stress value can be made in many

different ways, for example:

• Number of packets switched

• Number of packets switched, averaged over a few
switch cycles
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• Any of the above and combined with incoming infor-
mation from adjacent Switches

The complexity of the Switch is increased in the order in

which the methods are presented. The least cost implemen-
tation in terms of physical size and execution time is in de-

scending order from the top.

The simplest implementation is to count the number of

packets switched and transmit the result to all the neigh-
bouring Switches. The increase in performance is notice-

able. Assume that one Switch, Switch A, is heavy loaded
at a given time. Switch A will send a high stress value to

the adjacent Switches. The surrounding Switches will then

hesitate to transmit to Switch A during the next switch cy-
cle. It is not impossible that Switch A does not get any

incoming packet in the next switch cycle, the stress value

will then decrease to zero. This can proceed over a long pe-
riod of time. The result is oscillations in the load over the

network. To achieve the highest possible network through-
put, the number of packets switched in each Switch should

remain constant over time and equal over the network.

The goal is to achieve a stable and equally distributed

load over the whole network. The utilisation of the network
capacity is rapidly increased if there are few Switches run-

ning empty. To overcome the problem with oscillations, the

number of packets in a Switch could be counted and aver-
aged over a few switch cycles.

To improve the stress value calculation even more, the

stress values coming from the surrounding Switches can be

accounted for in the new stress value together with the num-
ber of outputs used over a few switch cycles. These should

be weighted and added together. For example, stress values

coming from the surrounding Switches are multiplied by a
constant and added together with the number of busy out-

puts in the Switch itself. In the end, the final value will have
to be scaled so that the maximum value is not exceeding the

maximum stress value available.

3 Switch design

The Switch must be able to make a connection from any

input to any output. This means that there must be five mul-
tiplexers with five inputs each, for the two-dimensional net-

work; where each Switch has a connection to a Resource.

One input is allowed to be connected to one output only, an
incoming connection can only be used once. Duplication of

packets must not occur. To accomplish this, a controlling
unit makes decisions of what combination the setup of the

multiplexers should have. The remaining units in the design

are standard units such as buffers and counters.

A packet header includes a destination address, hop-
counter and an empty flag telling if the packet is an actual

packet or not. The empty flag is used to make a simple

south
west
resource

north
east

resource

north

east

south

west

INPUT OUTPUT

ctrl−unit

Figure 2. Basic Switch operation.

packet indicator and to save power. Instead of removing

a whole packet from an input buffer when no new packets

are waiting, only the flag needs to be changed for notifi-
cation. The control unit examines every incoming packet

for its destination. From the destination address, the desti-
nation direction is derived. The destination address can be

divided into two parts, the row address and the column ad-

dress. When using relative addressing, the first bit in the
row address is the sign for north or south and the remaining

bits are simply the binary number of how many rows in that

direction the destination row is. The same relation applies
for the column address. If both the row and column address

are zero, the packet has reached its final destination.

In the current implementation [9], the priority is a func-

tion of the distance, i.e. the age, which is in fact the number
of hops since the packet was launched on the network.

The incoming packets are sorted in priority order, the
packet with the highest priority gets to make the first choice

of output and the following packets in descending order. If
two packets have the same priority, the order of which in-

put that makes the first choice is fixed. The remaining in-

puts with the same priority are given their turn after hand as
Round Robin. The packets which preferred output is occu-

pied by a higher priority packet must be forced in a direc-

tion that contradicts to the desired. After these operations,
if there are any unused outputs, packets can be taken from

the Resource.

Methods of avoiding fixed output assignment in case of

concurrent packets is either to make a random choice or to
have a cyclic choice of which packet that will be favoured.

3.1 With no stress value

It has been revealed that for random traffic, the highest

load is in the centre of the network mesh. The amount of
packets waiting in the network interfaces of the Resources

in the centre Switches are limiting the availability for pack-
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ets to be launched there. If many packets are travelling

through the centre, packets leaving the centre Resources
will have to wait for a long time for an empty output where

the new packet can be put. The average number of packets

waiting for transmission must not increase over a longer pe-
riod of time. An empty Switch output is needed to release a

packet from the Resource on the network. This occurs when
one incoming packet is forwarded to the Resource, or when

the number of incoming packets is less than four. If the pos-

sibility of a packet creation is greater than the possibility of
an empty output in that particular Switch, the number of

packets waiting will increase.

The most basic operation is to ignore the hot-spot in the

centre. Instead, an easy and natural solution is to avoid

packets to travel through the centre by placing Resources
with frequent communication close to each other.

3.2 With stress value

The number of packets going through the very centre of
the mesh can be spread over a larger area by sending stress

values to the surrounding Switches. That information aids

surrounding Switches to select paths through Switches with
lower load.

When using stress values from the surroundingSwitches,
the order of outputs is updated for every switch cycle. Four

stress values are imported on wires separate from the pack-

ets from the most adjacent Switches. The four values are
inserted into a sorting unit that renders an output priority

order. The output priority order is updated every switch cy-
cle and contain four numbers, with the output directing to

the least loaded area is first.

One could imagine, that by adding extra logic to handle
the output priority order with the sorting unit and the logic

for generating the stress value will increase the gate depth
of the whole Switch. However, the stress value sorting unit

is applied in parallel with the priority sorting unit while, in

the same way, the stress value evaluation works in parallel
to the output buffers. This results in a Switch which has a

larger area and higher power consumption compared to the

simpler one, but with gate depth unchanged.

3.3 Averaged stress value

The stress values are sent from every Switch to its four

most adjacent Switches. Hence, every Switch will there-
fore also receive four stress values, one from each direction.

In the previously described functionality, these values are
used once directly in the following switch cycle. The reac-

tion to a high stress value is that the surrounding Switches

will avoid sending in the direction of the Switch with the
high stress value. The high load may the next switch cy-

cle rapidly decrease to a considerable lower value, which in

its turn makes the surrounding Switches to prefer that out-

put. The value increases again and will keep on oscillating
in this way and so will the packets during its journey. A

too low stress value in an area with high load, which could

become the case after the Switch reaction of a high stress
value, will indicate to all the surrounding Switches that the

particular Switch is a good choice for routing.

The solution is to create an average of the stress

value over a few switch cycles to prevent the surrounding
Switches of making these oscillating routing decisions. It

can be done on the stress value input on every Switch but

it is better to make the averaged stress value on the Switch
it concerns before it is transmitted. The gain is that only

one stress value averager per Switch is needed. Instead of

adding the stress value during for example four switch cy-
cles, divide by four to get the average and round up to an

integer. It could be found better to transmit the result after
the adder without dividing. To better distinguish between

two nearby values during the stress value sorting phase, a

larger range of possible numbers may be used. This will
need more wires between the Switches but averaging logic

is saved at the cost of larger stress values. The implemen-

tation using averaged stress values are averaging over four
cycles used and a value between zero and fifteen is sent.

The stress value averager in the implemented model is fairly
small, about 2001 gates.

3.4 Gate depth

The maximum clock period has an upper limit which is

related to the distance between the input and the output.

When a clock pulse occurs, every signal in the design must
stabilise before the next clock pulse. This restricts the num-

ber of following gates between input and output. If the gate
depth exceeds the maximum allowed depth, pipeliningmust

be used. The negative effect of using pipelining, is that a

packet can not be forwarded the next clock cycle.

4 Simulation results

4.1 FIFO-buffer study

Packets that are sent from the Resource that are intended
to be launched on the network are first put in a FIFO-buffer

in order to wait for an empty slot on the Switch. For a low

loaded Switch, there are no packets waiting in the FIFO,
since packets from the Resource passes through the buffer

and to an empty output on the Switch the following packet
cycle. The study of all FIFOs in the network mesh is a

method to see how the load is distributed around a hot-spot.

A visualisation of the average number of packets in every

1218 gates using the lsi10k-library.
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FIFO is made. A load of 0.01 tells us that the FIFO is occu-

pied by one packet every 100 switch cycle, which is fairly
low.

The intention is now to show the real difference between
the three cases of using stress value.

• with no stress value

• with stress value

• with averaged stress value

In the three cases, the same input data has been used. The

mesh size is quite large, 16×16, to be able to spread the load
over a larger area to avoid the influence of boundary effects.

The packet probability is for the ’no stress value’ case close
to the maximum possible, shown by simulations [9], to cre-

ate as much congestions as possible, to be able to make a

clear separation where the use of stress value really brings
matters to its head. Observe the scaling of the x-axis since

every bar in the whole figure is scaled from the Switch with

the maximum average load.

4.1.1 With no stress value

In figure 3, the hot-spot is pushed to the north-west corner,

if north is up in the figure, which is the logical reference
direction. The reason for the non-centered load is a result

of the routing decisions in the Switch. If two packets arrive

to an intended destination at the same time, one packet is
captured by the Resource while the other is deflected. In

this case, it is a fixed choice of deflection output order. First

north, then west, south, and last east.
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Figure 3. Average load in FIFOswithout using
stress value. The largest average number is
3.2 packets waiting in the FIFO.

4.1.2 With stress value

The stress value notifies the surrounding Switches about

how many packets the Switch handles during that cycle.
The stress value is updated every switch cycle and is not de-

pendent on the previous values. Using stress values in this
manner increases the performance of the Switch since the

outputs are ordered in the most preferable order. Compare
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Figure 4. Average load in FIFOs using stress
value. The largest average number is 0.9
packets waiting in the FIFO.

the maximum value on the x-axis in figure 4, which has a

maximum value of 0.9 to the value in figure 3, which is 3.2.
The number of packets waiting in the buffers has decreased

with approximately a factor of 3.5 by using stress values.

4.1.3 Averaged stress value

The averaged stress value is the sum of the four last stress

values, see section 3.3. The number of Switches that
presents a high load is greater than before. The load is

therefore more distributed over the mesh when the averaged
stress value is used. In comparison to the previous figures,

the load is not only close to maximum in a few Switches, in-

stead, a larger area of the network shares the work of trans-
porting packets through the centre zone. From the figure,

the maximum average load can be found by estimating the

value of the axis at the right end of the x-axis. With expe-
rience of the visualised data, the maximum average load is

estimated to be 0.15. Compared to the implementation us-
ing stress value with no averaging, the average load now

achieved is six times less compared to the non averaged

stress value. In relation to the most basic implementation
where no stress value was used, it is enhanced with a factor

of more than 20.
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Figure 5. Average load in FIFOs using aver-
aged stress value. The largest average num-
ber is 0.1 packets waiting in the FIFO.

4.2 Synthesis

The synthesis of the Switch was made using the lsi10k-
library. Todays technology is improved many times com-

pared to the technology of the library used in the synthe-
sised model. Still, the number of gates are likely to be in

the same order but the delays extracted from the synthesis

are much less with today’s technology.

The final Switch has been synthesised with Synopsys us-

ing two different constraints, first the default which is opti-

mised on area and second optimised on speed. When speed
is considered, the area may be increased rapidly since extra

logic is used in parallel for making the gate depth shorter.

In table 1, it is shown in what order the total combined

logic and the critical path gate depth are needed to accom-

plish the Switch depending on the optimisation constraints.

constraint total combined logic critical path gate depth
area 13 964 79

speed 21 029 48

Table 1. Number of gates and gate depth with
averaged stress value using the lsi10k-library.

5 Conclusion

It can clearly be seen from the previous discussion that

the implementation of a more balanced load using stress
values increases the network throughput and decreases the

packet delivery time. The network load is decreased with

a factor of 20 for a heavily loaded network. When the net-

work becomes more loaded, all outputs are occupied and
the output priority makes no effect since there are always

packets in all buffers. All simulations in this paper has been

made using random traffic. However, it is shown in further
experiments in preliminary results that the positive effect

of using PCA is also valid for a traffic model where the
probability for communication between nearby Resources

is higher compared to Resources on far distance. In fact,

we expect that the effect of “smearing out” high load over a
large network increases the highest tolerable network load

for almost any kind of traffic. In a less loaded network, the

stress values together with the output priority order are not
necessary since most packets get routed the shortest path

anyway and almost always there are free outputs in every
Switch for every switch cycle. If there are no packets wait-

ing in the FIFO buffers, the gain of using stress values is not

as evident as before.
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