
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010 1973

Buffer Optimization in Network-on-Chip Through
Flow Regulation

Fahimeh Jafari, Zhonghai Lu, Member, IEEE, Axel Jantsch, Member, IEEE,
and Mohammad Hossein Yaghmaee, Member, IEEE

Abstract—For network-on-chip (NoC) designs, optimizing
buffers is an essential task since buffers are a major source of cost
and power consumption. This paper proposes flow regulation and
has defined a regulation spectrum as a means for system-on-chip
architects to control delay and backlog bounds. The regulation
is performed per flow for its peak rate and burstiness. However,
many flows may have conflicting regulation requirements due to
interferences with each other. Based on the regulation spectrum,
this paper optimizes the regulation parameters aiming for buffer
optimization. Three timing-constrained buffer optimization prob-
lems are formulated, namely, buffer size minimization, buffer
variance minimization, and multiobjective optimization, which
has both buffer size and variance as minimization objectives.
Minimizing buffer variance is also important because it affects
the modularity of routers and network interfaces. A realistic case
study exhibits 62.8% reduction of total buffers, 84.3% reduction
of total latency, and 94.4% reduction on the sum of variances of
buffers. Likewise, the experimental results demonstrate similar
improvements in the case of synthetic traffic patterns. The
optimization algorithm has low run-time complexity, enabling
quick exploration of large design spaces. This paper concludes
that optimal flow regulation can be a highly valuable instrument
for buffer optimization in NoC designs.

Index Terms—Buffer size, buffer variance, interior point
method, network-on-chip (NoC), optimization problem.

I. Introduction

THE advance of the technology is raising the level of
integration of intellectual property (IP) and scalability

issue for communication architectures in very large-scale
integration systems. Since traditional buses do not scale well
in the system-on-chip (SoC) platforms, this trend has driven
bus-based architecture toward networks-on-chip (NoCs) [1].
Current achievements in integrating more processor cores on
a single chip enable to employ these many-core systems as
real time multimedia servers. Thus, it is imperative to provide
quality of service (QoS) in these systems which have been
well available in traditional Internet servers. IPs for a SoC are
typically developed concurrently using a standard interface,

Manuscript received December 1, 2009; revised May 12, 2010; accepted
July 3, 2010. Date of current version November 19, 2010. This paper was
recommended by Associate Editor V. Narayanan.

F. Jafari, Z. Lu, and A. Jantsch are with the Department of Electronic
Systems, Royal Institute of Technology, SE-164 40 Kista, Stockholm, Sweden
(e-mail: fjafari@kth.se; zhonghai@kth.se; axel@kth.se).

M. H. Yaghmaee is with the Computer Department, Faculty of Engineering,
Ferdowsi University of Mashhad, Mashhad 91775-111, Iran (e-mail: hyagh-
mae@ferdowsi.um.ac.ir).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2063130

e.g., advanced extensible interface or open core protocol.
Despite the standard interfaces, integrating IPs into a SoC
infrastructure presents challenges because: 1) traffic flows
from IPs are diverse and typically have stringent performance
constraints; 2) the impact of interferences among traffic flows
is hard to analyze; and 3) of the cost and power constraint,
buffers in the SoC infrastructure must not be over-dimensioned
while still satisfying performance requirements even under
worst-case conditions.

Fig. 1 illustrates the approach that we have proposed and
investigated in [2] for addressing the IP integration problem.
Master IPs send read and write requests to slave IPs which
respond with read data and write acknowledgments. The
admission of traffic flows from master IPs into the SoC
infrastructure can be controlled by a regulator rather than
injecting them as soon as possible. Thus, we can control
QoS and achieve cost-effective communication. To lay a solid
foundation of the approach, our flow regulation has been based
on network calculus [3]–[6]. By importing and extending
the analytical methods from network calculus, we can obtain
worst-case delay and backlog bounds. In [7], we implemented
the microarchitecture of the regulator and quantified its hard-
ware speed and cost. The aim of this paper is to optimize the
regulator parameters including peak rate and traffic burstiness
of flows by formulating optimization problems.

Silicon area and power consumption are two critical design
challenges for NoC architectures. The network buffers take up
a significant part of the NoC area and power consumption [8];
consequently, the size of buffers in the system should be mini-
mized. On the contrary, buffers should be large enough to im-
prove communication performance. This means that there is a
tradeoff between buffer size and performance metrics. Hence,
we address an optimization problem of minimizing the total
number of buffers subject to the performance constraints of the
applications running on the SoC. Moreover, since reusing sim-
ilar or identical switches facilitates the design process of NoC-
based systems, we formulate another optimization problem to
minimize the variances of buffer size in the respective output
buffers of switches. As both of the mentioned objective func-
tions are worthwhile for the design process, we formulate them
as a multiobjective problem under QoS constraints. Finally, we
show the benefits of the proposed method and quantify perfor-
mance improvement and buffer size and variance reduction.

The remainder of this paper is organized as follows. Sec-
tion II gives an account of related works. In Section III, we

0278-0070/$26.00 c© 2010 IEEE

1974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 1. IP integration in SoCs.

introduce the flow regulation concept along with the basics of
Network Calculus [3]–[6]. Section IV discusses the underlying
system model. Section V is devoted to the discussion about the
buffer optimization problems. In Section VI, we present the
solution method using an iterative approach. Our simulation
results are described in Section VII. We discuss the scope
and assumptions in Section VIII. Finally, Section IX gives the
conclusion and future work.

II. Related Work

A. Network Calculus

Cruz [4] and Chang [6] have pioneered the network
calculus [4], which is a mathematical framework to derive
worst case bounds on maximum latency, backlog, and
minimum throughput. In [5], a general latency-rate server
model was proposed for analyzing traffic scheduling
algorithms. Based on this model, they derived deterministic
delay and backlog bounds. Le Boudec and Thiran [3]
summarized the results of network calculus and their
applications in Internet and ATM. Real-time calculus [9],
close to network calculus, was developed for platform-based
embedded systems. It generalizes standard event models
via upper and lower arrival curves, and processing-element
models via upper and lower service curves. Based on these
curves, it derives delay and backlog bounds. The authors
in [2] proposed a network calculus-based flow regulation and
defined a regulation spectrum as a design instrument for SoC
architects to control QoS. In this paper, we use the concept of
regulation and regulation spectrum in [2] and address the issue
of optimal regulation for buffer optimization. We optimize the
regulator parameters including peak rate and traffic burstiness
of flows by formulating optimization problems.

B. Application Specific Design

NoC-based SoC architectures are often designed for a
specific application or a class of applications. Thus, designers
customize it for a specific application to achieve best perfor-
mance and cost trade-offs. The authors in [10] and [11] show
the advantages of the topological mapping of IPs on the NoC
architectures. In [12], the network topology customization and
its effects on the system are considered. In [13] and [14],
the authors investigate the customized allocation of buffer
resources to different channels of routers. Actually, these
works strived to distribute a given budget of buffering space
among channels. Also, they are based on the average-case

analysis which is not sufficient for a system with hard real-
time requirements.

In [15], we followed a different direction by addressing
an optimization problem to find the minimum total buffer-
ing requirements while satisfying acceptable communication
performance in NoCs with round robin arbitration. In this
paper, we have significantly extended the work in [15]. We
address not only the buffer size minimization problem but also
the buffer variance minimization problem. Moreover, since
both objectives are desirable for NoC designs, we formulate a
multiobjective optimization problem to minimize both buffer
size and buffer variance. We give a systematic account of all
the three problems, i.e., the buffer size minimization, the buffer
variance minimization, and the multiobjective optimization.
Furthermore, we construct the model for weighted round robin
arbitration which outperforms round robin policy. It is worth
mentioning that our method is presented based on tight worst-
case bounds derived by network calculus. Therefore, it is
suitable for real-time system designs.

C. Optimization Method

In this paper, we formulate optimization problems to opti-
mize the regulator parameters with respect to buffer require-
ments.

In the literature, the proposed constrained problems
are called nonconvex nonlinear programming (NLP) prob-
lems [16]. The general aim in constrained optimization is to
transform the problem into an easier subproblem that can then
be solved and used as the basis of an iterative process [16]. A
characteristic of a large class of early methods is the translation
of the constrained problem to a basic unconstrained problem
by using a penalty function for constraints that are near or
beyond the constraint boundary. In this way, the constrained
problem is solved using a sequence of parameterized uncon-
strained optimizations, which in the limit converge to the
constrained problem. These methods are now considered rela-
tively inefficient and have been replaced by methods that have
focused on the solution of the Karush-Kuhn-Tucker (KKT)
equations [16], [17]. The KKT equations are necessary con-
ditions for optimality for a constrained optimization problem.

The solution of the KKT equations forms the basis to many
nonlinear programming algorithms. These algorithms attempt
to compute the Lagrange multipliers directly. In particular, we
will solve the proposed optimization problems using interior
point method for constrained NLP problems [16], [17].

III. Concepts of Flow Regulation

A. Network Calculus Basics

A flow f is an infinite stream of unicast traffic (packets) sent
from a source node and flow j is denoted as fj . In network
calculus [3], a flow fj(t) represents the accumulated number of
bits transferred in the time interval [0, t]. To obtain the average
and peak characteristics of a flow, traffic specification (TSPEC)
is used. With TSPEC, fj is characterized by an arrival curve
αj(t) = min(Lj + pjt, σj + ρjt) in which Lj is the maximum
transfer size, pj the peak rate (pj ≥ ρj), σj the burstiness

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1975

Fig. 2. Flow served by a latency-rate server. (a) Flow served without
regulation. (b) Flow served after regulation.

Fig. 3. Flow regulation.

(σj ≥ Lj), and ρj the average (sustainable) rate. We denote
it as fj ∝ (Lj, pj, σj, ρj). The burstiness also is an important
case among these parameters because a flow with low average
rate and unlimited burst size can incur an unlimited delay on
its own packets.

Network calculus uses the abstraction of service curve to
model a network element (node) processing traffic flows.
A service curve reflects the processing latency and service
capability of the node. A well-formulated service model is
the latency-rate function βR,T = R(t − T)+, where R is the
minimum service rate and T is the maximum processing
latency of the node [5]. Notation x+ = x if x > 0; x+ = 0,
otherwise.

As depicted in Fig. 2(a), a TSPEC flow fj ∝ (Lj, pj, σj, ρj)
(denoted as fj : αj) is served by a node guaranteeing a latency-
rate service βR,T . According to [3], the maximum delay and
the buffer required for flow j are bounded by (1) and (2),
respectively

D̄j =
Lj + θj(pj − R)+

R
+ T (1)

B̄j = σj + ρjT + (θj − T)+[(pj − R)+ − pj + ρj] (2)

where θj = (σj −Lj)/(pj −ρj). The output flow f ∗
j is bounded

by another affine arrival curve α∗
j (t) = (σj +ρjT)+ρjt, θj ≤ T ;

α∗
j (t) = min((T + t)(min(pj, R))+Lj +θj(pj −R)+, (σj +ρjT)+

ρjt), θj > T .

B. Regulation Spectrum

TSPEC can be used to characterize flows. It can also be
used to define a traffic regulator. Fig. 3 shows that an input
flow fj reshaped by a regulation component R̂j(pRj

, σRj
)

results in an output flow fRj
. We assume the regulator has the

same input and output data unit, flit, and the same input and
output capacity C flits/cycle. We also assume that fj’s average
bandwidth requirement must be preserved. The output flow
fRj

is characterized by the four parameters (Lj, pRj
, σRj

, ρj),
where pRj

∈ [ρj, pj], σRj
∈ [Lj, σj]. fj can be losslessly

reshaped by the regulator, meaning that fRj
has the same L

and average rate ρ as fj . The two intervals pRj
∈ [ρj, pj] and

Fig. 4. Mechanisms of flow regulation. (a) Self-regulating master. (b) IPs
are stalled: no queuing buffer. (c) IPs are not stalled: queuing buffer.

σRj
∈ [Lj, σj] are called the regulation spectrum, where the

former is for the regulation of peak rate and the latter for the
regulation of traffic burstiness.

The regulation spectrum defines the upper and lower limits
of regulation. Fig. 2(b) shows how the flow is served after
regulation. We implemented microarchitecture of the regulator
and quantified its hardware speed and cost in [7]. Selecting
appropriate pRj

and σRj
is very effective in performance and

cost of communications. In the next sections, we formulate
three optimization problems that consider these regulation
parameters as decision variables.

C. Mechanism and Cost of Flow Regulation

There are three different ways to realize the flow regulation,
each of which incurs different costs.

1) Regulation by design methodology: as shown in
Fig. 4(a), no regulator is implemented in the system.
The IP or the application is designed such that it meets
the regulation requirements. If that can be guaranteed,
there is no additional cost in the network or the network
interface. Also, there is no buffers and no delay due to
regulation; consequently, there is no hardware cost for
designing the regulator. However, the design structure
of master should be changed to have a self-regulating
master. This means that the workload is pushed to the
master and application design. Thus, it applies to new
IPs, but not applicable to legacy IPs.

2) Regulation by a hardware regulator: a hardware regu-
lator is implemented which enforces traffic regulation
at the network interfaces. There are two ways that the
hardware regulator may affect the behavior of IPs as

1976 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 5. (σ, ρ)-based regulation mechanism.

follows.
a) As shown in Fig. 4(b), the regulator does not

buffer the packets, but stalls the traffic producers
or IPs. In this case, no buffer due to regulation
is required, but the behavior of masters should
also be modified. This may be a good idea if
the traffic producer is a multitasking CPU that
can do something else while waiting. In this case
the traffic generation is simply delayed and no
buffering costs occur in the system.

b) The traffic producers or IPs are not stalled but
the regulators use buffers to store transactions
as depicted in Fig. 4(c). This can reduce back-
pressure at the expense of buffering cost. Thus,
this scheme allows any legacy IPs to be directly
used in the system.

In principle, which option is best will depend on the context
(application, IPs, architecture, and so on). The significant
benefit of case 2b in comparison with others is simplicity
of design process because no changes are required for the
master structure. In this paper, we have implemented our
proposed method based on case 2b concepts, but it can be
easily extended for other cases.

To evaluate the overhead in silicon area due to the use of
regulators, we designed and synthesized a multi-flow regulator
with Synopsys tools using 180 nm technology [7]. When opti-
mized for area, the multi-flow regulator using three regulators
consumes 5K gates, running up to 730 MHz. Buffers and
packet latency due to regulation depend on the values of the
regulation parameters including peak rate and traffic burstiness
which will be calculated in our case study in Section VII. The
regulation mechanism in this paper is described as follows.

The regulator is implemented using the token-bucket mech-
anism [18] as shown in Fig. 5. The token queue has a size of σ.
Initially the token queue is full. The 1-flit/token server admits
one flit by de-asserting the “stall” signal as long as the token
queue is not empty. The token queue is realized by a saturating
credit counter that increments at rate ρ and saturates when it
reaches a count of σ. A flit can be transmitted if and only
if the credit counter is positive (at least one token available).
Each time a flit is sent, the counter is decremented by 1.

IV. System Model and Delay/Backlog Bounds

We aim at optimizing buffer requirements while satisfying
acceptable latency in on chip communications. We shall for-
mulate optimization problems based on an analytical perfor-
mance model. At first, we shall derive the per-flow worst-case
delay and backlog bounds.

Fig. 6. Example of required buffers for two flows.

Fig. 7. (a) Channel sharing among set of flows. (b) Channel service model
for flow j.

A. Assumptions and Notations

We consider a NoC architecture which can have different
topologies. Every node contains an IP core and a router with
p + 1 input channels and q + 1 output channels. Each IP core
performs its own computational, storage or input/output pro-
cessing functionality, and is equipped with a network interface
(NI). NIs provide an interface between IPs and the network
and they are responsible for packetization/depacketization of
messages. Note that the presence of NIs is the consequence of
using a network rather than using regulators. Regulators are in-
serted between the source IP and the NI. We presume the num-
ber of virtual channels for each physical channel is the same as
the number of flows passing through that channel. Fig. 6 shows
required buffers of flows f1 and f2 from different sources to
the same destination. The following analysis on buffer require-
ments of flows is illustrated by this figure. We also assume
that the NoC architecture is lossless, and packets traverse the
network in a best-effort fashion using a deterministic routing.
This means that the path of a flow is statically determined.

To facilitate our discussions, we turn the aforementioned
NoC architecture into a mathematically modeled network. In
this respect, we consider a NoC as a network with a set of
bidirectional channels L, and a set of flows F . Each physical
channel i ∈ L has a fixed capacity of cli flits/cycle. We
denote the set of flows that share channel i by Fli and their
number is denominated as nli . Similarly, the set of channels
that flow j passes through, is denoted by Lfj

and their number
is denominated as nfj

. By definition, j ∈ Fli if and only if
i ∈ Lfj

.

B. Channel Service Model

To compute the flow traversal delay and backlog bounds
using the equations, we first need to build a channel service
model. The network channel and the ejection channel at the
destination node are treated in the same way since both
types of channels are multiplexed by multiple flows with an
arbitration policy.

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1977

Fig. 8. Modeling each network element as a latency-rate server.

Fig. 7(a) depicts a channel li allocated to nli flows. Since
the arbitration policy determines how much the flows influence
each other, it has to be known. We assume that, while serving
multiple flows, the routers employ weighted round robin
scheduling to share the link bandwidth. Assuming a fixed word
length of Lw in all of flows, weighted round robin arbitration
means that each flow j gets at least a ρj∑

∀fk∈Fli

ρk

cli of the

channel bandwidth. A flow may get more if the other flow
uses less, but we now know a worst-case lower bound on
the bandwidth. Since network calculus uses the abstraction of
service curve to model a network element processing traffic
flows [3], we can also model a weighted round robin arbiter
of channel li for flow j as a latency-rate server [19] that its
function is as β

R
j

li
,T

j

li

= R
j

li
(t −T

j

li
)+, where R

j

li
is the minimum

service rate and T
j

li
is the maximum processing latency of the

arbiter of channel li for flow j. R
j

li
and T

j

li
are defined as

follows:

R
j

li
=

ρj
∑

fk∈Fli
ρk

cli (3)

T
j

li
=

(
∑

fk∈Fli
Nk

li
− N

j

li
)Lw

cli

(4)

where N
j

li
is the minimum positive integer for flow j passing

through channel i provided that
ρj∑

∀fk∈Fli

ρk

=
N

j

li∑
∀fk∈Fli

Nk
li

∀fj ∈ Fli .

For (3), R
j

li
denotes the minimum weight-proportional band-

width that flow j can take from channel i. For (4), T
j

li
denotes

the maximum blocking time for flow j when passing through
channel i. The channel service model for flow j is shown in
Fig. 7(b).

With the channel service model, we can now model a flow
passing through a series of channels including the ejection
channel as a series of concatenated latency-rate servers. Fig. 8
shows a traffic flow fj after regulation which is called fRj

and is passing through adjacent channels. We construct an
analytical model with the network elements depicted in this
figure. Every channel li ∈ Lfj

that flow j passing through can
be modeled as a latency-rate server for flow j with service
curve β

R
j

li
,T

j

li

, and also the ejection channel in the destination

node of flow j, node k, can be modeled as a latency-rate server
with service curve βRmk

,Tmk
.

C. Tight Worst-Case Bounds for Each Flow

Consider that flow j passes through the regulator and
several network channels offering each a latency-rate service
curve. For each flow, the delay and backlog bounds have two
components: one incurred at the regulator and the other the
network.

Fig. 9. Modeling all network elements as a latency-rate server.

1) Delay and Backlog Bounds at Regulators: To determine
the delay and backlog due to the regulation, its impact on
the behavior of IPs should be considered. As discussed in
Section III-C, one is that IPs are stalled and therefore, there
is no queuing buffer at the regulator. In the other case which is
adopted in this paper, IPs are not stalled and the regulators use
buffers to store transactions. This can decrease back-pressure
at the expense of buffering cost. Let Dregj

and Bregj
be the

delay and backlog for flow j due to regulation, respectively.
We have Bregj

= �σj = σj − σRj
, which is the difference

between the input and output burstiness of the regulator, and
Dregj

= �σj/ρj [2].
2) Delay and Backlog Bounds in the Network:

a) Delay bound: To compute the delay bound for a flow
passing a series of nodes, one simple way is to calculate the
summation of delay bounds at each node. However, this results
in a loose total delay bound. To tighten the worst-case delay
bound along the network, we use the theorem of concatenation
of network elements [3]. Given are two nodes sequentially
connected and each is offering a latency-rate service curve
βRi,Ti

, i = 1 and 2. These nodes can be represented as a single
latency-rate server as follows:

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2 . (5)

As depicted in Fig. 9, we can model all network elements
on a given flow as a single latency-rate server βRej

,Tej
with the

following characteristics:

Rej
= min

(

minli∈Lfj

(
ρj

∑
fk∈Fli

ρk

cli

)

,
ρj

∑
fr∈Fdk

ρr

cmk

)

(6)

Tej
=

∑

li∈Lfj

(
(
∑

fk∈Fli
Nk

li
− N

j

li
)Lw

cli

)

+
(
∑

fr∈Fdk
Nr

dk
− N

j

dk
)Lw

cmk

(7)

where Rej
denotes the minimum service rate among channels

through which flow j passes and Tej
the sum of maximum

processing latency of the mentioned channels.
Based on a corollary of this theorem which is known as Pay

Bursts Only Once [3], the equivalent latency-rate server is used
for obtaining worst-case delay bound. Therefore, according to

1978 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

(1), (6), and (7), the maximum delay for flow j in network is
bounded by

D̄j =
Lj + θRj

(pRj
− Rej

)+

Rej

+ Tej
+ nfj

dp (8)

where dp is delay for propagation in a channel which is
assumed identical for all channels. Therefore, nfj

dp is prop-

agation delay in whole network for flow j and θRj
=

σRj
−Lj

pRj
−ρj

.
Hence, the total maximum delay for the flow j is bounded as
Dregj

+ D̄j .
b) Backlog bound: For calculating tight worst-case

bound on backlog along the network, the sum of the individual
bounds on every element is computed [3]. Thus, the required
buffer in network for flow j is bounded by

B̄j =
∑

i∈Lfj

B̄ji + B̄mj
(9)

where B̄ji is the upper bound on the buffer for flow j for
each i ∈ Lfj

and B̄mj
is the maximum required buffer for the

ejection channel multiplexer of the destination node of flow
j. B̄ji and B̄mj

can be easily obtained by (2). For example,
directly applying (2) for flow j in Fig. 8, B̄mk

can be calculated
by

B̄mk
= σ̆Rj

+ρjT
j
mk

+(θ̆j −T j
mk

)+[(p̆Rj
−Rj

mk
)+ − p̆Rj

+ρj]. (10)

Finally, the total buffer requirements for flow j are bounded
by Bregj

+ B̄j .

V. Buffer Optimization Problems

A. Buffer Size Optimization

As stated before, our objective is to choose output peak
rate and traffic burstiness of regulators for each flow so as to
minimize the buffer requirements while satisfying acceptable
performance in the network. Thus, the buffer size minimization
problem, Minimize-Size, can be formulated as follows.

Given a set of flows F =
{
fj ∝ (Lj, pj, σj, ρj)

}
, routing

matrix R, the maximum delay that each flow can suffer in the
network d =

{
dj

}
for ∀fj ∈ F , find the regulator parameters,

peak rate pRj
and traffic burstiness σRj

for ∀fj ∈ F , such that

min
pRj

,σRj

∑

∀fj∈F

(Bregj
+ B̄j) (11)

subject to

Dregj
+ D̄j ≤ dj ∀fj ∈ F (12)

ρj ≤ pRj
≤ pj ∀fj ∈ F (13)

Lj ≤ σRj
≤ σj ∀fj ∈ F (14)

B̄j > 0 ∀fj ∈ F (15)

where pRj
and σRj

for ∀fj ∈ F are optimization variables.
Equation (11) is the objective function of this optimization

problem which minimizes total buffer requirements. Constraint
(12) says that the maximum delay of each flow j cannot exceed
the maximum delay that it can suffer in the network dj . Since
we measured the flow performance in terms of its latency,

we can consider dj as a criterion of minimum guaranteed
performance for flow j. Constraints (13) and (14) are related
to two intervals pRj

∈ [ρj, pj] and σRj
∈ [Lj, σj] which called

the regulation spectrum as described in Section III-B.
It is clear that by following the above mentioned equations,

we can understand the effect of optimization variables on the
objective function and all constraints of the defined problem.

In the literature, (11) is called a nonconvex NLP prob-
lem [16]. There are different methods for solving this kind
of optimization problems. In particular, we will solve the
optimization problem (11) using interior point method for
constrained NLP problems [16], [17].

B. Buffer Variance Optimization

To reuse IP modules, designers would like to use similar
switches as far as possible. However, flow requirements differ
from each other in terms of buffer size; consequently, we
would like to find appropriate peak rate and traffic burstiness
of each flow so that variances of buffer size in the respective
output buffers of switches are minimized. For example in a
2-D mesh network, we would like to minimize the variance
of buffer size in northern output port of switches, as well
as other output ports. Using general variance formula, we can
easily calculate variances of the required buffer on each output
port i which is denoted by vari. Hence, we formulate another
optimization problem to minimize the sum of required buffers
variances while satisfying QoS requirements in the network.
Thus, the buffer variance minimization problem, Minimize-
Variance, can be formulated as follows.

Given a set of flows F =
{
fj ∝ (Lj, pj, σj, ρj)

}
, routing

matrix R, the maximum delay that each flow can suffer in the
network d =

{
dj

}
for ∀fj ∈ F , find the regulator parameters,

peak rate pRj
and traffic burstiness σRj

for ∀fj ∈ F , such that

min
pRj

,σRj

∑

i

vari (16)

subject to

Dregj
+ D̄j ≤ dj ∀fj ∈ F (17)

ρj ≤ pRj
≤ pj ∀fj ∈ F (18)

Lj ≤ σRj
≤ σj ∀fj ∈ F (19)

B̄j > 0 ∀fj ∈ F. (20)

Optimization variables are pRj
and σRj

, ∀fj ∈ F , that can
be detected in the objective function and constraints by the
following equations. Similar to (11), (16) also is a nonconvex
NLP that can be solved via the interior point method.

C. Multiobjective Optimization Problem

As both of the aforementioned objective functions are
worthwhile for designing the network, we formulate a mul-
tiobjective optimization problem which minimizes both total
buffers and variances, Multiobjective, as follows.

Given a set of flows F =
{
fj ∝ (Lj, pj, σj, ρj)

}
, routing

matrix R, the maximum delay that each flow can suffer in the

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1979

network d =
{
dj

}
for ∀fj ∈ F , find the regulator parameters,

peak rate pRj
and traffic burstiness σRj

for ∀fj ∈ F , such that

min
pRj

,σRj

f1 =
∑

∀fj∈F

(Bregj
+ B̄j) (21)

min
pRj

,σRj

f2 =
∑

i

vari (22)

subject to

Dregj
+ D̄j ≤ dj ∀fj ∈ F (23)

ρj ≤ pRj
≤ pj ∀fj ∈ F (24)

Lj ≤ σRj
≤ σj ∀fj ∈ F (25)

B̄j > 0 ∀fj ∈ F. (26)

In multiobjective optimizations, there is not even a universally
accepted definition of optimum as in single-objective opti-
mization, which makes it difficult to even compare results of
one method to another, because normally the decision about
what the best answer corresponds to the so-called decision
maker [23]. Overall, there are different ways for solving mul-
tiobjective optimizations. One of them is combining objectives
into a single function which normally denominated Weighted
Sum Approach. Since objective functions in this paper are in
the same direction and they are not in conflict with each other,
we adopt this approach. The results in Section VII also confirm
that the obtained solution of the proposed multiobjective
problem is very close to optimal points of Minimize-Size and
Minimize-Variance problems. This means that it is an appro-
priate method for solving this problem. The main advantage
of this approach is the simplicity of its implementation and its
computational efficiency. This method consists of adding all
the objective functions together using weighting coefficients
for each one of them. Specifically, our multiobjective problem
is transformed into a scalar optimization problem of the form

min(w1f1 + w2f2) (27)

where w1 and w2 are the weighting coefficients representing
the relative importance of the objectives. In this paper, they are
assumed the same. This approach has a low run-time complex-
ity because of its simplicity and efficiency and therefore, can
be applied for complex SoC designs. We solve the mentioned
problem still using the interior point method.

VI. Optimization Method

A. Optimization Algorithm

As stated before, the proposed optimization problems are
called nonconvex NLP problems [16] and solved by the
interior point method. There are different packages for solving
this kind of optimization problems and we particularly use the
MATLAB optimization package in this paper.

To exemplify the optimization approach, we will solve the
buffer size optimization problem (11), using the interior point
method for constrained NLP problems [16], [17].

The interior point approach to constrained minimization is
to solve a sequence of approximate minimization problems

called barrier problem [17]. Due to (11), for each µ > 0, the
barrier problem is

min
pRj

,σRj
,si

∑

∀fj∈F

(Bregj
+ B̄j) − µ

6|F |∑

i=1

ln(si) (28)

subject to

Dregj
+ D̄j − dj + si = 0 ∀fj ∈ F i = 1, ..., |F | (29)

ρj − pRj
+ si = 0 ∀fj ∈ F i = |F | + 1, ..., 2 |F | (30)

pRj
− pj + si = 0 ∀fj ∈ F i = 2 |F | + 1, ..., 3 |F | (31)

Lj − σRj
+ si = 0 ∀fj ∈ F i = 3 |F | + 1, ..., 4 |F | (32)

σRj
− σj + si = 0 ∀fj ∈ F i = 4 |F | + 1, ..., 5 |F | (33)

si − B̄j = 0 ∀fj ∈ F i = 5 |F | + 1, ..., 6 |F | (34)

where |F | is the cardinality of set F .
There are as many slack variables si as inequality constraints

(12)–(15). The si are restricted to be positive to keep ln(si)
bounded. As µ decreases to zero, the minimum of fµ should
approach the minimum of f . The approximate problem (28) is
a sequence of equality constrained problems. These are easier
to solve than the original inequality-constrained problem (11).

To facilitate our discussion, we define pR = (pR1 , ..., pR|F |)
T ,

σR = (σR1 , ..., σR|F |)
T , s = (s1, ..., s6|F |)T and assume

g(pR, σR) = (g1(pR, σR), ..., g6|F |(pR, σR))T so that g(pR, σR)+
s is a vector that its elements are constraints (29)–(34). Thus,
the barrier problem (28) can be rewritten as

min
pR,σR,s

fµ(pR, σR, s) = min
pR,σR,s

f (pR, σR) − µ

6|F |∑

i=1

ln(si) (35)

subject to

g(pR, σR) + s = 0. (36)

In the following, we shall find an approximate solution to
(35), for fixed µ. Then, the used method is applied repeatedly
to (35), for decreasing values of µ, to approximate the solution
of the original problem (11).

Using the optimization methods [16], the Lagrangian of the
problem (35) can be written as

L(pR, σR, s, λ) = f (pR, σR) − µ

6|F |∑

i=1

ln(si) + λT (g(pR, σR) + s)

(37)
where λ = (λ1, ..., λ6|F |)T is the vector of Lagrange multipliers.
Regarding the first-order optimality conditions, at an optimal
solution (pR, σR, s) of the barrier problem, we have

∇pR
L(pR, σR, s, λ) = ∇pR

f (pR, σR) + A(pR, σR)λ = 0 (38)

∇σR
L(pR, σR, s, λ) = ∇σR

f (pR, σR) + Á(pR, σR)λ = 0 (39)

∇sL(pR, σR, s, λ) = −µS−1e + λ = 0 (40)

where A(pR, σR) = (∇pR
g1(pR, σR), ..., ∇pR

g6|F |(pR, σR)) and
Á(pR, σR) = (∇σR

g1(pR, σR), ..., ∇σR
g6|F |(pR, σR)) are the

1980 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

matrixes of constraint gradients with respect to pR and σR,
respectively, and where

e =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ , S =

⎛

⎜
⎝

s1

. . .
s6|F |

⎞

⎟
⎠ .

To solve the approximate problem, we should generate a
step d for displacement at an iterate z, where

d =

⎛

⎝
dpR

dσR

ds

⎞

⎠ .

One of the two main types of steps is used at each iteration.
1) A direct step in (pR, σR, s). This step attempts to solve

the KKT equations for the approximate problem via
a linear approximation. This is also called a Newton
step [20].

2) A conjugate gradient (CG) step, using a trust re-
gion [21].

The algorithm first attempts to take a direct step. If it cannot,
it attempts a CG step. One case where it does not take a direct
step is when the approximate problem is not locally convex
near the current iteration.

Afterward, it is necessary to decide if the step obtained from
the abovementioned methods is acceptable. For this purpose,
a merit function is introduced. The merit function is given by

φ =
∑

∀fj∈F

(Bregj
+ B̄j) − µ

6|F |∑

i=1

ln(si) + ν ‖g(pR, σR) + s‖ (41)

where ν > 0 is a penalty parameter and can increase
with iteration number in order to force the solution toward
feasibility.

The step is accepted if it gives sufficient reduction in the
merit function; otherwise it is rejected. More details of the
direct and CG steps are described in the following.

According to the above discussions, we present an iterative
algorithm as the solution to (11). Algorithmic realization of
the solution method is listed as Algorithm 1. In this respect,
optimal peak rate and traffic burstiness for traffic flows can
be found while minimizing total buffer requirements under
performance constraints.

B. Direct Step

This step attempts to solve the KKT equations for the
barrier problem via a linear approximation. Regarding the
KKT conditions for the equality constrained barrier problem
(35), we have

⎛

⎜
⎜
⎝

∇pR
f (pR, σR) + A(pR, σR)λ

∇σR
f (pR, σR) + Á(pR, σR)λ

−µS−1e + λ

g(pR, σR) + s

⎞

⎟
⎟
⎠ = 0. (42)

After applying Newton’s method to this system, we have
⎛

⎜
⎜
⎝

∇2
pR,pR

L ∇2
pR,σR

L 0 A(pR, σR)
∇2

σR,pR
L ∇2

σR,σR
L 0 Á(pR, σR)

0 0 µS−2 I

A(pR, σR) Á(pR, σR) I 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

dpR

dσR

ds

λ+

⎞

⎟
⎟
⎠

Algorithm 1: Buffer Size Minimization Algorithm

Initialization:

1. Choose a penalty parameter ν > 0 and a barrier parameter µ > 0.
2. Initialize trust region radius R > 0 and Lagrange multipliers λ.
3. Set an appropriate initial value for peak rate and burstiness of flows

for problem (11) denoted as pR(0), σR(0).
4. Specify an appropriate value for ε, έ (έ denote

value of expectable reduction in merit function).

1. Loop 1: Do until
(max | pR(t + 1) − pR(t) |< ε)&(max | σR(t + 1) − σR(t) |< ε)

2. Set an appropriate initial value for peak rate and burstiness of flows
and slack variables for barrier problem (35) denoted as ṕR(0), σ́R(0),
s(0).

3. Loop 2: Do until
(max | ṕR(k + 1) − ṕR(k) |< ε)&(max | σ́R(k + 1) − σ́R(k) |< ε)

4. if H is not definite positive go to 5
4.1. Calculate d based on Direct Step as described in Section VI-B
4.2. Go to 6.

5. Calculate d based on CG Step as described in Section VI-C

6. ptemp = ṕR(k) + dpR
;

7. σtemp = σ́R(k) + dσR
;

8. stemp = ś(k) + ds

9. Calculate φ(k + 1) by substituting ptemp, σtemp, stemp in
merit problem (41).

10. if (φ(k + 1) − φ(k) ≥ έ)
10.1. Decrease R;
10.2. Go to 4;

11. pR(k + 1) = ptemp; σR(k + 1) = σtemp; s(k + 1) = stemp

12. Compute new Lagrange multipliers λ.
13. End of loop 2.

14. Decrease barrier parameter µ.
15. End of loop 1.

Output:
Communicate optimal peak rates and traffic burstinesses to the
corresponding regulators.

=

⎛

⎜
⎜
⎝

∇pR
f (pR, σR)

∇σR
f (pR, σR)
µS−1e

−g(pR, σR) − s

⎞

⎟
⎟
⎠ (43)

where λ+ = λ+dλ. Thus, steps dpR
, dσR

and ds can be calculated
by solving (43). Letting H be the Hessian of the Lagrangian
of the barrier problem, we have

H =

⎛

⎝
∇2

pR,pR
L ∇2

pR,σR
L 0

∇2
σR,pR

L ∇2
σR,σR

L 0
0 0 µS−2

⎞

⎠ . (44)

If the barrier problem is locally convex near the current
iteration, i.e., H is positive definite, the algorithm uses this
step; otherwise, it uses a CG step, described in the next section.

C. Conjugate Gradient (CG)

The CG approach to solving the approximate problem
(35) is similar to other CG calculations. In this case, the
algorithm adjusts pR, σR, and s, keeping the slacks s positive.

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1981

The approach is to minimize a quadratic approximation to
the barrier problem in a trust region, subject to linearized
constraints.

The algorithm obtains Lagrange multipliers by approxi-
mately solving the KKT equations, subject to λ being positive.
Then it takes a step d = (dpR

, dσR
, ds)T to approximately solve

min
d

∇fT
µ d +

1

2
dT Hd (45)

subject to

(A(pR, σR)T I)dpR
+ (Á(pR, σR)T I)dσR

+ g(pR, σR) + s = 0

where ∇fµ is the gradient of the barrier problem and is given
by

∇fµ =

⎛

⎝
∇pR

f (pR, σR)
∇σR

f (pR, σR)
−µS−1e

⎞

⎠ . (46)

To obtain convergence from remote starting points, we
introduce a trust region constraint in (45) of the form

∥
∥
∥
∥
∥
∥

⎛

⎝
dpR

dσR

S−1ds

⎞

⎠

∥
∥
∥
∥
∥
∥

≤ R (47)

where R > 0 denotes the trust region radius and is updated at
every iteration.

To solve (46), the algorithm tries to minimize a norm of
the linearized constraints inside a region with radius scaled
by R. Then (45) is solved with the constraints being to match
the residual from solving (46), staying within the trust region
of radius R, and keeping s strictly positive. Since it is not
desirable to impede progress of the iteration by employing
small trust regions, the slack variables are bounded away from
zero by imposing the well-known fraction to the boundary
rule [22]

s + ds ≥ (1 − τ)s

where the parameter τ ∈ (0, 1) is chosen close to 1. Therefore,
(45) can be rewritten as follows:

min
d

∇fT
µ d +

1

2
dT Hd (48)

subject to

A(pR, σR)T IdpR
+ Á(pR, σR)T IdσR

+ g(pR, σR) + s = 0 (49)
∥
∥(dpR

, dσR
, S−1ds)

∥
∥ ≤ R (50)

ds ≥ −τs. (51)

Although, (48) could be difficult and complex to solve
exactly, but we intend to only compute approximate solutions
which are sufficiently good solutions [17].

Further details about the optimization method can be found
in [17], [20], and [21].

Fig. 10. Ericsson radio systems application.

VII. Experimental Results

A. Experimental Setup

To evaluate the capability of our method, we applied it
to a realistic traffic pattern and two synthetic traffic patterns
including hot-spot and bit-complement which are mapped to
a 4 × 4 2-D mesh network. Although the experiments are
performed on a mesh, our method is topology independent.

In this paper, the proposed analytical model is implemented
in MATLAB and throughout the experiments, we consider an
SoC with 500 MHz frequency, 32-flit packets, and 32-bit flits.
We also assume that packets traverse the network on a shortest
path using the dimension order XY routing, which is deadlock
free.

B. Realistic Traffic Pattern

We used a real application provided by Ericsson Radio
Systems [1] as shown in Fig. 10. This application consists
of 16 IPs. Specifically, n2, n3, n6, n9, n10, and n11 are ASICs;
n1, n7, n12, n13, n14, and n15 are DSPs; n5, n8, and n16

are FPGAs; n1 is a device processor which loads all nodes
with program and parameters at startup, sets up, and controls
resources in normal operation. Traffic to/from n1 is for system
initial configuration and no longer used afterward. There are 26
node-to-node traffic flows that are categorized into nine types
of traffic flows {a, b, c, d, e, f, g, h, i}, as marked in the figure.
The traffic flows are associated with a bandwidth requirement.

As stated before, each flow j is characterized by
(Lj, pj, σj, ρj) that are input parameters of the regulator. We
assume Lj and pj for all flows are the same and equal to 1 flit

and 1 flit/cycle, respectively. ρj is determined in flits/cycle

due to Fig. 10 and also, σj can be easily calculated for each
flow which its value will be shown in Section VII-B3.

1) Buffer Size Optimization: As we mentioned before, a
regulator limits a flow injection process with two parameters
(peak rate and burstiness). Since there are 26 flows in the
example, 52 parameters have to be assigned to regulators. To
show that how these parameters heavily affect the required
buffer and communication delay, we consider two different
regulator sets.

1) Optimized regulators, which are optimized based on the
proposed minimizing buffer problem (11).

1982 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

Fig. 11. Peak rate of flows.

Fig. 12. Traffic burstiness of flows.

TABLE I

Comparison of the Required Buffer Between Different Schemes

Network Buffer Regulator Buffer Total Buffer
Without reg. 404 0 404
Optimized reg. 118 28 146
Unoptimized reg. 384 37 421

TABLE II

Comparison of the Maximum Delay Between Different Schemes

Network Delay Regulator Delay Total Delay
Without reg. 3460 0 3460
Optimized reg. 502 61 563
Unoptimized reg. 3396 163 3559

2) Unoptimized regulators, which are not optimized. Obvi-
ously, there is a huge number of unoptimized configura-
tions. We consider a configuration that needs maximum
amount of buffers to regulate flows. In fact, we modify
the buffer optimization problem (11) to maximize the
total number of required buffers instead of minimization.

Then, the total maximum buffer and total maximum delay are
calculated and depicted in Tables I and II, respectively, along
with values for a system without regulators.

From these tables, we can see that the optimized regulation
scheme leads to about 64% reduction in total maximum
required buffer and about 84% in total maximum delay when
compared with the without regulation scheme. Also these
tables show that unoptimized regulators decrease the max-
imum required buffer and delay in the network because of
reducing the contention for shared resources. However, buffer
and delay in the regulators are increased to the extent that
the total buffer requirements and delay become more than the
without regulation scheme because the regulator parameters
are not configured appropriately. As a result, we can minimize
total buffer cost and improve communications performance by

Fig. 13. Maximum required buffers for every flow.

Fig. 14. Maximum worst-case delay for every flow.

TABLE III

Comparison Between Different Scenarios

Required Buffer (flits) Variance
Without regulation 404 436.36
Minimize-size 146 33.82
Minimize-variance 192 22.96
Multiobjective 150 24.29

consuming a few buffers in the regulator and assigning the
peak and burstiness parameters of regulators in a wise manner.

2) Buffer Variance Optimization: Identical switches
throughout the network may be a constraint in NoC-based sys-
tems. Therefore, we have formulated the Minimize-Variance
optimization problem to design similar switches as far as
possible. The results show that if there is no regulator in
the network, the sum of variances over different channels of
switches is about 436.36, while by controlling flows based on
obtained output peak rate and traffic burstiness of solving the
Minimize-Variance problem, it is equal to 22.96. So, we have
about 94% reduction on the sum of variances of buffers.

In this respect, the structures of latter switches are more
similar than the former one. It is worth mentioning that if the
peak and burstiness parameters of regulators are not appropri-
ately assigned with respect to buffer variance minimization, we
may have similar or even more buffer variance in comparison
to without regulation scheme. For instance, in one of the
unoptimized schemes, the sum of variances over different
channels of switches is about 436.

3) Multiobjective Optimization: As both minimizing total
required buffer and buffer variance are important for designers,

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1983

Fig. 15. Maximum required buffers for the ejection channels in switches.

Fig. 16. Maximum required buffers for the southern channels in switches.

Fig. 17. Maximum required buffers for the northern channels in switches.

Fig. 18. Maximum required buffers for the eastern channels in switches.

Fig. 19. Maximum required buffers for the western channels in switches.

TABLE IV

Comparison of the Maximum Delay Between Different

Scenarios

Network Regulator Total Average
Worst-Case Worst-Case Worst-Case Worst-Case

Delay Delay Delay Delay
Without regulation 3460 0 3460 49.99
With regulation 463 81 544 21.70

we have modeled them as a multiobjective optimization prob-
lem. For more detail, we have calculated two parameters Total
Required Buffer and Variance which are listed in Table III.

As can be observed from Table III, Minimize-Size problem
guarantees that output peak and traffic burstiness selection
is carried out in favor of minimizing total required buffer
while there is no such guarantee for the sum of variances
over various channels. On the contrary, although Minimize-
Variance yields greater required buffer than Minimize-Size, it
gives almost the same structure of switches. The results in
Table III show that the presented Multiobjective problem might
be seen as providing a tradeoff between such parameters. Since
the Total Required Buffer and Variance parameters in this
problem are very close to their optimal values in Minimize-
Size and Minimize-Variance problems, respectively, they are
definitely acceptable for the decision maker. So, in the rest
of paper, with regulation scheme refers to the regulator which
has been optimized for both buffer size and variance.

As can be vividly seen in Figs. 11 and 12, regulators reduce
peak rate and traffic burstiness of flows, respectively.

To go into more detail, we depict maximum required buffer
and delay of each flow for these schemes in Figs. 13 and
14, respectively. Regarding Fig. 13, it is apparent that in the
network with the proposed regulator, most flows require less
buffer and also, as mentioned in Table III, total required buffer
in this scheme is less than half of it in the network without reg-
ulator. Also, Fig. 14 shows that regulated flows can experience
longer or shorter delays than other schemes which depends
on their requested QoS and also the buffer distribution in the
whole network. However, from Table IV, we can see that the
total network and average worst-case delay are decreased in
the with regulation scheme because of buffer-aware allocation
in the network and contention reduction for shared resources.
We have about 84.3% reduction in total worst-case delay when
compared with the without regulation scheme.

1984 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

To better understand the effects of the regulator, maximum
required buffers for ejection, southern, northern, eastern, and
western channels are revealed in Figs. 15–19, respectively.
It is obvious that when regulators control traffic parameters
of flows based on the proposed multiobjective problem, the
total number of required buffers and their variances are de-
creased. The with regulation scheme leads to about 62.8%
reduction in total required buffer and 94.4% reduction on the
sum of variances of buffers in comparison to the without
regulation scheme. So, we have smaller, more similar and
more efficient switches. Furthermore, there is desirable QoS in
communications through defined constraints in the mentioned
multiobjective problem.

C. Synthetic Traffic Patterns

In the case of synthetic traffic patterns, we experimented
with hotspot and bit-complement traffic, which represent two
extremes of traffic distribution, i.e., unbalanced and balanced
workloads.

1) Hotspot: in our case, we set a corner node of the 4×4
mesh, node 1, as the hotspot node, and all other nodes
send packets to this node.

2) Bit-complement: in bit-complement traffic, a node with
binary coordinates bn−1bn−2…b1b0 sends packets only
to a node with binary coordinates b̄n−1b̄n−2…b̄1b̄0. With
this workload, all packets must cross the horizontal and
vertical network bisections, and the traffic is evenly
distributed in the 4×4 network.

For all traffic flows, we set the same values for their
maximum packet length Lj and peak rate pj , which are equal
to 1 flit and 1 flit/cycle, respectively. For different flows,
rate ρj varies between 0.008 and 1 flits/cycle, and burstiness
σj between 2 and 32 flits. We apply the multiobjective
optimization here, which is referred to as with regulation
scheme. Compared with the optimization of single objectives,
it is likely more desirable for designers as it can optimize both
buffer size and variance,

Table V compares total maximum required buffer, variance,
and total maximum delay under the hotspot traffic pattern.
This table reveals that by using optimized regulators, the total
maximum required buffer, the variance, and the total maximum
delay are reduced by 45.4%, 84.3%, and 58.4%, respectively,
in comparison with the without regulation scheme.

We also compare these results under the bit-complement
traffic pattern in Tables VI. As can be seen from this table,
the optimized regulation results in about 49.6% reduction in
the total maximum required buffer, 95.1% reduction in the
variance, and 64.9% reduction in the total maximum delay.

To present more details, we show the maximum required
buffer and delay of each flow under the hotspot traffic in
Figs. 20 and 21, respectively. Also, these results under the
bit-complement are plotted in Figs. 22 and 23.

The run-time of the proposed method in MATLAB is
typically in the order of a few seconds. It is about 2.7 s, 5.76 s,
and 0.22 s for the multiobjective optimization of the realistic,
hotspot, and bit-complement traffic patterns, respectively. An-
other interesting point is that the proposed regulator has no
negative effect on the network throughput and it is the same

TABLE V

Comparison Between Different Scenarios Under Hotspot

Traffic

Network Regulator Total Variance
Buffer Buffer Buffer

Without regulation 361 0 361 830.4023

With regulation 144 53 197 129.7305

Network Regulator Total Average
Worst-Case Worst-Case Worst-Case Worst-Case

Delay Delay Delay Delay

Without regulation 3328 0 3328 89.10

With regulation 789 597 1386 53.68

TABLE VI

Comparison Between Different Scenarios Under

Bit-Complement Traffic

Network Regulator Total Variance
Buffer Buffer Buffer

Without regulation 254 0 254 178.73

With regulation 112 16 128 8.72

Network Regulator Total Average
Worst-Case Worst-Case Worst-Case Worst-Case

Delay Delay Delay Delay

Without regulation 410 0 410 28.10

With regulation 128 16 144 9.23

with and without the regulation schemes. This is because the
flow rates are maintained.

VIII. Scope and assumption

We discuss possible extensions to address the main assump-
tions of our approach. We have made two main assumptions.

1) The network routing is deterministic. As such, the path
of each flow is determined and thus flow contention be-
comes predictable. Therefore we can use and have used
deterministic network calculus to derive deterministic
delay and backlog bounds.
Deterministic routing has advantages in easier analysis,
simplicity, and low implementation overhead. However,
it may lead to inferior performance due to being unable
to adapt workload to the network congestion status.
Due to this limitation, adaptive routing may be favored,
though complicating implementation. Adaptive routing
means that a flow may use multiple possible paths when
delivering packets. For each alternative path, one may
find a probability for its use. In such a case, stochastic
network calculus [24] can be used to calculate delay and
backlog bounds. Still, stochastic network calculus keeps
the same fundamentals as the deterministic network cal-
culus. However, the derived delay and backlog bounds
will accordingly become stochastic.

2) We assume a static set of flows, which are mapped
statically on the network nodes.
The reason to use static flows with static mapping is that
the deterministic analysis relies on known traffic char-
acteristics and known source and destination for each
flow. Flows’ characteristics may be obtained through
traffic profiling. Static mapping can usually facilitate
the search of mapping design space in order to find
an optimal or near-optimal mapping under performance
and energy constraints [10]. As a consequence, the static
flows and mapping allow us to apply static regulations
on the flows.

JAFARI ET AL.: BUFFER OPTIMIZATION IN NETWORK-ON-CHIP THROUGH FLOW REGULATION 1985

Fig. 20. Maximum required buffers for every flow under hotspot traffic.

Fig. 21. Maximum worst-case delay for every flow under hotspot traffic.

Fig. 22. Maximum required buffers for every flow under Bit-complement.

To alleviate this assumption, there are a few possibilities
to enable semi-dynamic and dynamic regulations as we
explained as follows.

1) Semi-dynamic regulation:

a) Dynamically changing traffic specifications for
each input flow. If a flow’s traffic specification
may change, we may prepare a set of variants
for its parameters. Depending on different traffic
specifications, different regulations for the same
flow may apply at run-time.

b) Different use cases and mappings. An application
usually contains multiple use cases [25]. For each
use case, a set of flows with possible mappings
can be pre-compiled. All the use cases must fit
into the maximum buffer sizes. These use cases
can then be invoked and switched at run-time by
reconfiguring the regulators and the network.

Fig. 23. Maximum worst-case delay for every flow under Bit-complement.

Semi-dynamic configurations can be realized by check-
ing user-defined values of a configurable register in the
network interface. Our current regulator implementation
in hardware supports re-configuration of regulation pa-
rameters at run-time [7].

2) Dynamic regulation: we can embed a closed-loop con-
trol mechanism in which the network feedback is used as
an input to help make regulation decisions. For example,
network congestion status could be gathered from the
network and then the regulation parameters are adjusted
accordingly. This mechanism complicates the regulation
mechanisms but has promises in improving performance.
In addition, best effort traffic, i.e., traffic without the
requirement of delay guarantees, can be better accom-
modated by allowing them to use the slack bandwidth.
The closed-loop control mechanism is currently under
our investigation.

IX. Conclusion

IP integration requires the provision of performance guar-
antees for traffic flows and efficient buffer dimensioning tech-
niques. The regulation changes the burstiness and timing of
traffic flows, and thus can be used to control delay and reduce
buffer requirements in the SoC. Since a larger fraction of the
NoC cost is due to the network buffers, minimizing buffer
requirements is an important problem to achieve an efficient
NoC implementation. Also, designing similar switches, as
far as possible, facilitates the design process of NoC-based
systems. In this paper, based on the concepts of formal
regulation, we have presented three relevant optimization
problems for weighted round robin arbitration, first one for
minimizing total required buffers, second one for minimizing
the variance of buffers, and last one which is a multiobjective
optimization problem for minimizing both of them under QoS
requirements. The regulation analysis is performed for best-
effort packet switching networks. We have also demonstrated
that the proposed model exerts significant impact on commu-
nication performance and buffer requirements. The algorithm
for solving the proposed minimization problems runs very fast.
For the case studies, the optimized solution is found within
seconds. Although in this paper we have focused on the output

1986 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 12, DECEMBER 2010

buffers of switches, our method can be easily adapted to input
buffers, too.

References

[1] Z. Lu and A. Jantsch, “TDM virtual-circuit configuration for network-
on-chip,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 8, pp.
1021–1034, Aug. 2008.

[2] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf, and T.
Henriksson, “Flow regulation for on-chip communication,” in Proc.
DATE, Apr. 2009, pp. 578–581.

[3] J. Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet (LNCS, vol. 2050). Berlin,
Germany: Springer-Verlag, 2004.

[4] R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation; part II: Network analysis,” IEEE Trans. Inform. Theory, vol.
37, no. 1, pp. 132–141, Jan. 1991.

[5] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol.
6, no. 5, pp. 611–624, Oct. 1998.

[6] C. Chang, Performance Guarantees in Communication Networks. Lon-
don, U.K.: Springer-Verlag, 2000, p. 410.

[7] Z. Lu, D. Brachos, and A. Jantsch, “A flow regulator for on-chip
communication,” in Proc. SOCC, 2009, pp. 151–154.

[8] H. Wang, X. Zhu, L. Peh, and S. Malik, “Orion: A power-performance
simulator for interconnection networks,” in Proc. MICRO, 2002, pp.
294–305.

[9] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architec-
ture evaluation using modular performance analysis: A case study,” Int.
J. STTT, vol. 8, no. 6, pp. 649–667, 2006.

[10] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto NoC architectures,” in Proc. DATE, 2004, pp. 896–901.

[11] A. E. Kiasari, S. Hessabi, and H. Sarbazi-Azad, “PERMAP: A
performance-aware mapping for application-specific SoCs,” in Proc.
ASAP, 2008, pp. 73–78.

[12] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “xPipesCompiler:
A tool for instantiating application-specific NoCs,” in Proc. DATE, 2004,
pp. 884–889.

[13] L. P. Tedesco, N. Calazans, and F. Moraes, “Buffer sizing for multimedia
flows in packet-switching NoCs,” J. Integr. Circuits Syst., vol. 3, no. 1,
pp. 46–56, 2008.

[14] J. Hu, U. Y. Ogras, and R. Marculescu, “System-level buffer allocation
for application-specific networks-on-chip router design,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 12, pp. 2919–
2933, Dec. 2006.

[15] F. Jafari, Z. Lu, A. Jantsch, and M. H. Yaghmaee, “Optimal regulation
of traffic flows in network-on-chip,” in Proc. DATE, Mar. 2010, pp.
1621–1624.

[16] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scien-
tific, 1999.

[17] H. Y. Benson, R. J. Vanderbei, and D. F. Shanno, “Interior-point
methods for nonconvex nonlinear programming: Filter methods and
merit functions,” Computat. Optimiz. Applicat., vol. 23, no. 2, pp. 257–
272, 2002.

[18] P. P. Tang and T. Y. C. Tai, “Network traffic characterization using token
bucket model,” in Proc. IEEE INFOCOM, Mar. 1999, pp. 51–62.

[19] F. Gebali and H. Elmiligi, Eds., Networks on Chip: Theory and Practice.
Boca Raton, FL: CRC Press, 2009.

[20] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region
Methods, Society for Industrial and Applied Mathematics (SIAM),
2000.

[21] L. M. Adams and J. L. Nazareth, Linear and Nonlinear Conjugate
Gradient-Related Methods, Society for Industrial and Applied Mathe-
matics (SIAM), 1996.

[22] M. H. Wright, “Interior methods for constrained optimization,” Acta
Numerica. vol. 1, pp. 341–407, Jan. 1992.

[23] C. A. Coello Coello, “A comprehensive survey of evolutionary based
multiobjective optimization techniques,” Knowl. Inform. Syst.: An Int.
J., vol. 1, no. 3, pp. 269–308, 1999.

[24] Y. Jiang, “A basic stochastic network calculus,” in Proc. Conf. Appli-
cat., Technol., Architectures, Protocols Comput. Commun. (SIGCOMM),
2006, pp. 123–134.

[25] A. Hansson and K. Goossens, “Tradeoffs in the configuration of a
network on chip for multiple use-cases,” in Proc. 1st Int. Symp. NoCs,
2007, pp. 233–242.

Fahimeh Jafari received the B.S. and M.S. degrees
in computer engineering from the Ferdowsi Univer-
sity of Mashhad, Mashhad, Iran, in 2002 and 2005,
respectively. She is currently pursuing the Ph.D.
degree from the Department of Electronic Systems,
Royal Institute of Technology, Kista, Stockholm,
Sweden.

Her current research interests include design
methodologies, interconnection networks, optimiza-
tion theory, and performance evaluation.

Zhonghai Lu (M’05) received the B.S. degree in
radio and electronics from Beijing Normal Univer-
sity, Beijing, China, in 1989, and the M.S. degree
in system-on-chip design and the Ph.D. degree in
electronic and computer systems design, both from
the Royal Institute of Technology (KTH), Kista,
Stockholm, Sweden, in 2002 and 2007, respectively.

From 1989 to 2000, he worked extensively on
the areas of electronic and embedded systems. He
took research visits to Samsung Electronics, Seoul,
Korea, the National Institute of Informatics, Tokyo,

Japan, and the Swiss Federal Institute of Technology, Zürich, Switzerland.
He is currently a Senior Researcher with the Department of Electronic
Systems, School of Information and Communication Technology, KTH. His
current research interests include network-on-chip/system-on-chip, multicore
computing architectures, cyber-physical systems, performance analysis, and
design automation. He has published about 70 papers in these areas.

Axel Jantsch (M’97) received the Dipl.Ing. and
Dr. Tech. degrees from the Technical University of
Vienna, Vienna, Austria, in 1988 and 1992, respec-
tively.

He was with Siemens Austria, Vienna, Austria, as
a System Validation Engineer from 1995 to 1997.
Since 1997, he has been an Associate Professor
with the Royal Institute of Technology (KTH),
Kista, Stockholm, Sweden. Since 2000, has been a
Docent, and since December 2002, a Full Professor
of Electronic System Design with the Department

of Electronic Systems. He has published over 200 papers in international
conferences and journals, and one book in the areas of very large scale
integration design and synthesis, system level specification, modeling and
validation, HW/SW codesign and cosynthesis, reconfigurable computing, and
networks on chip.

Dr. Jantsch received the Alfred Schrödinger Scholarship from the Austrian
Science Foundation while a Guest Researcher with KTH between 1993 and
1995. He has served on a large number of technical program committees of
international conferences, such as FDL, DATE, CODES+ISSS, SOC, NOCS,
and others. He has been the TPC Chair of SSDL/FDL 2000, the TPC Co-
Chair of CODES+ISSS 2004, the General Chair of CODES+ISSS 2005, and
the TPC Co-Chair of NOCS 2009. From 2002 to 2007, he was a Subject
Area Editor for the Journal of System Architecture. At KTH, he is heading a
number of research projects involving a total number of ten Ph.D. Students,
in two main areas: system modeling and networks-on-chip.

Mohammad Hossein Yaghmaee (M’09) was
born in Mashhad, Iran, in July 1971. He received
the B.S. degree in communication engineering
from the Sharif University of Technology, Tehran,
Iran, in 1993, and the M.S. and Ph.D. degrees
in communication engineering from the Tehran
Polytechnic (Amirkabir) University of Technology,
Tehran, in 1995 and 2000, respectively.

Since 1992, he has been a Computer Network
Engineer with several networking projects at the
Iran Telecommunication Research Center, Tehran,

Iran. From November 1998 to July 1999, he was a Visiting Research Scholar
with the Network Technology Group, C&C Media Research Laboratories,
NEC Corporation, Tokyo, Japan. From September 2007 to August 2008, he
was a Visiting Associate Professor with the Lane Department of Computer
Science and Electrical Engineering, West Virginia University, Morgantown.
He is currently an Associate Professor with the Computer Department,
Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad. He is the
author of four books, all in Farsi. He has published more than 90 international
conference and journal papers. His current research interests include wireless
sensor networks, traffic and congestion control, high-speed networks
including ATM and MPLS, quality of services, and fuzzy logic control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

