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Abstract

Driven by the increasing capacity of integrated circuits, multiprocessor
systems-on-chip (MPSoCs) are increasing widely used in modern consumer
electronics devices. In this thesis, the performance analysis and implementa-
tion methodologies of predictable streaming applications on these MPSoCs
computing platforms are explored. The functionality and application concur-
rency are described in synchronous data flow (SDF) computational models,
and two state-of-the-art architecture templates are proposed as multiproces-
sor architectures, i.e., network-on-chip (NoC) based MPSoC and hybrid re-
configurable CPU/FPGA platforms. Based on the author’s contributions on
simulation and formal analytic methods, both modelling framework and de-
sign space exploration workflow have been addressed.

A energy efficient design exploration flow is proposed for streaming ap-
plications with guaranteed throughput on NoC based MPSoCs, in which both
application throughput analysis and system energy calculation are carried out
by simulation on a multi-clocked synchronous modelling framework. On the
other hand, based on event models of data streams, a formal analytic schedul-
ing framework for real-time streaming applications with minimal buffer re-
quirement on hybrid CPU/FPGA architectures is exploited. The problem has
been formalized declaratively as constraint base scheduling, and solved by a
public domain constraint solver. Consecutively, the constraint based analytic
method has been extended to solve problems ranging from global compu-
tation/communication scheduling and reconfiguration analysis to Pareto ef-
ficient design. Finally, a prototype of stream processing system on FPGA
based MPSoC is built as a realistic projection on the final implementation, to
make the results of theoretical studies in this thesis more meaningful.
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CHAPTER 1

INTRODUCTION

For over five decades1, the advances in silicon technology and the increasing chip
density of integrated circuits have followed Moore’s law. As the number of transis-
tors on single chips continues to hit new record high, processor manufacturing has
entered a billion-transistor era in recent years. Accordingly, the explosive growth
in processor capacity has driven the parallel revolution in modern computers. That
is, processing systems, composed of two or more individual processors on a single
chip, are widely used across general-purpose and embedded computing systems.
For instance, the commercial billion-transistor processors, unveiled by major man-
ufacturers in early 2010, have single-chip core counts ranging from 4 to 16, as
illustrated in Table 1.12.

Table 1.1: Major billion-transistor processors in February 2010.

Manufacturer Processor Transistors a Cores a

Sun Niagara 3 1.0 billion 16

IBM POWER7 1.2 billion 8

Intel Tukwila 2.0 billion 4
a Here, the maximal number in specifications is presented.

1That is from the invention of the integrated circuit in 1958.
2Only three commercial server-class processors presented in IEEE International Solid-State Cir-

cuits Conference (ISSCC) [82, 85, 96] are listed out, although Intel has presented another 1.3 billion
48-core experimental processor in ISSCC ’10 [48].

1



2 CHAPTER 1. INTRODUCTION

This thesis aims at embedded systems, which are pervasive computer systems
designed to perform one or a few dedicated functions. As parallelism becomes
a global trend in semiconductor industry, embedded multiprocessor systems, con-
sisting of multiple components of processors, custom circuits, memories and com-
munication links (dedicated wires or networks-on-chip) on the same silicon, have
become increasingly popular [84]. Although the more processing elements to be
placed on chips, the more operations chips can do, it is non-trivial to harness paral-
lelism effectively in the current multi-core era, not even to mention the upcoming
many-core era. Embedded multiprocessor systems-on-chip (MPSoCs) platforms
exhibit extreme complexity from the following perspectives.

• Heterogeneity. Multiple computation, storage and communication compo-
nents with timing varieties interact on a single-chip. Both hardware and soft-
ware modules are integrated in an appropriate architecture, which is usually
chosen and derived from a set of possibly diversified architecture templates
to meet the different requirements in design specifications.

• Customizability. According to the application specific throughput on de-
mand, energy on demand, and the design cost3 budget, the system compo-
nents are fully customizable, e.g., the processor voltage-frequency levels,
memory sizes, and communication bandwidth.

• Parallelism. The computation scheduling, communication, and synchro-
nization for the distributed processing elements in MPSoCs exhibit inherent
parallelism, which has been the major theme of embedded computing. For
many embedded applications, predictable performance needs to be delivered
with the high computation power.

• Programmability and Reconfigurability. Software-programmable multi-
processors and run-time reconfigurable (RTR) field-programmable gate array
(FPGA) hardware devices are widely used. Besides improving design flexi-
bility and productivity, they add new design challenges as well.

1.1 Motivation

Compared with traditional systems-on-board, heterogeneous embedded MPSoCs
have enhanced computation power, programmability, and reduced communication

3In this thesis, the design cost is measured by the metric of circuit area, in terms of on-chip
buffer memory size or equivalent logic elements.
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cost, which make them more suitable for concurrent streaming applications rang-
ing from multimedia, digital signal processing (DSP), and telecommunication to
network processing domains. Nevertheless, streaming applications on such plat-
forms always have stringent demands on non-functional properties (e.g., energy
dissipation, design cost, and timing), besides functional correctness. A system
level design methodology is critical for the design and implementation of stream-
ing applications on embedded MPSoCs, which have both application specific per-
formance demands and implementation (area, energy, and cost) efficiency needs.

However, to capture all the design concerns globally, while making proper de-
sign decisions at an early system level, is still a big challenge in embedded system
design from two aspects.

• Consumer embedded systems, with low-cost (silicon area), low-power, high-
performance and high-portability requirements, always have stringent time-
to-market demands.

• On the other hand, each product development involves multiple design pro-
cesses, such as specification refinement, cost analysis, design optimization,
and design iteration. More design flexibility in each process makes system
design and decision-making more complex and more time consuming.

A systematic way to design efficient streaming applications on embedded MPSoCs
in an early design phase is required. However, such an approach demands contri-
butions from different research fields, such as design methodologies, models of
computation, system-level modeling and simulation, and formal analysis methods,
besides proof-of-concept prototyping.

1.2 System-level design methodologies

Due to the high design complexity and manufacturing cost, new system-level de-
sign methodologies for embedded systems have emerged to deal with the increas-
ing time-to-market pressure. Among them, two promising alternatives are Y-chart
scheme [6, 56] and platform-based design [55]. Both of them propose the orthog-
onalization (i.e., separation of concerns) of application and platform, and use an
explicit mapping step to relate application models to architecture platforms. This
separation allows designers to map a range instances of application models onto
one architecture platform more effectively, and vice versa. Unlike traditional soft-
ware/hardware co-design approaches, which start from a single design specifica-
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tion [74], it can be used for broader design space exploration, as illustrated by the
Y-chart methodology in Figure 1.1.

Application

Models

Mapping

Performance

Evaluation

Performance

Numbers

Platforms

Architecture

Figure 1.1: Y-chart methodology for design space exploration [56].

In Y-chart methodology, application models are specified as networks of func-
tional blocks based on models of computation [51, 54, 63]. Independently, archi-
tecture platforms are characterized as instances of parameterized architecture tem-
plates. To assess the mapping of application models onto architecture platforms,
a key performance evaluation tool is exploited, either by means of simulation or
analytical methods. From the resulting performance numbers, the designer may
propose improvements on three core design issues: platforms, applications, and
mapping decisions, which are iconed as light bulbs in the graph. Such a design
process is iterative, until the satisfactory criteria are met.

Y-chart scheme fits various levels of abstraction on applications and platforms.
To gain accuracy in performance numbers, the performance evaluation based on
more modelling details normally takes longer time. However, too detailed mod-
elling efforts can lead to unacceptable long evaluation time, besides they may not
always be available in early design phases. Generally, system-level high abstrac-
tion is often used in most Y-chart based design flows for embedded systems in the
literature, such as Spade [64], Sesame [75], and CASSE [77].

In this thesis, the conceptions of application and platform have incorporated
those in both Y-chart and platform-based design. Based on the orthogonalization
of concerns, the application models and architecture platforms are specialized as
the following.
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• The applications are streaming applications, which can be described as pro-
cess networks based on synchronous data flow (SDF) models of computation
(see Chapter 2.1.1). The SDF models can be used for static scheduling and
buffer analysis at compile time, and enforce a clear separation of concerns
between computation and communication.

• The platforms are state-of-the-art embedded multiprocessor architectures. In
particular, two well-understood MPSoCs templates will be addressed (see
Chapter 2.2): tiled MPSoCs with network-on-chip (NoC) communication
and hybrid multiprocessor/FPGA. Different architecture instances can be
instantiated from parameterized architecture templates, which facilitate the
platform reusability in platform-based design.

Individually, the formalism on application functionality and architecture platform
can be defined. In the mapping process from functionality to architecture, the result
of the performance evaluation is the characterization on the specified performance
metrics.

1.3 Outline and contributions

The focus of this thesis is to explore the performance analysis and implementation
methodologies of predictable streaming applications on embedded MPSoCs com-
puting platforms, with tight physical (energy, cost, and real-time) constraints. This
thesis intends to provide the modelling and design space exploration frameworks
for embedded MPSoCs architectures, based on the author’s contributions on both
simulation and formal analysis methods.

The outline of the thesis is as follows, in which the author’s contributions are
divided into the corresponding chapters.

Chapter 2

This chapter explains the basics of streaming applications and architecture plat-
forms used in this thesis. Especially, the streaming applications are SDF computa-
tional model based.

Chapter 3

This chapter presents a design space exploration flow to achieve energy efficiency
for streaming applications on MPSoCs while the specified throughput constraints
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are met. As the main contributions, the streaming applications are scheduled on a
multi-clocked synchronous modeling framework, the application timing properties
are guaranteed by throughput analysis, and both processor voltage-frequency levels
and memory sizes are customized in the design space to optimize the application
pipeline parallelism for energy efficiency.

The public domain simulators Sim-Panalyzer [4] and Cacti [99] are used to
estimate the energy dissipations of the parameterized architectural components.
Two heuristic algorithms (i.e., greedy and Taboo search) are used during the design
optimization process. The experiments show an energy reduction of 21% without
any loss in application throughput compared with an ad-hoc approach.

Part of the work was published in

• J. Zhu, I. Sander, and A. Jantsch, Energy efficient streaming applications
with guaranteed throughput on MPSoCs, in Proceedings of the 7th ACM
international conference on Embedded Software (EMSOFT ’08), Atlanta,
GA, USA, October 2008, pages 119–128.

• J. Zhu, A. Jantsch, and I. Sander, SDF to synchronous cross domain analysis
in ForSyDe stream processing framework, in 2nd HiPEAC Industrial (NXP)
Workshop, Eindhoven, Netherlands, October 2006.

Chapter 4

This chapter addresses the problem of real-time streaming applications scheduling
on hybrid CPU/FPGA architectures. The main contribution is a constraint based
approach to minimize the buffer requirement for streaming applications on hybrid
multiprocessor/FPGA architectures. A novel declarative way of constraint based
scheduling for real-time hybrid SW/HW systems is proposed. The event models in
analysis are constructed as cumulative functions on data streams, while the appli-
cation throughput is guaranteed by periodic phases in execution.

Being implemented on the public domain constraint solver Gecode [32], a
voice-band modem application is used to exemplify the scheduling capabilities of
the proposed method. The experimental results show both less buffer requirement
and higher throughput guarantees, compared with traditional scheduling methods
without constraints on buffer.

Part of the work was published in

• J. Zhu, I. Sander, and A. Jantsch, Buffer minimization of real-time streaming
applications scheduling on hybrid CPU/FPGA architectures, in Proceedings



1.3. OUTLINE AND CONTRIBUTIONS 7

of Design Automation and Test in Europe (DATE ’09), Nice, France, April
2009, pages 1506-1511.

Chapter 5

Based on the extension of the constraint based formalism in Chapter 4, a global
computation scheduling and contention-free routing framework for NoC based
MPSoCs is proposed. The global scheduling of processors computing and com-
munication transactions are formulated as constraint based problem, to avoid the
scheduling overhead in TDMA-like heuristic schemes. Experimental results show
that the proposed framework can achieve a high predictable application through-
put with minimized buffer cost. For instance, for applications in communication
domain, higher throughput (up to 87%) has been observed with less buffer cost,
compared to scenarios considering the heuristic scheduling overhead.

Part of the work was published in

• J. Zhu, I. Sander, and A. Jantsch, Constrained Global Scheduling of Stream-
ing Applications on MPSoCs, in Proceedings of the conference on Asia
South Pacific Design Automation (ASP-DAC ’10), Taipei, January 2010,
pages 223-228.

Chapter 6

This chapter proposes a performance analysis framework for adaptive real-time
SDF streaming applications on run-time reconfigurable FPGAs. A novel compile-
time analysis approach based on iterative timing phases is exploited capture the
varying design concerns during reconfigurations. The capabilities of the proposed
framework in reconfigurations analysis and design trade-offs analysis are exempli-
fied with experiments.

Part of the work was published in

• J. Zhu, I. Sander, and A. Jantsch, Performance analysis of reconfiguration in
adaptive real-time streaming applications, in Proceedings of the 6th Work-
shop on Embedded Systems for Real-Time Multimedia (ESTIMedia ’08), At-
lanta, GA, USA, October 2008, pages 53–58.

• J. Zhu, I. Sander, and A. Jantsch, Performance analysis of reconfigurations in
adaptive real-time streaming applications, in ACM Transactions in Embed-
ded Computing Systems – Special issue on Embedded Systems for Real-time
Multimedia, 201x (accepted).
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Chapter 7

The main contribution is a multi-dimensional design optimization method on state-
of-the-art run-time reconfigurable CPU/FPGA platforms. It is a design Pareto-
point calculation flow to allocate applications with optimized buffer requirement
and software/hardware implementation cost. The capability of the constraint based
application allocation, scheduling, and Pareto efficient design has been exemplified
by two cases studies on applications from media and communication domains.

Part of the work was published in

• J. Zhu, I. Sander, and A. Jantsch, Pareto Efficient Design for Reconfigurable
Streaming Applications on CPU/FPGAs, in Proceedings of Design Automa-
tion and Test in Europe (DATE ’10), Dresden, Germany, March 2010, pages
1035-1040.

Chapter 8

While the author’s theoretical studies have shown the potential of system-level
methods on predictable streaming applications design, a FPGA based MPSoCs
prototype is used in this chapter, to fill in the gap between system level design
methodology proposed in this thesis and final implementation. The prototyping
of streaming applications onMPSoCs is built on Altera Stratix II FPGA [2], as a
realistic projection to evaluate various properties of the design.

Chapter 9

Finally, this chapter concludes the thesis and gives prospective research directions
in the future.

In particular, the workstation used for experiments from Chapter 4 to Chapter 8
is a HP xw4600 Linux workstation with Quad-Core 2.40GHZ processor and 4GB
memory.



CHAPTER 2

APPLICATION AND PLATFORM

PRELIMINARIES

In system level design, it is essential to capture the functional behavior and archi-
tectural characteristics independently for performance analysis and design space
exploration. In this thesis, the functionality and application concurrency are de-
scribed in models of computation (MoCs) based approaches, and two state-of-the-
art architecture templates with implementation parallelism are proposed as hetero-
geneous multiprocessor architectures.

This chapter introduces terminology and notations of the streaming application
MoCs and the architecture platforms used in this thesis.

2.1 Application models

A model of computation (MoC) is an abstraction of a computational system. It de-
fines how concurrent computation processes interact. Using different levels of ab-
stractions to leave out the irrelevant properties and details in the system, the MoCs
can reconcile essential properties in different purposes of analysis. Therefore, it is
possible to use certain MoCs to analyze the system properties of embedded sys-
tems [34, 53], such as functional correctness and performance.

In this thesis, the applications are based on synchronous data flow (SDF) mod-
els [61].

9
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2.1.1 Synchronous data flow

In SDF graphs, processes execute in a data driven manner, and communicate with
each other via FIFO channels. The parallelism in the application is explicitly ex-
pressed. A SDF application model with three-stage pipeline is depicted in Fig-
ure 2.1, which is used as the tutorial example in this thesis. In the graph, nodes
denote the concurrent computation processes, and edges associated with FIFOs de-
note the communication channels with buffer storage. In each execution or firing,
processes read tokens from the input-side FIFOs, operate (compute) on the data
within a specified amount of time, and emit the resulting tokens to the output-side
FIFOs. The amount of input (output) tokens is fixed in each firing of a process, and
is called input (output) rate. For instance, when process pj fires, it reads rate mi,j

tokens from FIFOi,j via signal s2 and writes rate nj,k to FIFOj,k via signal s3.
Obviously, as the signal source or sink, process pi or pj does not need the corre-
sponding input- or output-side FIFOs. When all the input (output) rates are 1 in the
graph, such a special SDF model is called homogeneous SDF (HSDF) model. A
general SDF model can be converted into an equivalent HSDF model [84], but this
transformation dramatically increases the problem size. In this thesis, the general
SDF models, which are also call multi-rate SDF models, will be considered in later
chapters.

s3s2 s4s1
pj pk

chj,kchi,j

mi,jni,j mj,knj,k
FIFOi,j FIFOj,k

pi

Figure 2.1: An example streaming application model.

In SDF semantics, processes use blocking read and non-blocking write, i.e., it
implicitly assumes infinite buffer space. However, finite buffer storage is always
utilized in implementation. A process is enabled and ready for execution, only
when both the input-side FIFO(s) has sufficient data tokens and the output-side
FIFO(s) has enough vacant space. While a process is computing, the data tokens
remain on the input-side FIFO(s) until the computation is completed [87]. At the
end of each execution, the output results are available in the output-side FIFO(s).
Furthermore, multiple instances of a process are not allowed to execute concur-
rently as in [42, 87], which is called auto-concurrency avoidance. In implemen-
tation, a process executes only when it is enabled and allowed by the scheduling
policy.
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In this thesis, a consistent subset of SDF models are considered, which can run
indefinitely with bounded buffer [60]. Given the communication channel chi,j be-
tween process pi and pj with the input rate ni,j and output rate mi,j , for consistent
SDF models, pi and pj can run in a repetitive pattern with non-trivial (non-zero)
firing times1 ri and rj , where ri and rj are the minimum integer solutions of a set
of balance equations

ri · ni,j = rj ·mi,j (2.1)

for all the communication channels. This subset of SDF models are also known
to be live and bounded [37]. SDF models provide the suitability for streaming
applications scheduling and buffer dimensioning at compile time, and are often
used to design predictable parallel embedded systems [60].

To distinguish from regular untimed SDF MoC [60], a timed-SDF model [42,
87] has been proposed to analyze timing related properties. A process computation
latency list T , which contains the time tC,x in time slots (abstract clock cycles) to
execute each process px once, is used to quantify the process computation. A FIFO
size list Γ, which contains the storage capacity γy,z in amount of tokens for each
buffer FIFOy,z , is used to quantify the FIFO storage capabilities. For instance, the
three-stage pipelined example application in Figure 2.1 has T = [tC,i, tC,j , tC,k]
and Γ = [γi,j , γj,k].

2.1.2 Simulation based scheduling and analysis

1 2 3 4 5 6 87 9Specifications parameters: 0 10111213

1 0 0 0 000000000 2

12 2 21 10 0 0 0 0 012

2 4 4 6 6 5 5 4 4 6 6 5 52

2 20 0 0 0 1 1 2 2 2 1 1 2

2 1 2 2 22 221 1 1 1 1 1

time tag

ni,j = 2
nj,k = 1 mj,k = 2

mi,j = 3

Γ = [γi,j , γj,k] = [6, 2]
T = [tC,i, tC,j , tC,k] = [2, 2, 2]

pi
pj
pk

FIFOj,k

FIFOi,j

periodic phase
with Lperiod = 6

Figure 2.2: A self-timed schedule (on the right) of the example application in Fig-
ure 2.1 with specified specification parameters.

1A vector of the non-trivial firing times for each process in the model is called repetition vector.
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For SDF streaming application, simulation based scheduling can be used to
analyze the essential timing and buffer properties. Here, the self-timed schedul-
ing [84] is used, which means a process executes as soon as it is enabled; oth-
erwise, it stalls. The example application specification is instantiated with com-
putation latency list T = [2, 2, 2], storage size list Γ = [6, 2], and process in-
put/output token numbers ni,j = 2, mi,j = 3, nj,k = 1 and mj,k = 2, as illus-
trated on the left of Figure 2.2. Thus, the application process repetition vector is
< ri, rj , rk >=< 3, 2, 1 >.

The corresponding self-timed schedule based on simulation is illustrated on the
right side, in which the process and FIFO status are listed in separated rows. The
time evolution is depicted in corresponding columns and advances 1 per column.
At each time tag, a process in executing (shadowed) state has a number to denote
the remaining execution time slots, a stalling (non-shadowed) process status is
denoted as 0, and a FIFO status is denoted as the occupied storage space (existing
tokens plus self-timed reservation) in number of tokens.

At time tag 0, the process status list is T ′0 = [2, 0, 0], in which pi is executing
with 2 time slots left and pj and pk are stalled; in the meantime the FIFO status
list is Γ′0 = [2, 0], with only 2 tokens space reserved at FIFOi,j . At time tag 2,
pi finishes the previous computation, emits 2 tokens into FIFOi,j , and reserves
another 2 tokens space from FIFOi,j for a new execution; thus, T ′2 = [2, 0, 0]
and Γ′1 = [4, 0]. At time tag 4 (T ′4 = [2, 2, 0] and Γ′4 = [6, 1]), besides the
similar status changes in p1 and FIFO1, p2 is enabled and starts to compute. As
the schedule advances to time tag 10, the application encounters the same process
and FIFO status list (T ′ and Γ′) as at time tag 4 (i.e., T ′10 = T ′4 = [2, 2, 0] and
Γ′10 = Γ′4 = [6, 1]), and enters a periodic phase. The periodic phase extends from
time tag 4 to 9, with length Lperiod = 6, in which the process pi, pj , and pk are
guaranteed to run 3, 2, and 1 times respectively.

Consequently, the schedule guarantees an average output throughput ρk =
1·mj,k
Lperiod

= 1
3 at process pj and requires buffer storage Γ = [6, 2], which are the

maximum buffer usages at each FIFO.

2.2 Architecture Platforms

A number of heterogeneous SoC architectures have been proposed in recent years [5,
8, 47, 58, 79, 90, 100]. In this thesis, the author will consider two state-of-the-
art SoCs architecture templates, i.e., multiprocessor systems-on-chip (MPSoCs)
with network-on-chip (NoC) communication [104, 107] and hybrid multiproces-



2.2. ARCHITECTURE PLATFORMS 13

sor/FPGA with run-time reconfigurability [105, 106, 108, 109]. Based on these
two generic templates, the designer can derive different architecture instances by
assigning parameters and constraints to physical resources, such as number and
frequency of processors, memory capacities, and interconnection bandwidth.

2.2.1 NoC based MPSoC

pmem

tile

mem

tile

network

NI NI

...

comm.

p

network
logic

RR R R

R

R

R

R

R

R

R

R

R

R

R

R

on−tile resource

producer consumer

µ

4× 4 tiles on 2D mesh

µ

Figure 2.3: An example of NoC based MPSoC architecture template.

The NoC based MPSoC architecture consists of on-tile resources and a packet
switched NoC communication [24, 48]. The example architecture template with
4× 4 tiles on a 2D mesh NoC topology is illustrated in Figure 2.3.

Each on tile resource (R) contains one processor (µp) and one local distributed
SRAM memory (mem). Each processor has a single-cycle access to the local
SRAM memory, and no cache is needed. Each on tile resource can be a signal
producer, consumer, or both, and is decoupled from the communication network
through the network interface (NI ). The on tile resources interact with each other
via the 2D mesh on-chip communication network.

Here, the multiple processor and memory modules are heterogeneous, in the
sense that they have customizable running speed and buffer sizes respectively. The
NoC communication provides guaranteed bandwidth and bounded latency, which
is achieved with a hard real-time communication backbone [40, 68].
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The multiple processors provide programmability as well as high performance,
and are suitable to process concurrent streams of data associated with signal pro-
cessing or multi-media services. The NoC based communication architecture pro-
vides scalability, flexibility, and high bandwidth, compared with the traditional
bus-based communication. However, a systematic way to customize these system
resources efficiently, while the design cost budget and timing related requirement
(e.g., energy minimization and throughput guarantees) are still met, becomes cru-
cial.

2.2.2 Hybrid reconfigurable multiprocessor/FPGA

+

RTOS

CPUs

FPGA

Configuration
Slot

Configuration

Reconfigurable Area

Non-reconfigurable Area

Controller

Memory

Control

Configuration

Reconfiguraion

Config n

Config 1
Buffer

SRAM

Figure 2.4: Overview of a partially RTR hybrid multiprocessor/FPGA using JIT
reconfiguration.

A FPGA platform offers many potential advantages, including high perfor-
mance, high integration, short time to market and easy field upgrades. Now with
the advent of large, fast, and cheap FPGAs, it is possible to place multiple CPUs
and custom circuits on the same FPGA die. The so-called hybrid CPU/FPGA or
multiprocessor/FPGA architecture provides an excellent platform for developing
custom MPSoCs [5]. The example platforms are Xilinx [101] Virtex and Altera [2]
Stratix FPGAs, embedded with either PowerPC processors and MicroBlaze soft
cores [101] or Nios soft cores [2].

On the other hand, FPGAs, which are partially run-time reconfigurable (RTR),
are also very popular in today’s embedded systems, such as Xilinx [101] Virtex-
4. The architecture template of such a partially RTR hybrid multiprocessor/FPGA
platform is illustrated in Figure 2.4.

On this platform, the applications can be implemented as software running
on the host CPUs, while the critical portions are migrated into custom hardware
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circuits. The hybrid software (CPU) and hardware (FPGA) parts can use direct
communication channels to communicate and buffer data, e.g., the Stratix multi-
channel shared memory FIFO core. It combines the merits of cost and energy
efficiency of FPGAs and the easy programmability of CPUs.

For discussion, the reconfiguration-related FPGA area is divided into two parts,
excluding the non-reconfigurable area.

1. The configuration memory is used to store the bit stream of all configurations
in different working modes in a compressed (with the ratio kC) format. It can
either be a local on-chip memory, or an external memory (Flash, DDRAM,
and SDRAM).

2. The reconfigurable area is the space for configurations that are only needed
for a limited amount of time at run-time. It can be used to store several
configurations at the same time. However, this thesis focuses on a “just-
in-time” (JIT) approach, in which a single2 configuration slot is shared by
different configurations at run-time. Every time a new system function is
needed, the configuration controller enables the reconfiguration, and the bit
stream of the new hardware implementation is loaded from the configuration
memory into the reconfiguration slot.

With the run-time reconfigurability, RTR FPGAs allow part of their hardware
tasks to be loaded dynamically, and they can be used to built cost-effective hard-
ware platform for stream processing with high flexibility [57]. However, the hy-
brid CPU/FPGA architecture demands not only new design paradigms [5], but also
novel scheduling polices on real-time operation systems (RTOS). Furthermore, the
performance analysis for reconfigurable FPGAs is more complex compared with
methodologies on traditional non-reconfigurable systems and adds new challenges.

2.3 Discussions

Using deterministic scheduling policies, such as self-timed execution, the above
simulation based way can construct schedules at design time for SDF applications
without computation resource constraints (i.e., each process is mapped onto an in-
dividual dedicated processing element). From the periodic phases (see the schedule

2For some applications with predictable MCR, it may be possible to use multiple configura-
tion slots and pre-load the useful configurations to overcome the JIT reconfiguration stall. Such
a mechanism prefetch adaptation, which remains to be addressed in the author’s future work (see
Section 9.2).
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in Figure 2.2), the application throughput can be guaranteed [38, 42]. Accordingly,
the buffer requirement can be analyzed in a finite length of time3, without everlast-
ing simulation.

However, in the implementation process, i.e., mapping applications onto plat-
forms, the designers still need to deal with the scheduling on multiprocessor archi-
tectures within resources constraints, including the computation, communication,
and storage physical limits. While the problem has been known to be NP-hard [84],
a systematic way to find application schedules according to different design con-
cerns, such as energy efficiency and buffer minimization, is still lacking, especially
when multi-clocked domains or run-time reconfigurations on the heterogeneous
platforms need to be considered.

In the following chapters, the thesis will present the author’s methods to ad-
dress these issues. In particular, the scheduling policies are restricted to be non-
preemptive, to reduce the preemption overhead in implementation for real-time
embedded systems. For pre-emptive scheduling on MPSoCs, the work in [97] is
referred.

3For the Proposition and Proof, see Section 3.4.4



CHAPTER 3

ENERGY EFFICIENCY OF

MULTI-CLOCKED MPSOCS

Multiprocessor systems-on-chip based on network-on-chip (NoC) communication
have been increasingly adopted as the physical architectures for streaming applica-
tions [41, 95]. In streaming applications, a process corresponds to the given com-
putation running on processors. Processes are connected with each other through
communication channels, and operate on data streams in a pipelined fashion. The
processors can be heterogeneous, each customized for specific tasks, and are run-
ning simultaneously to obtain high computation power.

However, performance is not the only concern in a streaming environment and
processors are not required to run as fast as possible. Processors, running faster
than demanded by the application requirements, will only produce data streams
ahead of time and lead to consequent redundant storage buffers [27]. Instead,
processors often run at a potentially slower frequency according to the through-
put requirements and avoid otherwise higher energy consumption. Nevertheless,
to achieve extreme energy efficiency on MPSoCs is non-trivial. The architectural
computation, storage, and communication components, which are fully customiz-
able, all contribute to the system energy dissipation. To take all their impacts
into consideration in the energy efficiency design, appropriate system models are
needed to capture both the parallel nature of streaming applications and the inher-
ent heterogeneous timing properties of MPSoCs as well.

17
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The author’s main contribution in this chapter is a design space exploration
flow with the following characteristics.

1. The streaming applications are scheduled on a multi-clocked synchronous
modeling framework.

2. Timing properties are guaranteed by application throughput analysis.

3. High system energy efficiency on MPSoCs architectures is achieved with
customized processor and memory components from optimized pipeline par-
allelism.

3.1 Related work

Various models of computation (MoCs) [52, 63] have been developed for stream-
ing applications. They are distinguished by their individual formalisms on how
processes interact and how or whether time is represented. One is the Kahn pro-
cess network (KPN) [62]. In [30], a design space exploration framework based on
KPN investigates the performance and power trade-offs in MPSoC systems. How-
ever, limited by the unbounded FIFO channels in the KPN semantics, it cannot
dimension the memory modules and analyze the effects on the system energy cost
that arise from parameterized memories.

In the synchronous data flow (SDF) MoC, the static input/output computation
tokens allow for the construction of periodic schedules with bounded memory size
at compile time [60]. Based on the static memory allocation for digital signal
processing (DSP) applications in the SDF MoC, the energy consumption is ex-
ploited on the algorithmic level [9]. However, the SDF MoC is untimed, which
means the trade-offs between different timing related properties, such as through-
put and energy, cannot be explored within this early system model.

A timed extension has been applied to SDF in [42, 87]. Using the timed SDF
MoC, a method to minimize the memory size by scheduling the processes appropri-
ately for maximal application throughput is introduced in [42]. In [87], the trade-
offs between any specified throughput constraints and the corresponding minimal
memory requirements are further studied. However, memory is only one of several
factors to impact the total system energy cost, besides computation and communi-
cation logics. Nevertheless, the single-unit time assumption in timed SDF [42, 87]
does not suit to model the heterogeneous computation and communication timing
on MPSoCs systematically.
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The synchronous MoC has an explicit global order of events [52]. It has met
industrial success to program safety critical reactive systems in Esterel [16], Lus-
tre [44] and Signal [59]. Especially, Lustre and Signal/Polychrony [43] define
multi-clocked models for heterogeneous embedded systems. In this chapter, a
multi-clocked synchronous MoC framework is proposed in Section 3.4 to analyze
timing related properties at the system level in the design space exploration for
multi-clocked heterogeneous MPSoCs.

Recently, systematic methods for mapping and scheduling streaming applica-
tions with real-time requirements onto a MPSoC platform, where communication
happens via NoC backbone, have been addressed in several research groups [46,
65, 88]. In contrast to existing work, this chapter leverages the degrees of customiz-
ability of both processor voltage-frequency levels and memory sizes, captures the
heterogeneous timing on a multi-clocked synchronous MoC framework, and inves-
tigates the minimal energy consumption of streaming applications. High system
energy efficiency is achieved without losing throughput guarantees, as confirmed
in the experiments.

3.2 Motivation

Here the streaming application model in Figure 2.1 is instantiated with input and
output rates ni,j = 2, mi,j = 3, nj,k = 1, and mj,k = 2. Different design
options are explored to motivate the energy efficiency design upon some assumed
energy models1. For clarification, the problem is motivated in a single domain
synchronous MoC, i.e., using one clock with the same time-scale.

3.2.1 Design exploration

In design option a), the computation latency list is assigned as T = [1, 2, 2]. Using
the memory minimization techniques in [87], the self-timed schedule achieved,
with Γ = [6, 2], is shown in Figure 3.1.a). In the graph, the process and FIFO
status are listed in separated rows as illustrated in Section 2.1.2, and time evolution
is depicted in corresponding columns. Using the unit abstract clock, the time tag
advances 1 per column.

At time tag 0, the process status list is T ′0 = [1, 0, 0], in which pi is executing
with 1 time slot left and pj and pk are stalled; in the meantime the FIFO status

1Some more practical energy models based on instruction set simulation are adopted in the
proposed design space exploration flow in Section 3.3
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list is Γ′0 = [2, 0], with only 2 tokens space reserved at FIFOi,j . At time tag 1,
pi finishes the previous computation, emits 2 tokens into FIFOi,j , and reserves
another 2 tokens space from FIFOi,j for a new execution; thus, T ′1 = [1, 0, 0] and
Γ′1 = [4, 0]. At time tag 2 (T ′2 = [1, 2, 0] and Γ′2 = [6, 1]), besides the similar
status changes in pi and FIFOi,j , pj is enabled and starts to compute. As the
schedule advances to time tag 9, the application encounters the same process and
FIFO status list as at time tag 3 (T ′9 = T ′3 = [0, 1, 0] and Γ′9 = Γ′3 = [6, 1]) and
enters a periodic phase. The periodic phase extends from time tag 3 to 8, with the
length 6 time slots and process firing times vector < 3, 2, 1 >.

To make both the process computation latency and FIFO size customizable, the
design space is extended to explore another two design options b) and c). Com-
pared with a), b) is just to run pi at half speed as T = [2, 2, 2] and keeps the
same FIFO sizes Γ; c) uses T = [2, 2, 4] and Γ = [6, 3] to run both pi and pk at
half speed and assign one more storage element to FIFOi,j . Accordingly, their
individual self-timed schedules are shown in Figure 3.1.b) and c). Both schedules
encounter a periodic phase, with the same length and the same processes firing
times vector, as a) does. In this sense, all the design options can deliver the same
guaranteed application throughput2.

3.2.2 Energy efficiency evaluation

In the periodic phase, the energy efficiency of different design options is evaluated,
based on the following assumed3 computation latency and energy models (only the
dynamic energy is considered).

1. Each process px is bound to one individual processor µpy. Each proces-
sor operating voltage vy is set at two voltage levels vH and vL (vL is half
of vH ) to explore the design space. The processor operating frequency fy
changes proportionally to vy (fy ∝ vy); thus, fL is at half speed of fH . The
computation latency tx of px changes accordingly to tx ∝ f−1

y .

2. For each executing time slot of px the dynamic power consumption on µpy is
P̂µpy ,px (vy, fy) = α · v2

y · fy, where α is the average switching capacitance.
Since fy ∝ vy is known, P̂µpy ,px ∝ f3

y is attained as a cubic function of
fy. For n computation time slots the processor energy consumption Eµpy is
Eµpy = n · P̂µpy ,px (v2

y , fy).
2For the formal definition, see Section 3.4.4
3Here, the assumed models are only used for illustration. In practical experiments, the compu-

tation latency and energy dissipation are got from simulation (see Section 3.3).
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3. Each FIFOx is bound to one individual memory memy, and the memory
size equals to the FIFO size γx. Within a fixed accessing pattern, the mem-
ory energy consumption is Ememy = Êmemy(γx) ∝ γx, where the memory
dynamic energy function Êmemy is proportional to memory size.

4. As the baseline, in design option a) all the processor voltage-frequency levels
are set to (vH , fH), and for each time slot the processor dynamic power
consumption is normalized to 1, as shown in column 4 of Figure 3.1.d);
the memory energy consumption in the periodic phase is assigned to 1 per
storage element, as shown in Figure 3.1.e).

Thus, the computation latency, computation energy and memory energy char-
acteristics of other design options have been derived in Figure 3.1.d-e). There are
three processors and two memory modules in the physical architecture. For design
option a) (T = [1, 2, 2], Γ = [6, 2] and < ri, rj , rk >=< 3, 2, 1 >), the total
processor energy EU and total memory energy EM are

EU = Eµp1 + Eµp2 + Eµp3 =
∑
∀µpy tx · rx · P̂µpy ,px (vH , fH)

= 1 · 3 · 1 + 2 · 2 · 1 + 2 · 1 · 1 = 9
EM = Emem1 + Emem2 =

∑
∀memy

Êmemy(γj)
= 1 · 6 + 1 · 2 = 8

The total system energy consumption is ESum = EU + EM = 17. Similarly,
the energy consumptions for design options b) and c) are calculated, as shown in
Figure 3.1.f).

Design option c) has the most efficient system energy ESum . In addition, it
achieves the highest average processor utilization η (ratio of the shadowed part in
the periodic phase of process schedules), which means the best pipelined paral-
lelism. However, higher pipelined parallelism does not always mean lower system
energy dissipation, as demonstrated in Section 3.6.

3.3 Design space exploration flow

An energy efficiency design space exploration flow for streaming applications with
guaranteed throughput on MPSoCs is proposed, as shown in Figure 3.2. The in-
puts of the design exploration flow (three boxes on the top) are the application
benchmark C program, the static mapping from the application onto the MPSoC
architecture and the architectural design options in the configuration file.
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Figure 3.2: Energy efficiency design exploration flow with guaranteed throughput.

The C program for each computation process is cross-compiled into a binary
using the ARM gcc toolchain [1]. From the application to architecture mapping and
the resource constraints defined in the configuration file, implementation model
instances with different architectural parameters are initialized. The design space is
explored by customizing both the processor voltage-frequency levels and memory
sizes, as discussed in Section 3.2.1.

Instead of using the assumed latency and energy models in the previous section,
the process binary computation timing and energy dissipations on the architectural
component instances are estimated on Sim-Panalyzer [4] and Cacti [99] simula-
tors. Based on the individual process timing and energy profiles, the application
throughput and system energy dissipations on MPSoC architecture are analyzed
systematically in the multi-clocked synchronous MoC framework. The perfor-
mance of the application can be determined and optimized at design-time based
on the following assumptions:

• Predictable NoC with guaranteed bandwidth and bounded latency.

• Predictable Network Interface (NI).

• Bounded computation time of each process on processing elements.

The design objective is to minimize the total system energy dissipation while
meeting the application throughput requirement. As the design space increases
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exponentially with the problem size, heuristic algorithms (greedy and Taboo [25]
search) are used during the design options searching until the design goals are met.

3.4 Multi-clocked synchronous MoC framework

Here, a synchronous MoC framework, which preserves the static computation in-
put/output rates in the SDF MoC, is adopted for timing related properties analysis,
e.g., application throughput analysis and system energy evaluation. Furthermore,
multi-clocked domains are considered and exploited to relate the heterogeneous
timing in different system domains (similar to Lustre [44]), which suit different
clocks in heterogeneous MPSoCs well.

3.4.1 Synchronous MoC framework

Preserving the static producing and consuming token rate properties, the SDF mod-
els can be transformed into synchronous models [66, 104], in which the timing of
process firing and timing-related properties can be captured. In the synchronous
MoC, systems are described as a set of concurrent processes, which communicate
through synchronous signals.

Stream models

A signal (data stream) s with clock clks is an indexed4 set of events,

s = ∪{e(n)}clks = {e(0 ), e(1 ), · · · , e(n), · · · }clks , ∀n ∈ N0. (3.1)

The signal clock clks ∈ Q+ is the abstract cycle (time slot) period between two
adjacent events. It is the elementary time unit, in which time is measured and for
which timing related properties (e.g., throughput and energy) are evaluated. Each
event e(n) = (g(n), ~v(n)) has a time tag g(n) and a value ~v(n)

5. Time tags are
used to model the global order of events, and are implicitly given by the event
indexes in the signal, with g(n) = n · clks; thus, a signal can be simply denoted as
s = ∪{~v(n)}clks . The timing relation of the events in signals with different clocks
is visualized in Figure 3.3. Two signals s1 and s2 have the clock timing relation
clks1
clks2

= 3
2 . The global order of the events in both signals are maintained by time

tags.

4In this chapter, the subscripted numbers in parentheses are used especially for indexing purpose.
5It is an event model both for performance analysis and for functional correctness analysis.
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Figure 3.3: Timing relations of events in signals with different clocks.

Process

To capture the input (output) rate in process executing cycles6 and absents in
stalling cycles, values are a vector ~v of regular tokens, extended with a pseudo
value ⊥. ~v(n) is ~v when the required tokens are present, or ⊥ when absent. The
number of the regular tokens contained in ~v is fixed. For instance, a synchronous
signal s1 = {⊥, < 1, 1, 2 >,< 2, 3, 4 >, · · · }

1
2 has integer token number 3 and

clock period 1
2 .

Processes operate on signals. For a set of processes with the same clock of
signals, they are said to be in a single domain; otherwise, they are in different
multi-clocked domains, which is to be introduced in Section 3.4. In each evaluation
cycle, processes consume one event from the input signals and output one event to
the output signals. In perfect synchrony [52], the computation and communication
are executed in zero time and the computation states are maintained in explicit
delay process statements. A synchronous model is composed of combinational
processes pcomb(f) and unit-cycle delay processes p∆(~v′(0 )), in which function f
specifies the mapping from input events to output events and the given initial state
~v′(0 ) is the output event at time tag 0 to defer the input events one cycle.

While pcomb(f) fits to describes algorithmic function flow, its combination
with p∆(~v′(0 )) can be used to construct control logic and more complex compo-
nents. For instance, the τ -cycle (τ ∈ N) delay process is a combination of τ
unit delay process with p∆,τ (⊥) = p∆(⊥) ◦ · · · ◦ p∆(⊥)︸ ︷︷ ︸

τ

7; a combinational pro-

cess with τ -cycle computation latency is pcomb,τ (f) = pcomb(f) ◦ p∆,τ (⊥); and
a mealy state machine, with the state function fstate and output function fout, has

6It is the worst case execution time (WCET) of the process, which is the maximum length of
time takes to execute on a specific hardware platform by analysis of a process program flow [20].

7The process composition operator ◦ has the formal definition p1 ◦ p2(s1) = p1(p2(s1))
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Figure 3.4: Process skeleton of a mealy state machine.

the process skeleton shown in Figure 3.4. The mealy state machine is the base to
construct the control logic of a finite size FIFO [80].

3.4.2 Multi-clocked synchronous domains and domain interfaces

In the synchronous model, processes using the same abstract clock are said to be
in the same synchronous domain. To model the heterogeneous timing properties in
embedded systems, such as the parallel computation on several processors running
at different frequency levels, multi-clocked synchronous domains are introduced.

When multi-clocked domains exist, i.e., different domain clocks have a rational
ratio to each other, asynchronous domain interfaces (DI) are needed to maintain
the global timing. In the upper-left part of Figure 3.5, two domains DA and DB ,
with different clock periods clkA and clkB , have a rational clock ratio λA:B =
clkA
clkB

= mA
mB

, ∀mA,mB ∈ N,mA 6= mB, and mA and mB are relatively prime.
The domain interface DIA:B , which establishes the clock ratio λA:B from A to B is
defined as DIA:B = downDI (mB) ◦ upDI (mA).

As the start point at index 0, all the signal events have the consistent time tag 0.
Thus, at tag 0 upDI (mA) and downDI (mB) output the value ~v(0) from the input
signal. Otherwise, upDI (mA) is up-sampling the input signal clock mA times by
inserting mA − 1 absent events before each event; and downDI (mB) is down-
sampling the input signal clockmB times by merging everymB events. They have
the following definitions:

upDI (mA)
(
{~v(0 ), ~v(1 ), ~v(2 ), · · · }clkx

)
=

{~v(0 ),⊥, · · · ,⊥,︸ ︷︷ ︸
mA−1

~v(1 ),⊥, · · · ,⊥,︸ ︷︷ ︸
mA−1

~v(2 ), · · · }
clkx
mA (3.2)
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downDI (mB)({~v(0 ), · · · , ~v(mB), ~v(mB+1 ), · · · }clkx ) =
{~v(0),<~v(1),··· ,~v(mB)>,<~v(mB+1),··· ,~v(2mB)>,··· }mB ·clkx (3.3)

where < ⊥, · · · ,⊥︸ ︷︷ ︸
mB

> is reduced to⊥

In Figure 3.5.a.1) and b.1-2), the functionalities of several different instances
of up- and down-sampling components are illustrated by a unit rate input signal
sA and two instances of output signal s′B and s′′B , in which s′′B has the slowest
clock with clkB = 4

3 (simply denoted as s′′B@4
3 ). The signal events are listed in the

ascending order of time tags. Without losing or gaining data tokens, the specified
input events (shadowed) of sA are mapped to the output events (shadowed) of s′B
or s′′B in a different clock domain. When λA:B = 3

2 > 1 and clkB is faster than
clkA, the output data token pattern is getting more sparse, but the original rate (the
number of the non-absent values in ~v) is kept. Otherwise, λA:B = 3

4 < 1 and
it leads to increased token rate; especially, when mB 6= 1, the rate of the output
events can vary, as shown in Figure 3.5.b.2). However, as the output data stream
is always buffered by a FIFO, it does not violate the static token rate assumption
for process computation. As shown in the upper-right part of Figure 3.5, the output
signal s4 of the FIFO always provide a constant input rate 2 required by p4. To
ensure consistent timing,DIB:A from domainDB toDA has the reversed sampling
ratio λB:A.

Domain interfaces act as the glue processes between different synchronous do-
mains. When a domain clock time changes, only the domain interface sampling
ratios need to be reconfigured, which greatly facilitates the modelling and design
space exploration on heterogeneous MPSoCs.

Domain interface causality

Although the domain interface has asynchronous features, its input and output sig-
nals do not violate the causality condition of the demand driven simulation.

Proposition 1. Domain interface DIA:B has input signal sA at domain DA and
output signal sB at domain DB , as shown in Figure 3.6. ∀a1 ∈ N0, ∃b1 ∈ N0,

DIA:B({· · · , ~vA(a1 ), · · · }clkA) = {· · · , ~vB(b1 ), · · · }clkB ,

where {~vB(b1 )}clkB = {< · · · , ~vA(a1 ), · · · >}clkB .

s.t. the timing relation Tag(~vB(b1)) > Tag(~vA(a1)) exists, in which the operator
Tag is to get the time tag g(n) for a specified signal value ~v(n). Hence, DIA:B
preserves causality between its input and output signals.
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Adomain D
Bdomain D

downDIupDI

DIA:B

sA sB
(mB)

sTmp

sA = ∪{~vA(a)}clkA sB = ∪{~vB(b)}clkB
sTmp = ∪{~vTmp(tmp)}clkTmp

(mA)

Figure 3.6: Domain interfaces DIA:B .

Proof. In case of a1 = b1 = 0, Tag(~vB(0)) ≡ Tag(~vA(0)) ≡ 0 meets the timing
relation. Otherwise, a1 > 1 and b1 > 1. From the definition of upDI (mA) in (3.2),
it is known that clkTmp = clkA

mA
. From the definition of downDI (mB) in (3.3), it is

known that ∀b1 ∈ N0

{~vB(b1)}clkB = {< · · · , ~vA(a1), · · · >}clkB

= downDI (mB)
({~vTmp(mB ·(b1−1)+1), ··· , ~vTmp(mB ·b1)}

clkTmp )

Tag is monotonically increasing, thus

Tag(~vA(a1)) 6 Tag(~vTmp(mB ·b1))

From the definition of Tag, it is known that

Tag(~vB(b1)) = b1 · clkB

Tag(~vTmp(mB ·b1)) = mB · b1 · clkTmp = b1 · (mB ·
clkA
mA

)

= b1 · clkB.

Thus, it concludes Tag(~vB(b1)) > Tag(~vA(a1)).

3.4.3 Scheduling state and cross domain analysis

As discussed in Section 3.2, in a single synchronous domain DN , at time tag
g(n) (n ∈ N0) the process status list T ′N(n) associates with each process the re-
maining number of time slots when it executes, or 0 when it stalls; meanwhile,
the FIFO status list Γ′N(n) associates with each channel the amount of FIFO storage
space used. The scheduling state in DN is a tuple (T ′N(n),Γ

′
N(n)).
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A multi-clocked application consists of a set of synchronous domains D, in
which domainDN with the slowest domain clock clkN is chosen as the logic mold
domain. Each component (process or FIFO) status signal in DK (∀DK ∈ D) can
be cast across domain boundary into the single DN via DIK:N , where λK:N ≤ 1.
Such a single component status signal casting (λK:N = 3

4 ) can be illustrated by
Figure 3.5.a.1) and b.2). sA is looked as the status signal in DK and s′′B the status
signal in the mold domain DN . Each value at time tag g(n) in s′′B is called a
scheduling pattern.

To be consistent with the scheduling state definition in the single domain, the
scheduling patterns are encoded into incrementing numbers starting from 0, and
the same numbers are used to denote the revisited patterns. The functionality of
such a encoding module patternEnc is shown in Figure 3.7. In spatternSt , the
scheduling patterns at time tags 1 and 4 are duplicated, and are encoded as the
same 1 in sencSt . In this way, the timing properties for multi-clocked applications
can be analyzed by casting the system scheduling states in multi-clocked domains
into the single mold domain DN .

... ...

<3,   ,   ,4>

<   ,   ,1,   >
<   ,2,   ,   >

<   ,   ,1,   >
patternEnc

1:1

<3>
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<1>

0

1
2
3

..
.
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⊥⊥⊥
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⊥⊥⊥

spatternSt sencSt

Figure 3.7: Scheduling patterns encoding.

3.4.4 Application throughput analysis and throughput guarantees

Proposition 2. (Throughput guarantees) For a consistent SDF streaming applica-
tion (see Section 2.1.1), a periodic phase in its schedule always exists. The required
application throughput is guaranteed by the output periodic properties during this
period.

Proof. A consistent SDF streaming application could run indefinitely. However,
the application scheduling status (process and FIFO status, see Section 2.1.2) space
is always finite. Thus, some scheduling status will be re-visited in a non-terminating
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schedule. As only deterministic scheduling policies are considered, the application
schedule enters a periodic phase when a repeated scheduling status is met. The
output throughput during this period could sustain indefinitely, which guarantees
the application throughput.

In the logic mold domain DN , when the scheduling state (T ′N(n2),Γ
′
N(n2)) for

the application at time tag g(n2 ) meets a repeated one as at g(n1)(n1 < n2, T
′
N(n2) =

T ′N(n1), Γ′N(n2) = Γ′N(n1)), the application schedule enters a periodic phase with
length g∆ = g(n2 ) − g(n1 ). In this periodic phase, the process throughput of pn is
defined as

Thru(pn) = rn · npn · Sztoken
g∆

(3.4)

in which rn is the firing times of pn, npn the output rate considered and Sztoken
the data size per token. When Sztoken in bit and the corresponding physical time
to g∆ are known, equation (3.4) defines the process throughput in bit/s. Caused
by the static token rates, the throughput of various processes in the models have a
fixed ratio. The throughput of the sink process is simply used as the application
throughput, which is the speed the application delivers outputs.

3.5 Energy efficiency design on MPSoCs

The design objective is to minimize the system energy dissipation while meeting
the required application throughput.

3.5.1 Implementation model

The architecture model is an MPSoC template, which consists of on-tile compo-
nents and a packet switched communication network-on-chip (NoC), as shown in
the lower part of Figure 3.8. Each tile contains one processor (µp) and one lo-
cal SRAM memory (mem), and is decoupled from the communication network
through the network interface (NI ). Each processor has a single-cycle access to
the local SRAM memory, and no cache is needed.

Given an architecture model with a set of processors U and a set of memo-
ries M, the implementation model (a resource-aware refinement of the application
model) has the mappings from a set of computation processes P onto U and a set
of FIFOs F onto M. For simplicity, FIFOs are assumed to be mapped to disjoint
memory regions. The techniques in [42], which allow buffer sharing among the
FIFOs mapped to the same memory module, are not considered.
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Figure 3.8: Mapping of the implementation model of the example application (Fig-
ure 2.1) onto a NoC based MPSoC architecture model.

As the mapping optimization on the NoC communication has been studied
in [49] and is out of the scope of this work, an empirical mapping strategy is used
as the start of the work in this chapter. Furthermore, the design flexibility in the
communication backbone is not investigated and the design option in the NoC com-
munication logic is simply considered to be fixed; instead, this chapter concentrates
on exploring the design alternatives of on-tile components.

The mapping of the implementation model of the example application (Fig-
ure 2.1) onto a two-tile NoC based MPSoC architecture is shown in Figure 3.8.
The MPSoC architectural characteristics are captured in the implementation model,
with the following strategies.

1. Each process px is mapped to one on-tile processor µpy , each FIFO FIFOx
to one memory memy , and inter-tile channels to NoC communication.

2. Each tile and the NoC communication are modeled in individual domains,
and they interact via domain interfaces. In Figure 3.8, the sampling ratios of
DIA:C andDIC :B correspond to the heterogeneous timing between different
architecture modules.
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3. When multiple processes are mapped onto one processor (see domain DA),
their executions are scheduled sequentially according to the non-preemptive
assignments in a priority queue (PQ). Thus, the scheduling decision on a
single processor only changes when data dependency changes.

4. When multiple FIFOs are mapped onto one memory (see domain DA), they
use independent logic addresses without space sharing, and the memory size
is the summation of the FIFO sizes.

5. The NoC logic is assumed to provide a guaranteed bandwidth based on a
hard real-time communication backbone [68] between different tiles. In Fig-
ure 3.8, the inter-tile data token transmission delay quantified by process
p∆,τNoC is predictable, with

τNoC = d
mp∆ ·Sztoken

wNoC
+ thop

clkC
e (3.5)

in whichmp∆ is the input rate of p∆,τNoC ,wNoC the reserved NoC bandwidth
and thop the network hop delay.

3.5.2 Design objective: energy efficiency

The architectural design options on the processor voltage-frequency levels are cus-
tomized by the domain interface configurations, and memory sizes by the parame-
terized FIFOs. For each instance of the implementation model, the processes com-
putation timing and energy properties are profiled by the cycle-accurate proces-
sor energy simulator Sim-Panalyzer [4] and the memory simulator Cacti [99]. As
shown in Figure 3.9, Sim-Panalyzer is configured with certain voltage-frequency
levels, and provides the computation timing and dynamic energy dissipation for the
gcc cross-compiled binary of each process. It is assumed that the static power of
the processor during customization is constant and is ignored in calculation. Mean-
while, the memory accessing patterns are profiled in an execution trace file, based
on the static and dynamic energy dissipations of the specified memory estimated
with Cacti.

With each process computation latency resolved from the computation tim-
ing profiles and each communication delay from the guaranteed bandwidth NoC
communication logic, the timing of each process on the implementation model is
specified. While the processes bounded on the same tile are scheduled sequentially,
the application self-timed schedule is determined by its scheduling state. The same
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Figure 3.9: Process timing and energy profiling.

techniques as introduced in Section 3.4.4 are used for the resource-aware applica-
tion throughput analysis.

Within a given throughput requirement, the amount of stream data transmitted
via the NoC communication is fixed during some period of time. In [49], the bit
energy model reveals that the average energy consumption to send one bit on NoC
is proportional to the Manhattan distance between two tiles. From this metric, the
NoC energy dissipation for streaming applications with guaranteed throughput is
static, since a static mapping strategy is used. Thus, the NoC energy dissipation is
not counted in the system energy analysis.

The process and memory energy dissipations are estimated for each time slot
in a state based way. When all the processes mapped onto a processor µpy are
stalled, the processor is in idle mode and only consumes the static energy Ėµpy

(to be ignored as mentioned), so does the local memory memy consumes Ėmemy ;
otherwise, the processor and memory are in active mode, they also consume the
dynamic energy (Êµpy and Êmemy ) of the executing process profiled by Sim-
Panalyzer and Cacti.

While satisfying a given application throughput requirement Thru0 upon the
sink process psink , the aim is to minimize the overall system energy ESum , which
is the energy summation of all the processor and memory modules. The design
objective and constraints are formalized as the following:

min ESum =
∑
∀µpy∈U

Êµpy

+
∑

∀memy∈M
(Êmemy + Ėmemy) (3.6)
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where Êµpy =
∑
∀py∈P

(tx · rx · P̂µpy ,px (v2
y , fy) · ϕpx ,µpy)

Êmemy = Êmemy(
∑

∀FIFOx∈F

(γx · ϕFIFOx ,memy))

Ėmemy = g(∆) · Ṗmemy(
∑

∀FIFOx∈F

(γx · ϕFIFOx ,memy))

subject to Thru(psink) ≥ Thru0∑
∀µpy∈U

ϕpx ,µpy = 1, ∀ϕpx ,µpy ∈ {0, 1}∑
∀memy∈M

ϕFIFOx ,memy = 1, ∀ϕFIFOx ,memy ∈ {0, 1}

in which ϕpx ,µpy and ϕFIFOx ,memy are the decision variables (equals to 0 or 1) to
determine the mapping from P onto U and F onto M, Ṗmemy the static power
function of the specified memy , and g(∆) the length of the periodic phase.

The design space exploration has the complexity O(n|U |+|F |), which is NP-
hard regarding the problem size. Thus, the widely used heuristic algorithms (i.e.,
greedy and Taboo [25] search) are used for the design options optimization.

3.6 Experimental results

To evaluate the potential of the proposed design flow in energy efficiency de-
sign, experiments have been applied on a software FM radio application (presented
in [41]) on a NoC based 4× 4 mesh tiles MPSoC.

The application model has 44 concurrent processes, which are clustered into 14
partitions in a five-stage pipeline, as illustrated on the left side of Figure 3.10. The
pipeline consists of a signal source, a low-pass filter (LPF), a demodulator (Dem),
an equalizer (Equ) with 10 children modules over a range of frequencies, and a
signal sink. The arrows marked with numbers show the logic connections and data
rates between different partitions.

With each partition allocated to one tile, an empirical mapping from the clus-
tered application to the 14 tiles (the other two are left unused) is shown in Fig-
ure 3.10. Each pipeline stage of the application is modeled in one individual syn-
chronous clock domain, so is the network logic. The dashed-lines between each
pipeline stage stand for the implicit NoC communication and domain interfaces.
With the static clock abstraction in the network communication domain, it is taken
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Figure 3.10: FM radio application mapped onto 4× 4 tiles.

Table 3.1: Voltage-Frequency levels.

Voltage(V) 2.5 1.8 1.4 1.2

Frequency(MHZ) 233 180 140 100

as the logic mold domain in the multi-clocked synchronous model. To decrease
the problem size, symmetrical on-tile resources and NoC communication configu-
rations are used for the 10 children modules in stage 4.

Each on-tile processor is a StrongARM SA-1100 with the customizable voltage-
frequency levels shown in Table 3.1, and each local memory is SRAM with the size
given by the FIFO buffers to be implemented on this tile. The C program task of
each process is compiled into binary using the ARM gcc toolchain and used as the
input of Sim-Panalyzer and Cacti for architectural energy estimations. To make the
energy dissipations estimated from Sim-Panalyzer and Cacti consistent, the same
.18µm technology node is used in the configurations for both simulators.

In addition, as the energy results for each customizable module is independent
of each other, they could be simulated off-line in a linear time proportional to the
problem size, and saved in a look-up table for design exploration.

At the application sink process, a unit data token is a compound data type
containing 512 32-bit values. According to the sink process throughput, design
optimizations have been performed based on three different application workloads.
They have the required application throughput 640 kb/s (Thru-1), 533 kb/s (Thru-
2) and 400 kb/s (Thru-3) respectively.
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Table 3.2: Experimental results.

Thru-1 Thru-2 Thru-3

EU
a EM ESum δ[%] η[%] EU EM ESum δ[%] η[%] EU EM ESum δ[%] η[%]

Ad-hoc 28.1 181.2 209.2 - 37.5 31.0 174.4 205.4 - 32.0 34.1 174.5 208.6 - 28.5

Min-memory 33.9 152.3 186.2 11.0 33.0 32.9 152.2 185.2 9.8 29.7 34.1 152.4 186.5 10.6 27.0

Greedy 9.3 159.0 168.3 19.6 61.5 9.8 158.8 168.6 17.9 53.0 8.2 155.8 163.9 21.4 47.5

Taboo 10.3 155.6 165.8 20.7 55.3 12.8 152.4 165.3 19.5 40.7 10.9 152.6 163.5 21.6 38.2

aThe unit of energy is mJ.

As the baseline, an Ad-hoc design method8 is served as the reference. The
minimal memory requirements (Min-Memory) technique in [87] does not have
constraints on the energy consumption of the whole, but only optimize the de-
sign in memory usage. Both heuristic Greedy and Taboo [25] search are imple-
mented in the design exploration flow for design optimizations based on customiz-
able voltage-frequency levels and memory sizes. The termination criteria of both
methods are a specified number of iterations, e.g., 10 iterations, during which the
objective function Eq. 3.6 has no improvements on its value.

Within all the workloads, the computation schedules on multiple processors
achieved by the design options with different methods are shown in Figure 3.11.
Being aware of the global timing, the schedules modeled in different clock domains
are elaborated on a normalized time axis. Each processor µpi corresponds to the
processor on the tile marked with i in Figure 3.10. In addition, the computations
on all the µp4_n (0 6 n 6 9) in the pipeline stage 4 are symmetrical and have the
same scheduling behaviors. Only one sample is used in this stage to evaluate the
system energy and processor computation efficiency. All the design options meet
the application throughput requirements. The heavier the workload is, the denser
the periodic execution pattern is. The design options, which require the processors
to run at a relatively lower frequency, get the higher computation efficiency(the
average executing ratio in the processor schedules), as shown in the η columns of
Table 3.2.

The results of the experiments, to deliver a specified amount of application
output data in the periodic schedules, are summarized in Table 3.2, in which δ

8From 100 randomly selected design choices with satisfied application throughput, the one with
median energy consumption is chosen as the Ad-hoc design option, similar to the approach Hu et
al. [49] adopts.
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denotes the energy saving ratio achieved by each other design method according
to the Ad-hoc approach. In all the experiments, the heuristics methods get the
optimized design option in 103 searches, which is trivial compared to the searching
space, i.e., > 5 × 109. Analyzing the experiments the following results can be
derived:

1. With minimal memory usage, the Min-Memory method consumes the small-
est memory energy EM . However, it ignores the customizability of proces-
sors, and achieves only a limited energy saving at around 10%.

2. Higher computation efficiency η does not always mean higher system en-
ergy efficiency ESum . Instead, an energy efficient design assigns the mini-
mum energy budget on both processor and memory modules with a properly
pipelined parallelism. For example, in workload Thru-2 of Table 3.2 Taboo
gets the η of 40.7%, which is lower than 53.0% of Greedy, but its design
option is more energy efficient in ESum (3.3 mJ less).

3. The proposed design flow with Greedy search shows the energy savings δ
at around 19%. Furthermore, using the proposed design flow with Taboo
search, which could escape from the local optima in the searching space,
even better solutions at 21% can be found.

It is concluded that the proposed design flow with the Taboo search takes the
advantage of the customizable computation and storage modules, and can be used
to design energy efficient streaming applications with guaranteed throughput on
MPSoCs.

3.7 Concluding remarks

This chapter proposes an energy efficient design exploration flow for streaming
applications with guaranteed throughput on MPSoCs. Both application throughput
analysis and system energy calculation have been carried out on a multi-clocked
synchronous MoC framework. Instead of only analyzing the memory efficien-
cies or processor utilizations, the design intent is to minimize the overall energy
cost. The degrees of customizability of both processor voltage-frequency levels
and memory sizes have been leveraged to investigate the minimal energy consump-
tion of streaming applications. High system energy efficiency is achieved without
losing throughput guarantees, as illustrated in experiments.
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The investigations suggest that focusing on either best memory efficiencies or
processor utilizations is more likely to result in less optimized implementations.
Using the heuristic Taboo search, better solutions in terms of total energy cost can
be found, which is also supported by experiments.



CHAPTER 4

CONSTRAINT BASED

SCHEDULING WITH BUFFER

MINIMIZATION

The current trend toward systems-on-chip (SoCs) consisting of several modules
of processor, custom circuit and memory (e.g., the hybrid CPU/FPGA architec-
ture [5]) makes the global analysis of heterogeneous software/hardware (SW/HW)
systems essential. Streaming applications based on synchronous data flow (SDF)
model has been widely used to model and analyze streaming applications on single-
/multi-processors [60, 61].

To map the tutorial example application model (see Figure 2.1) onto the hybrid
CPU/FPGA architecture below, as illustrated in Figure 4.1, process pi and pk are
implemented as SW and scheduled sequentially by the real-time operating system
(RTOS) on the same CPU, and process pj is implemented as HW custom circuit.
The computation modules (both SW and HW) communicate via dedicated FIFO
channels for data buffering. Needless to mention, the general architecture platform
considered may have multiple CPU or custom circuit modules.

Due to the static nature of SDF models, sophisticated algorithms can be used to
compute optimized schedules at compile-time. This chapter proposes a constraint
based scheduling methodology for real-time streaming applications with minimal
buffer requirements on such a hybrid SW/HW platform.

41
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Figure 4.1: The example application (see Figure 2.1) mapped onto a hybrid
CPU/FPGA architecture.

4.1 Related work

Lee and Messerschmitt [60] present techniques to construct periodic admissible
sequential schedules (PASS) on single-processors or periodic admissible parallel
schedules (PAPS) on multi-processors. Later, Bhattacharyya et al. [12] have taken
buffer minimization into consideration using heuristics in PASS (but not PAPS)
construction.

To provide timing guarantees, Govindarajan et al. [42] and Stuijk et al. [87]
exploit a timed-SDF model1. Govindarajan et al. address the buffer minimization
of SDF applications to obtain schedules with maximal throughput. Furthermore,
Stuijk et al. investigate the buffer minimization of applications upon different spec-
ified throughput requirements. Nevertheless, neither of the techniques considers
the computation resource constraints when multiple processes mapped onto a sin-
gle processing element (processor), and can handle the global optimization of both
sequential SW (RTOS) and parallel HW scheduling on a hybrid CPU/FPGA archi-
tecture.

The proposed constraint formulation in this chapter is close in spirit to the work
in [42], in which the authors establish their linear constraints based on process start
execution time and data dependency. However, they relax the integer constraints on
buffer sizes (the integer formulation is NP-complete) in implementation to utilize

1To analyze timing related properties, the timed-SDF model is a timed extension to the regular
untimed SDF model in [60].
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the efficiency of linear programming. It is argued to dimension the correct minimal
buffer requirement. Furthermore, they use heuristics to estimate buffer requirement
before a valid schedule is found, and need iterations to finalize the scheduling. In
this chapter, the proposed constraint based scheduling framework constructs the
event models as cumulative functions on the number of tokens in data streams,
similar as in [23]. The streaming application execution semantics on a limited
number (less than the number of processes) of processing resources and design
concerns on throughput requirement, buffer properties and scheduling decisions are
globally captured as a constraint satisfaction problem with composable constraints.
The constraint solver (Gecode) is utilized to solve the NP-complete scheduling
problem [31], without the relaxation of integer variables.

In [67], Madsen et al. validate the sanity of several existing scheduling poli-
cies (rate monotonic and earliest deadline first) of the multi-processor RTOS on a
SystemC model. However, a systematic way to explore and find out an optimal
schedule according to the required throughput is still an open issue.

The author aims to provide buffer minimized schedules for real-time SDF
streaming applications on hybrid CPU/FPGA architectures. Different from all
the previous work mentioned, this chapter focuses on describing the constraint
based scheduling problems in a declarative way, and apply the existing successful
constraint optimization techniques [32] for problem solving. The optimal sched-
ules found have preserved sanity and minimized buffer requirement.

4.2 Motivation

The work in this chapter is motivated by several schedules with varying buffer
requirements and throughput guarantees.

4.2.1 Schedules with varying buffer requirements

Here, the example application in Figure 4.1 is instantiated with computation la-
tency list T = [1, 4, 2] and process input/output token numbers ni,j = 1, mi,j = 2,
nj,k = 3 and mj,k = 1. Thus, the process repetition vector (see Section 2.1.1)
is < ri, rj , rk >=< 2, 1, 3 > for the instance of the example application. It is
assumed that there are some initial tokens in buffers FIFOi,j and FIFOj,k, which
are denoted as B0

i,j = 2 and B0
j,k = 0 respectively.

Using the application to architecture mapping as shown in Figure 4.1, three
valid periodic schedules are illustrated in Figure 4.2. Figure 4.2a is the PAPS [60]
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Figure 4.2: Comparison of different schedules of an instance of the example ap-
plication, in which pi and pk are mapped onto the same processor and can only be
scheduled sequentially.
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with unroll factor2 J = 1. As the schedule advances to time tag 10, the application
encounters the same status lists as at time tag 0 (i.e., T ′10 = T ′0 and Γ′10 = Γ′0),
and enters a periodic phase. The periodic phase has length Lperiod = 10, in which
the sink process pk always runs 3 times. Consequently, the schedule guarantees an
average output throughput ρout = 3·mj,k

Lperiod
= 3

10 at process pj and requires buffer
storage Γ = [4, 3], which are the maximum buffer usages at each FIFO.

However, a periodic parallel schedule (not the PAPS in [60]) with minimized
buffer (i.e., Γ = [2, 4]), which guarantees the same throughput ρout = 3

10 , does
exist in Figure 4.2b. Furthermore, a schedule with 10% higher throughput guaran-
tee ρout = 3

9 can still be achieved in Figure 4.2c, which has the same buffer cost
Γ = [3, 4].

Although the application throughput can be improved by increasing J in PAPS,
the implementation cost of the periodic phase and buffer requirement both increase
accordingly (see the case study in Section 4.6), and a systematic way is still lack-
ing [60]. This chapter intends to construct optimal schedules systematically with
minimal buffer requirement and higher throughput guarantees.

extended τ

YES

Output Γmin

Constraint based
scheduling

Periodic phase
checking

feasible?
Is

periodic?
Is

revise
Application and

specifications
architecture

NO YES NO

τ = τ + ∆τ

Figure 4.3: Generic constraint based scheduling work flow.

2The iteration number of the repetitive vector patterns.
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4.3 Work flow

In Figure 4.3, a generic scheduling work flow is proposed. The work flow in-
puts are the application and architecture specifications, e.g., the application model,
specified application and architecture mapping, required throughput, an initial time
period τ considered for scheduling. It is generic from the sense that it can be used
for different design purposes with customizable constraints and objectives.

The work flow can be described as follows.

Step 1: When the constraint based scheduling problem is feasible, a pending
schedule with minimized buffer is got; otherwise, the specifications need
to be revised (which is out of the scope of this thesis).

Step 2: The throughput guarantees are checked for the pending schedule (whether
a periodic phase could be found). If the throughput guarantee or maximum
execution time is met, it stops and outputs the valid schedule with mini-
mal buffer sizes Γmin ; otherwise, it increases the considered τ with ∆τ and
goes back to Step 1.

Apparently, only when the throughput guarantees are met in Step 2, the output
results are valid. The initial values of τ and ∆τ are application dependent and
are given empirically. In this chapter, this work flow is adopted for streaming
applications scheduling with minimal buffer and throughput guarantees.

4.4 Streaming application scheduling

In this section, the event models for streaming data flows are illustrated. Sub-
sequently, constraint based scheduling problems are formalized. The time tag t in
the following formulation is discrete numbers with t ∈ N0, when it is not otherwise
clarified.

4.4.1 Event models

The data stream s is captured as a timed indexed synchronous signal as defined in
Section 3.4.1. The event models are constructed as cumulative functions on the
number of tokens in data steams, i.e., only the number information of the symbolic
tokens is considered in performance analysis but not their values.
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Without loss of generality, the input/output workloads of each communication
channel and the processing capabilities of the computation processes are charac-
terized based on the example application in Figure 4.1 as follows.

Definition 1. (Arrival function) The arrival function Ri,j(t) of the communication
channel chi,j is defined as the sum of tokens arriving from the input data stream
during the time interval [0, t], t ∈ N0.

For instance, Ri,j(t) =
∑t

0 s1 in Figure 4.1.

Definition 2. (Output function) The output function R′i,j(t) from process pi to the
communication channel chi,j equals to the arrival function Ri,j(t) of chi,j .

For instance, R′i,j(t) =
∑t

0 s1 = Ri,j(t) in Figure 4.1. This equivalence forms
the basis of compositional analysis for cascaded processes.

Definition 3. (Service function) The service function Ci,j(t) of the communication
channel chi,j by process pj is defined as the sum of tokens served and removed from
the buffer FIFOi,j via the data stream by pj during the time interval [0, t], t ∈ N0.

For instance, Ci,j(t) =
∑t

0 s2 in Figure 4.1.

4.4.2 Buffer properties

While a process is executing, the extra buffer space reservation in scheduling test
(see the schedule in Section 2.1.2) can be modelled with the demand function:

Definition 4. (Demand function) The demand function Di,j(t) of the communi-
cation channel chi,j is defined as the sum of R′i,j(t) and the demanding space
di,j(t) at time tag t on FIFOi,j from the producer process pi, i.e., Di,j(t) =
R′i,j(t) + di,j(t), di,j(t) ∈ {0, ni,j}.

For instance,

Di,j(t) =
{ ∑t

0 s1 + ni,j if pi is executing∑t
0 s1 if pi is stalling

in Figure 4.1.
A graphical interpretation of the definitions of Ri,j(t), Ci,j(t) and Di,j(t) is il-

lustrated in Figure 4.4, which is consistent with the schedule in Figure 4.2a. R′i,j(t)
is ignored for its equivalence to Ri,j(t) (see Definition 2).

Consequently, the following buffer properties can be derived.
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Figure 4.4: Cumulative functions and buffer properties for the PAPS in Figure 4.2a.

Property 1. (Backlog) The backlog Bi,j(t) (tokens arrived but not yet served) in
buffer FIFOi,j is the vertical distance between Ri,j(t) and Ci,j(t) plus an offset of
the initial buffer tokens B0

i,j at time tag 0.

Bi,j(t) = Ri,j(t)− Ci,j(t) +B0
i,j , ∀t ∈ N0 (4.1)

Property 2. (Buffer usage) In scheduling, the buffer space in useB′i,j(t) for FIFOi,j

(equals toBi,j(t)+di,j(t)) is the vertical distance betweenDi,j(t) andCi,j(t) plus
an offset of the initial buffer tokens B0

i,j at time tag 0.

B′i,j(t) = Di,j(t)− Ci,j(t) +B0
i,j , ∀t ∈ N0 (4.2)

4.4.3 Streaming application execution semantics

Based on the definitions and properties above, a full list of constraints to formal-
ize the execution semantics of SDF streaming applications are listed out as fol-
lows. These constraints hold during the whole life-time of streaming applications
(∀t ∈ N0). Meanwhile, the designers can specify some specification dependent
parameters, e.g., the initial (tokens) offset B0

i,j for B′i,j .

Constraint 1. (Token ratios) For process pj , the static input and output token rate
ratios can be formalized by R′j,k(t) and Ci,j(t) as the following.

R′j,k(t) ·mi,j = Ci,j(t) · nj,k (4.3)



4.4. STREAMING APPLICATION SCHEDULING 49

Constraint 2. (Computation latency) Process pj has computation latency tC,j in
each execution instance.

Ci,j(t+ tC,j)− Ci,j(t) = mi,j ·Kj(t+ tC,j) (4.4)

Dj,k(t+ tC,j)−Dj,k(t) = nj,k ·Kj(t+ tC,j) (4.5)

where Kj(t+ tC,j) ∈ {0, 1}

in which Kj(t + tC,j) denotes the incremental properties of Ci,j(t + tC,j) and
Dj,k(t+ tC,j), i.e., Kj(t+ tC,j) has value ‘1’ if process pj finishes one instance of
execution exactly at time tag t+ tC,j , otherwise it has value ‘0’.

Constraint 3. (Space reservation) In the communication channel chj,k, the de-
mand function of process pj reserves vacant space tC ,j slots in advance, which
corresponds to the semantics that the process can only execute when there are
enough space in output-size FIFO(s).

Dj,k(t) = Rj,k(t+ tC,j) (4.6)

Constraint 4. (Asynchronous buffer) The incoming tokens in buffer FIFOi,j takes
at least tC,j slots to be served by process pj , which models the buffering behavior
determined by the consumer process(es).

Ri,j(t)− Ci,j(t+ ∆t) > 0, ∀∆t ∈ [1, tC,j ] (4.7)

Constraint 5. (Buffer requirement) The buffer size γi,j of buffer FIFOi,j meets
the maximum buffer space requirement, which guarantees a conservative buffer
dimensioning.

γi,j > B′i,j(t) (4.8)

4.4.4 Resource limits and throughput requisites

Instead of describing the actual algorithms (the how) used to find the solution,
the declarative method in this chapter formalizes the properties (the what) of the
desired solution as constraints.

Constraint 6. (Sequential execution) In a set of processes Pa mapped onto the
same processor CPUa, at any time at most one can execute (sequentially) accord-
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ing to:

∑
pj∈Pa

Wj(t) ∈ {0, 1}. ∀t ∈ N0 (4.9)

where Wj(t) = max(Li,j(t), Li,j(t+ ∆t)), ∀∆t ∈ [1, tC,j ]

Li,j(t+ 1) = Ci,j(t+ 1)− Ci,j(t)
mi,j

∈ {0, 1}

in whichWj(t) denotes the computing or stalling 1-0 status of process pj (different
from the fine-grained process status exemplified in Figure 4.2), Li,j(t+ 1) denotes
the incremental properties (step) of the service function Ci,j(t + 1 ).

In scheduling, a predetermined application throughput needs to be met and
guaranteed, as formalized in Constraint 7 and 8.

Constraint 7. (Application output throughput) After a transient phase τ0 (τ0 > 0)
with no stable output tokens, a specified output throughput ρout should be sustained
at the application sink process pj , which is guaranteed by a periodic phase (see
fig 5.1) with length Lperiod .

Cj,k(τ0 + c · Lperiod)− Cj,k(τ0) = c · J · rk ·mj,k, (4.10)

Lperiod = dJ · rk ·mj,k

ρout
e, J ∈ N\{∞}, c ∈ N0

in which c specifies the iteration number of periodic phases, rk is the repetition
firing rate of process pk (see Eq. 3.1), and J (called unroll factor) denotes how
many cycles processes fire as stated in the repetition vector in one periodic phase.

For a consistent SDF streaming application, a periodic phase in its schedule al-
ways exists (see Section 3.4.4). The required application throughput is guaranteed
by the periodic properties during this period. However, the problem to determine
the length of Lperiod which can provide optimal buffer cost in this formulation
is NP-complete itself. Its length is determined by a designer specified J , and an
incremental q leads to an increasing Lperiod .
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Constraint 8. (Periodic phase) The repeated process and FIFO status at time tag
t′ and t′ + Lperiod determines a periodic phase between them with length Lperiod .

B′i,j(t′) = B′i,j(t′ + Lperiod), ∀FIFOi,j (4.11)

W ′j(t′) = W ′j(t′ + Lperiod), ∀pj (4.12)

where W ′j(t′) =
tC,j∑
k=1

k · Ci,j(t
′ + k)− Ci,j(t′ + k − 1)

mi,j

in which variables W ′j(t′) and W ′j(t′ + Lperiod) are process status (denoted as
numbers for each process in Figure 4.2).

In implementation, Constraint 7 and 8 can only guarantee that the buffer cost
is minimized (optimal) using the given length of Lperiod . On the other hand, the
length of Lperiod can be pre-specified (if validly) by the designer, which corre-
sponds to the cost to implement a periodic static schedule.

The scheduling objective is to find the minimal total buffer sizes, subject to
the corresponding Constraint 1 - 8, as the following.

min : γSum =
∑

∀FIFOi,j∈F
γi,j (4.13)

in which F is the set of the buffers being considered and γi,j is the size of buffer
FIFOi,j .

4.4.5 Extension to MIMO and cyclic models

The proposed formulation does not take into account models with multiple input
and multiple output (MIMO) processes or cyclic models. However, the extension
of the proposed reconfiguration analysis methodology to such models is intuitive.
Without loss of generality, the MIMO process pj in Figure 4.53 is used for illustra-
tion.

For MI channels chi,j and chl,j of process pj , the service functions are associ-
ated with each other caused by the static input data token rate mi,j and ml,j of the
same consumer process pj . They have the linear relations as follows.

3For clarity in the graph, the FIFO modules on communication channels are omitted. Also, a
number of dots are used to denote the initial buffer token numbers.
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Constraint 9. (MI linear relation)

Ci,j(t)
mi,j

= Cl,j(t)
ml,j

(4.14)

Similarly, the MO channels chj,k and chj,l have the linear relations on the out-
put and demand functions according to output data token rate of the same producer
process pj as follows.

Constraint 10. (MO linear relation)

R′j,k(t)
nj,k

=
R′j,l(t)
nj,l

,
Dj,k(t)
nj,k

= Dj,l(t)
nj,l

(4.15)

pj

mj,l

nl,j

pl

nj,l
chj,l

chl,jni,j
ml,j

mi,j

pk

nj,k
mj,k

chj,k

chi,jpi

Figure 4.5: A cyclic MIMO application model.

A MIMO model can be analyzed by traversing it with a set of paths, where
each path is a sequence of communication channels such that the output channels
of a process always succeed its input channels.

A set of paths are complete only when all the communication channels are
covered. For instance, the paths (“chi,j → chj,k” and “chj,l → chl,j”) in dashed
lines complete the MIMO model in Figure 4.5. Based on the complete set of paths,
the scheduling methodology fits the MIMO application models well.

For directed cyclic graphs as shown in Figure 4.5, the data tokens required for
loop initialization can be explicitly captured as the initial token offsets in Eq. 4.1
and 4.2. For instance, two initial tokens of communication channel chj,l are de-
noted as B0

j,l = 2 and the actual backlog of chj,l is Bj,l(t) +B0
j,l.
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4.5 Constraint programming techniques

Inspired by the success of solving NP-complete problems with constraint program-
ming techniques, the proposed constraint base scheduling framework has been im-
plemented on a public domain constraint solver Gecode4 [32], which is a C++
library.

Both the SDF execution semantics and the scheduling problem on the hybrid
multiprocessor/FPGA are encoded. Especially, some modeling techniques have
been conducted to improve the computation efficiency in solutions finding:

• Domain and constraints reduction. A lower bound for any FIFO [36] can
be computed as

ni,j +mi,j − gcd(ni,j ,mi,j) +B0
i,j mod gcd(ni,j ,mi,j) (4.16)

to prune infeasible (dead-lock) variable value domains. Furthermore, al-
though t ∈ N0 holds for all timing related constraints, we only implement
and evaluate them in time period [0, τ0 + Lperiod ] once periodic phase is
found.

• Branching and exploration. To construct the search tree, the branching
variables are prioritized as follows: γSum , γi,j , and Ci,j . Empirically, the ex-
ploration starts with minimal values for all variables, which also guarantees
that the first solution found has minimized buffer cost γSum .

4.6 Case study

To evaluate the potential of the proposed methodology, an application of voice-
band data modem [61], which has 9 processes and 11 FIFOs, is used in the case
study. The application model with customized specification parameters is illus-
trated in Figure 4.6.

The experiments start from a manual mapping from the application to a multi-
processor CPU/FPGA architecture. The labeled processes in the application model
are partitioned and mapped onto multi-processors, i.e., p0 and p2 mapped onto
CPU 1, and p3 and p5 mapped onto CPU 2. The rest processes are mapped onto
parallel executing custom hardware.

4In the left chapters, Gecode has been used as the constraint solver as well.
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Figure 4.6: The modem application partitioned for a multiprocessor/FPGA archi-
tecture.

The proposed Constraint based Minimal Buffer Scheduling (CMBS) method-
ology is implemented on the public domain constraint solving toolkit Gecode [32],
which is a library written in C++. CMBS is compared with the reference schedul-
ing method, a trivially customized PAPS 5. To make this comparison more rea-
sonable, the reference PAPS method is implemented in C++ as well and run both
methods on the workstation for experiments (see Section 1.3) to solve the schedul-
ing problems for the modem application. However, both the implementations of
the reference PAPS and the constraint based scheduling on Gecode solver are not
parallelized, only one core is actually utilized.

The experimental results are shown in Table 4.1, which compares and quan-
tifies the buffer requirement and the experimental execution time achieved by the
schedules using PAPS and CMBS.

For PAPS, the application throughput may be improved by increasing the unroll
factor J , i.e., the cases from #1 to #6. Correspondingly, the results of CMBS are
reported with some competitive throughput (no less than in PAPS).

However, the implementation cost of the periodic schedule increases with higher
J and it is still in lack of a systematic way to find a finite J [60] yielding an optimal
schedule. J is simply increased by 1 each time until the throughput improvement
is negligible (i.e., less than 1e-4 to the throughput at J = 1), which is the ‘optimal’

5Instead of each process being scheduled onto any of the computation resource, a fixed mapping
is adopted, i.e., a process can only be scheduled onto a particular CPU or custom circuit. This
customization makes PAPS (proposed in [60]) fit the hybrid CPU/FPGA platform.
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Table 4.1: Comparison of scheduling methods.

PAPS CMBS

J throughput buffer timea throughput buffer timea

#1 1 4.8e-2 26 13 4.8e-2 23 270
#2 2 6.1e-2 29 16 6.3e-2 23 230
#3 3 6.7e-2 31 21 6.7e-2 23 240
#4 6 7.4e-2 32 26 7.4e-2 23 195
#5 8 7.6e-2 35 34 7.7e-2 23 190
#6 22 8.1e-2 49 61 8.3e-2 24 190
#7 100 8.3e-2 127 4202 9.1e-2 24 170

a It is the execution time (ms) in solutions finding.

case #7 of PAPS with J = 100. In case #7 of CMBS, the results achieved by a
schedule with the maximal throughput guarantees are reported.

From the experimental results, some observations made are summarized as
follows.

• CMBS always requires less buffer storage space upon the equivalent application
throughput guarantees.

• In some case (when required throughput is high), CMBS can achieve higher
throughput guarantees than PAPS with much less buffer requirement. For in-
stance, in case #7 CMBS requires 19% of buffer storage demanded by PAPS
but gets 8% higher throughput guarantees.

• CMBS is more flexible to meet the vary required throughput guarantees. How-
ever, the throughput guarantees of PAPS are determined by the chosen J , which
has quite limited options.

• The execution time in CMBS is not sensitive to different throughput guarantees.
In fact, when the throughput requirement is higher, the timing of constraint based
analysis is shorter and might lead to less execution time. On the contrary, the
execution time of PAPS increases fast when J and throughput are relatively
higher.

• PAPS is faster in execution time when J is relatively small. However, CMBS
surpasses PAPS upon higher throughput requirement, e.g., in case #7.
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4.7 Concluding remarks

This chapter has studied the problem of constructing schedules for real-time stream-
ing applications with minimal buffer requirement on hybrid CPU/FPGA architec-
tures. The problem has been formalized declaratively as constraint base schedul-
ing, and can be effectively solved by constraint solvers. The experimental results
show that the proposed CMBS methodology performs significantly better than the
traditional PAPS method in terms of buffer requirement. It is also flexible in the
sense that it can be used to construct schedules to guarantee the required (feasible)
throughput.



CHAPTER 5

GLOBAL SCHEDULING ON NOC
BASED MPSOCS

Nowadays, multiprocessor systems-on-chip (MPSoCs) are very popular comput-
ing platforms for modern embedded systems [100]. To explore the large number
of cores built-in, network-on-chip (NoC) communication has been widely used to
manage the parallel processing architecture in a scalable manner [26, 40, 68, 90].
While the NoC based MPSoCs enable distributed processing, it is extremely chal-
lenging to handle the global computation and communication scheduling of em-
bedded concurrent streaming applications, when different concerns need to be
taken into account, e.g., processor availability, interconnection bandwidth, and
buffer space.

Given one instance of the tutorial example (see Section 2.1.1) with specified
token rates in Figure 5.1(a), it is then allocated it onto a dual-processor architec-
ture, as illustrated in Figure 5.1(b). Each process px has a worst case execution
time (WCET) tC,x, and each channel chx,y is implemented as finite FIFO buffer
with token storage γx,y. The hard real-time inter-processor communication latency
is captured by an identity process pδ with delay tC,δ. While processes are enabled
when they have enough input data tokens and output buffer space, pi and pj can
only be scheduled sequentially in one single processor µp1. The scheduling prob-
lem on such kind of multi-processors with resource constraints has been known to
be NP-complete [31]. Recently, heuristic algorithms have been proposed to pro-

57
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vide predictable performance on MPSoCs [88, 29], yet as argued below, they may
lead to sub-optimal solutions.

Motivation. Let pi and pj to be scheduled with a heuristic time-division
multiple-access (TDMA) scheme [88], as marked horizontally on the timeline in
Figure 5.1(c-1). Each process is not allowed to fire only when it is enabled, but it
should also be the process which gets the allocated TDMA time slots. Accordingly,
a schedule is built below. The running processes on each processor and the FIFO
usage are listed out vertically. At time tag 0, pi starts the execution and requires
space 1 for one output token on FIFOi,j . At time tag 1, pi finishes the previous
firing, outputs 1 result token, and starts a new firing. As the scheduling evolves,
pδ and pk execute once they are enabled, and pi and pj are scheduled in TDMA
scheme. However, the TDMA assigned processes can be stalled, when they violate
resource constraints (bounded buffer capacities or no enough input tokens). For
instance, pj is stalled (γj,δ = 3) at time tag 5, and so is pi (γi,j = 2) at time tag
6 and 7. From time tag 2 to 7, the schedule enters a periodic phase with length
Lperiod = 6, in which the application throughput is guaranteed by process firing
patterns. On the other hand, in Figure 5.1(c-2), another optimized schedule exists
without using TDMA scheme in µp1. A 50% throughput gain in this proposed op-
timized cyclic static schedule is observed, i.e., Lperiod = 4, on the same platform.

Although TDMA-like or list scheduling heuristics can be used to design pre-
dictable distributed systems [88, 29], they have the following drawbacks:

• They can not avoid the overhead in time slots allocation, which degrades
application performance (Section 5.4);

• They are in lack of global optimization mechanisms on MPSoCs, where nu-
merous processors or communication links are concurrently shared by dif-
ferent processes.

As the contribution in this chapter, the author proposes a new scheduling
framework on MPSoCs to build global schedules for both processors computing
(process execution) and communication transactions (real-time traffic-flow). While
buffer cost is minimized, a high predictable application throughput is guaranteed
based on optimized computation and contention-free routing.

5.1 Related work

Eles et al. [29] first address the scheduling on distributed systems with communi-
cation protocols optimization. With optimized bus accessing, application through-
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Figure 5.1: Allocation and scheduling of an illustrative application. (a) an il-
lustrative application; (b) application instance allocated onto buffer constrained
dual-processor; (c-1) Scheduling with TDMA scheme on µp1; (c-2) Throughput-
optimized scheduling.
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put is maximized based on list scheduling (heuristic order) for task graph mod-
els. While task graphs can be viewed as special cases of acyclic SDF models
with no overlap between different iterations of execution, buffer cost has not been
addressed as resource constraints. In [88], Stuijk et al. propose a mapping and
TDMA/list scheduling design flow for throughput constrained SDF applications
on MPSoCs. As both papers are based on heuristic TDMA or list scheduling, it is
argued that there is a lack of global optimization on performance metrics, e.g., the
application throughput as motivated in Figure 5.1(c-1).

Inspired by the success of (model-checking, SAT and constraint programming)
techniques in solving NP-complete problems, Geilen et al. [36] first use model-
checker to determine the minimal deadlock-free buffer cost to schedule SDF mod-
els (no computation constraints). Liu et al. [65] use SAT-solver to explore the
mapping and scheduling of homogeneous SDF (HSDF) models However, a regu-
lar SDF model must be transformed (expanded) to a HSDF model to apply their
techniques1, which dramatically increases the problem size [84]. Constraint pro-
gramming tools are used as well in the scheduling of task graphs on MPSoCs,
without violating computation capacity and communication bandwidth [10, 45]. In
chapter 4, constraint based paradigm has been proposed for SDF models schedul-
ing on hybrid CPU/FPGA platforms, in which communicate happens via dedi-
cated (not shared) FIFO channels with ignored delay. Yet, all the work above does
not consider the global optimization of distributed computing and communication
transactions on MPSoCs.

5.2 Architecture platform

The cornerstone of streaming applications with predictable performance is the ar-
chitecture platform with deterministic real-time properties. In this chapter, the ar-
chitectural template is the regular 2-D mesh tiled MPSoCs (see Section 2.2.1) with
the communication happens via hard real-time networks-on-chip (NoCs). Never-
theless, the design method to be proposed is not limited to this particular platform.

As exemplified in Figure 5.2, each tile tilen (n ∈ N0) consists of a processor
(µpn), an application memory, a token buffer buffern , and a network interface (NI).
tilen is labeled as (xn, yn) in the mesh topology, where xn and yn correspond
to the row and column indexing numbers respectively. The work starts with a
fixed allocation from processes to tiles. Hence, all application memory modules

1In [65], models contain up to 30 HSDF processes have been considered, but the equivalent
HSDF H263 model in our experiments (Section 5.4) has 4754 processes.
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Figure 5.2: A 3× 3 regular mesh MPSoC architecture.

are pre-specified on the mesh. Preferably, the work is on the analysis of routing,
scheduling, and buffer properties for the dashed modules in Figure 5.2, i.e., NoC
switches, processors, and token buffers.

Tiles are connected to the communication network through switches (s), and
communicate with each other via unidirectional communication links.

5.3 Constraint based scheduling

The binding of streaming applications onto the target MPSoC architectures is a re-
finement process with real-time requirement and resource limitations. For stream-
ing applications with real-time constraints, the efficient execution means the stream-
ing services are delivered on-demand to the end-user, neither too fast nor too slow.
Thus, a predetermined application throughput needs to be guaranteed, as formal-
ized in Chapter 4 (see Constraint 7 and 8).

In this section, the constraint based formulation is used to model the left appli-
cation scheduling process, which includes architecture mapping, communication
routing, flow control, and computation scheduling. As each (acyclic or cyclic)
SDF model can be decomposed into a set of concurrent producer-consumer pairs,
the problem is analyzed and formalized based on a general producer-consumer
processes pair, as illustrated in the upper part of Figure 5.3.

5.3.1 Mapping

To be aware of the pre-specified mapping decisions, two sets of variables: α and ω
are used. A boolean variable αi,µpn denotes the presence of pi on a processor µpn.
Assuming that different instances of a process can only execute on one dedicated
processor, this single residence constraint can be formalized as the following.



62 CHAPTER 5. GLOBAL SCHEDULING ON NOC BASED MPSOCS

Figure 5.3: A template of refined producer-consumer pair, in which ωi,j denotes
whether channel chi,j is implemented as intra-processor communication.

Constraint 11. (Single residence) Each process pi needs one (and only one) spec-
ified processor for computation.∑

µpn∈U
αi,µpn ≡ 1, ∀pi ∈ P (5.1)

in which P is the set of processes in application models, and U is the set of proces-
sors in the architecture platform.

Redundantly, a boolean variable ωi,j denotes how a channel chi,j is imple-
mented, as illustrated in Figure 5.3. When ωi,j = 0, pi and pj are mapped onto
different processors (µpn and µpm), chi,j is implemented as inter-processor com-
munication with buffers FIFOi,δ and FIFOδ,j , and the hard real-time communi-
cation is captured by process pδ with bounded latency tC,δ and without packet loss
(mi,δ = nδ,j). Otherwise, ωi,j = 1, pi and pj are mapped onto the same tile,
and the intra-tile communication chi,j is implemented as FIFOi,j with ignorable
latency. Processors in the architecture platform are homogeneous in the sense that
they are the same type and each pj has the same WCET tC,j being mapped onto
any processors. ωi,j can be defined as the following.

Constraint 12. (Correlated mapping decision) To be correlated with αi,µpn and
αj,µpm , ωi,j denotes whether pi and pj are mapped onto the same processor.

ωi,j = (xn==xm) ∧ (yn == ym), αi,µpn = 1, αj,µpm = 1. (5.2)

Event models based on cumulative functions have been used to capture work-
ing load and pressing capabilities of streaming applications, and accordingly the
execution semantics of SDF models can be formalized (refer to chapter 4). In
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this chapter, the process scheduling status derived from event models needs to be
refined to be aware of the mapping decisions.

Constraint 13. (Mapping & scheduling association) All the processes assigned
to each processor can only execute (be scheduled) sequentially at any time. This
mapping and scheduling association is formalized as:∑

pi∈P
αi,µpnWj(t) ∈ {0, 1}, ∀µpn ∈ U, t ∈ N0 (5.3)

in which Wj(t) denotes the 1-0 (computing or stalling) status of each process pj
(see Constraint 6).

5.3.2 Template based Buffering Analysis

Here, some buffer properties and constraints can be formulated from the event
models and mapping-aware decisions, based on the refined producer-consumer
template in Figure 5.3.

Property 3. (Buffer usage) The buffer usages of FIFOi,δ, FIFOδ,j , and FIFOi,j in
the template (Figure 5.3) at time tag t are denoted as Bi,δ(t), Bδ,j(t), and Bi,j(t)
respectively, which are defined as:

Bi,δ(t) = Di,δ(t)− ¬ωi,j(Ci,δ(t)−B0
i,δ)− ωi,j(Ci,j(t)−B0

i,j) (5.4)

Bδ,j(t) = ¬ωi,jB′δ,j(t) = Dδ,j(t)− ¬ωi,j(Cδ,j(t)−B0
δ,j) (5.5)

Bi,j(t) = ωi,jBi,δ(t) (5.6)

in which B0
i,δ(t), B0

δ,j(t), and B0
i,j(t) are the initial data tokens (at time tag 0) in

each buffer.

Furthermore, the asynchronous behaviors of the buffers, caused by data buffer-
ing or processing latency (computation and communication), are captured as the
following.

Constraint 14. (Asynchronous buffer) The incoming data tokens in buffers take at
least the WCET of the consumer process to be consumed. For buffers FIFOi,δ,
FIFOδ,j , and FIFOi,j in the template (Figure 5.3), the asynchronous behaviors
can be formalized as:

Ri,δ(t) > ¬ωi,jCi,δ(t+ tC,δ) + ωi,jCδ,j(t+ tC,j)−B0
i,δ (5.7)

Rδ,j(t) = ¬ωi,jRδ,j(t) > ¬ωi,jCδ,j(t+ tC,j)−B0
δ,j (5.8)

Ri,j(t) = ωi,jRi,δ(t) (5.9)



64 CHAPTER 5. GLOBAL SCHEDULING ON NOC BASED MPSOCS

Depending on the buffer organization, there are two measures of buffer re-
quirement when different FIFOs are assigned to the same tile (buffer) [36], i.e., the
FIFO implementations of different communication channels are either partitioned
disjointly or sharing buffer space. Accordingly, the buffer requirement of these two
mechanism can be formalized in the following.

Property 4. (Buffer cost – disjoint partition) When FIFOs are organized on each
tile as disjoint buffer partitions, the buffer cost γSum′ in the platform is simply the
sum of individual FIFO sizes.

γSum′ =
∑
i,j,δ

(ωi,jγi,j + ¬ωi,j(γi,δ + γδ,j)), ∀pi, pj ∈ P (5.10)

where γi,j>Bi,j(t),γi,δ>Bi,δ(t),γδ,j>Bδ,j(t), ∀t ∈ N0

in which γi,j , γi,δ, and γδ,j denote the sizes of the disjoint FIFOs in the template
(Figure 5.3).

Property 5. (Buffer cost – shared partition) When FIFOs are sharing space on
each tile, the buffer cost γSum′′ in the platform is the sum of the shared buffer
space on individual tiles.

γSum′′ =
∑
n

γtilen (5.11)

where γtile,n >
∑
i,j

(ai,µpnBi,δ(t) + aj,µpnBδ,j(t)+

ai,µpnωi,jBi,j(t)), ∀pi, pj ∈ P, ∀t ∈ N0

in which γtilen denotes the size of the buffer as one shared partition on tile tilen .

5.3.3 Routing and contention-free flow control

When processes in a producer-consumer pair are assigned to different processors,
routing is needed for the inter-tile data communication. Here, deterministic X-Y
routing is assumed on NoC infrastructure. The bidirectional routing decisions are
capture by two sets of triple-value (±1 and 0) variables βr and βc on the direction
of rows and columns of physical links respectively, i.e., +1 (-1) represents routing
a packet flow on the positive (negative) direction of a link on X or Y axis, and 0
represents no packet flow. βr and βc can be associated with the mapping variables
α in the following.
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comm.

networksn sm

packet injection

packet ejection

on-the-path transmission

Figure 5.4: Three phases to route a packet in inter-tile channel chi,j .

Constraint 15. (X-Y routing) Let βrchi,j ,lk represent the routing decision on a row
link lk between tiles (xk, yk) and (xk + 1, yk), i.e., how channel chi,j is assigned
to lk. The routing on the primary X axis is formalized as:

βrchi,j ,lk
=


+1, xm>xn,yk = yn, ∀xk ∈ [xn, xm);
−1, xn>xm,yk = yn, ∀xk ∈ [xm, xn);
0, otherwise.

(5.12)

∀pi, pj ∈ P, αi,µpn ≡ 1, αj,µpm ≡ 1,m 6= n.

Similarly, the subsequent routing decisions βcchi,j ,lk on column links (Y axis) can be
defined.

When a channel chi,j is assigned to NoC , the communication time needed
depends not only on the number of transferred data tokens but also the dynamic link
bandwidth during the transaction. In hard real-time NoCs, contention-free routing
at the traffic flow level is usually adopted, in which a packet (data token) reserves
a circuit switching before the transmission finishes, e.g., in Æthereal [40]. For one
application flow (channel), the routing of a packet from source tile to destination
tile via NoC switches and links consists of three phases: packet injection, on-the-
path transmission, and packet ejection, as illustrated in Figure 5.4. When different
application flows are sharing the same NoC resources (switches and links), the
packet injections (ejections) congest spatially when multiple producer (consumer)
processes are mapped onto the same tile. Similarly, the on-the-path transmissions
congest when different application flows are sharing the same links. However,
different application flows can be scheduled temporally to avoid the competition
on the same links at the same time. Such kind of contention-free scheduling can be
formalized as the following.

Constraint 16. (Contention-free traffic flow scheduling) When communication chan-
nels are assigned to inter-tile physical links, the packet injection, ejection, and
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inter-tile traffic flow on rows of communication links are scheduled to avoid con-
tention, as formalized in Eq. 5.13, 5.14, and 5.15 respectively.∑

i

αi,µpnWδ(t) ∈ {0, 1}, (5.13)∑
j

αj,µpnWδ(t) ∈ {0, 1}, (5.14)∑
i,j

βrchi,j ,lk
Wδ(t) ∈ {0,±1},

∑
i,j

|βrchi,j ,lk
|Wδ(t) ∈ {0, 1, 2}, (5.15)

∀pi, pj ∈ P, µpn ∈ U, t ∈ N0

with Wδ(t) (see Eq. 4.9) to denote the data transmission 1-0 (working or idle)
status on NoC modeled by pδ. Similarly, the scheduling of traffic flow on columns
of communication links can be formalized as in Eq. 5.15, which is omitted for
clarity.

5.4 Experimental results

The experiments have been done on a few benchmarks to demonstrate how the
proposed Constraint based Minimal Buffer Scheduling (CMBS) approach works
with Gecode solver in practice. First, the effects of scheduling overhead (OH)
which exists in TDMA-like scheduling are evaluated, and then a comparison with
the heuristic PAPS [60] in buffer cost is done.

5.4.1 Evaluation of scheduling overhead

Usually, the predictable time slots allocation in TDMA or list scheduling is mod-
eled by increasing the computation or communication latency with the postponed
time, i.e., the OH is caused by the improper TDMA time wheel allocation before
the computation or communication can happen. Here, the OH is slightly (compared
with [88]) specified as 50% in computation and 100% in communication latency.
The proposed CMBS approach is then used to estimate the best scheduling quality
of heuristics, denoted as CMBS-OH. Two benchmarks from communication do-
mains, i.e., a Modem application from [13], and a Wireless application from [69],
are used. The architecture platform is a 3× 3 mesh-based MPSoC.

Table 5.1 shows the experimental results. Each time two instances of the same
applications are allocated onto the MPSoC empirically with specified throughput
requirement, and the unroll factor J (see Constraint 7) is fixed to 1. The search tree
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Table 5.1: Comparison of scenarios with varying OH (3× 3 platform).

specification SCP-OHa SCP

app. #b thru. req. J γSum′ (γSum′′ ) timec γSum′ (γSum′′ ) timec

Modem
2 3.125e-2 1 -d 352 98(45) 3.0e3
2 1.667e-2 1 98(46) 5.0e3 92(41) 1.4e3

Wireless
2 2.5e-2 1 - 422 121(53) 4.7e4
2 1.7e-2 1 123(49) 6.4e5 120(48) 1.2e3

a 50% OH in computation latency, plus 100% OH in communication latency.
b The number of application instances mapped onto platform.
c The solutions finding time (ms), branched and explored with γSum′ and γ.
d The problem is infeasible.

is branched and explored with buffer storage γSum′ and γtilen , then γSum′′ (Prop-
erty 5) is calculated. Compared with CMBS-OH, CMBS can meet much higher (up
to 87%) throughput requirement, without much increase in buffer cost. Therefore,
it is argued that the OH in heuristic scheduling on MPSoCs can cause performance
degradation. Furthermore, buffer costs measured in γSum′′ show a great reduction
(55∼65%) on γSum′′ . Although, to branch and explore with γSum′′ and γtilen has
the potency to further reduce γSum′′ , it dramatically increase the problem com-
plexity. For instance, using the specification #2 of Wireless, a γSum′′ with value
30 (instead of 49 in Table 5.1) can be found in 3hrs8mins. But all other experi-
ments fail to find a solution in 4 hrs. The memory usages for solutions finding are
in 47∼163Mb. Interestingly, the infeasible cases on both applications take the least
memory usage and time, which is opposed to the model-checking method in [36].

5.4.2 Comparison with PAPS

Here, another performance metrics (i.e., buffer cost), which has not been well con-
strained in heuristics for MPSoCs, is evaluated. A PAPS implemented in C++ is
used as the reference method, which has no buffer constraints, similar as [88, 29].
A fixed ideal delay (no-contention aware) in inter-tile communication is used in the
reference PAPS, as communication protocols was not considered. Three bench-
marks are used, i.e., a Bipartite model [13], a Cd2dat rate converter [13], and a
H263 decoder [88]. The architecture platform is a 2× 2 mesh-based MPSoC.

Table 5.2 shows the experimental results. In CMBS, the search tree is branched
and explored with two types of buffer measurements. The solutions finding time
is reasonable for such a medium problem size. Although a NoC communication
protocol is modeled, CMBS shows a significant buffer saving (6% of PAPS in
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Table 5.2: Comparison of scheduling methods (2× 2 platform).

specification PAPS CMBS

app. # thru. req. J γSum′ (γSum′′ ) time J γSum′ (γSum′′ ) time’(time”)a

Bipartite
1 1.101e-1 3 510(510) 120 3 36(31) 2.6e3(2.3e5)
1 1.096e-1 2 352(352) 50 1 36(31) 1.8e3(1.4e5)
1 1.082e-1 1 194(194) 20 1 36(28) 1.9e3(2.1e5)

Cd2dat
2 2.462e-1 - - - 1 68(34) 1.9e3(4.7e4)
2 1.553e-1 2 2926(1504) 430 1 66(34) 1.8e3(3.3e5)
2 1.550e-1 1 1472(762) 120 1 66(34) 1.9e3(3.3e5)

H263
2 2.103e-4 - - - 1 9512(9506) 9.7e3(2.3e5)
2 2.102e-4 2 19016(19012) 2.0e5 1 9512(9506) 9.5e3(2.3e5)
2 2.101e-4 1 9512(9508) 2.4e4 1 9512(9506) 9.2e3(2.1e5)

a The solutions finding time (ms) branched and explored with two buffer measurements.

the best case), and can provide higher (up to 64%) throughput. Here, the highest
memory usage for CMBS in solutions finding is up to 219Mb, caused by a high
peak depth 440 in its search tree.

5.5 Concluding remarks

This chapter has presented a constraint based scheduling framework for SDF stream-
ing applications on NoC based MPSoCs. Based on constraint programming tech-
niques, the global scheduling for both processors computing and communication
transactions has been achieved. Compared with traditional heuristics scheduling,
the proposed method has higher predictable application throughput and less buffer
cost.



CHAPTER 6

PERFORMANCE ANALYSIS OF

ADAPTIVE SYSTEMS

Partially run-time reconfigurable (RTR) FPGAs, such as Xilinx Virtex-4 [101], are
becoming very popular infrastructures in today’s embedded systems [19]. They
allow part of the hardware tasks to be reprogramed dynamically on the fly while
the remaining part continues its operation without being affected. For a number
of signal processing and multi-media streaming applications, this reconfigurable
property enhances their capability to vary functionalities at run-time in a dynamic
environment with varying demands, which significantly reduces the design cost
while leveraging the ubiquity of embedded systems. Hence, RTR FPGAs can be
used to built cost-effective hardware platform for streaming applications [57], and
deliver high flexibility, besides breakthrough performance. However, this com-
bination of flexibility and efficiency does not come for free. Adaptivity adds an-
other dimension of complexity to the design process, while the system performance
during reconfiguration still needs to be satisfied. Compared with traditional non-
adaptive systems, the reconfigurations in adaptive systems add new challenges in
performance analysis and lead to even more complexity.

An run-time reconfigurable streaming application based on adaptive extensions
on synchronous data flow (SDF) semantics [60] is illustrated in Figure 6.1, which
is used as a tutorial example in this chapter. Besides the regular source and sink
processes pi and pk, there is an adaptive process pj , which has N different working
modes from M1 to MN as illustrated in the dashed box. The mode change is

69
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Adaptitive process

MCR stream

s3s2 s4s1
pi pj pk

chj,kchi,j

mi,jni,j mj,knj,k
FIFOi,j FIFOj,k

ρin

sM,j

ρout

MN

M1

Figure 6.1: A minimal adaptive streaming application model.

initiated by the mode change request (MCR) stream, i.e., sM,j for pj . Each mode
transition circumstance introduces a temporal overhead, during which pj does not
work in either the old or new mode and is thus stalled.

While the stream source pi provides a peak throughput ρin (to the input of com-
munication channel chi,j cutting by the dashed-line), an average output through-
put ρout needs to be guaranteed by the application even during the reconfigura-
tions. Caused by the reconfiguration stalls of adaptive process pj , it is critical that
the backlog tokens in the FIFO(s) between pj and the consumer process(es), the
so called playout buffer(s)1, are sufficient to sustain the application throughput.
Therefore, to exploit the full potential of RTR adaptive systems, special resource
requirement and scheduling techniques are needed when taking the behaviors and
properties of reconfigurations into consideration. This chapter will address per-
formance analysis, without losing throughput guarantees and design efficiency, for
real-time adaptive streaming applications. To the extent of the author’s knowledge,
it is still an open topic, which has not yet been covered by previous work.

6.1 Related work

Formal analysis at design time has been widely used in performance analysis of
heterogeneous embedded systems, such as timing properties validation, buffer di-
mensioning, and scheduling policies optimization. It has been a promising op-

1In the application in Figure 6.1, the playout buffer is FIFOj,k.
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tion to overcome the limitation of simulation methods in incomplete coverage at
corner cases, and can thus provide conservative system properties guarantees. In
SymTA/S [78], a compositional way for scheduling analysis has been presented
based on standard periodic/sporadic event models of data streams. Network cal-
culus [22] and real-time calculus (RTC) [94, 17] are both a collection of methods
in deterministic queuing theories. They formalize the incoming workloads and
processing capabilities as cumulative functions of time, and suit system analysis
of performance guarantees and buffer dimensioning in network domain [15] and
real-time distributed embedded system domain [93, 92] respectively. In the subse-
quent extension of RTC, Chakraborty et al. [18] and Phan et al. [73] present a mode
based RTC to handle the execution dependence between processing resources and
buffers caused by their state information (i.e., the fill-level of buffers and its effect
on processing resources). However, none of them takes adaptive systems into con-
sideration and do not aim at design cost (area) analysis and buffer dimensioning as
the author does.

Schedulability analysis and reconfiguration methods for multi-mode (adaptive)
real-time systems has been studied in [83, 76], where each mode consists of dif-
ferent set of tasks. They develop mode change protocols in mode transition stages,
and exploit analysis techniques to ensure that no deadlines are violated during the
transition periods. For adaptive systems with pre-specified (known at compile-
time) reconfiguration scenarios, they can be modeled and simulated in a similar
way as in [81]. However, this chapter aims at adaptive systems with reconfigura-
tion requests known at run-time. The simulation based way has inherent limitations
to cover the corner cases which have not been simulated. Therefore, it can lead to
too optimistic buffer dimensioning.

Bilsen et al. [14] first present cyclo-static dataflow model, which supports cycli-
cally changing of the number of tokens produced and consumed by processes.
Since the mode changing behavior is predefined at compile-time, static schedules
can be constructed when the necessary and sufficient conditions for scheduling
hold. Furthermore, the buffer requirement is analyzed for cyclo-static dataflow
models according to the specified throughput requirement in [89], similar as in
SDF models [87]. However, the mode changing problem to be addressed in this
paper is more challenging in the sense that the reconfigurations are only known
at run-time (unpredictable at compile-time). Accordingly, the buffer requirement
can be analyzed for specified throughput requirement [89], similar as in SDF mod-
els [87]. Wiggers et al. [98] propose an algorithm to compute sufficient buffer
capacities for task graphs with data dependent execution conditions (consumption
token rate), but they do not consider the run-time overhead between the transition
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of different execution conditions. On the other hand, the adaptive systems to be ad-
dressed in this chapter has more flexibility from the sense that the reconfigurations
are only known at run-time (unpredictable at compile-time). In [91], simulation
based techniques have been introduced for the analysis of different performance
metrics of scenario-aware SDF models with stochastic mode changes. However,
they do not dimension the buffer requirement for RTR applications with throughput
guarantees.

This chapter proposes, in contrast to the existing work, a novel approach for
run-time reconfigurations analysis based on iterative timing phases, and present a
performance analysis framework for adaptive real-time streaming applications on
RTR FPGAs. It is based on the refinement of the author’s previous work [105],
which is a hybrid approach combined integer linear programming (ILP) analysis
and simulation on synchronous model of computation. In the implementation, the
existing successful optimization techniques in constraint programming (CP) do-
main, i.e., Gecode [32] solver, has been exploited for problem solving (to get the
minimal buffer requirement without losing throughput guarantees).

6.2 Reconfiguration preliminaries

In this section, without losing generality, the reconfiguration preliminaries used in
this chapter are defined based on the example application in Figure 6.1.

6.2.1 Definitions and assumptions

First, the reconfiguration definitions and the main assumptions used in this work
are introduced.

For the adaptive process pj , a mode change is triggered by an MCR, i.e., the
stream sM,j in Figure 6.1, which might either come from an external controller
or be retrieved from the input data streams. During the mode transition stage,
the old configuration is deleted and released for the loading of new ones. The
reconfiguration transition from an old mode M1 to a new mode M2 takes non-zero
time tM1,M2

R,j . tM1,M2
R,j depends on the circuit size of different reconfiguration modes

and is usually non-ignorable.
For convenience, to avoid the use of tMx,My

R,j , tR,j is simply used to implicitly

mean tMx,My

R,j when the mode switching is known from context. Similarly, tC,j
is used to implicitly mean the computation time tM1

C,j or tM2
C,j of process pj in the

respective working modes.
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An MCR may occur during the execution of the system in a particular mode,
but never during the transition stages. In the worst case, two succeeding configura-
tions have the minimal interval tinterR,i to avoid violating the application through-
put requirement caused by too-close consecutive reconfiguration stalls.

The input data stream arrives at a peak or average2 throughput ρin . Meanwhile,
a required average output throughput ρout is applied to the sink process pk, to de-
note the stable application throughput requirement during the lifetime of adaptive
systems even in reconfiguration transition stage.

6.2.2 Consistency

The consistency of SDF models (see Section 2.1.1) is known to be a necessary con-
dition to allow them to be executed within bounded memory without deadlock [37].
To execute adaptive SDF streaming applications within bounded memory with-
out deadlock, the model consistency needs to be preserved. Besides the balance
equations as defined in Eq. 3.1 for communication channels between non-adaptive
processes, furthermore, for each communication channel chi,j from non-adaptive
process pi to adaptive process pj , the following equation holds.

ri · ni,j =
n∑
x=1

rMx
j ·mMx

i,j (6.1)

in which rMx
j and mMx

i,j are the firing rate and consumption input rate for process
pj in each working mode Mx.

Reconfiguration protocols for adaptive SDF applications, similar as in [76] for
task graphs, are needed to guarantee that such an equation holds at run-time. Since
to develop such protocols is out of the scope of this chapter, it is simply assumed
that all configurations of the same adaptive process have the same input/output
token rate which meets Eq. 3.1, i.e., the reconfiguration scenarios addressed always
comply with the application consistency requirement. Instead, this work focuses
on the performance analysis of adaptive systems. However, the proposed approach
should be able to handle more general SDF applications, once the reconfiguration
protocols are available and can be captured as extra constraints in the analysis
framework.

2Both situations will be covered in the proposed analysis approach.
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6.2.3 Design cost on architecture model

The architecture template is a partially reconfigurable FPGA, as illustrated in Fig-
ure 2.4. Since the pre-specified application throughput needs to be sustained during
the whole time period of reconfigurations, the consequence may be that there is a
need for extra buffer space, which includes the output buffer to sustain the output
throughput during reconfiguration transitions and possibly the buffer to store input
data tokens. The only unit used for area is logic elements (LEs). Area requirements
in form of memory elements are converted into LEs. Given the hardware imple-
mentations for each mode of the process, the cost of configuration controller ACC ,
configuration slotAC , and configuration memory

∑i=n
i=1 AM,i are static (fixed). For

the “just-in-time” (JIT) configuration on RTR FPGAs in Figure 2.4, the total design
cost in terms of area is

AJIT =ACC+
∑i=n

i=1 AM,i+kC ·max(AM,1, . . . , AM,n)︸ ︷︷ ︸
AC

+ABuffer (6.2)

in whichABuffer is the area cost of buffers, i.e., FIFOi,j and FIFOj,k in Figure 6.1.
To design JIT reconfigurable systems efficiently, it is critical to dimension the

minimal conservative buffer size and the corresponding costABuffer , and to explore
the implementation trade-offs of different design options.

6.3 Reconfigurations analysis framework

In the following, a constraint based framework based on iterative timing phases is
to be proposed for reconfiguration analysis. fits well to capture both the streaming
application execution semantics and the varying design concerns during run-time
reconfigurations.

Reconfig.
phase

Prologue

iterative

Transient
phase

Periodic
phase

Periodic
phase

Figure 6.2: Timing phases of reconfiguration analysis. In this graph, only a partic-
ular mode transition from M1 to M2 is shown.

The staged timing phases in reconfiguration analysis, as illustrated in Fig-
ure 6.2, are the following.

Prologue. It is the start-up phase with no throughput guarantees. The length of the
prologue phase can be specified by τ0 in Constraint 7 (see Section 4.4.4).
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Periodic phase M1(M2, · · · , MN ). They are phases with guaranteed throughput
in working mode M1(M2) of the adaptive process pj . While the length
Lperiod is throughput relevant, the sustainable throughput requirements can
be distinct in different working modes and are specified in Constraint 7-8.

Reconfiguration phase. It starts with an initial working modeM1 upon the recon-
figuration request MCR. The mode transmission starting time tag t′ (deter-
mined by a reconfiguration decision variable ξ(t) to be defined in Section 6.4)
is explored in a specified periodic phaseLperiod

3 to find the optimal reconfig-
uration with minimized objective function. The reconfiguration stall (work-
ing mode transmission to M2) takes tR,j time slots (Constraint 19). The
length of this phase is specified to be the worst case Lperiod + tR,j .

Transient phase. It has a length τ1, in which throughput is met but with no peri-
odic properties in scheduling yet.

Caused by the periodic properties in the scheduling of each working mode, the
buffer requirement can be analyzed in a finite length of time, without everlasting
analysis. To make the phases in gray (colored) iterative, we can use the timing
analysis to traverse all reconfiguration scenarios. The conservative size of each
buffer should adopt their worst case dimension respectively.

The design objective is to find the minimal total buffer sizes as defined in
Eq. 4.13. In particular, the conservative size γi,j of each buffer FIFOi,j should
adopt their worst case dimension respectively in traversing all the reconfiguration
scenarios.

6.4 Constraints on reconfigurable systems

For SDF streaming applications, their execution rules follow the semantics as de-
scribed in Section 4.4.3, with the application output throughput ρout subject to
Constraint 7-8. For the input data stream s1 to process pj , a peak or average
throughput ρin is described as follows.

Constraint 17. (Source input) For the source signal process pi with computation
latency tC,i, the data stream provides a peak throughput ρin according to

Ri(t+ tC,i)−Ri(t) 6 tC,i · ρin (6.3)
3It is based on the assumption that the worst case reconfiguration response (starting) time is

Lperiod after the run-time MCR.
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Otherwise, a stable average throughput ρin can be verified at specified time in-
stances as follows

Ri(t0 + k ·∆t0)−Ri(t0) = k ·∆t0 · ρin , ∀k ∈ N (6.4)

in which the given t0 specifies the starting time instance for average throughput
checking, and ∆t0 determines the interval between different time instances.

To capture the run-time reconfiguration of the reconfigurable process, a boolean
function ξ(t) is used to denote the working mode at time tag t of the reconfigurable
process pj , i.e., ξ(t) = 0 indicates that pj works in mode M1, otherwise pj is in
(or being reconfigured to) mode M2. Thus, the computation latency tC,j for the
adaptive process pj can be formulated.

Constraint 18. (Computation latency - adaptive) To be aware of the reconfigura-
tion decision ξ(t), the computation latency tC,j of the adaptive process pj is

tC,j = ¬ξ(t) · tM1
C,j + ξ(t) · tM2

C,j (6.5)

in which tM1
C,j and tM2

C,j denote the computation latency in working mode M1
and M2 for pj respectively,

However, Eq. 6.5 can not be implemented in Gecode directly, since tC,j is not
an explicit variable in our model. Accordingly, the constraints for adaptive process
pj containing tC,j need to be rewritten correspondingly. For instance, Eq. 4.4 is
equivalent to the following constraint applicable in Gecode.

¬ξ(t) · Ci,j(t+ tM1
C,j) + ξ(t) · Ci,j(t+ tM2

C,j)− Ci,j(t) =

mi,j · (¬ξ(t) ·Kj(t+ tM1
C,j) + ξ(t) ·Kj(t+ tM2

C,j)) (6.6)

Especially, the multiplication of two variables in Eq. 6.6 can be captured by a
non-linear arithmetic constraint (mult) in Gecode. Similarly, other SDF execution
semantics on computation and buffer resources can be extended to be reconfigu-
ration aware (for the reconfigurable process), which are omitted for clarity in the
thesis.

Furthermore, in the reconfigurations analysis of the adaptive process pj , its
computation stall during the reconfiguration transition stage needs to be consid-
ered. Such a stall takes tR,j time, and can be described as a constraint as follows.
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Constraint 19. (Reconfiguration stall) The computation of the adaptive process pj
stalls for tR,j time period after the reconfiguration starts at time tag t′.

Wj(t′ + ∆t′) = 0, ∀∆t′ ∈ [0, tR,j) (6.7)

Wj(t) =
∑
∆t

Ci,j(t+∆t+1)−Ci,j(t+∆t)
mi,j

, ∆t∈[0,tC,j) (6.8)

in which Wj(t) denotes the 1-0 (computing or stalling) status of process pj at any
time tag t.

6.5 Experimental results

In this section, the proposed reconfigurations analysis framework is implemented
on Gecode, and several experiments have been done on both the example applica-
tion of Figure 6.1 and an industrial application from Thales Communications.

6.5.1 The example application

It is assumed that the adaptive process pj in the example application has two differ-
ent modes, and both configurations have the same properties (i.e., the same input
and output rates, computation time and reconfiguration time). Thus, two iterations
of the timing phases from Phase I to II (see Figure 6.2) in reconfiguration analysis
can traverse all the reconfiguration scenarios.

The specification model shown in Figure 6.1 is instanced with concrete param-
eters (i.e., ni,j = 2, mi,j = 3, nj,k = 1 and mj,k = 2), with a minimum interval
tinterR,j = 50 time slots between the two succeeding reconfigurations of pj .

options #1 #2 #3 #4 #5 #6 #7 #8
tR,j 2 3 4 5 10 15 20 40
tC,j 16 13 12 10 8 6 5 4
AM 0.5 0.8 1.0 1.3 2.5 3.8 5.0 10

Table 6.1: Design options for the adaptive process pj .

First, it is assumed that different design options have varying reconfiguration
time tR,j , as listed out in the second row of Table 6.1, but have a fixed latency tC,j
(i.e., tC,j = 10), and evaluate the FIFO sizes requirement. Figure 6.3a shows the
minimal FIFO sizes needed upon different tR,j , corresponding to different output
throughput ρout . To consider the two design concerns tR,j and ρout separately,



78 CHAPTER 6. PERFORMANCE ANALYSIS OF ADAPTIVE SYSTEMS

 6

 7

 8

 9

 10

 11

 12

 13

 0  5  10  15  20  25  30  35  40

F
IF

O
 s

iz
e

tR,i

ρout=1/15
ρout=1/10

(a) FIFO size upon varying tR,j & fixed tC,j

 6

 7

 8

 9

 10

 11

 0  5  10  15  20  25  30  35  40

F
IF

O
 s

iz
e

tR,i

ρout=1/15
ρout=1/8

(b) FIFO size upon varying tR,j & tC,j

 8

 9

 10

 11

 12

 13

 14

 15

 2  3  4  5  6  7  8  9  10

C
o
s
t

tR,i

ρout=1/15
ρout=1/8

(c) Design cost upon varying tR,j & tC,j

Figure 6.3: Experimental results of the example application.
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apparently, higher ρout (ρout = 1/10 in the graph) demands larger FIFO sizes,
so do the design options with higher tR,j caused by the longer computation stall
during reconfigurations.

Instead, in the following scenario, the design options are chosen according to
the reconfiguration properties listed out in Table 6.1. These design options show
different implementation strategies in the speed and area trade-offs, e.g., an adder
can be implemented as carry-lookahead adder (optimized for speed) or a ripple-
adder (optimized for area). We assume tR,j = kR · AM,j with kR = 10.0 and
tC,j ∝ d 1√

tR,j
e. Although, higher ρout (ρout = 1/8) still demands larger FIFO

sizes, the FIFO sizes are not monotonic to tR,j any more, as both tC,j and tR,j can
affect the buffer requirement to sustain ρout during reconfiguration. The design
options with tR,j close to 5 need less buffer.

Using a given compression ratio kC = 4.0, the design costs are evaluated. As
the design options after #5 simply show a fast monotonically increasing cost, only
the design costs of design option #1-5 are shown for clarity in Figure 6.3c. Higher
throughput requirement still leads to larger design costs. However, the design costs
heavily depend on the tC,j and tR,j trade-off, i.e., the speed and time trade-off, and
#2 with tR,i = 3 shows the minimum cost.

6.5.2 An industrial application
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Figure 6.4: The adaptive coding and modulation case study synopsis.

An industrial adaptive coding and modulation application from Thales com-
munication, as illustrated in Figure 6.4, is used to evaluate the potential of the pro-
posed methodology. The diagram shows a mix of digital and analogue modules,
with a channel Coder preceded by a Cipher block, and followed by a digital mod-
ulator, a digital up converter, a digital to analogue converter and an analogue filter.
The experiments focus on the reconfigurable part, i.e., the Coder with 3 modes
of bursts BR, BL or BT and the Cipher with 3 algorithms 1-3. The input source
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for the Cipher algorithm is a packet of bits, and the output stream from the Coder
needs to sustain a stable throughput. The design objective in performance analysis
is to minimize the buffer requirement without losing the stable output transmission,
when either or both of the two modules are in reconfiguration.

The adaptive part of the abstract application model is illustrated in Figure 6.5a,
in which the specification parameters are omitted for clarity. There are two adaptive
processes (modules): the Cipher pj and the Coder pk. Each of them receives the
adaptation control signal sM,j or sM,k from the environment, and can change the
working modes among three possibilities (i.e., algorithm 1-3 for the Cipher, and
BT/BL/BR coder for the Coder). The input date stream has a peak throughput ρin ,
and an average output throughput ρout is demanded.

It is assumed that the reconfigurations of two adaptive Cipher and Coder are in-
dependent of each other. To decouple the analysis, the buffer FIFOj,k between pj
and pk has been partitioned into two disjoint logic FIFOs FIFO′j,k and FIFO′′j,k,
as shown in the dashed box, to be analyzed individually. From the static input (out-
put) rates of the SDF model and ρout , the average output throughput requirement
ρout′ of the Cipher can be derived, which is also the average input throughput to
the Coder. For the Cipher, the peak input throughput and average output through-
put are ρin and ρout′ respectively. In this way, the analysis of two reconfigurable
modules can be decoupled as follows.

1. To find the minimum buffer sizes for the Cipher buffers FIFOi,j and FIFO′j,k
to meet the average output throughput requirement ρout′ upon the peak input
throughput ρin (subject to Eq. 6.3 in Constraint 17).

2. To find the minimum play-out buffer FIFO′′j,k and FIFOk,l for the Coder
module to meet the average output requirements ρout upon the average input
throughput ρout′ (subject to Eq. 6.4 in Constraint 17).

Although the decoupled analysis (based on disjoint logic FIFOs) has the possibility
to over-dimension the physical FIFO size, it is a conservative approach without
restrictions on the reconfiguration of different adaptive modules, i.e., independent
of reconfiguration protocols. For instance, using this analysis approach, the Cipher
and Coder modules can be even reconfigured at the same time, when protocols of
the reconfiguration of consecutive modules are still lacking.

For both the Cipher and Coder, all the reconfiguration transition possibilities
are traversed (i.e., 3× (3− 1) = 6), and the worst cases are chosen as the conser-
vative buffer requirement.
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Figure 6.5: Industrial application and experimental results.



82 CHAPTER 6. PERFORMANCE ANALYSIS OF ADAPTIVE SYSTEMS

In both Coder and Cipher modules, the design cost increases with the output
throughput, as shown in Figure 6.5b and 6.5c. The design costs of different imple-
mentation strategies for the Cipher with varying tR,j are also shown in Figure 6.5c,
and the design costs are not monotonic to tR,j . It exemplifies that the proposed re-
configurations anslysis framework suits design trade-offs analysis in design options
exploration, and can be applied on a series of compositional adaptive processes
(modules) as well.

Furthermore, the complexity of solution finding increases exponentially with
problem size (compared with the example application). For the Coder, the solutions
finding time is 247-708ms and the peak memory is 22.4-54.4MB. For the Cipher,
they are 352-408ms and 27.7-36.4MB respectively.

6.6 Concluding remarks

This chapter presents a constraint based performance analysis framework for adap-
tive real-time streaming applications. Based on the implementation on constraint
solver, the experimental results show that the proposed framework suits well re-
configurations analysis and design trade-offs analysis. It can be used to exploit
the reconfigurability of adaptive real-time streaming applications, without losing
efficiency. Especially, the industrial case study illustrates the capability of the pro-
posed methodology to cope with the cascaded composition of adaptive modules.

Meanwhile, the author foresees the possibility to compact the physical buffer
size of the disjoint logic FIFOs when the mode change protocols of multiple re-
configurable modules are specified. Such a technique can further reduce the design
cost of adaptive systems, which remains to be the future work.



CHAPTER 7

PARETO EFFICIENT DESIGN FOR

RECONFIGURABLE

MULTIPROCESSOR/FPGAS

To deliver high performance streaming media applications with reduced design
costs and time-to-market, there are trends in embedded system design to use com-
bined components of multi-CPU and custom circuits in commercial off-the-shelf
(COTS) FPGAs, the so called hybrid multiprocessor/FPGAs [5].

While free FPGA gates are customized as application specific reconfigurable
components for performance critical functions and CPUs as execution engines for
software, such COTS chips can be used as embedded platforms with high through-
put and run-time reconfiguration (RTR) requests [7]. One realistic application of
them, for instance, is being used in a roaming smart-phone with reconfigurable
communication protocols.

Unfortunately, the design space exploration techniques and optimization method-
ologies on hybrid multiprocessor/FPGAs are still immature. The difficulties exit in
two categories:

• While applications scheduling with resource constraints on multi-processors
has been know to be NP-complete [31], the reconfiguration analysis even
increases the design complexity.

83
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Table 7.1: Extract of Xilinx Virtex-5 FPGAs [101].

Device
BRAM
(16kb)

Power
PC #

CLB

slices DRAM

XC5VFX30T 136 1 5,120 380

XC5VFX100T 456 2 16,000 1,240

XC5VFX200T 912 2 30,720 2,280

• To design systems that use less resources (cost) without losing performance
guarantees, the decision-making over diversified COTS platforms remains
difficult. For instance, the XC5VFX devices in Xilinx Virtex-5 family cover
a wide range of 380∼2280KB reconfigurable logic blocks and up to two
PowerPC cores [101], as illustrated in Table 7.1.

For an example adaptive synchronous data flow (SDF) application as depicted
in Figure 7.1(a), the computation of pj is reconfigurable with two working modes.
Each process (working mode) has a worst case execution time (WCET) when it is
partitioned as either SW or HW. While software (SW) reconfigurations correspond
to process context switch on processors, the overhead (OH) is negligible compared
with process execution time. The hardware (HW) reconfiguration OH to manip-
ulate reconfigurable logics on FPGAs at run-time is non-trivial, during which the
computation is stalled. Assuming a specified number of processors on each chip,
the implementation cost of each process is either the size of SRAM storage for SW
or the area of logic blocks and (reconfiguration) memory for HW. In Figure 7.1(b),
the design specifications (normalized) to implement the illustrative application on
a single-CPU/FPGA platform are exemplified.

Motivation. Given the example application and its design specifications in
Figure 7.1, three design options and their reconfiguration scheduling are explored
and analyzed in the following. With design option A (pi and pj partitioned to
HW and pk to SW), the schedule is illustrated in Figure 7.2(a). The time range of
the scheduling evolves horizontally, while the process and FIFO status are listed
out vertically, i.e., at each time tag a process in executing state has a number to
denote the remaining execution time slots, a FIFO status is denoted as the using
storage space in tokens, and processes with stalled computation or FIFOs not used
have otherwise blank status. At the beginning, the application with the adaptive
process pj working in mode A (with WCET 2 slots) can enter a periodic phase
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Figure 7.1: An example reconfigurable SDF application model and its design spec-
ifications on a CPU/FPGA platform.

from time tag 4 to 6. From time tag 8, pj starts the reconfiguration1 with an OH
2 and switches to working mode B (with WCET 1 slot). Again, the schedule en-
ters another periodic phase from time tag 10 to 12. The application throughput is
guaranteed in both periodic phases, since all processes have the same execution
iterations in a time period 3. In addition, the application throughput is guaranteed
even during mode transition, e.g., between time tags 4, 7, and 10 the sink process
pk always executes once. For each FIFO, the required FIFO size is the maximal
buffer usage in scheduling. Similarly, the reconfiguration scheduling of two other
design options are illustrated in Figure 7.2(b-c), in which pj is implemented in
SW in design option B with neglected reconfigurable OH. Apparently, all design
options have the same application throughput guarantees.

Accordingly, the SW/HW cost, and FIFO buffer requirement of all design op-
tions are evaluated in Figure 7.2(d). Although these quantities have a partial order
to indicate the precedence of design options, A dominates B in the sense that the
former one is always preferred with not worse (bigger) evaluations on all criteria.
The set of optimal design options A and C are called Pareto points [35], i.e., either
one has at least one criteria better than the other (A has less HW cost, and B has

1For clarity, the reconfiguration time slot is fixed at 8. But, the method to be presented in
Section 7.3 is more general and fits run-time reconfigurations.
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Figure 7.2: Example application scheduling (pj has two working modes A and B)
and design Pareto points.

less SW and FIFO cost). In this chapter, Pareto points will be used to indicate the
trade-offs of multiple criteria in design space exploration, which can not be opti-
mized independently. However, a systematic way to calculate design Pareto points
in reconfigurable streaming applications is still lacking.

As the contribution in this chapter, a new Pareto efficient design frame-
work is proposed for reconfigurable SDF streaming applications on hybrid multi-
CPU/FPGAs platforms. While the SW cost, HW cost and buffer requirement are
characterized as multiple objectives, the pruned Pareto-optimal points found can
be used in cost-efficient selection from variably priced CPU/FPGA platforms.

7.1 Related work

In [91], simulation based techniques have been introduced for the analysis of dif-
ferent performance metrics of scenario-aware SDF models with stochastic mode
changes. Schedulability analysis and reconfiguration methods for multi-mode (adap-
tive) real-time systems has been studied in [83, 76], where each mode consists of
different tasks. They develop mode change protocols in mode transition stages,
and exploit analysis techniques to ensure that no deadlines are violated during the
transition periods. On RTR hybrid CPU/FPGAs, Yuan et al. [103] address SW/HW
partitioning and scheduling of task graphs with the objective of maximizing appli-
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cation throughput. All these work do not address multi-dimensional optimization
on platform resources, as in this chapter.

An inspiring Pareto calculator has been proposed for the optimization of multi-
dimensional space of attributes [35], which is a tool for general compositional
computations. It has been used to calculate optimized design options for MPEG-
4 media on mobile devices via a wireless connection, with the trade-offs on the
quality of the video, energy consumption and transmission latency. Based on the
author’s previous work on performance analysis of SDF applications on reconfig-
urable FPGAs in Chapter 6 a design Pareto-point calculation flow for SW/HW and
buffer cost efficient design is proposed for SW/HW allocation, scheduling, and
run-time reconfiguration analysis on multiprocessor/FPGA platforms.

7.2 Application and Architectural assumptions

In the multiprocessor/FPGA computing platforms as illustrated in Figure 2.4, there
are CPUs dedicated to SW processes and custom circuits to HW processes. While
the cost of memory (SRAM) and custom circuits on FPGAs is determined by ap-
plication allocation decision, the buffer requirement depends heavily on schedul-
ing policies (RTOS). Given a reconfigurable process allocated as HW, new func-
tionality can be loaded from the configuration memory into the configuration slot
(reconfigurable circuits in FPGA) specified by the reconfiguration control. Since
this loading takes time (reconfiguration stall), the system timing might be violated
without reconfiguration analysis. On the other hand, processes improperly imple-
mented as SW might degrade system performance, especially when the number of
processors is limited. It is critical to find the Pareto efficient design options while
the throughput guarantees are met during the run-time reconfiguration transitions.

The Pareto efficient design on partially RTR multiprocessor/FPGAs is based
on the following assumptions:

• The reconfiguration of one process does not interfere the working of other
running processes on such a partially RTR CPU/FPGAs platform.

• The hard-core multi-processors are homogeneous, on which each process
has the same WCET being mapped onto different processors, e.g., PowerPC
on Virtex-5.

• The cost to implement processes as either SW or HW is known at design-
time in specifications.
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7.3 Pareto efficient design framework

Here, the constraint based Pareto efficient design framework is proposed, which
includes application allocation, scheduling, and Pareto points calculation, besides
reconfiguration analysis.

7.3.1 Allocation and mapping

A set of boolean decision variables µi denote whether each process pi is allocated
to CPUs (µi = 0) or FPGAs (µi = 1). Assuming different instances (computation
iterations) of a process are only allocated onto one processor, a set of boolean
variables αi,µpn indicate the presence of pi on the specified processor µpn, with
αi,µpn ≡ 0 for processes allocated to FPGAs. Processes allocation and mapping
can be formalized as the following.

Constraint 20. (Allocation & mapping) While each process pi can be allocated to
CPUs or FPGAs, a process allocated to CPUs needs one (and only one) processor
for different process instances.∑

µpn∈U
αi,µpn = ¬µi, ∀pi ∈ P (7.1)

in which P is the set of processes in application models, and U is the set of proces-
sors in the architecture platform.

The mapping problem on homogeneous multi-processors contains symmetries,
i.e., for some mapping decisions, there are duplicated equivalent solutions in the
searching space. Thus, a stronger restriction (Eq. 7.2) is applied to order the pro-
cessors in allocation to exclude revisiting symmetrically equivalent states.∑

i

2iαi,µpn >
∑
i

2iαi,µpn+1 , ∀µpn, µpn+1 ∈ U (7.2)

in which the equality holds when neither of the consecutive processors µpn and
µpn+1 has processes allocated.

7.3.2 Extended execution semantics

Here, the execution semantics of SDF applications (see Section 4.4.3) based on
cumulative event models is extended to be allocation aware. Besides the allocation
decision variables µi, we use a boolean function ξ(t) to denote the working mode
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at time tag t of the reconfigurable process pj , i.e., ξ(t) = 0 indicates that pj works
in mode A , otherwise pj is in (or being reconfigured to) mode B. For instance, the
process computation latency is formulated in the following constraint.

Constraint 21. (Computation latency) While each process can be allocated to
CPUs or FPGAs, its WCET in implementation is denoted as tCsw ,j or tChw ,j with
the following constraints.

Ci,j(t+ tC,j) = Ci,j(t) +mi,jKj(t), ∀Kj(t)∈{0,1} (7.3)

where tC,j = ¬µjtCsw ,j + µjtChw ,j (7.4)

in which Kj(t) denotes the incremental properties of Ci,j(t). Especially, for a
reconfigurable process pj , the WCET varies from tACsw ,j(t

A
Chw ,j

) to tBCsw ,j(t
B
Chw ,j

)
during the reconfiguration from working mode A to B. Thus, tC,j in Eq. 7.3 can be
defined:

tC,j =¬ξ(t)(¬µjtACsw ,j + µjt
A
Chw ,j)+

ξ(t)(¬µjtBCsw ,j + µjt
B
Chw ,j) (7.5)

However, the constraints in Eq. (7.3-7.5) can not be implemented in Gecode
solver directly and need to be rewritten. For instance, Eq. (7.3-7.4) are equivalent
to the following constraint applicable in Gecode.

¬µjCi,j(t+ tCsw ,j) + µjCi,j(t+ tChw ,j)
= Ci,j(t) +mi,jKj(t), ∀Kj(t) ∈ {0, 1} (7.6)

Without being explicitly mentioned in this chapter, tC,j has the same definitions as
in Eq. (7.3-7.5) to be allocation decision and reconfiguration (for the reconfigurable
process) aware. Similarly, other SDF execution semantics on computation and
buffer resources can be extended, which are omitted for clarity.

Furthermore, the process scheduling with computation and buffer resource con-
straints is refined to be aware of the allocation and mapping decisions.

Constraint 22. (Allocation & scheduling association) While the processes allo-
cated to FPGAs are concurrent in scheduling, the processes allocated to one single
processor can only execute sequentially. This mapping and scheduling association
is formalized as: ∑

pj∈P
αj,µpnWj(t) ∈ {0, 1}, ∀µpn ∈ U (7.7)

Wj(t) =
∑
∆t

Ci,j(t+∆t+1)−Ci,j(t+∆t)
mi,j

, ∆t∈[0,tC,j) (7.8)
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in which Wj(t) denotes the 1-0 (computing or stalling) status of process pj at time
tag t on CPUs or FPGAs, and tC,j has the same definitions as in Eq. (7.3-7.5) to
be allocation decision and reconfiguration aware.

7.3.3 Design Pareto points calculation

In design specifications, the cost to implement each process pi in SW (if feasible)
on CPUs is measured as the code size πSW

i in SRAM or the area of custom circuits
πHW
i in HW. The only unit used for HW area cost is the number of logic elements

(LE). The memory cost for a configuration stored in the configuration memory is
thus calculated as the equivalent LE cost which is technology dependent. The SW
and HW implementation cost on the platform are defined.

Property 6. (SW & HW implementation cost) The process allocation determines
the total SW cost πSW

Sum and total HW cost πHW
Sum .

πSW
Sum =

∑
pi∈P
¬µi · πSW

i , πHW
Sum =

∑
pi∈P

µi · πHW
i (7.9)

Assuming different FIFOs are implemented disjointly, the buffer cost on the plat-
form is formalized.

Property 7. (Buffer cost) In scheduling, the buffer cost in total corresponds to the
sum of the maximal buffer usage of all FIFOs.

γSum =
∑
∀chi,j

max
∀t

B′i,j(t) (7.10)

To evaluate the quality of design options in solutions finding, a constraint on
SW/HW implementation cost and buffer requirement is formulated to prune design
options.

Constraint 23. (Design options pruning) Given a set of design Pareto points ParetoSet
found in design space exploration. Besides meeting all other constraints formu-
lated above, a solution sol should not be dominated (⊀) by any Pareto points φ.

sol ⊀ φ⇐⇒sol.πSW
Sum < φ.πSW

Sum ∨ sol.πHW
Sum < φ.πHW

Sum

∨ sol.γSum < φ.γSum , ∀φ∈ParetoSet (7.11)

in which sol ⊀ φ always holds when ParetoSet = ∅.
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To maintain a set of Pareto points in design space exploration, a calculation
flow is presented as in Algorithm 1. In line 4, while all the formulated con-
straints are used in solutions finding, a ParetoSet is dynamically maintained2 dur-
ing exploration and used in Constraint 23. From line 8 to 10, if a sol dominates
(≺) a current Pareto point, the dominated design option is moved into another
DominatedSet.

Algorithm 1: Design Pareto-point calculation flow.
Output: ParetoSet
ParetoSet ←− ∅;1

DominatedSet ←− ∅;2

/* A dynamic ParetoSet is used in Constraint 23 */3

while (sol = solutionsFinding(ParetoSet)) 6= Null do4

if |ParetoSet| > 0 then5

for k ← 1 to ParetoSet.size do6

/* If sol dominates a Pareto point */7

if sol ≺ ParetoSet.at(k) then8

DominatedSet.insert(ParetoSet.at(k));9

ParetoSet.erase(k);10

ParetoSet.insert(sol)11

Discussion. The SW/HW and buffer cost in the proposed formulation are based
on high-level estimations, e.g., buffer cost based on symbolic token units. How-
ever, it is possible to extend this method within a practical design flow, once these
vendor and technology dependent factors can be formalized as design constraints.
For instance, assuming FIFO buffers are implemented as block RAM (BRAM), a
more practical buffer cost γBRAM

Sum can be re-formalized from Eq. 7.10.

γBRAM
Sum = kBRAM

∑
∀chi,j

dBRAMd
max∀tB′i,j(t)
dBRAM

e (7.12)

in which kBRAM and dBRAM are the cost factor and depth of BRAM.

2To our best knowledge, it is infeasible with ILP modeling techniques.
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7.4 Experimental results

To demonstrate the potential in Pareto efficient design, the methodology has been
used on a Cd2dat [13] application from the media domain, and a Wireless [69]
application from the communication domain, besides the example application Fig-
ure 7.1(a).

A reconfigurable FPGA platform with two processors, e.g., Xilinx Virtex-5
FPGAs, is adopted. The design specifications of different SDF applications are
presented in Table 7.2. For each application, the number of SDF processes and
the equivalent HSDF process number are listed out. Especially, part of the SDF
processes have been pre-allocated on the platform, either as SW or HW modules.
In each application, one process is specified to be reconfigurable with two working
modes. Assuming the same specified (feasible) application throughput requirement
needs to be sustained (not only in different working modes but also in reconfigu-
ration phases), the application allocation, scheduling, and reconfiguration analysis
between mode transitions are explored. However, within the scope of this chapter,
the impacts of varying application throughput on design Pareto points are not in-
vestigated.

The peak memory and running time on the experimental workstation have been
measured in the solver, which are shown in Table 7.2 as well. The memory and time
usage increase exponentially with the problem size. The proposed method has been
computation efficient to solve the NP-complete allocation and scheduling problem
with a reasonable problem size, e.g., in 1.9s for the small example case and 105s for
Cd2dat. The design Pareto points for different application specifications are illus-
trated in Figure 7.3. For the example application, Pareto points with even less FIFO
cost than in Figure 7.2 can be found, since a lower throughput requirement has been
specified in Table 7.2 (0.2 instead of 0.33). To distinguish whether to implement
the reconfigurable process in SW or HW in the graph, the Pareto points are marked
as ‘Pareto point (SW)’ or ‘Pareto point (HW)’ respectively. The buffer costs found
are very tight3, in the sense that for each application the minimal buffer cost in all
Pareto points is the same as the minimal dead-lock avoiding bounds [36]. Another
set of temporal Pareto points DominatedSet dominated by new solutions found
in design space exploration (line 8 to 10 in Algorithm 1) are presented. However,
more design options which are pruned by Pareto points are discarded. For instance,
263 failure nodes are pruned for Wireless, while each node corresponds to a set of

3They are throughput and reconfiguration stall tR,j relevant. For Cd2dat and Wireless, we spec-
ify tR,j to be 1-2 orders-of-magnitude higher than tC,j .



7.4. EXPERIMENTAL RESULTS 93

 0

 1

 2  1

 2

 3

 4

 5 2

 3

 4

FIFO

Pareto point (SW)

(1,3,3)

(2,1,3)

Pareto point (HW)(0,5,3)

SW

HW

FIFO

(a) Example

 0
 1

 2
 3

 6

 8

 10

 12
 32

 33

 34

 35

FIFO

Pareto point (SW)

(1,10,32)

(2,8,32)

(3,6,32)

Pareto point (HW)(0,12,34)

Dominiated point

(1,10,34)

(2,8,35)

SW

HW

FIFO

(b) Cd2dat

 2
 3

 4
 5

 6
 7

 8
 9 30

 32
 34

 36
 38

 40
 42 50

 51

 52

FIFO

Pareto point (SW)

(4,40,50)

(5,38,50)

(6,36,50)

(7,34,50)

(8,32,50)

(9,30,50)

Pareto point (HW)
(3,42,51)

Dominiated point
(4,40,51)

(5,38,51)

SW

HW

FIFO

(c) Wireless

Figure 7.3: Design Pareto points for different applications.
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Table 7.2: Design specifications and experimental results.

application process # a pre-allocation b
thru. req. mem. c time d

SDF HSDF SW HW SW/HW

Example 3 4 0 1 2 0.2 1.29e3 1.90e3

Cd2dat 6 612 0 3 3 0.5 4.18e6 1.05e5

Wireless 24 32 3 15 6 0.028 3.80e6 1.94e4
a The number of SDF processes and equivalent HSDF processes.
b The number of processes pre-allocated as SW or HW on the platform.
c The peak memory consumption (KB) in solutions finding.
d The solutions finding time (ms).

pruned design options.
Memory issues. In the experiments, the peak memory usage increases dramat-

ically with the problem size, e.g., 4.18e6KB (very close to the 4GB RAM capacity
on our workstation) is used for Cd2dat. On the other hand, memory usage up to
2GB has also been reported in a model checking method in [36], in which a rel-
atively simpler problem (only the scheduling of SDF applications) is considered.
In another experiment, the processes allocation is fixed to either SW or HW (i.e.,
process number allocated to SW/HW is 0 in Table 7.2) for Wireless. A Pareto point
has been found in 2.1s with peak memory 414MB. Thus, it might be possible to use
heuristics in the constraint based techniques to improve the searching efficiency, in
terms of computation time and memory usage.

7.5 Concluding remarks

In this chapter, a Pareto efficient design method for reconfigurable streaming appli-
cations on off-the-shelf CPU/FPGA platforms has been presented. The problem is
formulated as constraint based application allocation, scheduling, and reconfigura-
tion analysis. A design Pareto-point calculation flow for SW/HW and buffer cost is
implemented on a public domain constraint solver Gecode [32], and is exemplified
by two case studies from different application domains.



CHAPTER 8

PROTOTYPING OF STREAMING

APPLICATIONS ON MPSOCS

Synchronous data flow (SDF) models can be scheduled statically, which makes
their run-time implementations efficient [60]. In Chapter 3-7, the author has pro-
posed performance analysis and design space exploration frameworks for pre-
dictable streaming applications on multiprocessor systems-on-chip (MPSoCs) plat-
forms. Using the optimized design options and scheduling policies, the designer
can get even higher efficiency on the non-functional properties of streaming ap-
plications, in particular on real-time performance, energy dissipation, and buffer
requirements. Although both simulation and formal analysis based approaches in
this thesis have shown the potential of compile time optimization techniques, a re-
alistic projection on the final implementation has the added advantage to make the
results in theoretical studies more meaningful. In this chapter, prototyping stream
processing systems on FPGA is used as such a compelling method, to build a phys-
ical platform that entails the designer to evaluate various properties of a design.

FPGA is an integrated circuit designed to be configurable after manufacturing,
which facilitates the deployment of a multiprocessor platform on a single chip [50].
In this chapter, to ease a rapid prototyping, the Stratix II EP2S60 FPGA in the Al-
tera family [2] is used as the programmable device. With the inherent flexibility to
integrate existing intellectual property (IP) components, such as embedded micro-
processors, DSP, and interconnect fabric modules, a modern Stratix II FPGA has
simplified the design process of a MPSoC architecture with on-chip interconnec-
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tion in this chapter. Such a prototype provides a demo platform to fill in the gap
between system level design methodology and final implementation, and it is used
to validate the compile time design optimization methods on predictable streaming
applications design.

8.1 MPSoC architecture platform

8.1.1 Architecture template

The architecture template of the tile based [8, 24] MPSoC is illustrate in Figure 8.1.
A logic tile consists of processor(µp), instruction memory (I-mem), data memory
(D-mem), FIFO buffer, and communication assist (CA). The processor has SRAM
based local I-mem and D-mem. As a single-cycle accessing time is needed for
the processor to access I-mem or D-mem, no cache is needed. The explicit FIFO
channels between different computation processes of streaming applications are
allocated onto a local data buffer, and multiple FIFOs on the same tile share a
physical buffer in a disjoint way. A CA is a controller that assists the inter-tile
incoming and outgoing communication operations. That is, each tile is connected
with others via CA across the on-chip interconnection.

FPGA
Partial crossbar
Dedicated path

Avalon switch fabric

Arbiter

CA Buffer

Tile

I/
D

-M
e
m

CA Buffer

Tile

I/
D

-M
e
m

Figure 8.1: Architecture template of the tile based MPSoC on FPGA.
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8.1.2 FPGA based MPSoC

Based on Altera Quartus II tool suite to configure Stratix II FPGA, various IP cores
can be used to build the prototyping architecture platform, including vender pre-
verified cores and custom cores.

• The processor is the Nios II, which is a 32-bit RISC soft-core designed
specifically for Altera FPGAs with a Harvard architecture, i.e., it has sep-
arated instruction and data buses.

• The I-mem, D-mem, and the circular FIFO based data buffer are all im-
plemented in SRAM on-chip memory. Each Nios processor has dedicated
connection from master ports to the slave ports of each module with high
memory bandwidth.

• CA is a custom core employed for run-time flow control. It moves data to-
kens from the producer processes to consumer processes, when their respec-
tive output-side FIFOs and input-side FIFOs are mapped onto different tiles.
The communication performed via CAs is decoupled from the computation
performed on processors by the asynchronous FIFO buffers.

• The JTAG UART core provides the way for programming and debug on the
FPGA device via the serial communication connected to the host PC.

• Avalon switch fabric provides a collection of interconnect and logic resource
to manage the connection of different components. Here, a common Avalon
memory-mapped (Avalon-MM) interface is used for the read/write interfaces
on master/slave components. Compared with traditional bus, it provides
flexibility and supports multiple masters operations simultaneously, using
a slave-side arbitration scheme.

In the FPGA based MPSoC in Figure 8.1, besides the dedicated path in the intra-tile
interconnect, the inter-tile interconnect (in dashed line) is based on partial crossbar
switch, in which each master has the connectivity to a subset of slaves. When
multiple master ports contend for a single slave port, an arbiter grants fare access
in a round-robin order with minimum bandwidth guarantee.

8.1.3 Communication model

When an inter-tile logic channel is implemented as a shared Avalon inter-tile in-
terconnection, the communication delay can be captured by the latency-rate server
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Figure 8.2: Refinement of two communication processes pδL1 R and pδL2 R based on
the latency-rate server model [86].

model [86]. Given two such channels sharing the same communication intercon-
nection, their point-to-point inter-tile communication delay can be modelled by
process pδL1 R and pδL2 R respectively on the left side of Figure 8.2. The refined
delay model consists of two parts, as illustrated on the right side of the graph.

1. The constant contributions from interconnection by process pδL1
and pδL2

.
They are the same as regular computation processes with specified compu-
tation latency (see Section 4.4.3).

2. The variable contributions caused by communication resource sharing is ex-
plicitly captured by pδR , with bounded communication bandwidth as formal-
ized in Constraint 24.

Constraint 24. (Communication bandwidth) For all the logic channels sharing the
same inter-tile interconnection (shared server pδR), the bounded communication
bandwidth ω enforces extra constraints on the service function CδLx ,δR(t) of each
channel as the following.

∑
∀pδLx

(CδLx ,δR(t+ 1)− CδLx ,δR(t)) 6 ω (8.1)

8.2 Run-time implementation

Based on a static application to architecture mapping, the run-time implementation
process is the scheduling of streaming applications on MPSoCs. In this thesis, the
applications do not allow run-time process migration on the platform.
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8.2.1 Scheduling strategies

The scheduling of SDF applications on MPSoCs involves both processes execu-
tion order and start-time assignments on each processor. Different implementation
strategies are distinguished from the ways to carry out these two assignments, ei-
ther in a fixed or dynamic manner, as illustrated in Table 8.1 [8].

Table 8.1: Different run-time implementation strategies.

Implementation Fixed Fixed
strategies order? start-time?

Full static Yes Yes

Static order Yes No

Run-time order No No

To reduce the run-time computation overhead, it is preferred that both assign-
ments could be fixed at compile-time. However, a fully static schedule is volatile
to the varying computation or communication delays at run-time, which makes it
infeasible for distributed systems. In this chapter, two run-time scheduling strate-
gies, static order and run-time order [8], are exploited. Both do not require a global
notion of time or clock, when such a global time is not easily known on MPSoCs.

As a subset of Kahn process networks [54], SDF models are deterministic and
the model will produce the same output values for the same input streams without
being affected by the timing semantics of data streams, i.e., without being affected
by the varying run-time computation latencies. When processes execute in a data
driven manner on a multiprocessor architecture, the execution requirement on the
exact start-time of processes is relaxed.

• In the static order scheduling, the order in which processes execute in each
processor is determined at compile time such that all data precedence con-
straints are met.

• In the run-time order scheduling, the sequential execution oder on each pro-
cessor is determined at run-time based on a static checking list in priority
queue, similar as in list scheduling [29].

In each processor, the processes execute consecutively in a non-preemptive man-
ner according to the static assignment, and no operating system is needed. Since
the producer-consumer synchronization is performed at run-time, both scheduling
strategies are robust with respect to variances in communication latencies as well.
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Based on the optimization approaches proposed in this thesis, the static order
strategy can be optimized subject to the design objective, which is to minimize
the buffer cost according to the specified application throughput requirement. On
the other hand, the run-time order scheduling, without optimization on buffer and
timing constraints, is used as a reference method.

8.2.2 Scheduling algorithms

Without losing generality, the run-time scheduling algorithms are exemplified by
an example 4-stage pipelined application mapped onto a 2-core MPSoC platform
as shown in Figure 8.3.

Tile1 Tile2

Refinement

Figure 8.3: Mapping and refinement of a 4-stage pipelined application onto a 2-
core MPSoC platform, in which the communication delay is captured by process
pδLR based on latency-rate model.

Since process pj and pk are mapped onto different tiles, the buffer FIFOj,k on
the inter-tile channel is decomposed into two on-tile buffers FIFOj,δ and FIFOδ,k,
and the communication delay is captured by pδL1 R as a latency-rate server model.

Given a user specified order or priority, the static order and run-time order
schedules on each tile can be constructed respectively, as illustrated in the schedul-
ing Algorithm 8.2.1-8.2.4. In the run-time order scheduling, a process executes as
soon as it is enabled when its input tokens become available and there are output
buffer space. In both strategies, when the producer and consumer processes of a
single logic channel are mapped onto different tiles, the inter-tile message passing
uses communication primitives for synchronization, and the producer or consumer
process needs to check at run-time for input data token availability or output FIFO
capacity.
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Algorithm 8.2.1: STATICORDERTILE1(c)

while (1)

do


pi();
if (γj,δ −B′

j,δ(t) > nj,k)
then pj();

Algorithm 8.2.2: STATICORDERTILE2(c)

while (1)

do

if (Bj,k(t) > mj,k)
then pk();

pl();

Algorithm 8.2.3: RUNTIMEORDERTILE1(c)

while (1)

do


if (γi,j −B′

i,j(t) > ni,j)
then pi();

if (Bi,j(t) > mi,j and γj,δ −B′
j,δ(t) > nj,k)

then pj();

Algorithm 8.2.4: RUNTIMEORDERTILE2(c)

while (1)

do


if (Bj,k(t) > mj,k and γk,l −B′

k,l(t) > nk,l)
then pk();

if (Bk,l(t) > mk,l)
then pl();

8.3 Experimental results

To evaluate the scheduling capability of static order and run-time order strategies,
a prototype of the cd2dat application [13] on a 3-core MPSoC platform is built.
The application has 6 pipelined processes, with the process to platform mapping
illustrated in Figure 8.4.

For both strategies, the application C code is cross compiled for release using
the optimization level “-Os” to optimize for size. The constraint based method
proposed in this thesis is used to optimized the order in the static order scheduling,
and the run-time order scheduling with user specified priority queues is used as
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Tile1 Tile2 Tile3

Figure 8.4: Mapping of the cd2dat application [13] onto a 3-core MPSoC platform.

Table 8.2: Comparison of different scheduling strategies.

F c
Static order Run-time order Aa Run-time order Bb

buffer throughput buffer throughput buffer throughput

10 34 115.86 34 75.844 67 76.092

100 34 55.533 34 51.926 43 51.980

1000 34 8.7086 34 8.6485 40 8.6513
a It is using run-time order scheduling with reduced buffer cost.
b It is uisng run-time order scheduling with big enough buffer.
c It is a factor to specify the computation latency of processes.

reference method. In the experiments, the control logic overhead is only scheduling
strategy relevant once the application is defined. However, the process computation
latencies imitated by dummy operations can vary and are proportional to a factor
F .

To compare different scheduling strategies, the experimental results are shown
in Table 8.2. For the run-time order scheduling, two variations are used. That is,
‘Run-time order A’ corresponds to the strategy with the same bounded buffer space
and buffer usage as in ‘Static order’, and ‘Run-time order B’ corresponds to the
strategy with big enough buffer space1. In the table, buffer denotes the total buffer
usage during run-time, and throughput is the guaranteed application throughput
obtained. Compared with run-time order scheduling, the static order scheduling
optimized by the constraint based scheduling method proposed in this thesis can
achieve improved throughput with minimized buffer cost. Especially, when the
factor of computation latency is small (F = 10), it can get up to 153% throughput
gains and down to 51% buffer cost reduction.

1Each buffer space is three times to the one in ‘Static order’, but the run-time buffer usage is
reported in Table 8.2



CHAPTER 9

CONCLUSIONS AND FUTURE

WORK

9.1 Conclusions

Driven by the increasing capacity of integrated circuits, parallelism has been a
global architectural theme in embedded computing systems. Multiprocessor systems-
on-chip (MPSoCs), consisting of multiple components of computation, storage,
and communication elements on the same silicon, are increasing widely used in
modern consumer electronics devices. With the enhanced computation power,
program-ability, and reduced communication cost, MPSoCs are suitable for con-
current streaming applications ranging from multimedia, digital singla processing
(DSP), and telecommunication to network processing domains. However, it is non-
trivial to harness the inherent high processing power effectively, when there are
both application specific performance demands and implementation (area, energy,
and cost) efficiency needs. A systematic way to design efficient streaming applica-
tions on embedded MPSoCs in an early design phase is thus required.

This thesis explores the performance analysis and implementation methodolo-
gies of predictable streaming applications on these MPSoCs computing platforms.
The functionality and application concurrency are described in synchronous data
flow (SDF) computational models, and two state-of-the-art architecture templates
with implementation parallelism are proposed as heterogeneous multiprocessor ar-
chitectures, i.e., network-on-chip (NoC) based MPSoC and hybrid reconfigurable
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multiprocessor/FPGA platforms. Based on the author’s contributions on simula-
tion and formal analytic methods, both modelling frameworks and design space
exploration workflows for embedded MPSoCs architectures have been proposed.

In Chapter 3, a simulation based energy efficient design exploration flow is
proposed for streaming applications with guaranteed throughput on NoC based
MPSoCs. Both application throughput analysis and system energy calculation have
been carried out on a multi-clocked synchronous modelling framework. The de-
grees of customizability of both processor voltage-frequency levels and memory
sizes have been leveraged to investigate the minimal energy consumption of stream-
ing applications. In experiments, heuristic search (greedy and Taboo) algorithms
are used to find efficient design options in terms of total energy dissipations.

In Chapter 4, a formal analytic scheduling framework for for real-time stream-
ing applications with minimal buffer requirement on hybrid CPU/FPGA architec-
tures is proposed. Based on event models of data streams, the problem has been
formalized declaratively as constraint base scheduling, and solved by a public do-
main constraint solver Gecode [32]. Experiments have shown the capability of
the proposed approach in constructing schedules with high (feasible) throughput
guarantees and minimized buffer requirement.

Consecutively, the constraint based analytic method has been extended in the
following chapters.

• In Chapter 5, a global scheduling and contention-free routing framework for
NoC based MPSoCs is addressed.

• Based on adaptive extensions on SDF semantics and iterative timing phases,
a performance analysis framework is proposed in Chapter 6 for adaptive real-
time streaming applications on run-time reconfigurable FPGAs.

• In Chapter 7, a design Pareto-point calculation flow is exploited for multi-
dimensional design optimization, with optimized buffer requirement and
software/hardware implementation cost on run-time reconfigurable multi-
processor/FPGA platforms.

Finally, a prototype of stream processing systems on FPGA based MPSoCs is
built in Chapter 8 as a realistic projection on the final implementation, to make the
results of theoretical studies in this thesis more meaningful.
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9.2 Future work

Although several issues on performance analysis and implementation of predictable
MPSoC computing systems have been address in this thesis, like any other research
projects, there are more unfulfilled research problems, which are worthy to be ex-
plored in the future.

• The computational models of streaming applications considered in this the-
sis are based on SDF models, which are quite restrictive in semantics. To
extend the SDF semantics to be more expressive, the model can be used
to describe streaming applications with more dynamic properties, such as
the adaptive extensions in Chapter 6, cyclo-static data flow [14], extended
SDF [72], SDF scenarios [33], heterogeneous SDF (HSDF) [39], and parame-
terized SDF (PSDF) [11]. On the other hand, the model is required to preserve
the static time analyzability in predictable systems design. Typically, analysis
techniques based on more expressive models are preferably to achieve a more
efficient design [33]. It is worthy to find a balance between expressiveness and
analyzability of computational models, according to the application specific
requirement.

• Both heuristics and constraint programming techniques have been exploited
to solve the NP-complete problems in this thesis. A comparison between them
and some other techniques, such as evolutionary algorithms, model checking
and SAT solvers [3, 21, 28], is worthy to be addressed. Besides, to improve
the propagation and searching efficiency of the constraint models can help
to solve problems with scaled-up problem size or complexity. Preferably, the
domain specific knowledge as used in [87, 102] is promising to be considered
and modelled.

• From version 3.1.0, the constraint solver Gecode starts to support parallel
search in multiple threads. However, the searching speed on multi-thread
heavily depends on whether the search tree can be distributed to each thread
efficiently, and it takes more memory than single thread searching [32]. To
consider using multiple threads in searching with a reasonable peak memory
in the exploration of search tree remains to be the future work.

• Theoretical studies have considered memory sharing between different logic
buffers in Chapter 5, similar as in [70, 71, 42, 36]. Compared disjoint parti-
tioning, it shows a great reduction in memory size. However, a general way to
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conduct memory sharing is non-trivial in implementation, which has not been
seen in the literature and remains to be addressed.

• Based on worst case scenarios, performance analysis in this thesis has been
done for hard real-time applications. For applications with soft real-time re-
quirements, probabilistic analysis based on average case is needed. Poten-
tially, it can lead to more efficient resource usage.

• In Chapter 8, a prototype of streaming applications on Avalon bus based
MPSoCs has been built. Another interconnection alternative is the NoC com-
munication, as covered in theoretical studies in Chapter 3 and Chapter 5.
When more scalability on the MPSoC platform is required, the prototype
needs to be extended to NoC architecture.
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