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Abstract

Due to the interplay between increasing chip capacity and complex applications,
System-on-Chip (SoC) development is confronted by severe challenges, such as
managing deep submicron effects, scaling communication architectures and bridg-
ing the productivity gap. Network-on-Chip (NoC) has been a rapidly developed
concept in recent years to tackle the crisis with focus on network-based commu-
nication. NoC problems spread in the whole SoC spectrum ranging from spec-
ification, design, implementation to validation, from design methodology to tool
support. In the thesis, we formulate and address problems in three key NoC areas,
namely, on-chip network architectures, NoC network performance analysis, and
NoC communication refinement.

Quality and cost are major constraints for micro-electronic products, particu-
larly, in high-volume application domains. We have developed a number of tech-
niques to facilitate the design of systems with low area, high and predictable per-
formance. From flit admission and ejection perspective, we investigate the area
optimization for a classical wormhole architecture. The proposals are simple but
effective. Not only offering unicast services, on-chip networks should also pro-
vide effective support for multicast. We suggest a connection-oriented multicas-
ting protocol which can dynamically establish multicast groups with quality-of-
service awareness. Based on the concept of a logical network, we develop the-
orems to guide the construction of contention-free virtual circuits, and employ a
back-tracking algorithm to systematically search for feasible solutions.

Network performance analysis plays a central role in the design of NoC com-
munication architectures. Within a layered NoC simulation framework, we develop
and integrate traffic generation methods in order to simulate network performance
and evaluate network architectures. Using these methods, traffic patterns may be
adjusted with locality parameters and be configured per pair of tasks. We propose
also an algorithm-based analysis method to estimate whether a wormhole-switched
network can satisfy the timing constraints of real-time messages. This method is
built on traffic assumptions and based on a contention tree model that captures
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iv Abstract

direct and indirect network contentions and concurrent link usage.
In addition to NoC platform design, application design targeting such a plat-

form is an open issue. Following the trends in SoC design, we use an abstract
and formal specification as a starting point in our design flow. Based on the syn-
chronous model of computation, we propose a top-down communication refine-
ment approach. This approach decouples the tight global synchronization into
process local synchronization, and utilizes synchronizers to achieve process syn-
chronization consistency during refinement. Meanwhile, protocol refinement can
be incorporated to satisfy design constraints such as reliability and throughput.

The thesis summarizes the major research results on the three topics.
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Chapter 1

Introduction

This chapter highlights System-on-Chip design challenges and introduces the Network-
on-Chip concept. We also give an overview of the research presented in the thesis
and outline the author’s contributions to the enclosed papers.

1.1 Network-on-Chip (NoC)

1.1.1 System-on-Chip (SoC) Design Challenges

Our life has been largely shaped by the exciting developments of modern elec-
tronic technologies, such as pervasive and ubiquitous computing, ambient intelli-
gence, communication, and Internet. Today micro-electronic products are influenc-
ing the ways of communication, learning and entertainment. The key driving force
for the developments during decades is the System-on-Chip (SoC) technologies,
where complex applications are integrated onto single ULSI chips. Not only func-
tionally enriched, these products such as mobile phones, notebooks and personal
handheld sets are becoming faster, smaller-in-size, larger-in-capacity, lighter-in-
weight, lower-in-power-consumption and cheaper. One could favorably think that
this trend will persistently continue. Following this trend, we could integrate more
and more complex applications and even systems onto a single chip. However, our
current methodologies for SoC design and integration do not evenly advance due
to the big challenges confronted.

• Deep SubMicron (DSM) effects [43, 80, 134]: In early days of VLSI design,
signal integrity effects such as interconnect delay, crosstalk, inter-symbol in-
terference, substrate coupling, transmission-line effects, etc. were negligible

1



2 Chapter 1. Introduction

due to relatively slow clock speed and low integration density. Chip inter-
connect was reliable and robust. At the scale of 250 nm with aluminum and
180 nm with copper and below, interconnect started to become a dominating
factor for chip performance and robustness. As the transistor density is in-
creased, wires are getting neither fast nor reliable [43]. More noise sources
due to inductive fringing, crosstalk and transmission line effects are cou-
pled to other circuit nodes globally on the chip via the substrate, common
return ground and electromagnetic interference. More and more aggressive
use of high-speed circuit families, for example, domino circuitry, scaling
of power supply and threshold voltages, and mixed-signal integration com-
bine to make the chips more noise-sensitive. Third, higher device densities
and faster switching frequencies cause larger switching-currents to flow in
the power and ground networks. Consequently, power supply is plagued
with excessive IR voltage drops as wells as inductive voltage drops over the
power distribution network and package pins. Power supply noise degrades
not only the driving capability of gates but also causes possible false switch-
ing of logical gates. Today signal and power integrity analysis is as important
as timing, area and power analysis.

• Global synchrony [3, 47]: Predominating digital IC designs have been fol-
lowing a globally synchronous design style where a global clock tree is dis-
tributed on the chip, and logic blocks function synchronously. However,
this style is unlikely to survive with future wire interconnect. The reason
is that technology scaling does not treat wire delay and gate delay equally.
While gate delay (transistor switching time) has been getting dramatically
smaller in proportion to the gate length, wires have slowed down. As the chip
becomes communication-bound at 130 nm, multiple cycles are required to
transmit a signal across its diameter. As estimated in [3], with the process
technology of 35 nm in year 2014, the latency across the chip in a top-level
metal wire will be 12 to 32 cycles depending on the clock rate assuming best
transmission conditions such as very low-permittivity dielectrics, resistivity
of pure copper, high aspect ratio (ratio of wire height to wire width) wires
and optimally placed repeaters. Moreover, a clock tree is consuming larger
portions of power and area budget and clock skew is claiming an ever larger
portion of the total cycle time [94]. Even if we have an unlimited number
of transistors on a chip, chip design is to be constrained by communication
rather than capacity. A future chip is likely to be partitioned into locally
synchronous regions but global communication is asynchronous, so called
GALS (Globally Asynchronous Locally Synchronous).
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• Communication architecture [9, 19]: Most current SoCs have a bus-based
architecture, such as simple, hierarchical or crossbar-type buses. In contrast
to the scaling of chip capacity, buses do not scale well with the system size
in terms of bandwidth, clocking frequency and power. First, a bus system
has very limited concurrent communication capability since only one de-
vice can drive a bus segment at a time. Current SoCs integrate fewer than
five processors and, rarely, more than 10 bus masters. Second, as the num-
ber of clients grows, the intrinsic resistance and capacitance of the bus also
increase. This means that the bus speed is inherently difficult to scale up.
Third, a bus is inefficient in energy since every data transfer is broadcast. The
entire bus wire has to be switched on and off. This means that the data must
reach each receiver at great energy cost. Although improvements such as
split-transaction protocols and advanced arbitration schemes for buses have
been proposed, these incremental techniques can not overcome the funda-
mental problems. To explore the future chip capacity, for high-throughput
and low-power applications, hundreds of processor-sized resources must be
integrated. A bus-based architecture would become a critical performance
and power bottleneck due to the scalability problem. Novel on-chip commu-
nication architectures are desired.

• Power and thermal management [85, 105]: As circuits run with higher and
higher frequencies, lowering power consumption is becoming extremely im-
portant. Power is a design constraint, which is no more subordinate to per-
formance. Despite process and circuit improvements, power consumption
shows rapid growth. Equally alarming is the growth in power density on the
chip die, which increases linearly. In face of DSM effects, reducing power
consumption is becoming even more challenging. As devices shrink to sub-
micron dimensions, the supply voltage must be reduced to avoid damaging
electric fields. This development, in turn, requires a reduced threshold volt-
age. However, leakage current increases exponentially with a decrease in
the threshold voltage. In fact, a 10% to 15% reduction can cause a two-fold
increase in leakage current. In increasingly smaller devices, leakage will be-
come the dominant source of power consumption. Further, leakage occurs as
long as power flows through the circuit. This constant current can produce
an increase in the chip temperature, which in turn causes an increase in the
thermal voltage, leading to a further increase in leakage current.

• Verification [107, 111]: Today SoC design teams are struggling with the
complexity of multimillion gate designs. System verification runs through
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the whole design process from specification to implementation, typically
with formal methods or simulation-based validation. As the system has
become extremely complex, the verification or validation consumes an in-
creasing portion of the product development time. The verification effort
has reached as high as 70% of engineering efforts.

• Productivity gap [4, 111]: Simply put, productivity gap is the gap between
what we are capable of building and what we are capable of designing. In
line with Moore’s law [83], the logic capacity of a single chip has increased
at the rate of 58% per annum compounded. Soon the complexity of the chip
enters the billion-transistor era. The complexity of developing SoCs is in-
creasing continuously in order to exploit the potential of the chip capacity.
However, the productivity of hardware and software design is not growing
at a comparable pace. The hardware design productivity is increased at a
rate in the range 20% to 25% per annum compounded. Even worse, the soft-
ware design productivity improves at a rate in the range from 8% to 10% per
annum compounded. As a consequence, the costs of developing advanced
SoCs are increasing at an alarming pace and time-to-market is negatively af-
fected. The design team size is increased by more than 20% per year. This
huge investment is becoming a serious threshold for new product develop-
ments and is slowing down the innovation in the semiconductor industry.
As stated in the ITRS roadmap [4], cost of design is the greatest threat to
continuation of the semiconductor roadmap.

1.1.2 Network-on-Chip as a SoC Platform

Innovations occur where challenges are present. Network-on-Chip (NoC) was pro-
posed in face of those challenges in around year 2001 in the SoC community
[9, 27, 37, 41, 109, 119]. In March 2000, packet-switched networks were proposed
in SPIN [37] as a global and scalable SoC interconnection. The term Network-
on-Chip appeared initially in November 2000 [41] where NoC was proposed as
a platform to cope with the productivity gap. In June 2001, Dally and Towles
proposed NoC as a structured way of communication to connect IP modules [27].
The GigaScale Research Center (GSRC) suggested NoC to address interconnec-
tion woes [119]. In October 2001, researchers from the Philips Research presented
a router architecture supporting both best-effort and guaranteed-throughput traffic
for Network-on-Silicon [109]. In January 2002, Luca and De Micheli formulated
NoC as a new SoC paradigm [9]. While network-on-chip is still in its infancy, the
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Figure 1.1. A mesh NoC with 9 nodes

concept has spread and been accepted in academia very rapidly. Some big com-
panies, for instance, NXP semiconductors (former part of Philips Semiconductors)
and ST Micro-electronics, are also very active in this field [34, 52]. A comprehen-
sive survey on current research and practices of NoC can be found in [13].

Aimed to be a systematic approach, NoC proposes networks as a scalable,
reusable and global communication architecture to address the SoC design chal-
lenges. As an instance, Nostrum [81, 90] is the name of the Network-on-Chip
concept developed at the Royal Institute of Technology (KTH), Sweden. It fea-
tures a mesh structure composed of switches with each resource connected to ex-
actly one switch, as shown in Figure 1.1. A resource can be a processor, memory,
ASIC, FPGA, IP block or a bus-based subsystem. The resources are placed on the
slots formed by the switches. The maximal resource area is defined by the max-
imal synchronous region of a technology. The resources perform their own com-
putational, storage and/or I/O processing functionalities, and are equipped with
Resource-Network-Interfaces (RNIs) to communicate with each other by routing
packets instead of driving dedicated wires.

Communication network is a well-known concept developed in the context of
telephony, computer communication as well as parallel machines. On-chip net-
works share many characteristics with these networks, but also have significant
differences. For clear presentation, throughout the thesis, we also call an on-chip
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network a micro-network, a parallel-machine network a macro-network, a tele-
phony or computer network a tele-network. On-chip networks are developed on a
single chip and designed for closed systems targeting perhaps heterogeneous ap-
plications. Parallel-machine networks are developed on distributed boards and de-
signed for a particular application which typically executes specific algorithms.
Computer networks are geographically distributed and designed for open systems
running diverse applications from client-server, peer-to-peer and multicast appli-
cations. Telephony networks are also geographically distributed but are designed
mainly for the purposes of communicating voice, video and data. The design of a
closed system allows for customization in which the network properties including
the network-level, link-level and physical-level properties can be propagated to the
application level and both communication and computation may be efficiently op-
timized. Since a micro-network is built on a single chip, it can have wide parallel
wires and allows high rate synchronous clocking. On the other hand, it has more
stringent constraints in performance, area and power, which are typical trade-off
considerations for SoC designs. As communication is to transfer data, timing is
the first-level citizen. On-chip networks have the strictest requirement on delay
and jitter. The time scale is measured in nano seconds. This requirement precludes
many of the software-based sophisticated arbitration, routing and flow-control al-
gorithms. Cost is a major concern for on-chip networks since most SoCs target
high-volume markets. The buffering in an on-chip network has very limited space
and is expensive in comparison with board-level, local-area and wide-area net-
works. This means that a NoC allows a limited count of routing tables and virtual-
channel buffers in network nodes. Power consumption is important for all kinds of
networks. However, on-chip networks are developed also for embedded applica-
tions with battery-driven devices. Such applications require extremely low power
which is not comparable to large-scale networks. As we also mentioned, on-chip
network designs are confronted by the DSM effects. Taming bad physical effects is
as important as network design itself. Furthermore, many SoC networks are devel-
oped as a platform for multiple use cases, not only for a single use case. Therefore
designing micro-networks also need to take reconfigurability into account.

As we view it, Network-on-Chip is a revolutionary rather than evolutionary
approach to address the SoC design crisis. It shifts our focus from computation to
communication. It should take interconnect into early consideration in the design
process, and might favor a meet-in-the middle (platform-based) design methodol-
ogy against a top-down or bottom-up approach. NoC has the following features:

• Interconnect-aware [93]: As the technology scales, the reachable region in
one clock cycle diminishes [3]. Consequently, chip design is increasingly
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becoming communication-bound rather than capacity-bound. Since the size
of a single module is limited by the reachable region in one cycle, to exploit
the huge chip capacity, the entire chip has to be partitioned into multiple
regions. A good partitioning should be regular, making it easier to man-
age the properties of long wires including middle-layer and top-layer wires.
Each module is situated in one partitioned region and maintains its own syn-
chronous region. In this way, the reliance on global synchrony and use of
global wires can be alleviated. To guarantee correct operation, registers may
be used in wire segments to make the design latency-insensitive [17]. Be-
sides, each IP may be attached to a switch. Switches are in turn connected
with each other to route packets in the network. The signal and power in-
tegrity issues may be addressed at the physical, link and higher layers. For
example, redundancy in time, space and information can be incorporated in
transmission to achieve reliability. By physically structuring the communi-
cation and successfully suppressing the DSM effects, the design robustness
and reliability can be improved.

• Communication-centric [10]: Networking distributed IP modules in a parti-
tioned chip results in a naturally parallel communication infrastructure. As
long as the chip capacity is not exceeded, the number of cores which can be
integrated on a single chip is scalable. The inter-core communications share
the total network bandwidth with a high degree of concurrency. The network
can be dimensioned to suit the bandwidth need of the application under in-
terest. The parallel architecture allows concurrent processing in computation
and communication. This helps to leverage performance and reduce power
in comparison with a sequential architecture permitting only sequentialized
processing. A protocol stack is typically built to abstract the network-based
communication. Each layer has well-defined functionalities, protocols and
interfaces. The design space at each layer has to be sufficiently explored. The
tradeoffs between performance and cost should be considered in the design,
analysis and implementation of the communication architecture. Quality-of-
Service (QoS) and system-wide performance analysis are central issues to
address predictability.

• Platform-based [50, 87]: Since the cost of design is the major obstacle for
innovative and complex SoCs [46], developing a programmable, reconfig-
urable and extensible communication platform is essential for SoC designs.
To this end, NoC shall serve as a communication and integration platform
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providing a hardware communication architecture, an associated intercon-
nect interface, as well as a high-level interface for integrating hardware IPs,
custom logic and for software programming. This enables the architecture-
level reuse. One challenge is to address the balance between generality and
optimality. A platform must serve not only one application but also many ap-
plications within an application domain. On the other hand, customization
to enhance performance and efficiency is needed to make designs competi-
tive. Providing well-defined interfaces at least at the network level and the
application level is important, because it enables IPs and functional blocks
to be reusable. Interface standardization is one major concern to make IPs
from different vendors exchangeable. It must be efficient and also addresses
legacy IPs. The concept of interface-based design has been shown successful
for IP plug-and-play in the history of software and hardware developments,
for example, instruction sets and various interconnect buses or protocols such
as Peripheral Component Interface (PCI) and Universal Serial Bus (USB). A
NoC design methodology should also favor communication interfaces for
the greatest possible IP reuse and integration [112, 129]. Using validated
components and architectures in a design flow shrinks verification effort, re-
duces time-to-market and guarantees product quality, thus enhancing design
productivity.

As such, NoC research does not deal with only several aspects of SoC de-
sign but creates a new area [50]. The term NoC is used today mostly in a very
broad meaning. It encompasses the hardware communication infra-structure, the
middleware and operating system, application programming interfaces [64, 101],
the design methodology and its associated tool chain. The challenges for NoC re-
search have thus been distributed in all aspects of SoC design from architecture to
performance analysis, from traffic characterization to application design.

1.1.3 On-Chip Communication Model

On-chip communication is to provide a means to enable interprocess communica-
tion with a set of constraints and properties satisfied. A good view of network-
based process-to-process communication is to follow the ISO’s OSI model [135].
The seven-layer model was proposed to interconnect open systems, which are het-
erogeneous and distributed. The layered structure decomposes the communication
problem into more manageable components at different hierarchical layers. Rather
than a monolithic structure, several layers are designed, each of which solves one
part of the problem. Besides, layering provides a more modular design. At each
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layer, protocols and services, which are implementation-independent, are well-
defined. Peer entities at the same layer can thus communicate with each other
transparently. Adding new services to one layer may only need to modify the func-
tionality at one layer, reusing the functions provided at all the other layers. Due to
these advantages, several NoC groups [9, 82, 119] have followed this model and
adapted it to build a protocol stack for on-chip communication.

As a platform, NoC shall provide well-defined interfaces for application pro-
gramming and IP integration. Two levels of interfaces can be identified. One is the
Core-Level Interface (CLI), which is used to connect hardware cores. At this level,
IPs and processors implement interfaces such as AXI [6], OCP [95], VCI [130],
CoreConnect [45] and DTL [104]. The other level interface is for integrating hard-
ware logic via a communication adapter and for programming embedded software.
The Operating System (OS) [92] and middleware can be part of the platform. This
level of interface is Application-Level Interface (ALI). A recent proposal of the
two-level interfaces for multiprocessors on chip can be found in [129].

An on-chip communication model combines the two views: abstract layered
communication and interface-based communication. Although having been dis-
cussed separately, the two views are coherent, as shown in Figure 1.2. As can
be seen, hardware and software processes (illustrated as P1, P2, P3, P4 in Figure
1.2) representing the application layer use the ALI. The hardware communication
adapter for integrating hardware cores and operating system & middleware for in-
tegrating software cores realize the session and transport layers, and connect to the
CLI. The CLI encapsulates the network. It is worth noting that bypassing one layer
is possible, as long as the interfaces match. For example, if a hardware IP imple-
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ments the CLI, it can be directly connected to the CLI instead of connecting to the
ALI, bypassing the communication adapter.

1.2 Research Overview

We have been orienting our NoC research towards three key issues: on-chip net-
work architectures, network performance analysis and application design method-
ology. The network communication architectures deal with the design of on-chip
networks. The performance analysis evaluates the network performance and helps
to uncover the impact of network parameters on performance. The design method-
ology is concerned with how to design applications on a NoC platform. Specifi-
cally, we deal with communication refinement that synthesizes the communication
in a system model into on-chip communication. Essentially these topics deal with
the design and analysis of on-chip communication for NoC platforms.

We have identified and formulated problems related to the three aspects men-
tioned above. The thesis is based on the research results from these studies. In the
following, we give a brief sketch of the main results:

• NoC network architectures: We have proposed cost-effective switch archi-
tectures, a connection-oriented multicasting scheme, as well as a TDM (Time
Division Multiplexing) virtual-circuit configuration method using logical net-
works. After studying wormhole switch micro-architectures, we propose
flit admission and ejection schemes, which are cost-effective with mini-
mal performance penalty. Our multicasting mechanism is also proposed for
wormhole-switched networks. It is connection-oriented, and a connection
can be established dynamically. Based on the concept of a logical network,
we have developed theorems and used a back-tracking algorithm to configure
contention-free TDM virtual-circuits.

• NoC network performance analysis: We have investigated traffic configu-
ration, carried out network simulation and made feasibility analysis. We
propose how to configure synthetic traffic patterns using distribution with
controllable locality or channel-by-channel customization. This traffic con-
figuration method has been integrated into our Nostrum NoC Simulation En-
vironment (NNSE). A case study on the deflection networks shows that our
simulator enables to explore the architectural design space and helps to make
proper decisions on topology, routing schemes and deflection policies. The
feasibility analysis aids designers with information about whether the appli-
cation can fulfill the timing requirements of messages on the network and



1.3. Author’s Contributions 11

how efficient network resources can be utilized. It allows one to evaluate the
network using algorithm instead of simulation. Hence, it is more efficient but
less accurate. This feasibility analysis is performed on wormhole-switched
networks.

• NoC communication refinement: Based on a synchronous system model, we
have proposed a communication refinement approach that refines the ab-
stract communication into network-based communication. During the re-
finement, synchronization consistency is maintained in order to be correct-
by-construction and protocol refinement can be incorporated to satisfy per-
formance constraints.

Next, we summarize the author’s contributions in each of the enclosed papers.

1.3 Author’s Contributions

The thesis is based on a collection of papers, which are all peer-reviewed except
Paper 4 that is under review. The papers are grouped into three blocks, namely,
NoC network architectures, NoC network performance analysis, and NoC commu-
nication refinement. Each block is dedicated to one chapter in the thesis and we
concentrate on introducing the author’s contributions in each chapter. The detailed
materials, experiments, results and other related work are referred to the papers. In
the following, we summarize the enclosed papers highlighting the author’s contri-
butions. These papers are also listed in the references.

• NoC Network Architectures

Paper 1 [66]. Zhonghai Lu and Axel Jantsch. Flit admission in on-chip
wormhole-switched networks with virtual channels. In Proceedings of
the International Symposium on System-on-Chip, pages 21-24, Tam-
pere, Finland, November 2004.
This paper discusses the flit admission problem in input-buffering and
output-buffering wormhole switches. Particularly it presents a novel
cost-effective coupling scheme that binds flit admission queues with
output physical channels in a one-to-one correspondence manner. The
experiments suggest that the network performance is equivalent to the
base line scheme which connects a flit admission queue to all the output
physical channels.
Author’s contributions: The author contributed with the problem for-
mulation, conducted experiments and wrote the manuscript.
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Paper 2 [67]. Zhonghai Lu and Axel Jantsch. Flit ejection in on-chip
wormhole-switched networks with virtual channels. In Proceedings of
the IEEE NorChip Conference, pages 273-276, Oslo, Norway, Novem-
ber 2004.
This paper studies flit ejection models in a wormhole virtual channel
switch. Instead of the costly ideal flit-ejection model, two alternatives
which largely reduce the buffering cost are proposed. Experiments
show that the p-sink model achieves nearly equivalent performance
with the ideal sink model if the network is not overloaded.
Author’s contributions: The author formulated the flit-ejection prob-
lem, proposed solutions, conducted experiments and wrote the manu-
script.

Paper 3 [75]. Zhonghai Lu, Bei Yin, and Axel Jantsch. Connection-
oriented multicasting in wormhole-switched networks on chip. In Pro-
ceedings of the IEEE Computer Society Annual Symposium on VLSI
(ISVLSI’06), pages 205-210, Karlsruhe, Germany, March 2006.
This paper presents a connection-oriented multicast scheme in wormhole-
switched NoCs. In this scheme, a multicast procedure consists of es-
tablishment, communication and release phases. A multicast group can
request to reserve virtual channels during establishment and has prior-
ity on arbitration of link bandwidth. This multicasting method has been
effectively implemented in a mesh network with deadlock freedom.
Our experiments show that the multicast technique improves through-
put, and does not exhibit significant impact on unicast performance in
a network with mixed unicast and multicast traffic.
Author’s contributions: The author contributed with the idea and pro-
tocol design, suggested experimentation methods, and wrote the ma-
nuscript. The implementation and experiments were conducted by Bei
Yin.

Paper 4 [65]. Zhonghai Lu and Axel Jantsch. TDM virtual-circuit con-
figuration in network-on-chip using logical networks. In submission to
IEEE Transactions on Very Large Scale Integration Systems.
Configuring Time-Division-Multiplexing (TDM) Virtual Circuits (VCs)
on network-on-chip must guarantee conflict freedom for VCs besides
allocating sufficient time slots to them. Using the generalized concept
of logical networks, we develop and prove theorems that constitute suf-
ficient and necessary conditions to establish conflict-free VCs. More-
over, we give a formulation of the multi-node VC configuration prob-
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lem and suggest a back-tracking algorithm to find solutions by con-
structively searching the solution space.

Author’s contributions: The author developed and proved the theorems,
formulated the problem, wrote the program, conducted experiments
and wrote the manuscript.

• NoC Network Performance Analysis

Paper 5 [68]. Zhonghai Lu and Axel Jantsch. Traffic configuration for
evaluating networks on chip. In Proceedings of the 5th International
Workshop on System-on-Chip for Real-time Applications, pages 535-
540, Alberta, Canada, July 2005.

This paper details the traffic configuration methods developed for NNSE.
It presents a unified expression to configure both uniform and locality
traffic and proposes application-oriented traffic configuration for on-
chip network evaluation.

Author’s contributions: The author formulated the unified expression
for the regular traffic patterns and defined application-oriented traffic,
integrated the methods in NNSE, conducted experiments and wrote the
manuscript.

Paper 6 [76]. Zhonghai Lu, Mingchen Zhong, and Axel Jantsch. Evalu-
ation of on-chip networks using deflection routing. In Proceedings of
the 16th ACM Great Lakes Symposium on VLSI (GLSVLSI’06), pages
296-301, Philadelphia, USA, May 2006.

This paper evaluates the performance of deflection networks with dif-
ferent topologies such as mesh, torus and Manhattan Street Network,
different routing algorithms such as random, dimension XY, delta XY
and minimum deflection, as well as different deflection policies such
as non-priority, weighted priority and straight-through policies. The
results suggest that the performance of a deflection network is more
sensitive to its topology than the other two parameters. It is less sensi-
tive to its routing algorithm, but a routing algorithm should be minimal.
A priority-based deflection policy that only uses global and history-
related criterion can achieve both better average-case and worst-case
performance than a non-priority or priority policy that uses local and
stateless criterion. These findings may be used as guidelines by design-
ers to make right decisions on the deflection network architecture.
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Author’s contributions: The author formulated the problem, proposed
solution schemes, and wrote the manuscript. The implementation and
experiments were conducted by Mingchen Zhong.

Paper 7 [69]. Zhonghai Lu, Axel Jantsch and Ingo Sander. Feasibility
analysis of messages for on-chip networks using wormhole routing. In
Proceedings of the Asia and South Pacific Design Automation Confer-
ence, pages 960-964, Shanghai, China, January 2005.

The paper proposes a method for investigating the feasibility of deliver-
ing mixed real-time and nonreal-time messages in wormhole-switched
networks. Particularly it describes a contention tree model for the esti-
mation of worst-case performance for delivering real-time messages.

Author’s contributions: The author formulated the contention tree model,
developed the algorithm, wrote the program, performed experiments,
and wrote the manuscript.

• NoC Communication Refinement

Paper 8 [71]. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Refining syn-
chronous communication onto network-on-chip best-effort services. In
Alain Vachoux, editor, Applications of Specification and Design Lan-
guages for SoCs - Selected papers from FDL 2005. Springer, Chapter
2, pages 23-38, 2006.

The paper proposes a top-down design flow to refine synchronous com-
munication onto NoC best-effort services. It consists of three steps,
namely, channel refinement, process refinement, and communication
mapping. In channel refinement, synchronous channels are replaced
with stochastic channels abstracting the best-effort service. In process
refinement, processes are refined in terms of interfaces and synchro-
nization properties. Particularly, we use synchronizers to maintain local
synchronization of processes and thus achieve synchronization consis-
tency, which is a key requirement while mapping a synchronous model
onto an asynchronous architecture. Within communication mapping,
the refined processes and channels are mapped onto a NoC platform.
A digital equalizer is used as a tutorial example and implemented in
the Nostrum NoC platform to illustrate the feasibility of our concepts.

Author’s contributions: The author proposed the design flow for the
communication refinement, developed solutions for the synchroniza-
tion problem, conducted the case study, and wrote the manuscript.
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Paper 9 [72]. Zhonghai Lu, Ingo Sander, and Axel Jantsch. Towards
performance-oriented pattern-based refinement of synchronous models
onto NoC communication. In Proceedings of the 9th Euromicro Con-
ference on Digital System Design (DSD’06), pages 37-44, Dubrovnik,
Croatia, August 2006.

This paper is complementary to Paper 8, which mainly discusses how
to maintain synchronization consistency while refining the synchronous
communication on asynchronous NoC architectures. This paper fo-
cuses on how to achieve performance-oriented refinement. Specifi-
cally, it deals with protocol refinement and channel mapping issues.
In protocol refinement, we show how to refine communication towards
application requirements such as reliability and throughput. In channel
mapping, we discuss channel-convergence and channel-merge to make
efficient use of shared network resources.

Author’s contributions: The author developed the idea, implemented
the proposed techniques, conducted experiments, and wrote the manu-
script.

The remainder of the thesis is structured as follows. Chapter 2 summarizes
our research results on NoC network architectures. In Chapter 3, we describe our
work on NoC network performance analysis. We present our NoC communication
refinement approach in Chapter 4. Finally we summarize the thesis in Chapter 5.
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Chapter 2

NoC Network Architectures

This chapter summarizes our research on NoC network architectures, particularly,
cost-effective switch architectures [Paper 1, 2], connection-oriented multicasting
[Paper 3], as well as TDM (Time Division Multiplexing) virtual-circuit configura-
tion [Paper 4].

2.1 Introduction

2.1.1 On-Chip Communication Network

A. On-chip network characteristics

As with macro- and tele-networks, on-chip micro-networks share the same char-
acteristics in topology, switching, routing, and flow control. Additionally, a micro-
network has to provide high and predictable performance with small area overhead
and low power consumption. As noted in [27], a micro-network should appear as
logical wires for network clients. Quality of Service (QoS) is thus a crucial aspect
to distinguish one micro-network from another. Moreover, the design of on-chip
systems should take advantage of well-validated legacy or third-party IP cores to
shorten time-to-market and to guarantee product quality. To this end, IP reuse, ex-
change and integration are other critical issues. Addressing these issues demands
a standardized hardware interface. The interface wrapping a micro-network can
therefore be a distinguishing feature of a NoC proposal.

In the following, we describe the micro-network characteristics, namely, topol-
ogy, switching, routing, flow control, Quality of Service and Interface, highlighting
present NoC practices in these regards.

17
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B. Topology

The topology refers to the physical structure of the network graph, i.e., how net-
work nodes (switches or routers) are physically connected. It defines the connec-
tivity (the routing possibility) between nodes, thus having a fundamental impact
on the network performance as well as the switch structure, for example, the num-
ber of ports and port width. The tradeoff between generality and customization
is an important issue when determining a network topology. The generality fa-
cilitates the re-usability and scalability of the communication platform. The cus-
tomization is aimed for performance and resource optimality. Both regular and
irregular topologies have been advocated for NoCs. Regular topologies such as
k-ary 2-cube meshes [56] and tori [27] are popular ones because their layouts on a
two-dimensional chip plane use symmetric-length of wires. The significance of the
regularity lies in its potential of managing wire delay and wire-related DSM effects.
The k-ary tree and k-ary n-dimensional fat tree [1] are two alternative regular NoC
topologies. With a regular topology, the network area and power consumption scale
predictably with the size of the topology. The arguments for using irregular topolo-
gies are that specific applications require flexible and optimal topology. In [123],
the number of ports in switches can be synthesized according to the requirement
of connectivity. However, the area and power consumption of an irregular network
topology may not scale predictably with the topology size. Other topologies in
between regular and irregular ones are also proposed for NoCs. For example, an
interesting NoC topology is the Octagon NoC [52] in which a ring of 8 nodes con-
nected by 12 bi-directional chords. Traveling between any pair of nodes takes at
maximum two hops. In [99], a butterfly fat-tree topology was proposed in which
IPs are placed at the leaves and switches placed at the vertexes. Moreover, regular
topology may be customized by introducing application-specific long-range links
to improve performance with a small area penalty [96].

C. Switching strategy

The switching strategy determines how a message traverses its route. There are
two main switching strategies: circuit switching and packet switching. Circuit
switching reserves a dedicated end-to-end path from the source to the destination
before starting to transmit the data. The path can be a real or virtual circuit. Af-
ter the transmission is done, the path reservation with associated resources is re-
leased. Circuit-switching is connection-oriented, meaning that there is an explicit
connection establishment. In contrast to circuit-switching, packet-switching seg-
ments the message into a sequence of packets. A packet typically consists of a
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header, payload and a tail. The header carries the routing and sequencing infor-
mation. The payload is the actual data to be transmitted. The tail is the end of
the packet and usually contains error-checking code. Packet-switching can be ei-
ther connection-oriented or connection-less. Connection-oriented communication
preserves resources while connection-less communication does not. Connection-
oriented communication can typically provide a certain degree of commitment
for message delivery bounds. With connection-less communication, packets are
routed individually in the network in a best-effort manner. The message deliv-
ery is subject to dynamic contention scenarios in the network, thus is difficult to
provide bounds. However, the network resources can be better utilized. Typical
packet switching techniques1 include store-and-forward, virtual cut-through [53],
and wormhole switching 2.

• Store-and-forward: A network node must receive an entire packet before
forwarding it to the next downstream node. Both link bandwidth and buffers
are allocated at the packet-level. The non-contentional latency T for trans-
mitting L flits is expressed by Equation 2.1. Flit is the smallest unit for the
link-level flow control, which is the minimum unit of information that can
be transferred across a link.

T = (L/BW + R) ∗ H (2.1)

where BW is the link bandwidth in flits per cycle; R is the routing delay per
hop; Hop is the basic communication action from switch to switch. H is the
number of hops from the source node to the destination node.

• Virtual cut-through: Like store-and-forward, virtual cut-through allocates
both link bandwidth and buffers in units of packets. However, in virtual cut-
through, a network node does not wait for the reception of an entire packet.
It receives a portion of the packet, and then forwards it downstream if the
buffer space in the next switch is available. The downstream node must
have enough buffers to hold the entire packet. In case of blocking, the entire
packet is shunt into the buffers allocated. By transmitting packets as soon
as possible, virtual cut-through reduces the non-contentional latency T for
transmitting L flits to

T = L/BW + R ∗ H (2.2)

1Both store-and-forward and virtual cut-through do not divide packets into flits. We show the
division here for a consistent presentation of the switching techniques.

2In the literature, wormhole switching, wormhole routing and wormhole flow control have been
used. In this thesis, we tend to use wormhole switching.
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• Wormhole switching: A packet is decomposed into flits. Operating like
virtual cut-through, wormhole switching delivers flits in a pipelined fash-
ion. Due to the pipelined transmission, the non-contentional latency T of
transmitting L flits is the same as that for virtual cut-through. Wormhole-
switching and virtual cut-through are both cut-through switching techniques.
They mainly differ in how they handle packet blocking. With wormhole
switching, link bandwidth and buffers are allocated to flits rather than pack-
ets. The switch buffering capacity is a multiple of a flit. If a packet is
blocked, flits of the packet are stalled in place. With virtual cut-through,
a switch, at which a packet is blocked, must receive and store all flits of the
blocked packet. This enforces that the buffering capacity in switches must be
a multiple of a packet. Virtual cut-through utilizes the network’s bandwidth
more efficiently, achieving higher throughput than wormhole switching but
requiring higher buffering capacity.

Circuit-switching for on-chip networks is proposed in [132] to satisfy applica-
tions with hard real-time constraints. The majority of on-chip networks is based
on packet-switching, and combined packet-switching and circuit-switching. For
example, TDM virtual-circuits [34, 81], which preserves time slots to switch pack-
ets in a contention-free manner, can be viewed as a circuit-switching technique
implemented in a packet-switched network.

D. Routing algorithm

The routing algorithm determines the routing paths the packets may follow through
the network graph. It usually restricts the set of possible paths to a smaller set of
valid paths. In terms of path diversity and adaptivity, routing algorithm can be clas-
sified into three categories, namely, deterministic routing, oblivious routing and
adaptive routing [28]. Deterministic routing chooses always the same path given
the source node and the destination node. It ignores the network path diversity and
is not sensitive to the network state. This may cause load imbalances in the network
but it is simple and inexpensive to implement. Besides, it is often a simple way to
provide the ordering of packets. Oblivious routing, which includes deterministic
algorithms as a subset, considers all possible multiple paths from the source node
to the destination node, for example, a random algorithm that uniformly distributes
traffic across all of the paths. But oblivious algorithms do not take the network
state into account when making the routing decisions. The third category is adap-
tive routing, which distributes traffic dynamically in response to the network state.
The network state may include the status of a node or link, the length of queues,



2.1. Introduction 21

and historical network load information. A routing algorithm is termed minimal
if it only routes packets along shortest paths to their destinations, i.e., every hop
must reduce the distance to the destination. Otherwise, it is non-minimal. Both
table-based and algorithmic routing mechanics can be used to realize the routing
algorithms [28]. The table-based routing mechanism uses routing tables either at
the source or at each hop along the route. Instead of storing the routing relation
in a table, the algorithmic routing mechanism computes it. For speed, it is usually
implemented as a combinational logic circuit. The algorithmic routing is usually
restricted to simple routing algorithms and regular topologies, sacrificing the gen-
erality of table-based routing.

In comparison with adaptive routing, deterministic or oblivious minimal rout-
ing results in relatively simple switch designs because a routing decision is made
independent of the dynamic network state. Though a routing algorithm has differ-
ent properties in design complexity, adaptivity and load balancing, the performance
of a routing algorithm is also topology and application dependent [88]. An inter-
esting extreme case of non-minimal adaptive routing is deflection routing [16], also
called hot-potato routing. Its distinguishing feature is that it does not buffer pack-
ets. Instead, packets are always on the run cycle-by-cycle. A deflection policy
prioritizes packets on the use of favored links. If there is no contention, packets
are delivered via shortest paths. Upon contending for shared links, packets with a
higher priority win arbitration and use the favored links while packets with a lower
priority are mis-routed to non-minimal routes. Deflection routing has been used in
optical networks where buffering optical signals is too expensive [106]. Because
of simplicity and adaptivity, it is adopted and implemented in communication net-
works embedded in massively parallel machines such as the Connection machine
[42]. For the same reasons, it has also been proposed for on-chip networks in
the Nostrum NoC [81, 91]. Using deflection routing results in faster and smaller
switch designs. As projected in [91], a deflection switch with an arity of five can
run 2.38 GHz with a gate count of 19370 in 65 nm technology. Deadlock and live-
lock are the primary concern when designing a routing algorithm in order to ensure
correct network operation [30]. As shown in [97], application knowledge can be
effectively utilized to avoid deadlock. In [16, 49], maximum delivery bounds are
derived for deflection networks. Thus the networks are livelock free.

E. Network flow control

The network flow control governs how packets are forwarded in the network, con-
cerning shared resource allocation and contention resolution. The shared resources
are buffers and links (physical channels). Essentially a flow control mechanism
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deals with the coordination of sending and receiving packets for the correct deliv-
ery of packets. Due to limited buffers and link bandwidth, packets may be blocked
due to contention. Whenever two or more packets attempt to use the same network
resource (e.g., a link or buffer) at the same time, one of the packets could be stalled
in placed, shunted into buffers, detoured to an unfavored link, or simply dropped.
For packet-switched networks, there exist bufferless flow control and buffered flow
control [28].

• Bufferless flow control is the simplest form of flow control. Since there is no
buffering in switches, the resource to be allocated is link bandwidth. It relies
on an arbitration to resolve contentions between contending packets. After
the arbitration, the winning packet advances over the link. The other packets
are either dropped or misrouted since there are no buffers. The deflection
routing uses bufferless flow control. In fact, deflection routing includes an
orthogonal concern of routing algorithm and deflection policy. While a rout-
ing algorithm determines the favored links for packets, a deflection policy re-
solves contentions for shared links by forwarding the packet with the highest
priority to its favored link and misrouting other packet(s) with a lower pri-
ority to unfavored links. As deflection routing does not buffer packets, the
switch design can be simpler and thus cheaper because it has no buffer and
flow management. Moreover, since the routing paths of packets are fully
adaptive to the network state, deflection routing has higher link utilization
and offers the potential to allow resilience for link and switch faults.

• Buffered flow control stores blocked packets while they wait to acquire net-
work resources. Store-and-forward, virtual cut-through and wormhole switch-
ing techniques adopt buffered flow control. The granularity of resource
allocation for different buffered flow control techniques may be different.
Store-and-forward switching and virtual cut-through switching allocate link
bandwidth and buffers in units of packets. Wormhole switching allocates
both link bandwidth and buffers in units of flits. Buffered flow control re-
quires a means to communicate the availability of buffers at the downstream
switches. The upstream switches can then determine when a buffer is avail-
able to hold the next flit to be transmitted. If all of the downstream buffers
are full, the upstream switches must be informed to stop transmitting (as-
suming drop-less delivery). This phenomenon is called back pressure. Link-
level flow control mechanisms, in which the buffer availability information
is passed and propagated between switches, are introduced to provide such
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back-pressure. Today, there are three types of link-level flow control tech-
niques in common use: credit-based, on/off, and ack/nack [28].

The flow control scheme of a network may be coupled with its switching strat-
egy. For instance, both store-and-forward and virtual cut-through switching use
the packet-buffer flow control, and wormhole switching uses the flit-buffer flow
control. It is worthwhile to discuss them separately because a flow control scheme
emphasizes the movement of packet flows instead of switching individual packets.

F. Quality of Service

Generally speaking, Quality-of-Service (QoS) defines the level of commitment for
packet delivery. Such a commitment can be correctness of the result, completion
of the transaction, and bounds on the performance [33]. But, mostly, QoS has a
direct association with bounds in bandwidth, delay and jitter, since correctness and
completion are often the basic requirements for on-chip message delivery. Correct-
ness is concerned with packet integrity (corrupt-less) and packet ordering. It can be
achieved through different means at different levels. For example, error-correction
at the link layer or re-transmission at the upper layers can be used to ensure packet
integrity. A network-layer service may secure that the packets are delivered in
order. Alternatively, if a network-layer service cannot promise in-order delivery,
a transport-layer service may compensate to do the re-ordering. Completion re-
quires that a flow control method does not drop packets. In case of a shortage of
resources, packets can be mis-routed or buffered. In addition, the network must
ensure deadlock and livelock freedom.

Roughly classified, NoC researchers have proposed best-effort, guaranteed,
and differentiated services for on-chip packet-switched communication. A best-
effort service is connectionless. The network delivers packets as fast as it can.
Packets are routed in the network, resulting in dynamic contentions for shared
buffers and links. A packet-admission policy is usually desired to avoid network
saturation. Below the saturation point, the network exhibits good average perfor-
mance but the worst-case can be more than an order of magnitude worse than the
average case. A guaranteed service is typically connection-oriented. It avoids net-
work contentions by establishing a virtual circuit. Such a virtual circuit may be
implemented by time slots, virtual channels, parallel switch fabrics and so on. The
Æethereal NoC [34] implements a contention-free TDM virtual-circuit in a net-
work employing buffered flow control. The Nostrum NoC [81] also realizes TDM
virtual-circuit but in a network using bufferless flow control. Both Æethereal and
Nostrum networks operate synchronously. The MANGO network [14] is clockless.
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Since the network switches do not share the same notion of time, it uses sequences
of virtual channels to set up virtual end-to-end connections. In contrast to TDM,
SDM (Space-Division-Multiplexing)-based QoS is achieved by allocating individ-
ual wires on the link for different connections [61]. For the guaranteed services,
if a virtual circuit is set up dynamically, the setup procedure has to use best-effort
packets. This phase is somewhat unpredictable due to the best-effort nature. A
differentiated service prioritizes traffic according to different categories, and the
network switches employ priority-based scheduling and allocation policies. For
instance, the QNoC [15] network distinguishes four traffic classes, i.e., signaling,
real-time traffic, read-write and block transfer. The signaling class has the highest
and the block-transfer class the lowest priority. Priority-based approaches allow
for higher utilization of resources but cannot provide strong guarantees like guar-
anteed services. To improve resource usage, a best-effort service may be mixed
with a guaranteed service using, for example, slack-time aware routing [5].

G. Interface

Wrapping on-chip networks with an interface is essential for NoC designs. The in-
terface is preferably standardized, but domain-specific customization is necessary
for optimal and dedicated solutions. An interface-based design approach [112, 129]
separates computation from communication. It gives the interface users an abstrac-
tion that makes only the relevant information visible. It facilitates the exchange and
reuse of IPs as long as the IPs conform to the same interface.

To make a huge number of legacy IPs reusable and integrable, an on-chip net-
work interface has to follow standard interfaces. Current network interconnects
implement interfaces such as AXI [6], OCP [95], VCI [130] and DTL [104]. AXI
(Advanced eXtensible Interface) is AMBA’s highest performance interface devel-
oped by ARM to support ARM11 processors. The configurable AXI interconnec-
tion is optimized for the processor-memory backplane and has advanced features
such as split transactions (address and data buses are decoupled), multiple out-
standing transactions, and out-of-order data. OCP (Open Core Protocol) is a plug-
and-play interface for a core having both master and slave interfaces. The OCP
specification defines a flexible family of memory-mapped, core-centric protocols
for use as a native core interface in on-chip systems. OCP addresses both data-flow
signaling and side-band control-flow signaling for error, interrupt, flag, status and
test. The VCI (Virtual Component Interface) specification includes three variants:
PVCI (peripheral), BVCI (basic) and AVCI (advanced). The DTL (Device Trans-
action Level) interconnection interface is developed by Phillips Semiconductors to
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interface existing SoC IPs. It allows easy extension to other future interconnec-
tion standards. The Æethereal NoC [113] provides a shared-memory abstraction
to the cores and is compatible to standard interfaces such as AXI, DTL and OCP.
The SPIN [37] and Proteo [122] NoCs support the VCI interface. The OCP inter-
face is used in the MANGO NoC [14]. Nonetheless, the cost of adopting standard
socket-type interfaces is nontrivial. The HERMES NoC [84] demonstrates that the
introduction of OCP makes the transactions up to 50% slower than the native core
interface. Therefore domain-specific interfaces will be an option for optimization.

Next, in Section 2.2, we investigate the design complexity of a canonical worm-
hole switch from the perspective of admitting and ejecting flits, proposing the cou-
pled admission model for flit admission (Paper 1) and the p-sink model for flit ejec-
tion (Paper 2). Section 2.3 suggests a multicasting service (Paper 3). In Section
2.4, we discuss the construction of TDM virtual-circuits using logical networks
(Paper 4). Since both Section 2.2 and Section 2.3 consider wormhole switching,
we introduce wormhole switching further in the next subsection.

2.1.2 Wormhole Switching

flits

Packet 

switch switch switchswitch

flits flits

body body

bodybody

tail

tail

head

head

Figure 2.1. Flits delivered in a pipeline

Wormhole switching [26] allocates buffers and physical channels (PCs, links)
to flits instead of packets. A packet is decomposed into a head flit, body flit(s), and
a tail flit. A single-packet flit is also possible. We call this decomposition flitization.
Flitization is named following packetization, i.e., encapsulate a message into one
or more packets. A flit, the smallest unit on which flow control is performed, can
advance once buffering in the next switch is available to hold the flit. This results in
that the flits of a packet are delivered in a pipeline fashion. As illustrated in Figure
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2.1, a packet is segmented into four flits, with one head flit leading two body flits
and one tail flit, and then the four flits are transmitted in a pipeline via switches.
For the same amount of storage, it achieves lower latency and greater throughput.

a) One 12−flit buffer b) Four 3−flit buffers

Figure 2.2. Virtual channels (lanes)

However, wormhole switching uses physical channels (PCs) inefficiently be-
cause a PC is held for the duration of a packet. If a packet is blocked, all PCs held
by this packet are left idle. To mitigate this problem, wormhole switching adopts
virtual channels (lanes) to make efficient use of the PCs [25]. Several parallel
lanes, each of which is a flit buffer queue, share a PC (Figure 2.2). Therefore, if
a packet is blocked, other packets can still traverse the PC via other lanes, leading
to higher throughput. Because of these advantages, namely, better performance,
smaller buffering requirement and greater throughput, wormhole switching with
virtual-channel flow control is the prevailing switching scheme advocated for on-
chip networks [1, 24, 44, 110]. In addition, virtual-channel has a versatile use
in optimizing link utilization, improving throughput, avoiding deadlock [26], in-
creasing fault tolerance [18] and providing guaranteed services [14]. Nonetheless,
in order to maximize its utilization, the procedure to allocate virtual channels is
critical in designing routing algorithms [128].

Note that wormhole switching is not without problems. First, it incurs flit-type
overhead to distinguish head, body, tail, and single-packet flits. Second, the flits of
a packet may be distributed in flit buffers of multiple switches. The intermediate
buffers between a head flit and a tail flit may be under-utilized, resulting in lower
buffer utilization [120]. Third, due to the flit distribution, wormhole switching is
more prone to deadlock.

2.2 Flit Admission and Ejection

This section summarizes the research in Paper 1 (Flit admission) and Paper 2 (Flit
ejection).
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2.2.1 Problem Description

Despite the aforementioned advantages, using wormhole switching for on-chip net-
works has to minimize the switch design complexity. First, since an on-chip net-
work is an interconnect using shared wires instead of dedicated wires to pass sig-
nals, its cost must be reasonable [27]. Second, embedded applications often have
very stringent requirements on power. For future complex SoC integration, the
communication bandwidth is achievable but the energy consumption will probably
be the bottleneck that has to trade off the performance [98]. Therefore, in order to
shrink energy dissipation, it is important to reduce the switch design complexity so
as to decrease the number of gates and switching capacitance.

Destination switchSource switch

AssemblyFlitization delivery
Network

Flit ejectionFlit admission

Flits PacketsPackets Flits

Figure 2.3. Flit admission and ejection

2

8 4 496

42 2 22 228 28 28

896 44

Flitization

payload

4

headbodybodytail srcdst vcidvcidvcid

Flits (32 bits)

Packet (112 bits)

Packet (112 bits)

dst srcother

12

other

8

other

2 2

Assembly

data bits dst src

overhead

vcid

data bits

Figure 2.4. Flitization and assembly

We examine the problem of flit-admission and flit-ejection in a wormhole-
switched network. As depicted in Figure 2.3, the delivery of packets passes through
three stages: flitization, network delivery, and assembly. The flitization is per-
formed at a source node, and the assembly, which decapsulates flits into packets, is
conducted by a destination node. Figure 2.4 illustrates the flitization and assembly
of a packet. As can be seen, the packet is encapsulated into four flits (one head flit,
two body flits and one tail flit), where vcid is the identity number of the lane the flit
occupies. We assume 4 lanes per port in a switch, thus vcid takes 2 bits.



28 Chapter 2. NoC Network Architectures

Since flits are both the workload of switches and the source of network con-
tentions for shared Virtual Channels (VCs)3 and Physical Channels (PCs, links),
their admission and ejection are as important as delivery. As the transmission time
of a flit comprises admission time, delivery time plus ejection time, the network
performance is the function of flit-admission, flit-delivery and flit-ejection. Intu-
itively, to achieve good network utilization and throughput, flits should be admitted
as fast as possible. However, flits to be advanced (after admission) may contend
not only with each other, but also with flits to be admitted. Flit-admission and
flit-delivery interfere with each other. This implies that a fast admission mecha-
nism may speed up the admission but slow down the delivery. If the network is
too loaded, the overall transmission time may get worse. For the ejection process,
a faster ejection frees flit buffers quicker, thus the faster the better. A slower ejec-
tion of flits may slow down the flit delivery and eventually affect the flit delivery
and admission through back-pressure. However, an ideal ejection, which ejects
flits immediately once they reach destinations, may over-design the switch. Fi-
nally the interplay between flit-admission and flit-ejection influences the tradeoff
between performance and switch complexity. A practical cost-effective ejection
model may actually tolerate a slower but simpler admission model with reasonable
performance penalty.

In the rest of this section, we first explain the operation of a canonical worm-
hole lane switch in Section 2.2.2. Then we discuss flit-admission and flit-ejection
models in Section 2.2.3 and Section 2.2.4, respectively. Particularly, we introduce
the coupled admission and the p-sink model.

2.2.2 The Wormhole Switch Architecture

Figure 2.5 illustrates a canonical wormhole switch architecture with virtual chan-
nels at input ports [25, 102, 110]. It has p physical channels (PCs) and v lanes
per PC. It employs the credit-based link-level flow control to coordinate packet
delivery between switches.

A packet passes the switch through four states: routing, lane allocation, flit
scheduling, and switch arbitration. In the routing state, the routing logic deter-
mines the routing path the packet advances over. Routing is only performed with
the head flit of a packet and only when the head flit becomes the earliest-come flit
in the FIFO lane. After routing, the packet path and output PC are determined. In
the state of lane allocation, the lane allocator associates the lane the packet occu-
pies with an available lane in the next switch on its routing path, i.e., to make a

3In Section 2.2 and Section 2.3, we use the shorthand VC for Virtual Channel.
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Figure 2.5. A canonical wormhole lane switch (ejection not shown)

lane-to-lane association. A lane is available if it is not currently being allocated
to an upstream lane. A lane-to-lane association fails when all requested lanes are
already associated to other lanes in directly connected switches, or the lane loses
arbitration in case multiple lanes in the switch try to associate with the same down-
stream lane. Note that it is not necessarily required here that there is an empty
buffer in the lane in order to make a successful association. If the lane-to-lane as-
sociation succeeds, the flit vcid is determined and the packet enters the scheduling
state. If there is a buffer available in the associated downstream lane, the lane en-
ters the state of switch arbitration. This can be done with a two-level arbitration
scheme. The first level of arbitration is performed on the lanes sharing the same
physical channel. The second level of arbitration is for the crossbar traversal. If
the lane wins the two levels of arbitration, the flit situated at the head of the lane
is switched out. Otherwise, the lane stays in the arbitration state. The lane-to-lane
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association is released after the tail flit is switched out. Then the allocated lane
is available to be reused by other packets. Credits are passed between adjacent
switches in order to keep track of the status of lanes, such as if a lane is free and a
count of available buffers in the lane.

A flit differs from a packet in that (1) a flit has a smaller size; (2) only the head
flit carries the routing information such as source/destination address, packet size,
priority etc. As a consequence, the routing and lane allocation can only be per-
formed with the head flit of a packet. Once a lane-to-lane association is established
by the head flit of the packet, the rest of flits of the packet inherit this association.
After the tail flit leaves, the lane-to-lane association is released. Thus, a lane is
allocated at the packet level, i.e., packet-by-packet while a link is scheduled at the
flit level, i.e., flit-by-flit since the flit scheduling as well as the switch arbitration is
performed per flit. As the head flit advances, lanes are associated like a chain along
the routing path of the packet, the rest of flits are pipelined along the chain path.
Carrying routing information only in the head flit of a packet leaves more space
for payload. However, flits belonging to different packets can not be interleaved in
associated lane(s) since only head flits contain routing information. To guarantee
this, a lane-to-lane association must be one-to-one, i.e., unique at a time.
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Figure 2.6 illustrates lane-to-lane associations. The one-to-many association
leads to that the flits from lane 2 in switch 2 are delivered to lane 2 and lane 3
in switch 3. The many-to-one association results in that lane 3 in switch 2 will
receive flits from lane 1 and lane 2 from switch 1. Obviously the one-to-many and
many-to-one associations result in that the integrity of a worm (the flit sequence of
a packet) is destroyed. It becomes impossible either to route the flits of a packet
or assemble the flits into a packet. Therefore, both one-to-many and many-to-one
associations must be forbidden, and only one-to-one association is permissible.

2.2.3 Flit Admission

A. The decoupled admission

We assume that a switch receives packets injected via a packet FIFO. A packet is
first flitized into flits that are then stored in flit FIFOs, called flit-admission queues,
before being admitted into the network. There are various ways of organizing
the packet queue and the flit-admission queues. In Figure 2.7(a), flit-admission
queues are organized as a FIFO. In Figures 2.7(b) and 2.7(c), they are arranged as
p parallel FIFO queues (p is the number of PCs). Figures 2.7(a) and 2.7(b) permit
at maximum one flit to be admitted to the network at a time while Figure 2.7(c)
allows up to p flits to be admitted simultaneously. We adopt the organization of
flit-admission queues in Figure 2.7(c) for our further discussions since it allows
potentially higher performance while the other two may lead to under-utilize the
network.

packet

Flit−admission queue

flitpacket

Packet queue (1 ... p)

packet
flits

(1 ... p)

flit

(c)(b)(a)

Figure 2.7. Organization of packet- and flit-admission queues

The organization of p flit-admission queues is also illustrated in the switch ar-
chitecture in Figure 2.5. Initially, packets are stored in the packet queue. When
a flit-admission queue is available, a packet is split into flits which are then put
into an admission queue. Similarly to a lane, a flit-admission queue transits states
to inject flits into the network via the crossbar. Note that flits to be admitted (in
admission) contend with flits already admitted (in delivery) for VCs in the lane-to-
lane association state and PCs in the crossbar arbitration state. This interference
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makes a flit-admission model nontrivial. Our study shows that when the network
is nearly saturated, a faster admission model actually begins to slow down the de-
livery, worsening the network performance. Furthermore, the routing is performed
after flitization. By this scheme, each flit-admission queue is connected to p multi-
plexers. Flits from a flit-admission queue can be switched to anyone of the p output
PCs. To implement this scheme, the crossbar must be fully connected, resulting in
a port size of 2p×p. Since the flit-admission queues are decoupled from the output
PCs, we call this flit-admission scheme decoupled admission.

B. The coupled admission

Although the decoupled admission allows a flit to be switched to anyone of the
p output ports, this may not be necessary since a flit is aimed to one and only
one port after routing. Based on this observation, we propose a coupling scheme
that can sharply decrease the crossbar complexity, as sketched in Figure 2.8. Just
like the decoupled admission, it uses p flit-admission queues, but one queue is
bound to one and only one multiplexer dedicated for a particular output PC. Due
to this coupling, flits from a flit-admission queue are dedicated to the output PC.
Consequently, an admission queue only needs to be connected to one multiplexer
instead of p multiplexers. The size of the crossbar is sharply decreased from 2p×p
to (p+1)×p, as shown in Figure 2.8. The number of control signals per multiplexer
is reduced from �log(2p)� to �log(p + 1)� for any p > 1 4.

In order to support the coupling scheme, the routing must be performed be-
fore flitization instead. By a routing algorithm, the output physical channel that a
packet requests can be determined. Hence, the corresponding admission queue is
identified. One drawback due to the coupling is that the head-of-line blocking may
be worse if the packet injection rate is high. Specifically, if the head packet in the
packet queue is blocked due to the bounded number and size of the flit-admission
queues, the packets behind the head packet are all unconditionally blocked dur-
ing the head packet’s blocking time. In the decoupled admission, the head-of-line
blocking occurs when the four flit-admission queues are fully occupied. With the
coupled admission, this blocking occurs when the flit-admission queue, which the
present packet targets, is full.

As the crossbar is a power-hungry component in a switch [131], the coupled
admission saves also power in comparison with the decoupled admission due to
the reduction in the gate count and switching capacitance. The study on the power
assumption of the flit admission schemes [74] shows that the coupled admission

4�x� is the ceiling function which returns the least integer that is not less than x.
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decreases the switch power by about 12% on average with the uniform traffic with
random-bit payloads.

2.2.4 Flit Ejection

A. The ideal sink model

An ideal sink model is typically assumed for a wormhole lane switch. With such a
model, flits reaching their destinations are ejected form the network immediately,
emptying the lane buffers they occupy. An ideal flit-ejection model is drawn in
Figure 2.9. A flit sink is a FIFO receiving the ejected flits. Each lane is connected
to a sink and the crossbar (for packet forwarding) via a de-multiplexer.

To incorporate ejection, the lane state is extended with a reception state in
addition to the four states. If the routing determines that the head flit of a packet
reaches its destination, the lane enters the reception state immediately by establish-
ing a lane-to-sink association. Since flits from different packets can not interleave
in a sink queue, there must be p · v sink queues, each of them corresponding to
a lane, in order to realize an immediate transition to the reception state. Assum-
ing that one sink takes the flits of one packet, the depth of a sink is the maximum
number of flits of a packet. After the lane transits to the reception state, the head
flit bypasses the crossbar and enters its sink. The subsequent flits of the packet are
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ejected into the sink immediately upon arriving at the switch. When the tail flit is
ejected, the lane-to-sink association is freed. This model is beneficial in both time
and space. Although a head flit may be blocked by flits situated in front of it in
the same lane, a non-head flit neither waits to be ejected (time) nor occupies a flit
buffer (space) once the lane is in the reception state. Moreover, it does not inter-
fere with flits buffered in other lanes from advancing to next switches downstream
(because the v demultiplexers of a PC share one input of the crossbar, one PC al-
lows one flit from a lane to be switched via the crossbar without interference with
sinking flits from other lanes.). Upon receiving all the flits of a packet, the packet
is composed and delivered into the packet sink. If the packet sink is not empty, the
switch outputs one packet per cycle from it in a FIFO manner.

B. The p-sink model

Implementing the ideal sink model requires p · v flit sinks, which can eject p ·
v flits per cycle. This may over-design the switch since there are only p input
ports, implying that at maximum p flits can reach the switch per cycle. Since the
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maximum number of flits to be ejected per switch per cycle is p, we can use p sink
queues instead of p · v sink queues to eject flits to avoid over-design. Moreover, in
order to have a more structured design, we could connect the p sink queues to the
crossbar, as illustrated in the dashed box of Figure 2.10.
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Figure 2.10. The p-sink model

To enable ejecting flits in the p-sink model, we now extend the four lane states
with two new states: an arriving and a reception state. If a head flit reaches its
destination, the lane the flit occupies transits from the routing to the arriving state.
Then it will try to associate with an available sink, i.e., to establish a lane-to-sink
association. If the association is successful, the lane enters the reception state.
Subsequently the other flits of the packet follow this association exactly like flits
advancing in the network. Upon the tail flit entering the sink, the association is
torn down. If the lane-to-sink association fails (when all sinks have already been
allocated), the head flit is blocked in place holding the lane buffer. To speed up flit
ejection, the contentions for the crossbar input channels and crossbar traversal are
arbitrated on priority. A lane in a reception state has a higher priority than a lane
in a state for forwarding flits. The drawback in this sink model is the increase of
blocking time when flits reach their destinations. First, the lane-to-sink association
may fail since all sink queues might be in use. In contrast, an ideal sink model
guarantees an exclusive sink for each lane. Second, only one lane per PC can win
arbitration to an input channel of the crossbar due to sharing the input channel for
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both advancing flits and ejecting flits. In case of more than one lane of a PC are in
the reception state, only one lane can use the channel.

p × 1 Mux 1 × 2 Demux Flit sink

The ideal model - p · v p · v
The p-sink model p - p

Table 2.1. Cost of the sink models

To implement this p-sink model, the crossbar must double its capacity from
p-by-p (p p × 1 multiplexers) to p-by-2p (2p p × 1 multiplexers), as illustrated in
Figure 2.10. The number of control ports of the crossbar is doubled proportionally.
Table 2.1 summarizes the number of each component to implement the sink mod-
els. As can be seen, the ideal sink model requires p · v flit sinks while the p-sink
model uses only p flit sinks. With the p-sink model, the number of flit-sinks be-
comes independent of v, implying that the buffering cost for flit sinks is only 1/v
as much as the ideal ejection model.

2.3 Connection-oriented Multicasting

This section summarizes the research in Paper 3.

2.3.1 Problem Description

As discussed previously, a bus and its variants (segmented, cross-bar and hierar-
chical buses) do not scale well with the system size in bandwidth and clocking
frequency. However, a bus is very efficient in broadcasting since all clients are
directly connected to it. A unicast is in fact broadcasted to all clients in the bus
segment. In a NoC, IP blocks are distributed and communicate through multi-
hop connections. This allows many more concurrent transactions, but does not
directly support multicast. In NoC systems, it often desires to maintain a consis-
tent view on the system state among the distributed cores, for example, in the case
of implementing cache coherency protocols, of passing global states for barrier
synchronization, and of managing and configuring the network. These commu-
nication patterns involve one source but multiple recipients. This type of pattern
distinguishes from one-to-one communication in that the same message from one
source has to be transmitted to multiple destinations. Particularly, real-time con-
strained, throughput-oriented embedded applications for multi-media processing
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exhibit such patterns, for instance, forking one data stream into multiple identical
streams to be processed by multiple processing elements. Providing an efficient
support for such one-to-many communication patterns is desirable.

Implementing multicast by sending multiple unicast messages is intuitive but
neither efficient nor scalable because of excessive link and buffer consumption.
Secondly, these messages are delivered in a best-effort manner without QoS. Our
purpose is to provide an efficient multicast support from the network layer. We
have taken a connection-oriented approach in aware of QoS. This allows dynamic
multicast setup and release, thus consuming resources only if necessary. Our mul-
ticast scheme is realized in wormhole-switched networks. The resulting wormhole
switch supports both unicast and multicast.

2.3.2 The Multicasting Mechanism

Our multicasting mechanism consists of three phases: group setup, data transmis-
sion, and group release. It is connection-oriented, meaning that a multicast con-
nection must be established before one-to-many data transmission can start. The
member visiting order of a multicast group is computed off-line and the multicast
path is set up conforming to the unicast routing algorithm in the group setup phase.
After data transmission, a multicast connection has to be explicitly released. A
multicast connection means that

• There is a group master who owns the connection. The group master is
the source node who has the group member information and determines the
member visiting sequence. It initiates the establishment by sending a multi-
cast setup packet using unicast. The last node in the sequence is responsible
for acknowledging the establishment. In case of setup failure, a negative
acknowledgment is sent from the node where the failure occurs. After data
transmission, the group master sends a multicast release packet to release the
connection.

• A simplex path is defined from the group master to the last member, passing
other member nodes. Data transmission will deterministically follow this
path from upstream to downstream. In addition to the group master, any
upstream node is allowed to send multicast packets downstream.

• Each switch along the multicast delivery path has stored information about
how to deal with a multicast packet (copy, forward or sink) and about the
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connection status. The copy means that the multicast packet has to be for-
warded besides being locally sunk. The record of a multicast connection in-
cludes {MultiID, GroupType, Sadr, VCID, VCID downstream, Output PC,
Next member addr.}, where MultiID is the multicast group identity num-
ber, which is unique for each multicast group; GroupType is the type of the
multicast group which informs the switches whether the multicast group re-
quires reserving a lane or not; Sadr is the group master address; VCID is
the identity number of the lane that the multicast packets use in the current
switch; VCID downstream is the identity number of the lane allocated in
the next downstream switch; OutputPC is the output physical channel over
which the multicast packets are to be switched; Next member address is the
address of the next member in the multicast group.

During the setup phase, multicasting can be aware of QoS in the sense that a
multicast group may request to reserve a lane. The GroupType indicates if the
group reserves a lane or not. To speed up multicasting, multicast packets enjoy
higher priority than unicast packets for link bandwidth arbitration. After a con-
nection is established, a multicast is realized by sending a single copy of multi-
cast packets to multicast group members along the pre-established path. Multicast
packets carry multiID in their headers. This results in low packet overhead and
efficient use of link bandwidth. The drawback is the setup and release overhead.

The multicasting protocol is designed seamlessly with the unicasting protocol.
The unicast packet format is extended to include different types of packets. In
the implementation, the controller of the unicast switch is enriched to identify and
act according to the different packet types. The data path of the switch remains
the same. In this way, the resulting wormhole switch supports both unicast and
multicast. The network allows mixed unicast and multicast traffic.

2.4 TDM Virtual-Circuit Configuration

This section summarizes the research in Paper 4.

2.4.1 Problem Description

A Virtual Circuit (VC)5 is a set of pre-allocated resources to enable performance
guarantees. Since the pre-allocation involves a setup phase, a VC is connection-
oriented. A TDM (Time-Division Multiplexing) VC [34, 81] is a VC that shares

5In Sections 2.4 and 2.5, we use the shorthand VC for Virtual Circuit.
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buffers and link bandwidth in a time-division fashion. Each node along the VC’s
path is equipped with a time-sliced routing table which reserves time slots for in-
put packets to use output links. The routing table partitions link bandwidth and
avoids the simultaneous use of shared links. A VC is simplex. In general, it may
comprise multiple source and destination nodes (multi-node). As long as a VC is
established, packets delivered on it, called VC packets, encounter no contention
and thus have guarantees in latency and bandwidth. Unlike connection-less Best-
Effort (BE) packet delivery that starts as soon as possible, VC packet delivery can
not start until the VC is successfully set up. Therefore, VC configuration is an in-
dispensable process. Moreover, well-planned VC configurations can make a better
use of network resources and achieve better performance.
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Figure 2.11. The virtual-circuit configuration problem

Figure 2.11 illustrates the multi-node VC configuration problem. It shows a
partial mesh network and a specification of three VCs, v1, v2 and v3, to be con-
figured in the network. The network also delivers BE traffic. Each VC comprises
multiple source and destination nodes and is associated with a bandwidth require-
ment. Configuring VCs involves (1) path selection: This has to explore the network
path diversity. It turns out that there exists a huge design space to explore. Sup-
pose that the size of a VC specification set is m, each VC has p alternative paths,
we have pm solution possibilities; (2) slot allocation: Since VC packets can not
contend with each other, VCs must be configured so that an output link of a switch
is allocated to one VC per slot. Both steps together must ensure that VCs are set
up free from contention and allocated with sufficient slots. The network must be
deadlock-free and livelock-free.

2.4.2 Logical-Network-oriented VC Configuration

A. TDM virtual circuits

Figure 2.12 shows two VCs, v1 and v2, and the respective routing tables for the
switches. An output link is associated with a buffer or register. v1 passes switches
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Figure 2.12. TDM virtual circuits

sw1, sw2, sw3 and sw4 through {b1 → b2 → b3 → b4}; v2 passes switches sw5,
sw3, sw4 and sw6 through {b5 → b3 → b′4 → b6}. v1 and v2 only overlap in buffer
b3, i.e., v1 ∩ v2 = {b3}. A routing table entry (t, in, out) is equivalent to a routing
function R(t, in) = out, where t is time slot, in an input link, and out an output
link. For example, (2k, W, E) in sw1 means that sw1 reserves its E (East) output
link at slots 2k (k ∈ N) for its W (West) inport (R(2k, W ) = E). As can also be
observed, sw3 configures its even slots 2k for v1 and its odd slots 2k + 1 for v2.
As v1 and v2 interleavely use the shared buffer b3 and its associated output link, v1

and v2 do not conflict.

B. Using logical networks to avoid conflict

We draw a simplified picture of Figure 2.12 in Figure 2.13, where a bubble rep-
resents a buffer. VC packets on v1 and v2 are fired once every two cycles. Their
bandwidth is bw1 = bw2 = 1/2 packets/cycle. Suppose that both VCs start admit-
ting packets at slot t = 0. v1 packets visit the shared buffer b3 at even slots with
an initial latency of two slots; v2 packets visit b3 at odd slots with an initial latency
of one slot. This also means that, at even slots, v1 packets hold buffers b1 and b3

while v2 packets hold buffers b5 and b′4; At odd slots, v1 packets hold buffers b2

and b4 while v2 packets hold buffers b3 and b6. Thus v1 and v2 never conflict with
each other. Figure 2.13 shows a snapshot of VC packets at even slots.

From the local perspective of buffer b3, the alternate use of this shared buffer by
v1 and v2 virtually partitions its time slots into two disjoint sets, the odd set and the
even set. The two sets can be regularly mapped to the slot sets of other buffers on
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a VC in an unambiguous way. The reason is that, due to the synchronous network
operation and contention-free VC-packet transmission, a VC packet advances one
step per slot and never stalls, thus a packet visiting b1 at even slots will visit b2

at odd slots, visit b3 at even slots, and so on. Therefore the partitioned slots are
networked, as illustrated in Figure 2.14. We can view that v1 and v2 stay in the
same physical network but in different logical networks. We define a logical net-
work (LN) as a composition of associated sets of time slots in a set of buffers of
a VC with respect to a reference buffer. We call them LNs because the logically
networked slots comprise disjoint networks over time. The overlapping of v1 and
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v2 results in two LNs, the even and odd LNs; b3 is the reference buffer. If v1 and
v2 subscribe to different LNs, they are conflict-free. In the example, v1 subscribes
to the even LN and v2 to the odd LN.

C. Formal conflit-free conditions

The logical-network concept generalizes the concepts of admission classes [16]
and temporally disjoint networks [81]. In Paper 4, we have given formal definitions
on the VC and LN. Formally, we have addressed the key questions for the LN-
oriented VC configuration. Suppose that v1 and v2 are two overlapping VCs,

• The maximum number T of LNs, which both VCs can subscribe to without
conflict, equals to GCD(D1, D2), the Greatest Common Divisor (GCD) of
their admission cycles D1 and D2. The admission cycle D of a VC v is
the length (in number of time slots) of its packet-admission pattern. The
bandwidth that a LN possesses equals 1/T packets/cycle.

• Assigning both VCs to different logical networks is the sufficient and neces-
sary condition to avoid conflict between them.

• If they have multiple shared buffers, these buffers must satisfy reference con-
sistency in order to be free from conflict. If so, any of the shared buffers can
be used as the reference buffer to construct LNs. Two shared buffers b1 and
b2 are termed consistent if it is true that “v1 and v2 packets do not conflict in
buffer b1” if and only if “v1 and v2 packets do not conflict in buffer b2”. The
sufficient and necessary condition for them to be consistent is that the dis-
tances of b1 and b2 along the two VCs, denoted d �b1b2

(v1) and d �b1b2
(v2), re-

spectively, satisfy d �b1b2
(v1)− d �b1b2

(v2) = kT, k ∈ Z. Furthermore, instead
of pair-wise checking, the reference consistency can be linearly checked.

D. The VC configuration method

We have used the theorems to guide the construction of VCs. We use a back-
tracking algorithm to constructively search the solution space while exploring the
path diversity. The algorithm is a recursive function performing a depth-first search.
The solution space in a tree structure is generated while the search is conducted.
The backtracking algorithm trades runtime for memory consumption. At any time
during the search, only the route from the start node to the current expansion node
is saved. As a result, the memory requirement of the algorithm is O(m), where
m is the number of VCs. This is important since the solution space organization
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needs excessive memory if stored in its entirety. Whenever two VCs overlap, the
assignment of LNs to VCs is performed. If they can be assigned to two different
LNs with sufficient bandwidth, the assignment is done successfully. Otherwise, the
assignment fails. Other path alternatives have to be considered. This VC-to-LN as-
signment serves as a bounding function by which, if it fails, the algorithm prunes
the current expansion node’s subtrees, thus making the search efficient.

With a feasible solution, for each VC vi (1 ≤ i ≤ m) with a normalized band-
width requirement ¯bwi, our VC configuration program returns (�Pi, Di, �Ai, Ri),
where �Pi is the sequence of buffers visited by vi, representing its delivery path;
Di is the admission cycle by which vi repeats its packet-injection pattern; �Ai is the
allocated slot vector whose size | �Ai| is the number of slots in �Ai, and ∀Ai,j ∈ �Ai

(1 ≤ j ≤ | �Ai|), Ai,j ∈ [0, Di) and | �Ai| ∈ (0, Di]; Ri is the reference buffer for
which the time slots are referred to. The LN(s) that vi subscribes to is reflected in
�Ai explicitly, or implicitly if vi uses only a portion of bandwidth in the allocated
LN(s). In addition, they satisfy the bandwidth constraint:

| �Ai|
Di

≥ ¯bwi

As an example, for the two VCs, v1 and v2, in Figure 2.13, D1 = D2 = 2.
The number T of logical networks is GCD(2, 2) = 2. The result of configuring
v1 is (< b1, b2, b3, b4 >, 2, {0}, b3), which is equivalent to (< b1, b2, b3, b4 >
, 2, {0}, b1). This means that v1 packets are fired from b1 at even slots, once every
two cycles. The result of configuring v2 is (< b5, b3, b

′
4, b6 >, 2, {1}, b3), which is

equivalent to (< b5, b3, b
′
4, b6 >, 2, {0}, b5). This means that v2 packets are fired

from b5 at even slots, once every two cycles.

2.5 Future Work

NoC communication architectures need to offer various services with different
guarantees and efficient support for different communication patterns such as mul-
ticast, peers and client-server, to provide robust and reliable communication, to
enable re-configuration, and to reduce area and power budget. In the future, our
research may be complemented along the following threads:

• Contract-oriented virtual-circuit configuration: While configuring virtual-
circuits (VCs), the network can satisfy their requirements in two ways. One
is to meet their demand on its own. The other is to eventually generate
contracts through possible negotiation, one for each VC. According to the



44 Chapter 2. NoC Network Architectures

Network services

Contracts

injection
Traffic

configuration
Network

VCs

Network services
configuration

Network

VCs

a) non−contract b) contract−oriented

Figure 2.15. Virtual-circuit configuration approaches

contracts, the network nodes configure slot tables. Moreover, VC traffic
is injected obligating to the contracts. We illustrate the two approaches in
Figure 2.15. Figure 2.15a is non-contract oriented while Figure 2.15b is
contract-oriented. As we can see, there is an additional feedback loop intro-
duced in the contract-oriented approach. This loop defines the obligation of
VCs in terms of traffic injection pattern. In this way, both the network and
VCs must fulfill their obligations. Our VC configuration approach generates
(�P , D, �A, R) for each VC. This in fact constitutes a contract. The network
configures slot tables along the VC delivery path using the contracts, and
the VCs regularly launch packets using the allocated slots. We expect that a
contract-oriented method can facilitate predictable IP integration and the for-
mal validation of QoS guarantees in comparison with a noncontract-oriented
one. These benefits as stated have not yet been substantiated.

• Reconfigurable QoS network architectures: SoC applications are becom-
ing extremely functionally rich. For example, a personal handheld set does
telephoning, multimedia processing, gaming, and may execute diverse web-
based utilities. A network designed for such systems must be reconfigurable
because different use cases require different configurations. Satisfying all
use cases concurrently may over-design the network, leading to unaccept-
able cost. To have a dynamically re-configurable communication platform
is most cost- and power-efficient since it allows us to allocate and use re-
sources only if it is necessary. The challenge is not to sacrifice performance,
efficiency and predictability when allowing adaptivity. Efficient protocols,
micro-architectures and methods are in a great need to support network re-
configurability. Error-resilient and self-healing mechanisms can be further
incorporated to provide fault tolerance and robustness to cope with the nano-
regime uncertainties.



Chapter 3

NoC Network Performance
Analysis

This chapter summarizes our simulation-based and algorithm-based NoC perfor-
mance analysis [Paper 5, 6, 7]. The simulation-based analysis [Paper 5, 6] is per-
formed within the Nostrum Network-on-chip Simulation Environment (NNSE).
The algorithm-based approach addresses the feasibility test of delivering real-time
messages in wormhole-switched networks [Paper 7].

3.1 Introduction

3.1.1 Performance Analysis for On-Chip Networks

A. On-chip network performance analysis

Network-on-chip provides a structured communication platform for complex SoC
integration. However, it aggravates the complexity of on-chip communication de-
sign. From the network perspective, there exists a huge design space to explore at
the network, link and physical layers. In the network layer, we need to investigate
topology, switching, routing and flow control. In the link layer, we can examine
the impact of link capacity and link-level flow control schemes on performance. In
the physical layer, we could inspect wiring, signaling, and robustness issues. Each
of the design considerations (parameters) also has a number of options to consider.
From the application perspective, the network should not only be customizable but
also be scalable. To design an efficient and extensible on-chip network that suits
a specific application or an application domain, performance analysis is a crucial

45
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and heavy task. The impact of the design parameters at the different layers and
the performance-cost tradeoffs among these parameters must be well-understood.
The customization on optimality and extensibility can sometimes be in conflict
with each other. For instance, a customized irregular topology may be optimal
but not easy to scale. In addition, the analysis task is very much complicated be-
cause of the un-availability of domain-specific traffic models. Due to the separation
between computation and communication, a communication platform may be de-
signed in parallel with the design of computation. The concurrent development
speeds up time-to-market, but leaves the development of the communication plat-
form without sufficiently relevant traffic knowledge. Therefore we must be able
to evaluate network architectures and analyze their communication performance
with various communication patterns extensively so as to make the right design
decisions and trade-offs. Once a network is constructed in hardware, it is diffi-
cult, time-consuming, and expensive to make changes if performance problems are
encountered.

Design decisions include both architecture-level decisions such as topology,
switching, and routing algorithm, and application-level decisions such as task-to-
node mapping, task scheduling and synchronization etc. While evaluating net-
work architectures and analyzing their performance, we can embed design de-
cisions in experiments during the evaluation and analysis process. In turn, this
helps to seek for optimal network and application constructions. Making design
decisions is likely to be an iterative process. The feedback information in such
a process includes functional and nonfunctional measures. Functional criteria are
typically bandwidth, latency, jitter, and reliability, which can be broadly classified
into quality-related metrics. Nonfunctional criteria are network utilization, area
and power consumption, which are all cost-related.

B. Network performance analysis methods

We may classify network performance analysis methods (before prototyping and
implementation) into three categories: simulation-based, algorithm-based and ma-
thematics-based. Below, we give a brief account on them to the extent that is ade-
quate for the introduction.

The simulation-based approach builds network and traffic models and then the
network operation is simulated by loading the traffic into the network. The network
models can be constructed in detail or in an abstract way. For example, a switch
model can model all its functional components such as buffers, crossbar and control
units in detail. Alternatively, a switch can only model the packet shuffling behav-
ior without modeling each component. A switch may model the internal pipeline
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stages, leading to a multiple-cycle model. Or it can be just a single-cycle model in
which packet switching completes in one cycle. More abstractly, a network may
be modeled without building detailed switch models. But the network behavior
such as routing and arbitration is modeled so that the net effect of packet delivery
such as delay and jitter is reflected in the results. In a simulation-based approach,
both synthetic and realistic traffic models can be applied. Furthermore, it allows
us to perform system-wide simulation where the interaction between the network
and traffic sources/sinks may be captured and the performance-cost tradeoff is ex-
amined [103, 114]. The evaluation of the network performance is conducted after
simulation statistics are collected. The simulation speed can be different depending
on the modeling details [78].

The algorithm-based approach makes assumptions on network communica-
tion models. In the communication model, the network delivery characteristics
and switch arbitration behavior are captured. Additional models may be created
to reflect network contention. The network behavior can thus be approximated.
Based on the models, an algorithm is then developed to conduct the performance
evaluation without resorting to detailed simulation. An algorithm-based approach
usually assumes that traffic has certain properties, for example, periodicity and
independence. Examples using the algorithm-based approach can be found in
[7, 40, 55, 69].

The mathematics-based approach builds mathematical models for network and
traffic. The performance figures are calculated through formal derivation. For in-
stance, two basic analytic tools for network performance evaluation are queuing
theory and probability theory [28]. Queuing theory [36] is useful for analyzing a
network in which packets spend much of their time waiting in queues. Probability
theory is more useful in analyzing networks in which most contention time is due
to blocking rather than queuing. Another example is the use of the network calcu-
lus [22, 23] to compute the end-to-end delivery bounds. The mathematics-based
approach is most efficient but limited in capability. It can model many aspects of a
network, but there are some situations that are simply too complex to express under
the mathematical models. Besides, it often simplifies the real situations by making
a number of approximations that may affect the accuracy of results.

The performance analysis methods, as described above, are not isolated. They
can be used to validate against each other. To validate a model, we need to compare
its results against known good data at a representative set of operating points and
network configurations. They may be composed to take the advantages of each
method. For instance, simulation and formal methods may be combined to speed
up the simulation-based performance analysis [57].
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C. A comparison of network performance analysis methods

Simulation Algorithm Mathematics

Com. model Detailed/Abstracted Simplified Accurate/Simplified

Evaluation Cycle-true/Behavior sim. Run algorithms Formal derivation

Execution time Slow/Medium Medium Fast

Accuracy High/Medium Medium High/Medium

Capability High Low Medium

Table 3.1. Network performance analysis methods

All the performance analysis methods require building network and traffic
models. They mainly differ in modeling details, efficiency, quality-of-result (accu-
racy) and capability. We compare the three methods in Table 3.11. The simulation-
based method can offer the highest accuracy but may be very time-consuming.
Each simulation run can take considerable time and evaluates only a single net-
work configuration, traffic pattern, and load point. It is difficult, if not impossible,
to cover all the system states. Depending on the details simulated, runtime and ac-
curacy trade off with each other. However, simulation, in contrast to emulation and
implementation, is flexible and cheap. It can also model complex network designs
for which mathematical or other analytical models are difficult to build. A simula-
tion tool usually enables to explore the architectural design space and assess design
quality regarding performance, cost, power and reliability etc. The algorithm-based
scheme does not run network simulation, but the network behavior is captured in an
algorithm. It is generally faster than simulation-based schemes, but only approxi-
mates the simulated results. The mathematical analysis [2, 35] is the most efficient
one. It provides approximate performance numbers with a minimum amount of
effort and gives insight into how different factors affect performance. It also al-
lows an entire family of networks with varying parameters and configuration to be
evaluated at once by deriving a set of equations that predict the performance of the
entire family. The accuracy of results depends on the accuracy of the mathematical
models for the traffic and network. It can be rough but gives an initial and quick
estimation. A performance bound may be also tight enough.

1Note that the qualitative assessments on run-time, accuracy and capability emphasize the differ-
ences between the methods. They are relative, and should not be considered absolute.
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As simulation is most powerful, once it is verified, it is typically used to vali-
date the algorithm-based and formalism-based approaches. In the next subsection,
we outline current practices of NoC simulation.

3.1.2 Practices of NoC Simulation

NoC researchers have used general-purpose network simulators and NoC-specific
simulators to simulate the network behavior. OPNET is a commercial network sim-
ulator used in [15, 133]. It provides a tool for hierarchical modeling and includes
processes, network topology description and supports different traffic scenarios.
However, to simulate an on-chip network, it has to be adapted by explicitly mod-
eling synchronous operations and distribution [133]. OMNET is an open-source
C++-based network simulation engine. It is used in [89] to validate a network con-
tention model proposed in [69]. As with OPNET, additional modules are needed
to model synchronous network operations in OMNET. Semla [125, 126] is a dedi-
cated NoC simulator written in SystemC [20]. It implements five layers of the OSI
seven-layer model (without the presentation and session layers), and is equipped
with transaction-level primitives to communicate messages between application
processes. The SystemC kernel provides the concurrent and synchronous opera-
tion semantics, thus a SystemC-based network simulator can take this advantage.
In [8], a VHDL-based RTL model is created for evaluating power and performance
of NoC architectures. It can model dynamic and leakage power at the system-
level. The Orion [131] performance-power simulator models only the dynamic
power consumption.

OCCN (On Chip Communication Network) [21] models on-chip network com-
munication in SystemC using high-level modeling concepts such as transactions
and channels. In [77], an on-chip communication network is treated as a com-
munication processor to reflect servicing demands. The network is modeled us-
ing allocators, schedulers and synchronizers. The allocator decides the resource
requirements such as bandwidth and buffers along a message’s path while mini-
mizing resource conflict. The scheduler executes the message transfer accordingly,
minimizing the resource occupation. The synchronizer performs synchronization
according to dependencies among messages while allowing concurrency. In [32],
network communication is defined as a multiport blackbox communication struc-
ture. A message can be transmitted from an arbitrary port to another but the actual
implementation of the NoC may not be considered.

Next, we present our NoC simulation tool NNSE in Section 3.2. In Section 3.3,
we present our algorithm-based network performance analysis, focusing on the fea-
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sibility test of delivering real-time messages, i.e., whether their timing constraints
can be met or not.

3.2 NNSE: Nostrum NoC Simulation Environment

3.2.1 Overview

NNSE stands for Nostrum NoC Simulation Environment in which Nostrum is the
name of our NoC concept [81]. NNSE is aimed to be a tool for full NoC sys-
tem simulation so that designers can use it to explore the architecture-level and
application-level design space. Currently, it is capable of

• constructing network-based communication platforms [125],

• generating synthetic and semi-synthetic Traffic Patterns (TPs) [68],

• simulating the communication behavior with the various TPs [76], and

• mapping application tasks onto the platform [71].

The first three functions have been automated and the last function is so far
a manual step. The automation is achieved through parameterizing network and
synthetic traffic configurations. One can configure these parameters, recompile
the program if the parameters are compile-time, and invoke simulations with the
specified network and traffic configurations. This procedure can be conducted in a
Graphical User Interface (GUI). With the GUI, the tool allows us to easily explore
different network architectures and different traffic settings. Network architectures
can thus be efficiently and extensively evaluated. In addition to using synthetic
traffic, the manual application mapping creates realistic traffic scenarios in the
communication platform. The evaluation may be iterative by applying the con-
figured or created traffic on the configured networks, as illustrated in Figure 3.1.
The evaluation criteria can be performance, power and cost. The current version
evaluates only the network performance in terms of packet latency, link utilization
and throughput. Since it simulates the network behavior at the flit-level cycle-by-
cycle, the performance estimates are accurate.

NNSE logically comprises a NoC simulation kernel [124, 125] wrapped with
a GUI. The kernel is developed in SystemC and the GUI written in Python. Fol-
lowing the ISO’s OSI seven-layer model [135], the simulation kernel called Semla
(Simulation EnviornMent for Layered Architecture) implements five of the seven
layers except for the representation and session layers. The simulation tool presently
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Figure 3.1. Network evaluation

supports the configuration of the network and application layers in the GUI. The
configuration of the application layer refers to the traffic configuration. In the GUI,
all the network and traffic configurations can be stored and thus reusable. To facil-
itate data exchange, they are stored as eXtensible Markup Language (XML) files.
The simulation results can be shown graphically or in a text format.

3.2.2 The Simulation Kernel

The simulation kernel Semla [124, 125] implements the five communication layers,
namely, the physical layer (PL), the data link layer (LL), the network layer (NL),
the transport layer (TL) and the application layer (AL). The upper three layers are
shown in Figure 3.2, where TG/S stands for Traffic Generator/Sink, and Glue is
the TL component which does packetization/packet-assembly, message queuing,
multiplexing, de-multiplexing and so on.

TG/S TG/S TG/S

TG/S

Glue Glue Glue

NetworkNL

TL

AL

messages

packets

TL interface

Platform

Figure 3.2. The communication layers in Semla

The transport layer provides transaction-level communication primitives as an
interface to enable communication via channels between application processes. A
channel, similar to a SystemC channel [20], is a transaction-level modeling en-
tity which allows simplex communication from a source process to a destination
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process. In Semla, a compact set of message passing primitives for using the best-
effort service is defined and implemented:

• int open channel(int src pid, int dst pid): it opens a simplex channel from a
source process src pid to a destination process dst pid. The method returns
a positive integer as a unique channel identity number cid upon successfully
opening the channel. Otherwise, it returns a negative integer for various
reasons of failure, such as invalid source and destination processes. The
current implementation opens channels statically during compile time and
the opened channels are never closed through simulation.

• bool nb write(int cid, void msg): it writes msg to channel cid. The size of
messages is finite. It returns the status of the write. The write is nonblocking.

• bool nb read(int cid, void *msg): it reads channel cid and writes the received
protocol data unit to the address starting at msg. It returns the status of the
read. The read is nonblocking.

Application tasks use the set of communication primitives to communicate
messages with each other. While mapping tasks onto the NoC platform, the net-
work topology is visible. The communication part of the tasks must be written in or
adapted to the communication primitives. The interaction between the tasks creates
realistic workload in the platform, and the system behavior can be simulated.

Thanks to the layering, one can design and implement different structures and
protocols in a layer without modifying other layers as long as one complies with
the interfaces. For instance, Semla originally developed the network layer for de-
flection routing. In order to perform experiments on flit-admission and flit-ejection
schemes in Chapter 2, the network layer for wormhole switching was developed
and integrated into the simulator. The physical layer was skipped because the in-
terest was on the flit-level not the phit-level activities. While the compilation and
simulation were invoked, only the network layer entity was replaced while the up-
per layers remained the same.

3.2.3 Network Configuration

We parameterize a network according to topology, switching mode and routing al-
gorithm. The network configuration is thus straightforward, as illustrated by the
tree in Figure 3.3. The topology is for a 2D regular structure, which can be di-
mensioned along the number of nodes on the X axis, the number of nodes on the
Y axis. The structure may be chosen from one of the options (mesh, torus, tree,
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Figure 3.3. Network configuration tree

ring). The link connection may be simplex or duplex with different data width. The
network parameters may be further elaborated resulting in the next level in the tree
since each of them has a number of choices on its own. As can be seen, with the
deflection scheme, different deflection polices may be chosen; with the wormhole
scheme, the number and depth of virtual channels (VCs) may be specified.

3.2.4 Traffic Configuration

This subsection summarizes the research in Paper 5.

A. Traffic configuration approaches

Network evaluation typically employs application-driven and synthetic traffic [28].
Application-driven traffic models the network and its clients simultaneously. This
is based on full system simulation and communication traces. Full system sim-
ulation requires building the client models. Application-driven traffic can be too
cumbersome to develop and control. In NNSE, application-driven traffic is created
by mapping application tasks onto the communication platform. Synthetic traffic
captures the prominent aspects of the application-driven workload but can also be
easily designed and manipulated. Because of this, synthetic traffic is widely used
for network evaluation.

In NNSE, two types of traffic can be configured. One is purely synthetic traffic,
the other application-oriented traffic. For synthetic traffic, we proposed a unified
formal expression for both uniform and locality traffic. With this expression, we
can control the locality of traffic distribution by setting locality factors for the traf-
fic. The application-oriented traffic is semi-synthetic, which can be viewed as a
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traffic type between application-driven traffic and synthetic traffic. It statically
defines the spatial distribution of traffic on a per-channel basis according to appli-
cation, and the temporal and size distributions of each channel may be synthetic or
extracted from communication traces.

B. The traffic configuration tree

Traffic can be characterized and constructed via its distributions over three dimen-
sions: spatial distribution, temporal characteristics, and message size specifica-
tion. The spatial distribution defines the communication patterns between sources
and destinations. The temporal characteristics describe the message generation
probability over time. The size specification gives the length of generated mes-
sages. We use a traffic configuration tree to express the elements and their attributes
in Figure 3.4.

or

and

Temporal distribution

Network Traffic

(constant rate | random rate | normal rate)
Spatial distribution

uniform locality

(uniform | locality)
Traffic pattern

(channel*)
Channel−by−channel

(src. node, dst. node)
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(channel−by−channel | traffic pattern)
Size distribution

(uniform | random | normal)

(m, d)
normalrandom

(n) [1, n]
constant random

[1, n]
normal
(m, d)(n)

uniform

Figure 3.4. The traffic configuration tree

By the spatial distribution, traffic is broadly classified into two categories: traf-
fic pattern and channel-by-channel traffic. In a traffic pattern, all the channels
share the same temporal and size parameters. In contrast, channel-by-channel traf-
fic consists of a set of channels, and each channel can define its own temporal and
size parameters. The temporal distribution has a list of candidates such as constant
rate (periodic), random rate, and normal rate etc. The size distribution has a list of
choices such as uniform, random, and normal. As can be observed, these lists are
just examples of possible distributions. Other useful distributions can be integrated
into the tree with their associated parameters. According to the tree, configuring a
traffic pattern is to select a set of parameters on the three axes. Note that the axes
may not be independent. For instance, scale-invariant burstiness traffic and scale-
variant burstiness (self-similar) traffic [100] involve the variation in the time scale
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and message size, thus requiring the synergy between the temporal distribution and
the size distribution.

C. Representation of traffic patterns

As shown in Figure 3.4, the traffic patterns consist of uniform and locality traffic.
They can be uniformly expressed in a formal representation.

We first define communication distribution probability DP from node i to node
j DPi→j as the probability of distributing messages from node i to node j while
node i sends messages to the network. Suppose, there are N nodes in the network,
Equation 3.1 means that all messages from node i are aimed to the N destination
nodes.

N∑
j=1

DPi→j = 1 (3.1)

Next, we relate DP to the minimal distance between nodes. Let the shortest
distance between a source node i and a destination node j be d, we define com-
munication distribution probability DPi→j as a relative probability to a common
probability factor Pc (0 ≤ Pc ≤ 1) in Equation 3.2.

DPi→j = coef (α, d) · Pc (3.2)

where coef (α, d) = 1 +
α

d + 1
In the equation, coef is the distribution coefficient and α called locality factor.

Since DPi→j ≥ 0, α ≥ −(d + 1). Particularly when α = −(d + 1), DPi→j =
0; when α = 0, DPi→j = Pc. Besides, when −(d + 1) < α < 0, DPi→j

is proportional to distance d; When α > 0, DPi→j is inversely proportional to
distance d. In addition, α(d) can be defined for each possible value of distance d.

Using the traffic expression, the locality of traffic distribution can be easily
controlled by setting α(d) for each possible distance value d. For instance, if
α(d) = −(d + 1), coef(−(d + 1), d) = 0 meaning that no traffic is generated
between sources and destinations if their shortest distance is d; if α(0) = −1 for
d = 0, coef(−1, 0) = 0, meaning that no self-loop traffic is created. If we set
“α(d) = 0” for all possible values of d in the network, their distribution coeffi-
cients coef (0, d) = 1. Then for any source node i, it has an equal probability to
distribute traffic to any node j. In this case, the traffic distribution is independent of
distance d, meaning that the traffic is uniform. After setting α(d), we can calculate
coef (α, d) and Pc using Equations 3.1 and 3.2. Then DP (d) can be derived. An
example of the calculation is given in Paper 5.
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D. Channel-by-channel traffic

For the traffic patterns, we control the traffic generation and locality by setting a lo-
cality factor α for each possible distance d. Since one distance may cover a number
of pairs of source and destination nodes, we avoid specifying the communication
distribution probabilities for each source node to each and every possible desti-
nation node. For channel-by-channel traffic, as the name suggests, we set traffic
parameters for each individual channel. The set of traffic parameters of a channel
is {s proc, d proc, T, S}, where s proc represents the source process, d proc the
destination process, T its temporal characteristics, and S its message size specifi-
cation. For each channel, we can determine the source node for s proc and the
destination node for d proc after the application task graph is mapped onto the
network nodes. The temporal characteristics T and the message size specification
S can be synthetically configured using the same set of options in the tree or ap-
proximated using analysis or communication traces [68].

Channel-by-channel traffic differs from the traffic patterns mainly in that the
traffic’s spatial pattern is statically built on a per-channel basis according to an ap-
plication task graph. Since the communication pattern in the task graph is captured,
this type of traffic is used to construct application-oriented workloads.

3.2.5 An Evaluation Case Study

As a case study (Paper 6), we have evaluated deflection networks in NNSE [76].
A deflection-routed network (see Section 2.1 of Chapter 2) has three orthogonal
characteristics: topology, routing algorithm and deflection policy. It is crucial to
explore the alternatives of the three aspects since the decisions on these aspects
may be hardwired and may not be dynamically configurable or too costly to permit
dynamic configuration. Therefore identifying the significance of each factor and
evaluating their alternatives play a vital role in the decision-making.

In the evaluation, we have considered 2D regular topologies such as mesh,
torus and Manhattan Street Network, different routing algorithms such as random,
dimension XY, delta XY and minimum deflection, as well as different deflection
policies such as non-priority, weighted priority and straight-through policies [76].
Our results suggest that the performance of a deflection network is more sensitive
to its topology than the other two parameters. It is less sensitive to its routing
algorithm, but a routing algorithm should be minimal. A priority-based deflec-
tion policy that uses global and history-related criterion can achieve both better
average-case and worst-case performance than a non-priority or priority policy that
uses only local and stateless criterion. These findings are important since they can
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guide designers to make right decisions on the network architecture, for instance,
selecting a routing algorithm or deflection policy which has potentially low cost
and high speed for hardware implementation.

3.3 Feasibility Analysis of On-Chip Messaging

This section summarizes the research in Paper 7.

3.3.1 Problem Description

Partitioning & Mapping

Feasibility analysis

NoC arch.

System spec. Process

Node

P0

P1 P2

P3 P4

N1 N2

N3 N4

Figure 3.5. Feasibility analysis in a NoC design flow

As illustrated in Figure 3.5, NoC design starts with a system specification
which can be expressed as a set of communicating tasks. The second step is to
partition and map these tasks onto the resources of a NoC. With a mapping, ap-
plication tasks running on these resources load the network with messages, and
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impose timing constraints for delivering messages. The feasibility analysis is per-
formed on the resulting NoC instance. Feasibility analysis could, on its own, cover
a wide range of evaluation criteria such as performance, power and cost. In our
context, we concentrate on the timely delivery of messages, which is essential for
performance and predictability.

Following [110], we distinguish real-time and nonreal-time messages in on-
chip networks. Messages with a deterministic performance bound, which must
be delivered predictably even under worst case scenarios, are real-time (RT) mes-
sages. Messages with a probabilistic bound, which ask for an average response
time, are nonreal-time messages. Our focus in the thesis is on the feasibility anal-
ysis of delivering RT messages in a wormhole-switched network. We follow the
feasibility definition in [7]: Given a set of already scheduled messages, a message
is termed feasible if its own timing property is satisfied irrespective of any arrival
orders of the messages in the set, and it does not prevent any message in the set from
meeting its timing property. We resort to an algorithm-based instead of simulation-
based approach in the analysis to avoid cycle-by-cycle simulations. Since it is the
network contention that makes the message delivery non-deterministic, we formu-
late a contention tree model that captures direct and indirect network contentions
and reflects concurrency in link usage. Based on this model, we investigate mes-
sage scheduling to estimate the worst-case performance for RT messages and de-
velop an algorithm to conduct the feasibility analysis. The analysis returns the pass
ratio, i.e., the percentage of feasible messages, and the network utilization of the
feasible messages.

In the following, we first describe the contention tree model, message schedul-
ing on a contention tree, and then the feasibility analysis flow.

3.3.2 The Network Contention Model

A. The real-time communication model

Wormhole switching divides a message into a number of flits for transmission2.
During the delivery, it manages two types of resources, the lanes and the link band-
width. Lanes are flit buffers organized into several independent FIFOs instead of a
single FIFO. Lane allocation is made at the message level while link bandwidth is
assigned at the flit level. In conventional wormhole switches, the shared lanes are
arbitrated on First-Come-First-Serve (FCFS), and the shared link bandwidth are
multiplexed by the lanes. Messages are not associated with a priority and they are
equally treated. This model is fair and produces average-case performance results.

2The effect of packetization is not considered here.
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It is suitable to deliver nonreal-time messages, which do not require guarantees.
But, it can not directly support real-time messages because there is no promise
that messages are delivered before deadlines. In order to enable guarantees, real-
time messages must be served with other disciplines, for instance, priority-based
arbitrations [62].

We assume a conventional wormhole switch architecture and a priority-based
delivery model for RT messages. Special RT communication services generally
require special architectural support which may potentially complicate the switch
design. All messages are globally prioritized, and priority ties are resolved ran-
domly. This model arbitrates shared lanes and link bandwidth on priority. The
priority, which may be assigned according to rate, deadline or laxity [40, 62], takes
a small number of flits. With this RT communication model, the worst-case latency
T rt of delivering a message of L flits is given by :

T rt = (L + Lpri)/Brt + HR + τ = T + τ (3.3)

where Brt is the link bandwidth allocated to the RT message along its route; H is
the number of hops from the source node to the destination node; R is the routing
delay per hop; Lpri is the number of flits used to express the message priority. The
routing delay R is assumed to be the same for head flits and body/tail flits. The
first term counts for the transmission time of all the message flits; the sum of the
first two terms is the non-contentional or base latency T , which is the lower bound
on T rt; the last term τ is the worst-case blocking time due to network contention.

B. Network contention

To estimate the worst-case latency T rt of an RT message M , we have to estimate
the worst-case blocking time τ . To this end, we first determine all the contentions
the message may meet.

In flit-buffered networks, the flits of a message Mi are pipelined along its rout-
ing path. The message advances when it receives the link bandwidth along the
path. The message may directly and/or indirectly contend with other messages for
shared lanes and link bandwidth. Mi has a higher priority set Si that consists of a
direct contention set SDi and an indirect contention set SIi , Si = SDi + SIi . SDi

includes the higher priority messages that share at least one link with Mi. Mes-
sages in SDi directly contend with Mi. SIi includes the higher priority messages
that do not share a link with Mi, but share at least one link with a message in SDi ,
and SIi ∩ SDi = ∅. Messages in SIi indirectly contend with Mi. As an example,
Fig. 3.6a shows a fraction of a network with four nodes and four messages. The
messages M1, M2, M3 and M4 pass the links AB, BC, AB→BC→CD, and CD,
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respectively. A lower message index denotes a higher priority. The message M1

has the highest priority, thus S1 = ∅. For the message M2, it directly contends with
M3, but it has a higher priority, thus S2 = ∅. The message M3 has a higher priority
message set S3 = SD3 = {M1, M2}, SI3 = ∅. For the message M4, SD4 = {M3}
and SI4 = {M1, M2} because M1 or M2 may block M3 which in turn blocks M4.

B C DA
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M2
M2
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E13

E23

E34

Figure 3.6. Network contention and contention tree

C. The contention tree

To capture both direct and indirect contentions and to reflect concurrent scheduling
on disjoint links, we have formulated a contention tree model that is defined as a
directed graph G : M × E. A message Mi is represented as a node Mi in the
tree. An edge Eij(i < j) directs from node Mi to node Mj , representing the direct
contention between Mi and Mj . Mi is called parent, Mj child. Given a set n of
RT messages, after mapping the messages to the target network, we can build a
contention tree with the following three steps:

Step 1. Sort the message set in descending priority sequence with a chosen prior-
ity assignment policy.

Step 2. Determine the routing path for each of the messages.

Step 3. Construct a tree, starting with the highest priority message M1, and then
M2...Mn. If Mi shares at least one link with Mj where i < j ≤ n, an edge
Eij is created between them. Each node in the tree only maintains a list of
its parent nodes.

In a contention tree, a direct contention is represented by a directed edge while
an indirect contention is implied by a walk via parent node(s). A walk is a path
following directed edges in the tree. The contention tree for Fig. 3.6a is shown in
Fig. 3.6b, where the three direct contentions are represented by the three edges E13,
E23 and E34, and the two indirect contentions for M4 are implied by the two walks
E13 → E34 and E23 → E34 via M4’s parent node M3. Since determining the
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routing path is a priori, creating a contention tree is more suitable for deterministic
routing. For adaptive routing, it is difficult to figure out the worst-case routing path.

D. Assumptions and simplifications

The estimation of latency bounds are based on messages’ schedules on links. A
schedule is a timing sequence where a time slot is occupied by a message or left
empty. The latency bound of a message is the earliest possible completion time for
delivery under the worst case. Before introducing schedules of messages, we list
the assumptions, limitations and simplifications as follows:

• The messages we consider are periodic and independent. There is no data
dependency among messages so that each message can be periodically fired
or activated, meaning that the messages are sent to the network and start to
compete for shared resources, i.e., buffers and links.

• We focus on link contentions. Similarly to [7, 40], we assume that there
is a sufficient number of Virtual Channels (VCs) so that priority inversion
due to VC unavailability does not occur. Priority inversion happens when
a message with a lower priority holds shared resources, leading to blocking
messages with a higher priority. As discussed in [7, 40], this problem can be
alleviated by packetization.

• In this communication model, messages are allocated with time slots de-
pending on their priorities and contentions. Whenever there is a contention
for a link, a message with a higher priority will be scheduled first. In addi-
tion, a higher priority message can preempt a lower priority message.

• The worst case is assumed to occur when all the messages are fired into the
network at the same time.

• The bandwidth of a link is assumed to transmit one flit in one time slot. The
routing delay per hop takes one time slot. We simplify the pipeline latency
on links so that the flits of a message are available to compete all the link
bandwidth along the message’s path simultaneously for the duration of its
communication time. To explain this, we illustrate a message transmission
in Figure 3.7, where M2 passes through three hops (A, B, C) and two links
(AB, BC). M2 contains four flits (one head h flit, two body b flits and one
tail t flit). It has a base latency of 7 (1 · 3 + 4). If M2 fires at time instant 0,
by the assumption, it will compete for both links AB and BC from slot 1 to
7, i.e., for its entire base latency period.
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Figure 3.7. Message contention for links simultaneously

• We assume that a message advances only if it simultaneously receives all
the link bandwidth along its path. This means that the flits are delivered
either concurrently via the links or blocked in place. As a result, a message
competes for links only for its base latency period. It does not happen that
a flit advances via a link while another flit is blocked in place. As shown in
Figure 3.8, at time slot 3, the head flit h has advanced from node B to C but
the first body flit b1 is blocked in node A. As a consequence, the pipeline
latency is increased by one slot. According to our assumption, this scenario
in time slot 3 is avoided and thus not considered. Apparently, if flits are
individually routed via links, the contention period may become larger than
its base latency and unpredictable.

E. Scheduling on the contention tree: an example

Table 3.2 shows an example of message parameters for Fig. 3.6, where the priority
is assigned by rate, and the deadline D equals period p. The worst-case schedules
for the three links are illustrated separately in Fig. 3.9a. Initially, all messages are
fired. M1 is allocated 7 slots on link AB. M2 is allocated 3 slots on link BC. M3

is blocked by M1 and M2. M4 is blocked by M3. After M1 and M2 complete
transmission, M3 is allocated 3 slots concurrently on link AB, BC and CD. At time
slot 10, M1 fires again and holds slots [11, 17] on link AB, preempting M3. At
time slot 15, M2 fires the second time and holds slots [16, 18] on link BC. After
M1 and M2 complete their second transmission, M3 continues its first transmis-
sion by holding slots [19, 20]. After M3 finishes its first delivery, M4 is allocated
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Figure 3.8. Avoided flit-delivery scenario

Table 3.2. Message parameters and latency bounds

Message Period p Deadline D Base latency T Latency bound T rt

M1 10 10 7 7

M2 15 15 3 3

M3 30 30 5 20

M4 30 30 8 28

slots [21, 28] on link CD. M1 starts its third round and holds slots [21, 27] on link
AB. Since the four messages have a Least Common Multiple (LCM) period of 30,
the four messages are scheduled in the same way at each LCM period. From the
schedules, we can find that the latency bounds for M1, M2, M3, M4 are 7, 3, 20,
28, respectively. Equivalently, the worst-case blocking times for the four messages
are 0, 0, 15, 20. The latency bounds for the four messages are also listed in Table
3.2. We can see that all the four messages are feasible.

Looking into the schedules, we can observe that

(1) M1 and M2 are scheduled in parallel. This concurrency is in fact reflected by
the disjoint nodes in the tree. We call two nodes disjoint if no single walk
can pass through both nodes. For instance, M1 and M2 in Fig. 3.6b are
disjoint, therefore their schedules do not interfere with each other.
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Figure 3.9. Message scheduling

(2) M3 is scheduled on the overlapped empty time slots [8, 10] and [19, 20] left
after scheduling M1 and M2. This is implied in the tree where M3 has two
parents, M1 and M2. The contended slots [1,7] and [11,18] are occupied
by M1 or M2. A contended slot is a time slot occupied by a higher priority
message when the contention occurs. A contention occurs only when two
competing messages are fired.

(3) M4 is scheduled only after M3 completes transmission at time 20. The indirect
contentions from M1 and M2, which are reflected via slots [1,7] and [11,18],
propagate via its parent node M3. For M3, these slots are directly contended
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slots. For M4, they become indirectly contended slots.

The four message schedules are individually depicted in Fig. 3.9b. If the direc-
tion contention is not distinguished from the indirect contention as the lumped-link
model [7] does, M3 and M4 would be considered infeasible since M2 would oc-
cupy the slots [8, 10] and [18, 20], leaving only three slots [28, 30] for M3 and M4.
If the concurrent use of the two links, AB by M1 and BC by M2, was not properly
captured as the blocking-dependency model [55] does, M3 and M4 would also be
considered infeasible since M2 would occupy the slots [8, 10] and [18, 20] before
slot 30.

In a contention tree, all levels of indirect contentions propagate via the inter-
mediate node(s). This is pessimistic since many of them are not likely to occur at
the same time. Also, a lower priority message can actually use the link bandwidth
if a competing message with a higher priority is blocked elsewhere.

The validation of the contention-tree model as well as the comparisons with
other proposed contention models are provided in [89].

3.3.3 The Feasibility Test

A. The feasibility test algorithm

Based on the contention tree and priority-based message scheduling, each feasible
message obtains a global schedule. A message schedule is based on its parents’
schedules. If a node has no parent or feasible parent, it is scheduled whenever it
fires, thus it is always feasible. If a node has feasible parent(s), we must first mark
the contended slots as occupied and then schedule the node.

(b)(a)

A CB
M1

M1M2

M2

M2

M3

M3

E12 E23

Figure 3.10. A three-node contention tree

Note that a slot occupied by a higher priority message is not necessarily a con-
tended slot. Consider the contention tree in Figure 3.10 where the three messages
use the parameters in Table 3.2. The message schedules are depicted in Figure
3.11. M1 has the highest priority and schedules whenever it fires. Consider the
LCM period for the three messages, which is 30 in this case, M1 fires three times
and occupies slots [1, 7], [11, 17] and [21, 27]. M2 fires twice at time 0 and 15.
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Although the slots [10, 15] and [21, 27] are occupied by M1, M1 does not contend
with M2 during these time slots since M2 is not fired or has already been sched-
uled. The directly contended slots with M1 are slots [1, 7] and [16, 17], implying
that M2 can not be scheduled on these slots. Hence, M2 schedules on slots [8, 10]
and [18, 20]. M3 fires once at time 0. The contended slots are [1, 7] (indirectly
with M1) and [8, 10] (directly with M2). Hence, M3 is scheduled on slots [11,
15]. In summary, a slot is regarded as a contended slot only if two conditions are
true: (1) it is occupied by a higher-priority message; (2) competing messages must
fire at the time slot. Particularly, for indirectly contended slots, the intermediate
message(s) must also fire in order to pass the contention downwards; otherwise,
the slots are not contended. As illustrated in Figure 3.11, for M3, slots [11, 15] are
occupied by M1 but not contended slots, since M2 are not fired during these slots.
Therefore M3 is scheduled on these slots.

The indirect contentions propagate via parent nodes. Disjoint nodes are sched-
uled concurrently. If a node M has k feasible parents, M can only be scheduled on
the overlapped empty or free (non-contended) slots of the k parents’ schedules. The
feasibility of a message can be determined by comparing the number N of empty
slots available for scheduling M with its non-contentional or base latency T . We
distinguish messages with a deadline constraint D or a jitter constraint J . For a
deadline constrained message, its latency bound T rt must satisfy T rt ≤ D; For a
jitter constrained message, its latency bound T rt must satisfy D − J ≤ T rt ≤ D.
For a message M with a base latency T , we denote that the number of available
slots for scheduling M before its jitter range D − J and before its deadline D
is NJ and ND, respectively. If M is deadline-constrained and T ≤ ND, M is
feasible (feasible(M )=1); otherwise, M is infeasible (feasible(M )=0). If M is
jitter-constrained and NJ ≤ T ≤ ND, M is feasible; otherwise, M is infeasible.
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Algorithm 1 Contention-Tree-based Feasibility Test for Real-Time Messages
Input: A sorted set of n messages and a contention tree for the messages;
Output: Feasible(Mi) = 1/0, for i = 1, 2, · · ·n;
1 Find the LCM for the periods of all n messages;
2 For a message Mi, initially i = 1, do {
3 Feasible(Mi) = 0;
4 find Mi’s feasible parent(s) FP ;
5 if FP = φ
6 fire Mi and schedule it to the length of LCM; Feasible(Mi) = 1;
7 else
8 do {
9 fire Mi once;
10 mark Mi’s contended slots as occupied and the rest as empty within

Mi’s deadline Di;
11 compute the length NJi and NDi, which are the overlapped empty slots

on FP ’s schedules within Mi’s jitter range Di − Ji and deadline Di,
respectively;

12 if (Mi is jitter-constrained and NJi ≤ Ti ≤ NDi)
or (Mi is deadline-constrained and Ti ≤ NDi), Feasible(Mi)=1;
and schedule Mi on these free time slots;

13 else Feasible(Mi) = 0; release the scheduled slots for Mi;
14 } while (Mi fires not reaching LCM) and (Feasible(Mi) = 1);
15 i = i + 1;
16 } while (i <= n);

We formulate this contention-tree-based feasibility test in Algorithm 1. The
input to the algorithm is a sorted set of messages with parameters and constraints,
and a contention tree for these messages. The output is the feasibility for each
of the n messages, either pass (feasible, Feasible(Mi) = 1) or miss (infeasible,
Feasible(Mi) = 0). After obtaining the feasible messages, we can further estimate
the link utilization of the feasible messages. Finding the LCM of the messages’
periods is the necessary and sufficient condition in order to terminate the algorithm
since the rest of a feasible schedule can be repeated after the LCM.

B. The feasibility analysis flow

Using the feasibility test, we can efficiently conduct feasibility analysis by explor-
ing the application-level, partitioning/mapping-stage and architecture-level design
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Figure 3.12. A feasibility analysis flow

space. Figure 3.12 shows a feasibility analysis flow. First, we partition the tasks
and then characterize the messages from the application task graph. Then we build
a contention tree. Since the contention tree is affected by several design decisions
such as task partitioning, priority policy, message mapping strategy and the routing
algorithm etc., we can build different contention trees by exploring these possibil-
ities. After creating a contention tree, the feasibility test algorithm can perform
the analysis. The outcome of the test is the pass ratio and network utilization of
feasible messages. These two measures may serve as the criteria to calibrate the
design decisions. Clearly, this procedure is iterative until satisfaction.
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3.4 Future Work

NNSE has been demonstrated in the University Booth EDA (Electronic Design Au-
tomation) Tool Program of DATE 2005 [73]. After publicity, it has been requested
for research use by a number of NoC research groups in Europe, U.S.A. and Asia.
In the future, we plan to improve it in the following directions:

• Parameterize more layers: Current tunable parameters include topology,
routing, and switching schemes. Each of the parameters may be extended
with more options. These are all network-layer parameters. In NNSE, the
layered structure allows us to orthogonally consider other layers’ parame-
ters. In the physical layer, we can build wire, noise and signaling models
to examine the reliability and robustness issues. We may consider the link
layer parameters such as the link capacity, link-level flow control schemes
etc. The upper layer like the transport layer allows us to investigate buffer
dimensioning and buffer sharing schemes, as well as end-to-end flow control
methods.

• Configure dependent traffic: We have so far configured independent traf-
fic, both synthetic and semi-synthetic. This means that traffic from different
channels is independent from each other. This is easy to control and generate,
but realistic traffic exhibits dependency and correlation. The way to gener-
ate traffic with various dependencies such as data, control, time, causality
etc. is worth investigating. For example, traffic with the requirement of lip-
synchronization shows correlated delivery requirements on video and audio
traffic streams.

• Support Quality-of-Service (QoS): This requires the implementation of QoS
in the communication platform, and accordingly QoS generators and sinks.
Monitoring service may be necessary to collect statistics on whether the per-
formance constraints of a traffic stream have been satisfied or not.

• Integrate application mapping: A tool that only explores communication
performance is not sufficient. System performance is the result of interactive
involvement of both communication and computation. Therefore, supporting
application-mapping onto NoC platforms is surely desirable. To this end, we
need to build and/or integrate resources models for cores, memories and I/O
modules.

• Incorporate power estimation: As power is as sensible as performance for a
quality SoC/NoC product, NNSE should incorporate the estimation of power
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consumption so that the performance and power tradeoffs can be better in-
vestigated and understood.

Extending further the traffic generation for performance evaluation ends up
with benchmarking different on-chip networks. The diverse NoC proposals neces-
sitate standard sets of NoC benchmarks and associated evaluation methods to fairly
compare them.



Chapter 4

NoC Communication Refinement

This chapter presents our NoC communication refinement approach [Paper 8, 9].
We start with a system model specified in the synchronous model of computation.
Through a top-down procedure, we refine the communication in the system model
into NoC communication via the communication interface of a NoC platform.

4.1 Introduction

4.1.1 Electronic System Level (ESL) Design

The rapid advancement of technology constantly fuels the SoC revolution [79]. As
we mentioned previously, the state-of-the-art SoC design methodologies cannot
sufficiently exploit the abundant transistor capacity. An on-going trend to shrink
the productivity gap is Electronic System Level (ESL) design. This trend is mixed
with the platform-based design concept [54] and the promotion of using formal
models for system specification and verification.

Traditional Register Transfer Level (RTL) for hardware design, which was in-
troduced in the 90s, allows synthesized standard cell design. A synthesizable RTL
description is presently often the starting point for an ASIC/FPGA design flow. The
design productivity cannot keep pace with the exponential expansion of the number
of transistors on a chip. Traditional C-based design for embedded software devel-
opment shows even slower enhancement in design productivity. To shrink the gap
between the design capability and the chip capacity, raising the design abstraction-
level is an essential step forward. The current activities in Electronic System Level
(ESL) [29] is consistent with this direction. The ITRS [46] defined ESL to be a

71
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level above RTL, that consists of “a behavioral (before hardware/software partition-
ing) and architectural level (after)”. The ESL raises the abstraction level in which
systems are expressed. A system-level design allows larger function-architecture
co-exploration [63], which is more than traditional hardware-software codesign.
The final implementation can benefit in performance and cost. Using system-level
models, hardware and software design can be developed in parallel. This breaks
the sequential flow of hardware-first-software-second, thus compressing the de-
sign cycle. Besides, the benefits of ESL include enabling new levels of design
reuse and offering design chain integration across tool flows and abstraction levels.
Using formal models is also advocated for system-level design [54, 116, 118]. As
noted in [54], using formal models and transformations in system design is pro-
moted so that verification and synthesis can be applied to advantage in the design
methodology. Verification, which is a key design activity, is effective if complexity
is handled by formalization, abstraction and decomposition. Besides, the concept
of synthesis can be applied only if the precise mathematical meaning of a system
specification is defined.

A formal model is associated with Models of Computation (MoCs). As de-
fined in [118], a MoC refers to mathematical models that specify the semantics of
computation and of concurrency. Loosely defined, MoC specifies the operational
semantics governing how processes interact with each other. There are a variety of
MoCs that exist for embedded system design, such as finite state machines [39],
Petri nets [86], Kahn process networks [51], and synchronous models [11, 12] etc.
A comprehensive digest of the various models can be found in [31, 118]. The
tagged-signal model [59] defines a denotational, semantic framework of signals
and processes within which models of computation can be studied and compared.
In [48], a formal classification and description of these models is presented com-
prehensively. Essentially, how time and concurrency are expressed distinguishes
one MoC from another.

4.1.2 Communication Refinement

Communication refinement is a key step in a system-level design approach. It is
a top-down process of synthesizing abstract communication in the system model
into concrete communication in the system implementation architecture [31, 54].
Abstraction defines the type of information present in a model. Unlike hierarchy,
abstraction is not concerned with the amount of information visible, but with the
semantic principles of a model. In general, the movement from high to low ab-
straction levels involves a decision-making process. By making design decisions
and increasing information about implementation details, we replace more abstract
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models with less abstract models, until the system is manufacturable. Through the
refinement process, system properties and application constraints must be incorpo-
rated and satisfied.

Communication refinement may be conducted in the functional domain or in
the implementation domain and usually comprises well-defined steps. A system
model, after steps of refinement, is derived into a refined model. The three key
issues for refinement are correctness, constraint and property satisfaction and ef-
ficiency. As the refined model is an elaborate version of the original model, they
must be functionally equivalent. This is achieved by preserving semantics during
refinement, i.e., a refinement step should not introduce semantic deviation. The
second requirement means that the refined, correct model must satisfy design con-
straints for performance and ensure properties to achieve design objectives. The
third one here refers to resource consumption in the system implementation archi-
tecture. It can be very specific, depending on whether our application is aimed for
low power or low cost.

In the NoC case, the communication architecture is preferably predefined as
a platform and the Application Level Interface (ALI), which provides primitives
for inter-process communication, is the only way to access the communication
services. The NoC communication refinement is therefore to refine the abstract
communication in a system specification onto the NoC platform via the ALI. We
have proposed a three-step top-down procedure to refine the communication of a
system model specified in the synchronous MoC into NoC communication. Before
we present the refinement steps, we introduce the synchronous MoC.

4.1.3 Synchronous Model of Computation (MoC)

A. Synchronous modeling paradigm

The synchronous modeling paradigm [11, 12] is based on an elegant and simple
mathematical model, which has been shown successful and is the ground of syn-
chronous languages [38] such as Esterel, Signal, Argos and Lustre. The basis is the
perfect synchrony hypothesis, i.e., both computation and communication take non-
observable time. The critical requirement from specification to implementation is
that the implementation has to be fast enough both in communication and computa-
tion. This means that the implementation phase has to take worst-case into account.
Synchronous MoC was initially introduced for reactive and safety-critical embed-
ded control systems where reasoning about the functional correctness is supreme.
It has to verify that at each tick over time the system works properly.
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In a synchronous MoC, a system is modeled as a set of fully concurrent com-
municating processes via signals. Processes use ideal data types and assume infi-
nite buffers. By following the tagged-signal model [59], a signal can be defined as
a set of ordered events, with each event taking a value and a tag. The value is the
informative data to be communicated, and the tag indicates a time slot. This means
that each event is conceptually and explicitly accompanied by a time slot to convey
data. If the data contains a useful value, the event is present and called a token;
otherwise, the event is absent and modeled as a  1 representing a clock tick. With
the introduction of , multi-rate systems can be modeled since every nth event in
one signal aligns with the events in another. A synchronous MoC is a timed MoC
where events are globally and totally ordered. Each signal can be related to the
time slots of another signal in an unambiguous way. The output events of a pro-
cess occur in the same time slot as the corresponding input events. Moreover, they
are instantaneously distributed in the entire system and are available to all other
processes in the same slot. Receiving processes in turn consume the events and
emit output events again in the same time slot. Processes can thus be viewed as
communicating events via an ideal channel, which is delay-free. In addition, the
ideal channel is buffer-less and has unlimited bandwidth because any type of event
values passes through it instantaneously. This communication channel is in con-
trast to that of other MoCs. For example, the Kahn and dataflow process networks
[58] assume unbounded FIFO channels between actors (processes).

Two events are synchronous if they have the same tag. Two signals are syn-
chronous if each event in one signal synchronous with an event in the other signal
and vice versa. A process is synchronous if every signal of the process is syn-
chronous with every other signal of the process. A system is synchronous if all
processes are synchronous locally and globally (synchronous with each other). A
system specified in the synchronous paradigm is a synchronous system. For feed-
back loops, the perfect synchrony leads to cyclic dependency between an input
signal and an output signal. If such cyclic communication is allowed in system be-
havior, some mechanism must be used to resolve it. One possibility is to introduce
a delay in the output signal. Another possibility is to use fixed-point semantics,
where the system behavior is defined as a set of events that satisfy all processes.
The third possibility is to leave the results undefined, resulting in nondetermin-
ism or infinite computation within one tick. If only one precise result is defined
for a feedback loop using the delayed time tag, a synchronous model is determin-

1In Paper 9, we used ⊥ (pronounced “bottom”) to represent absent. Since ⊥ has been used in
dataflow process networks to represent don’t-care [58], we later used � in Paper 8 to represent absent
in order to distinguish it from ⊥. This notation is also consistent with [48].
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istic, i.e., given the same input sequence of events, it generates the same output
sequences of events.

B. The ForSyDe methodology

ForSyDe stands for FORmal SYstem DEsign. It is a system-level design methodol-
ogy for SoC applications developed in the Royal Institute of Technology, Sweden.
The ForSyDe methodology [116] is based on the synchronous MoC. It uses pro-
cess constructors to cleanly separate communication from computation. Commu-
nication is captured by the process constructors and computation by the function
of the processes. It employs transformations in the functional domain to refine a
system model into a less-abstract model optimized for implementation [115, 117].
The transformations, which are conducted step by step, can be either semantic-
preserving or a design decision. Semantic-preserving transformations are correct
by construction while design decision is not. But, formal verification of design
decisions is possible by defining an appropriate notion of equivalence [108]. Af-
ter refinement, the refined model is partitioned into hardware and software and
mapped onto the implementation architecture [70]. In ForSyDe, the zero-delay
feedback is forbidden. A delay is introduced in the feedback loop. ForSyDe uses
the functional language Haskell [127] to express its system models. The models
are executable.

Our refinement approach has been conducted in the ForSyDe framework in
order to experiment and validate our concepts with executable models, but our
refinement approach applies also to a general synchronous model.

C. Modeling NoC applications with the synchronous MoC

The reason to start our refinement from a synchronous model is two fold. One is
to adopt a formal MoC for the specification of system function. A synchronous
model is formal and purely functional. This highest abstraction level leaves the
greatest design space to explore, and the advantage of formalism can be used for
well-defined refinement, synthesis and verification. The second reason lies in the
appropriateness of the synchronous MoC. To model a NoC application, one can
ask which MoC is more appropriate? In general the answer depends on which
kind of NoC applications to be designed. Considering the strength and weakness
of various MoCs, most probably there is no such a one-size-fits-all MoC but dif-
ferent MoCs find their own roles for different applications. However, as the days
of cheap communication are gone, expressing communication in a system specifi-
cation is necessary. A model for a NoC application has to capture communication
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properly. Besides, as NoC is a concurrent-processing platform, capturing concur-
rency in the system model is also necessary. We believe that the synchronous MoC
is a good candidate to specify some NoC applications because it captures concur-
rent computation and communication, and explicitly expresses them in the simplest
form possible.

In the following, we first formulate and analyze the communication refinement
problem in order to identify the exact sub-problems to be addressed, and then we
summarize our solutions presented in Papers 8 and 9.

4.2 The Communication Refinement Approach

4.2.1 Problem Description and Analysis

Our task is to refine synchronous communication into on-chip communication.
Specifically, the problem can be formulated as follows: Given is a synchronous
system model, refine the system communication onto a network-based communi-
cation platform. During the refinement, design constraints should be satisfied and
the network should be efficiently utilized.

A synchronous model provides globally synchronous, concurrent and instant
communication for inter-process communication. The properties of synchronous
communication can be summarized as follows:

• Global synchrony: There is logically a global clock triggering the consump-
tion and generation of events. Since computation takes non-observable time,
input and output events are distributed synchronously in each and every tick.

• Instancy: Events pass via an ideal communication channel. The channel pro-
vides zero-delay (instantaneous), unlimited bandwidth, ordered, and lossless
delivery. The unlimited bandwidth is due to that a signal can have a value
type of any kind, such as any primitive and compound types, demanding an
arbitrary communication bandwidth. Consequently, if an output signal of a
process is connected to an input signal of another process (as long as they
have the same value type), the two signals are identical. Thus we can use
a single signal to represent both. Together with the global synchrony, ideal
channels maintain a global event order.

• Full-scale concurrency: In the topology of a process network, all events are
communicated in parallel. Each communication channel is point-to-point
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and dedicated. No serialization on the use of the channels is necessary. Full-
scale communication concurrency makes the full-scale process computation
concurrency possible because input events are available each tick and pro-
cesses can evaluate the input events and generate output events each tick.
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Figure 4.1. Computation and communication elements

The computation elements in the specification domain are processes, which
produce and/or consume events. The communication elements are signals, which
are ordered sequences of events, and conceptually ideal channels. We illustrate
these elements with two processes, P1 and P2, in Figure 4.1a.

In the implementation domain, NoC has a very different communication model
and associated properties. We consider a message-passing NoC platform where
each core has its own local memory. As we discussed in Chapter 1, NoC communi-
cation can be represented using the layered and interfaced model. The inter-process
communication is offered by the Application-Level Interface (ALI). The appli-
cation processes use communication primitives such as open channel(), read()
and write() to communicate messages. Logically we can view that process-to-
process communication is conducted through a dedicated, point-to-point service
channel. The service is mapped directly to an underlying network communica-
tion service. We simplify the consideration of the session/transport layer, which
performs packetization/de-packetization, interleaving for using shared buffers and
bandwidth, and re-ordering for maintaining the message causality, if necessary.
We assume that the net effect of the session/transport layer is the addition of delay
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and in-order message delivery. This delay contributes to the delay in the service
channel model.

The service-channel communication model differs drastically from the syn-
chronous communication model.

• Multiple clock domain communication: There is no a global clock trigger-
ing system computation and communication. Instead the cores and the net-
work reside in different clock domains. We assume that the network itself is
clocked by a single clock, which has the same phase as the core clocks. The
core frequencies can be different from each other. The communication be-
havior of the cores and network can be modeled in their own clock domains
following the synchronous model. But the cross-domain time structures must
be arbitrated.

• Bandwidth-limited and delay-variant channel: Although we can abstract the
inter-process communication as logically a point-to-point service channel
at the application layer, these channels share physical communication re-
sources such as buffers and links in the session/transport and network layers.
The service channel has a capacity limitation and in general introduces de-
lay and delay variation (jitter). It provides in-order message delivery within a
service channel, but there is no message ordering between service channels.

• Conditional concurrency: As a service channel is bandwidth-limited, it is
impossible to send and receive arbitrary amount of data (any kind of data
structure) within a fixed-length time window. The communication concur-
rency is restricted by available bandwidth. This limitation leads to condi-
tional computation concurrency, i.e., computation concurrency is communi-
cation dependent.

In the implementation domain, we must introduce a communication process in
order to glue a signal to a service channel. The communication elements in the
implementation domain are communication processes, streams and service chan-
nels. Streams are ordered sequences of messages. The elementary communica-
tion processes either generate messages by consuming events or produce events by
consuming messages. Service channels are where the streams are transported. The
computation processes must be stallable if the required input tokens for computa-
tion are not available. We illustrate the three communication elements with the two
computation processes, P1 and P2, in Figure 4.1b.
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As we can observe from the above analysis, the ideal communication in the
synchronous model does not exist at all in the implementation domain. The imme-
diate questions to answer while refining the synchronous communication into NoC
communication are:

• How to compromise global synchrony into multiple-clock synchrony?

• How to refine ideal communication into shared communication?

• How to refine fully concurrent computation and communication into condi-
tionally concurrent computation and communication?

• How to satisfy performance constraints and communication properties?

• How to make a good utilization of network resources during the refinement?

These questions may not be addressed in isolation because they are inherently
correlated. For example, refining ideal communication into shared communication
results in reducing the concurrency level in the system model. Throughout the
communication refinement, the system behavior can not be changed. Maintaining
the correct system behavior during the refinement is the first concern because of
the violation of the ideal communication assumption in the implementation do-
main. This task is burdened with the requirements of satisfying constraints such
as processing n samples/second and of not over-dimensioning the underlying net-
work.

4.2.2 Refinement Overview

In Papers 8 and 9, we have proposed a three-step approach for the NoC communi-
cation refinement problem. Paper 8 mainly focuses on refinement for correctness
and Paper 9 for performance and efficiency. In this section, we unify the concepts
presented in the two papers in order to give a coherent view of the proposed com-
munication refinement approach.

Our refinement approach consists of three steps, namely, channel refinement,
process refinement and communication mapping, as illustrated in Figure 4.2.

Step 1. Channel refinement (Section 4.2.3): An ideal channel is refined into a ser-
vice channel. The service channel models the characteristics of the underly-
ing network communication service. We also model the interfaces between
different clock domains assuming that the network resides in a clock domain
different from cores.
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Figure 4.2. NoC communication refinement

Step 2. Process refinement (Section 4.2.4): In the specification model, a pro-
cess may be viewed as only performing functionality since communication
is ideal (unlimited bandwidth and zero-delay). This will not be the case once
the ideal channel is replaced by a service channel. To reuse the original
computational process, we leave it untouched. But we need to encapsulate
the process with a communication process. This communication process
(a) interfaces with the service channel; (b) fulfills the computation synchro-
nization requirement of the process, which we call process synchronization
property. This synchronization property must be consistent during the re-
finement. With the introduction of the service channel, the process cannot
fire automatically with the clock. Instead, it requires additionally a synchro-
nization ready signal from the communication process to control its execu-
tion; (c) satisfies communication property and performance constraints by
refining communication protocols, for example, performing end-to-end flow
control for reliability and overlapping computation with communication to
hide the communication latency; (d) deals with feedback loops, if any. A
zero-delay feedback loop is resolved by introducing an initial delay in the
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loop to break the cyclic dependency in our specification model. However,
in implementation, it results in excessive delay when the feedback is looped
through service channels. If the process sticks to this synchronization point,
the feedback loop becomes a serious performance bottleneck.

Step 3. Communication mapping (Section 4.2.5): After the above two steps, we
obtain a refined model. To further optimize for the use of shared network
resources, two or multiple service channels (a) may be converged to share
one implementation channel and (b) may be merged into one service channel
so as to use one implementation channel. After the optimization, we move
from the functional domain to the implementation domain. With a process-
to-core mapping plan, we map the service channels and the communication
processes in the refined and optimized model onto the NoC platform.

In Step 1, ideal channels are replaced by service channels, which involve multi-
ple clock-domain communication. We use communication processes in Step 2a and
Step 2b to refine the ideal communication into shared communication and to refine
full-scale concurrency into conditional concurrency. Particularly, we have focused
on Step 2b of synchronization consistency, which is proposed for correctness. Step
2c aims to satisfy communication property and performance requirements by com-
munication protocol refinement. Step 2d deals with the feedback problem. It aims
also to enhance system performance. In Step 3a and Step 3b, we consider channel-
convergence and channel-merge to make efficient use of network resources. In
summary, we have taken into account correctness, performance as well as resource
utilization during the refinement.

4.2.3 Channel Refinement

A. The clock-domain interface

A synchronous model is very simplified in the sense that a single clock drives the
system computation and communication. We assume that NoC communication is
partitioned into multiple clock domains. While each clock domain is synchronous,
the time structures of cross-domain communications have to be correctly arbitrated.
Our assumption is that the cores and the network have their own clock domains. In
addition, we assume that all clock phases are aligned.

To refine a single clock domain into multiple clock domains, we introduce
clock sub-domains into the system’s main domain. Each sub-domain is modeled
synchronously, and a clock domain interface arbitrates the time structures of differ-
ent clock domains. Introducing a synchronous sub-domain into the system model
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was presented in [115] where the event rate of the sub-domain is 1
n (n is a positive

integer) of the main domain. The main domain is interfaced to the sub-domain by
a single down-sampling process Pdn(n). The sub-domain is interfaced back to the
main domain by a single up-sampling process Pup(n). We extend this work by con-
sidering a generic domain interface that connects a clock domain with event rate
f1 to another clock domain with event rate f2. The simplest form of the fraction
f1

f2
is m

n , where m and n are coprime.
The generic interface from domain f1 to domain f2 is constructed by using two

processes as If1→f2 = Pdn(m)◦Pup(n), where ◦ is the composition operator. The
processes, Pup(n) and Pdn(m), are formally defined as follows:

Pup(n)({x1, x2, . . . }) = {⊥, . . . ,⊥︸ ︷︷ ︸
n−1

, x1,⊥, . . . ,⊥︸ ︷︷ ︸
n−1

, x2, . . . }

Pdn(m)({x1, x2, . . . , xm︸ ︷︷ ︸
m

, xm+1,⊥, . . . ,⊥︸ ︷︷ ︸
m

, . . . }) = {xm, xm+1, . . . }

The up-sampling process Pup(n) samples out n times of the input events, and
does not result in event loss. The down-sampling process Pdn(m) samples out
1
m times of the input events. At each down-sampling cycle, m − 1 events are
discarded and only the last token (non-absent value) is kept. The interface first
does up-sampling and then down-sampling. If f1 ≤ f2, no event drops, hence no
token is lost. If f1 > f2, events are cyclically dropped. But this may or may not
lead to the loss of tokens because the token rate may be less than the event rate. To
guarantee that there is no data loss at the clock domain interface, the token rate of
domain f1 can not be faster than the event rate of domain f2. This is to say, that a
producer in domain f1 can not use bandwidth (by generating tokens) more than the
consumer domain’s capacity. In our further analysis, we assume that this condition
is satisfied and there is no data loss at the clock domain interfaces.

B. The service channel model

As we mentioned previously in the analysis, we consider a generic service channel
that provides inter-process communication using message passing. In our context,
we are interested in that different processes are distributed in different cores. Thus,
an inter-process communication corresponds to an inter-core communication. Such
kind of communication involves the session/transport layer and the network layer.
As having discussed previously, we focus on the network services and simplify the
session/transport layer effects.

A service channel is logically a simplex point-to-point channel, offering in-
order, lossless and bounded-in-time communication between two end-processes. A
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service channel is mapped to a communication service in the underlying network.
A basic distinction of network services is the guaranteed service and best-effort ser-
vice. The guaranteed service requires the establishment of a virtual circuit before
data transmission can start. Once a virtual circuit is set up, the message delivery is
bounded in time. The best-effort service delivers messages as fast as possible. As
long as the network does not drop packets and is free from deadlock and livelock,
the delivery completion property is honored. Since no resources are pre-allocated,
there is no guarantee on a delivery bound in general. This nondeterminism is due
to that message delivery experiences dynamic contentions in the network. How-
ever, if such a bound does not exist, further analysis may be meaningless since the
system performance becomes unpredictable. Therefore we assume that the best-
effort service provides a delivery bound, but with an additional condition. The
condition can be that the processes (the network clients) and the network interact
on a contract basis. Processes inject traffic into the network in a controlled man-
ner according to a traffic specification. Such a traffic specification may conform
to, for example, the regulated (σ, ρ) flow model [22, 23]. The network performs a
disciplined arbitration on resource sharing. In this way, the network saturation is
avoided and the delivery bound can be derived. But, in our current analysis, this
regulated traffic admission as well as traffic discipline has not been modeled. In-
stead we have assumed that such a scheme exists and even the best-effort network
service can guarantee the bounded-in-time delivery.

With this assumption, we concentrate on considering the net effect of mes-
sage delivery, i.e., the delay and its variation (jitter) by resorting to a stochas-
tic approach. Formally, we develop a unicast service channel as a point-to-point
stochastic channel: given an input stream of messages {m1, m2,· · · , mn} to the
service channel, the output stream is {d1, m1, d2, m2, · · · , dn, mn}, where di de-
notes the delay of mi (i ∈ [1, n]), which may be expressed as the number of ab-
sent () values and is subject to a distribution with a minimum dmin and max-
imum dmax value. The actual distribution, which may differ from channel to
channel, is irrelevant here. We do not make any further assumptions about this.
If di = k (k is a positive integer), it means that there are k absent values between
mi−1 and mi. We can identify two important properties of the generic service chan-
nel: (1) di may be varying; (2) di is bounded. This behavior is purely viewed from
the perspective of application processes and the implementation details are hidden.

Together with clock-domain interfaces, a service channel provides transparent
communication for processes in different clock domains. Since the effect of clock-
domain interfaces can be modeled by the delay distribution in a service channel,
we do not explicitly consider them further.
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4.2.4 Process Refinement

A. Interfacing with a service channel

Once an ideal channel is replaced by a service channel, the original process can
not be directly connected to the service channel because a service channel uses a
different data unit, message, and has limited bandwidth. A communication process
must be introduced as an interface to connect the original process with the service
channel. This communication process implements necessary data conversion and
handshake-like control functionality, detailed as follows:

• Data conversion: The input/output data type of a service channel is a mes-
sage that is of a bounded size. But a signal in the specification assumes an
ideal data type, whose length is finite but arbitrary, e. g., a 32/64-bit integer,
a 64-bit floating point or a user-defined 512-bit record type. Matching the
data types requires data conversion, such as decomposition and composition.

• Bandwidth-regulated control: The service channel has limited bandwidth
while a signal uses unlimited resources. The sending and receiving of mes-
sages using the service channel is subject to the available bandwidth. A
control function is needed in the communication process to co-ordinate the
message sending and receiving.

These adaptations are achieved by writer and reader processes. Specifically, to
interface with the service channel, a producer needs to be wrapped with a writer,
a consumer with a reader. As shown in Figure 4.1, P1 is a producer and P2 a
consumer. C1 implements the writer function and C2 the reader function.

B. Synchronization consistency

Replacing the ideal channel (zero delay and unlimited bandwidth) with a stochas-
tic channel (varying delay and limited bandwidth) leads to the violation of the
synchrony hypothesis. Consequently, two synchronous events in the specification
model may not have the same time tag any more because they may experience dif-
ferent delays in the service channels. Two synchronous signals in the specification
model may no longer be synchronous. Furthermore, the synchronous system be-
comes globally asynchronous. This leads to possible behavior deviation from the
specification. The entire system may not function properly. Correctness becomes
the first issue to address in refinement.

We restrict our discussions to continuous processes [48]. Informally, we say a
process continuous if, given partial input events, it generates partial output events.
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In addition, adding more input events, more output events are generated but it will
not affect the previously generated results. For a continuous process to work cor-
rectly, two conditions for delivering its input signals must be satisfied: (1) the event
order of each signal must be maintained; (2) the synchronization requirement on
the input events, called process synchronization property, must be satisfied before
the process can fire. In the synchronous model, events are delivered in order and
fully concurrent, the two conditions are satisfied cycle by cycle. However, with
the NoC service channel model, the first condition is met but the second is not
guaranteed. Our objective is to satisfy the process synchronization property, i.e., to
maintain synchronization consistency. Our approach is to refine the system-level
global synchronization into process-level local synchronization. We first classify
the process synchronization properties and then use synchronizers to achieve syn-
chronization consistency during refinement.

The synchronization in the system model requires all signals are synchronous
and all processes are synchronous. This might over-specify the whole system,
limiting implementation alternatives. We derive the synchronization property of a
process according to its evaluation conditions. This is similar to firing rules that are
used to discuss dataflow processes in [58]. By using evaluation conditions, we are
able to decouple local computation synchrony from global computation synchrony.
In effect, this refines the computation concurrency in the system model from being
fully concurrent into being conditionally concurrent.

For a synchronous process with n input signals, PI is a set of N input patterns,
PI = {I1, I2, · · · , IN}. The input patterns of a synchronous process describe its
firing rules, which give the conditions of evaluating input events at each event cy-
cle. Ii (i ∈ [1, N ]) constitutes a set of event patterns, one for each of n input sig-
nals, Ii = {Ii,1, Ii,2, · · · , Ii,n}. A pattern Ii,j contains only one element that can be
either a token wildcard ∗ or an absent value , where ∗ does not include . Based
on the definition of firing rules, we define four levels of process synchronization
properties as follows:

• Strict synchronization: All the input events of a process must be present
before the process evaluates and consumes them. The only rule that the
process can fire is PI = {I1} where I1 = {[∗], [∗], · · · , [∗]}.

• Nonstrict synchronization: Not all the input events of a process are absent
before the process can fire. The process can not fire with the pattern I =
{[], [], · · · , []}. This also includes cases where the process can not fire
if one or more particular input events are .
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• Strong synchronization: All the input events of a process must be either
present or absent in order to fire the process. The process has only two firing
rules PI = {I1, I2}, where I1 = {[∗], [∗], · · · , [∗]} and I2 = {[], [], · · · , []}.

• Weak synchronization: The process can fire with any possible input patterns.
For a 2-input process, its firing rules are PI = {I1, I2, I3, I4} where I1 =
{[∗], [∗]}, I2 = {[], []}, I3 = {[∗], []} and I4 = {[], [∗]}.

Apparently, for processes with a strict or strong synchronization, their synchro-
nization properties can not be satisfied if any of their input signals passes through a
service channel since the delays via the channel are stochastic. Although globally
asynchronous, the processes can be locally synchronized by using synchronization
processes, called synchronizers, to satisfy their synchronization properties.

b) A de-synchronization process
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a) An align-synchronization process
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Figure 4.3. Processes for synchronization

We use a two-input process to illustrate these synchronizers in Figure 4.3. In
the figure, we follow the direction of the signals and place the earlier events in
the right side of a signal, i.e., {· · · , xn, · · · , x2, x1}. An align-synchronization
process sync aligns the tokens of its input events, as illustrated in Figure 4.3a. It
does not change the time structure of the input signals. A desynchronizer deSync
removes the absent values, as shown in Figure 4.3b. All its input signals must
have the same token pattern, resembling the output signals of the sync process.
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Removing absent values implies that the process is stalled. The desynchronizer
changes the timing structure of the input signals, which must be recovered in order
to prevent from causing unexpected behavior of other processes that use the timing
information. An add-synchronizer addSync adds the absent values to recover the
timing structure, as shown in Figure 4.3c. It must be used in relation to a deSync
process. If the input events of the deSync is a token, the addSync reads one token
from its internal buffers for each output signal; otherwise, it outputs a  event. The
two processes deSync and addSync are used as a pair to assist processes to fulfill
strictness.

sync

{..., bn, ...,, b2,,,, b1}

{..., an, ..., a2,,, a1,}

{..., bn, ..., b2,,, b1,}

{..., an, ...,,, a2,, a1,}
Pstrong
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Figure 4.4. Wrap a strong process
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Figure 4.5. Wrap a strict process
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Figure 4.7. Two non-strict processes

To achieve strong synchronization, we use an align-synchronization process sync
to wrap a strong process, as shown in Figure 4.4. To achieve strict synchroniza-
tion, we use three processes, sync, deSync and addSync, to wrap a strict process,
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as illustrated in Figure 4.5. A strong process is typically a combinational process,
which is state-less. As long as both input tokens and delays are aligned, the delays
on the input signals do not change the behavior of the process. For example, a
combinational sum process cSum in Figure 4.6a consumes two input events, one
from each signal, adding them together. Delays on both input signals are tolerable
as long as they are aligned. A strict process is typically a sequential process, which
has states and thus is sensitive to the delay on its input signals. For instance, the
sequential process sSum in Figure 4.6b calculates the running sum of its input
events by adding its state and the token value on the input signal. Its initial state is
0. Any delay on its input signal changes the output sequence. A non-strict process
is often a control process, which can not fire if a control token is not available. For
example, as shown in Figure 4.7, the select and switch processes can not fire if the
control signal ctrl is neither 0 nor 1. Feeding control tokens is particularly impor-
tant while refining non-strict processes. The refinement of processes with weak
synchronization should be individually investigated. Practical examples of using
synchronizers are given in Paper 8.

C. Protocol refinement

Message passing between a producer process and a consumer process is essen-
tially a process of moving data from the producer side buffer to the consumer
side buffer. This requires a co-ordination between the producer process and the
consumer process in order to guarantee some properties, such as reliability, com-
pletion and buffer-overflow freedom. As the communication via a service channel
introduces variable delay, it is important to overlap computation with communica-
tion in order to hide the communication latency. Protocol refinement is to refine
the communication protocol for various reasons, for example, coordinated and im-
proved communication. We have shown in Paper 9 that our refinement approach
can formally incorporate different communication protocols in the step of process
refinement to satisfy reliability and to improve throughput. For reliability, we have
introduced acknowledgment in the protocol. For throughput, we have shown that
data pipelines may be elaborated to hide communication latency and thus increase
concurrency in computation and communication.

D. Feedback loop

Figure 4.8a illustrates a feedback loop in the specification. The loop passes through
n processes, P1, P2, · · · , Pn. In the synchronous model, we insert a single Delay
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Figure 4.8. Feedback loop

process (can be viewed as a register) to break the zero-delay loop. In an implemen-
tation domain as shown in Figure 4.8b, even if one process has one cycle delay,
it will take n cycles for the feedback signal to loop back. If process P1 sticks
to this synchronization point, the system throughput can never be faster than 1/n
samples/cycle. A similar and even worse situation occurs in the NoC refinement
case. If a feedback signal passes through a best-effort service channel, the delays
are nondeterministic. Depending on the length of such a loop, the varying delays
may be very long. If strictly observing the dependency, the process has to wait for
the availability of the feedback events and cannot fire. The entire system is slowed
down and becomes unpredictable due to the feedback loop.

{an, ..., a2,,, a1} {an, ..., a2, x0, x0, a1}
relax s3

s2

s1

{bn, ..., b4, b3, b2, b1}
P

Figure 4.9. A relax-synchronization process

In our current proposal, we have used a relaxed synchronization method to
force the synchronization satisfied. The synchronizer for this purpose is the relax-
synchronization process relax, as illustrated in Figure 4.9. If the input event is a
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token, it outputs the token; otherwise, a token x0 is emitted. The exact value of x0 is
application dependent. Note that relaxing synchronization is a design decision
leading to behavior discrepancy between the specification model and the refined
model. Care must be taken to validate the resulting system.

An example of using relax is given in Paper 8 where an equalizer regulates
the volume of an input audio stream to protect the speaker by preventing the audio
bass from exceeding a threshold. It analyzes the power spectrum of the resulting
output audio stream after the regulation. In case a certain level is reached, it feeds
a control signal back to adjust the amplification level of the audio bass amplifier.
In the specification, the equalizer has an immediate response whenever surpass-
ing the threshold occurs. However, after mapping the signals to best-effort service
channels, the feedback signal takes long and nondeterminate delays to reach the
amplifier. If the amplifier sticks to this over-specified synchronization point by fol-
lowing exactly the specification model, the equalizer may not be able to process
enough audio samples per second. The system performance might become unac-
ceptable. In this case, a relax is inserted to generate an amplification level when a
token is not available. The equalizer can thus fulfill the requirement on throughput.
The side-effect of this refinement is that the response to the audio-volume control
buttons is delayed by some cycles. We can validate that the small amount of delay
is acceptable for users. Therefore this design-decision is justified.

4.2.5 Communication Mapping

A. Channel convergence and channel merge

In the mapping phase, a refined channel, i.e., a service channel, is to be mapped to
an implementation channel. A simple way of doing this is to map one service chan-
nel to one implementation channel. This one-to-one channel mapping may lead to
inefficient use of network resources. For example, considering a guaranteed service
using TDM virtual-circuits, for low-delay low-bandwidth traffic, bandwidth has to
be reserved to satisfy the low-delay requirement. This results in extra time slots
reserved but under-utilized. Therefore, an implementation channel should allow
multiplexing, i.e., shared by more than one service channel, if possible. Consid-
ering these effects, the refined model can be further optimized for efficiency. In
Paper 9, we have introduced channel convergence and channel merge. Channel
convergence is for two or multiple service channels to share one implementation
channel provided the implementation channel can support their total bandwidth re-
quirement. Channel merge means that two or multiple service channels may be
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merged into one service channel so as to use one implementation channel by pack-
ing messages at the sender side and splitting them at the receiver side.

B. Channel and communication process mapping

The inputs to this task are the refined and optimized model as well as a process-
to-core allocation scheme; the output is a communication implementation. We
have used the NoC simulator Semla [125] as our implementation platform. The
Application-Level Interface (ALI) is the set of message-passing primitives intro-
duced in Chapter 3. The mapping stage involves channel mapping and communi-
cation process mapping.

With channel mapping, each pair of processes communicating via a service
channel in the refined model results in its dedicated unicast implementation chan-
nel, which is mapped to the open channel primitive open channel().

In communication-process mapping, communication processes for interfac-
ing service channels (reader and writer), maintaining synchronization consistency
(synchronizers such as sync, deSync, addSync and relax), elaborating protocol and
optimizing resource usage, are mapped onto cores. The original computation pro-
cesses do not change, but their executions are controlled by their respective com-
munication processes. Besides, with a single-thread implementation on a core,
a static schedule has to be found to sequentialize the process executions and co-
ordinate write and read operations [70]. With a multi-thread implementation on a
core, processes may be dynamically fired when their synchronization requirements
are met according to their evaluation conditions [121]. The reader and writer pro-
cesses access the ALI by directly calling the communication primitives read() and
write() defined in the NoC simulator. The resulting implementation is executable
in the simulation framework.

4.3 Future Work

Our refinement proposal has sketched a way of refining synchronous communica-
tion into on-chip network-based communication. Through the refinement, correct-
ness, constraint and efficiency have been taken into account. This approach has
been validated in the ForSyDe framework and with our NoC simulator. The con-
cept of synchronization consistency is independent of a particular communication
implementation scheme. It can be applied to pure hardware, software and bus-
based mixed hardware/software architectures. The proposed synchronizers have
been implemented in hardware, software and mixed hardware/software [121].
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To make our refinement approach fully-fledged, we realize that the research
can be further carried on along the following three tracks:

• Embed formal semantics in the refinement approach: This is to give formal
definitions for the synchronization issues and develop transformation rules
for using synchronizers to represent and check the equivalence between the
specification model and the refined model.

• Conduct performance analysis and optimization: The refined model allows
us to derive performance figures. This requires that a stochastic process must
be annotated with good-enough values. So far we just consider the effect
of varying delay of the stochastic process. How to estimate the delay/jitter
values and further system performance analysis are not addressed yet. Par-
ticularly, we will treat feedback using TDM virtual-circuits [34, 81] in order
to obtain strong guarantees on delay and jitter bounds.

• Automate the design flow: With the well-defined synchronizers and well-
controlled use of the synchronizers, automation is possible. Currently a
process’s synchronization property is annotated manually. But this can be
done automatically. The reason is that, in the system model, a process can
be defined using pattern matching evaluation [116], which nicely matches
the process synchronization property. We are building synchronizer libraries
in hardware, software and mixed hardware/software, and plan to develop
programs that can automatically instantiate synchronizers for processes to
maintain synchronization consistency. Optimization for performance and
efficiency will be part of the automation.



Chapter 5

Summary

This chapter summarizes the thesis and outlines future directions.

5.1 Subject Summary

Moore’s law has sustained in the semiconductor industry for 42 years. Following
this law, the process technology has been ever-advancing. Meanwhile, the desire
to exploit the technology capacity is ever-aggressive. However, the advancement
of the chip capacity and the system integration capability is not evenly developed.
The slower development of SoC integration is due to the extremely high level of
complexity in system modeling, design, implementation and verification. As com-
munication becomes a crucial issue, NoC is advocated as a systematic approach
to address the challenges. NoC problems span the whole SoC spectrum in all do-
mains at all levels. This thesis has focused on on-chip network architectures, NoC
network performance analysis, and NoC communication refinement.

• Research on wormhole-switched networks has traditionally emphasized the
flit delivery phase while simplifying flit admission and ejection. We have ini-
tiated investigation of these issues. It turns out that different flit-admission
and flit-ejection models have quite different impact on cost, performance and
power. In a classical wormhole switch architecture, we propose the coupled
flit-admission and p-sink flit-ejection models. These optimizations are sim-
ple but effective. The coupled admission significantly reduces the crossbar
complexity. Since the crossbar consumes a large portion of power in the
switch, this adjustment is beneficial in both cost and power. The network
performance, however, is not sensible to the adjustment before the network
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reaches the saturation point. The p-sink model has a direct impact on de-
creasing buffering cost, and has negligible impact on performance before
network saturation. As the support for one-to-many communication is nec-
essary, we design a multicasting protocol and implement it in a wormhole-
switched network. This multicast service is connection-oriented and QoS-
aware. For the TDM virtual-circuit configuration, we utilize the generalized
logical-network concept and develop theorems to guide the construction of
contention-free virtual circuits. Moreover, we employ a back-tracking al-
gorithm to explore the path diversity and systematically search for feasible
configurations.

• On-chip networks expose a much larger design space to explore when com-
pared with buses. The existence of a lot of design considerations at different
layers leads to making design decisions difficult. As a consequence, it is de-
sirable to explore these alternatives and to evaluate the resulting networks ex-
tensively. We have proposed traffic representation methods to configure var-
ious workload patterns. Together with the choices of the traffic configuration
parameters, the exploration of the network design space can be conducted in
our network simulation environment. We have suggested a contention-tree
model which can be used to approximate network contentions. Using this
model and its associated scheduling method, we develop a feasibility analy-
sis test in which the satisfaction of timing constraints for real-time messages
can be evaluated through an estimation program.

• As communication is taking the central role in a design flow, how to refine
an abstract communication model onto on-chip network-based communica-
tion platform is an open problem. Starting from a synchronous specifica-
tion, we have formulated the problem and proposed a refinement approach.
This refinement is oriented for correctness, performance and resource usage.
Correct-by-construction is achieved by maintaining synchronization consis-
tency. We have also integrated the refinement of communication protocols
in our approach, thus satisfying performance requirements. By composing
and merging communication tasks of processes to share the underlying im-
plementation channels, the network utilization can be improved.

5.2 Future Directions

With only a short history, Network-on-Chip (NoC) has become a very active re-
search field. Looking into the future, we believe that NoC will continue to be vivid.
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We list some key issues that have not been sufficiently addressed or emphasized in
the community as follows:

• Heterogeneous modeling: In current SoC design flows, a number of model-
ing techniques have been used ranging from sequential to concurrent mod-
els, from untimed to timed models. Application complexity and heterogene-
ity have driven the need to model a system using heterogeneous models.
The Ptolemy project [60] is such an example. This is particularly true for
NoC since it also targets highly complex and heterogeneous applications.
To which extent to model the underlying architecture characteristics is one
issue. While a model itself does not necessarily reflect the detailed character-
istics, refinement may be facilitated if the architecture characteristics such as
concurrency, time and adaptivity are captured in the model properly. Since
there does not exist a one-size-fits-all Model-of-Computation (MoC), multi-
MoC modeling will be highly necessary. Based on our understanding on the
various MoCs, one challenge is the cross-MoC-domain modeling, i.e., from
untimed domain to timed domain, from discrete time to continuous time,
from a sequential model to a concurrent model, and vice versa. The follow-
up challenges include multi-MoC refinement, synthesis, and verification.

• Programmability: To reduce cost, making a NoC soft is essential. This re-
quires the support of operating systems that offer various services such as
I/O handling, memory management, system monitoring, process scheduling
and migration, and inter-process communication, and provide programming
models balancing ease-of-programming and efficiency. Efficient application-
level interfaces and standardized core-level interfaces are the hard part. As
NoC is a distributed (not centralized) system in nature, investigating parallel
computing models beyond von Neumann models for NoC systems to achieve
high performance will become hot. For example, the MultiFlex system [101]
supports an object-oriented message passing model.

• Composability: To build complex systems, we are moving away from creat-
ing individual components from scratch towards methodologies that empha-
size composition of re-usable components via the network paradigm. NoC
systems should allow one to plug new validated components and upgrade
old components with linear design efforts and without compromising per-
formance, reliability and verifiability. This feature makes a NoC easy-to-
integrate and easy-to-extend, leveraging the reuse to the system level and
shrinking the time-to-market.
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• Autonomy: There are several reasons to hope for an autonomous NoC. A
nano-chip is an extremely condensed device where transient and permanent
faults on wires and nodes are increasingly possible. Power consumption
is workload-dependent and performance-sensible. System optimization in-
volves the re-organization and orchestration of its computation and com-
munication components to tradeoff power and performance and to balance
the thermal distribution on the chip. These reliability, performance, power
and thermal issues call for an intelligent way like human self-healing, self-
vaccinating and self-adjusting systems to dynamically and autonomously
adapt the NoC to suit its application demands and operating environments.
Along this thread, a simulation tool may be aimed to be intelligent in, for ex-
ample, pinpointing performance bottlenecks and suggesting hints on buffer
dimensioning.

• Design flow integration: Present design flows for SoC/NoC are not seam-
lessly integrated. From application specification down to chip fabrication,
there exist a number of concerns from physical issues (electrical and ther-
mal), clocking, power, performance, verification, manufacturability and testa-
bility. A design flow usually targets one or a small subset of the design
aspects. To enable a truly automated design flow, all relevant issues are
preferably handled in an integrated design flow to leverage efficiency and
overcome the inconsistency between different tools which may come from
different vendors.

Technically, NoC has a huge potential to expand. It would come no sur-
prise when yesterday’s 1000-node supercomputers become tomorrow’s 1000-node
networks-on-chips. In addition, NoC will be driven not only for application-specific
applications but also for general-purpose applications. Finally, SoC/NoC technol-
ogy will be combined with other technologies, such as sensor-technology, nano-
chemistry, biotechnology, micro-mechanics etc., into a multi-disciplinary technol-
ogy. Innovative application domains will be further inspired by the needs of im-
proving our life quality such as health care, entertainment, safety, information pro-
duction and exchange, non-restricted communications and of improving our living,
developing and ecological environment.



References

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino.
SPIN: A scalable, packet switched, on-chip micro-network. In Design, Au-
tomation and Test in Europe Conference and Exhibition - Designers’ Forum,
March 2003.

[2] A. Agarwal. Limits on interconnection network performance. IEEE Trans-
actions on Parallel and Distributed Systems, 2(4):398–412, October 1991.

[3] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate
versus IPC: the end of the road for conventional microarchitectures. In Pro-
ceedings of the 27th Annual International Symposium on Computer Archi-
tecture, pages 248 – 259, 2000.

[4] A. Allan, D. Edenfeld, J. W. Joyner, A. B. Kahng, M. Rodgers, and Y. Zo-
rian. 2001 technology roadmap for semiconductors. IEEE Computer,
35(1):42–53, January 2002.

[5] D. Andreasson and S. Kumar. Slack-time aware routing in NoC systems. In
IEEE International Symposium on Circuits and Systems, May 2005.

[6] ARM. AMBA advanced extensible interface (AXI) protocol specifcation,
version 1.0. http://www.amba.com, 2004.
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Abstract

Flit-admission solutions for wormhole switches must
minimize the complexity of the switches in order to
achieve cheap implementations. We propose to couple flit-
admission buffers with physical channels so that flits from
a flit-admission buffer are dedicated to a physical channel.
By the coupling strategy, for input-queuing wormhole lane
switches, the complexity of the crossbars can be simplified
from2p� p to (p+ 1)� p, wherep is the number of phys-
ical channels; for output-queuing wormhole lane switches,
the additional complexity is also minimal. We evaluate the
flit-admission solutions derived from the coupling with uni-
formly distributed random traffic in a 2D mesh network. Ex-
perimental results show that these solutions exhibit good
performance in terms of latency and throughput.

1 Introduction

Wormhole switching is being proposed for Networks on
Chips (NoCs) due to its better performance and smaller
buffering requirement [1, 2]. To make efficient use of the
Physical Channels (PCs), wormhole switching uses virtual
channels (lanes) to gain higher throughput [3]. Several
parallel lanes, each of which is a flit buffer queue, share
a PC. For on chip wormhole switches, these lane buffers
can be customized as dedicated hardware FIFOs instead of
register-based or RAM-based FIFOs to reduce the area and
thus achieve reasonable buffering cost [2]. To reduce the
control complexity of the switches, deterministic routing is
favored against adaptive routing. This may also be justified
by exploiting the traffic predictability of specific applica-
tions [1]. Moreover, regular low-dimension topologies are
considered for NoCs to further simplify the control [4, 5].

Figure 1 shows a 2D mesh NoC architecture [1, 4, 5].
Each resource is connected to a switch via a Network Inter-
face (NI). The wormhole switch with bidirectional links has
four PCs and several lanes per PC (not shown). Resources
feed the network with packets, which are queued in the
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packet buffers of the switches. With wormhole switching,
a packet is decomposed into a head flit, zero or more mid-
dle flit(s), and a tail flit. A single-flit packet is also possible.
These flits are stored in flit-uploading buffers calledupload-
ing/admission buffersbefore being admitted to the network.
There are various ways of organizing the packet buffer and
the uploading buffers. In Figure 2.(a), flit-uploading buffers
are organized as a FIFO. In Figure 2.(b) and 2.(c), they are
arranged asp parallel FIFO queues (p is the number of PCs).
Figure 2.(a) and 2.(b) allow at maximum one flit to be ad-
mitted to the network at a time while Figure 2.(c) allows up
to p flits to be admitted simultaneously.

(b)

flits
packet

(1 ... p)

(c)

Flit−uploading bufferPacket buffer

packet flit

(a)

flitpacket

(1 ... p)

Figure 2. Packet and flit-uploading buffers

In the paper we investigateflit admissionapproaches
in wormhole lane switches. We shall see that different
solutions largely impact the complexity of the switches.
Throughout the paper, we adopt the organization of flit-
uploading buffers in Figure 2.(c) since it allows potentially
higher performance. In the sequel, Section 2 discusses re-
lated work. In Section 3 we present our flit admission solu-
tions for both input-queuing and output-queuing wormhole
switches. Section 4 describes experimental results. Finally,
we conclude the paper in Section 5.



2 Related Work

Wormhole switching with virtual channels was proposed
in [3]. The performance model of a wormhole switch that
considers implementation complexity was first noted by
Chien [6]. Recently a more efficient canonical wormhole
switch architecture for virtual-channel flow control and its
performance model was presented in [7].

Admission control is commonly employed for real-time
traffic to determine if admitting new real-time traffic can
satisfy its timing bounds without jeopardizing the perfor-
mance guarantees of real-time traffic already in the net-
work. It has been a rich research area in packet-switched
computer networks. In cluster computing, based on QoS-
capable wormhole switches and network interfaces, an ad-
mission control algorithm in conjunction with a congestion
control algorithm was designed for the admission of real-
time traffic in the networks [8].

Our study on flit admission is different from the admis-
sion control for real-time traffic. By effectively sharing
physical channels, our flit admission approaches are de-
signed to minimize the complexity of wormhole switches
without sacrificing performance.

3 Flit Admission Approaches

3.1 Flit admission in input-queuing switches
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Figure 3. A canonical wormhole lane switch

Figure 3 shows a canonical wormhole switch architec-
ture with virtual channels at inputs [2, 3, 7]. It hasp phys-
ical channels (PCs) andv lanes per PC. A packet passes
the switch through four states:routing, lane allocation, flit
scheduling, andswitch arbitration. In the routing state, the

routing logic determines the routing path a packet advances.
In the state of lane allocation, the lane allocatorassociates
the lane the packet occupies with an available lane on its
routing path in the next hop. If the lane allocation suc-
ceeds, the packet enters into the scheduling state. If there
is a buffer available in the associated lane, the lane enters
into the switch arbitration. The first level of arbitration is
performed on the lanes sharing the same physical channel.
The second level of arbitration is for the crossbar traversal.
If the lane wins the two levels of arbitration, the flit situ-
ated at the head of the lane is switched out. Otherwise, the
lane returns back to the scheduling state. The lane associa-
tion is released after the tail flit is switched out. Credits are
passed between adjacent switches in order to keep track of
the status of lanes. Note that a lane is allocated at the packet
level, i.e., packet-by-packet. Also, flits from different lanes
can not be interleaved in a lane since flits other than head
flits do not contain routing information. To guarantee this,
a lane-to-lane association must be unique at a time.

In Figure 3, if an uploading buffer is available, a packet
is split into flits which are then put into the uploading buffer.
An uploading buffer takes the same four states as a lane in
order to inject flits into the network. Flits from an uploading
buffer can be switched to all thep output PCs. Since the
uploading buffers are decoupled from the PCs, the crossbar
must be fully connected, resulting in a port size of2p� p.

To alleviate the complexity of the switch, we propose to
couple an uploading buffer with a PC in aone-to-oneman-
ner. In this way, flits from an uploading buffer are dedicated
to a PC. Applying the coupling scheme to the switch in Fig-
ure 3, an uploading buffer only needs to be connected to
one multiplexor instead ofp multiplexors. The size of the
crossbar is sharply decreased from2p � p to (p + 1) � p,
as shown in Figure 4. The number of control signals per
multiplexor is reduced fromdlog(2p)e to dlog(p + 1)e for
anyp > 1 1. Alternatively, an uploading buffer can directly
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Flits in

Flits out
(1...p)

(p+1)−by−p Crossbar
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Figure 4. Sharing a (p+1)-by-p crossbar

share an output PC, as depicted in Figure 5.(a). This solu-

1dxe is the ceiling function which returns the least integer that is not
less thanx.
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tion can also be regarded as having a crossbar complexity
of (p+1)� p since the combination of ap� 1 multiplexor
and a2�1multiplexor may be viewed as a(p+1)�1 mul-
tiplexor. The number of control signals per PC is reduced
from dlog(2p)e to dlogpe+ 1 for anyp > 1.
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Figure 5. Sharing output physical channels

In order to support the coupling scheme, the routing must
be performed before segmenting a packet and storing its flits
in an uploading buffer instead. With a routing algorithm, the
PC the packet requests can be determined. Hence, the corre-
sponding uploading buffer is identified. One drawback due
to the coupling is possible blocking propagation. Specif-
ically, if the head packet in the packet buffer is blocked
due to the bounded size of the uploading buffer it aims at,
the packets behind the head packet are all unconditionally
blocked during the head packet’s blocking time.

3.2 Flit admission in output-queuing switches

In addition to sharing the crossbar or output PCs, flit ad-
mission may share input PCs of the switch. However, there
is acritical sectionproblem. Figure 6 illustrates the prob-
lem with a simplified graph of two connected wormhole
switches,A andB. Suppose that lanej in switchB is avail-
able at a certain clock cycle, the uploading buffer sees lane
j available and then associates itself to lanej locally. At the
same cycle, lanei in switchA also detects lanej available
and remotely makes an association with lanej. This is pos-
sible since both switches maintain a consistent view of the
lane status. As a result, two associations with a single lane
are established in the same cycle. Consequently, lanej will
receive flits from lanei and the uploading buffer, resulting
in their flits possibly interleaved in lanej.

Mux
Lane i

Lane j

Uploading buffer

Switch BSwitch A

local association

remote association

Figure 6. Problem with sharing input PCs

To avoid such a situation and thus achieve a mutual-
excluded lane association needs both architectural support
and a control protocol. This complicates the switch design

and negatively impacts the network performance. There-
fore, sharing input PCs isnot favored as a flit admission so-
lution. This observation illuminates flit admission in output-
queuing wormhole switches. If sharing input PCs and cross-
bars in output-queuing wormhole switches, we encounter
exactly the critical section problem, which is costly to re-
solve. This leads to only one low cost flit-admission path
for output-queuing wormhole switches, i.e., sharing output
PCs, as drawn in Figure 5.(b), where the multiplexors for
admitting flits have a port size of2 � 1. If the coupling
strategy is not used, the multiplexors must be(p+ 1)� 1.

4 Experiments

We developed a simulator in SystemC comprising the
input-queuing wormhole switch model and other supporting
objects. The switch is a single-cycle, flit-level model. We
construct a 2DK �K (K=4) network without end-around
connections (Figure 1). The network does dimension-order
X-Y routing, which is deadlock-free and deterministic. The
aim of our experiments is two-fold. First, we examine
the performance of the two flit-admission solutions derived
from the coupling scheme, i.e., sharing simplified crossbars
(Figure 4) and sharing output PCs (Figure 5.(a)). The base-
line architecture is the one admitting flits via full crossbars
(Figure 3). Second, with admitting flits via output PCs, we
investigate the impact of multiplexor arbitration.

The simulations were run with uniformly distributed
traffic. Resources injected fixed-size packets to random des-
tinations except for themselves at a constant rate. A flit is
ejected from the network once it reaches a lane of its des-
tination and the lane passes the routing state. Except oth-
erwise noted, contentions for lanes and channel bandwidth
were resolved randomly. Each simulation was run until the
network reached steady state, i.e., increasing simulated net-
work cycles did not change the results appreciably. We in-
vestigated the average latency of packets and the network
throughput. Latency of a packet is calculated from the in-
stant the packet’s flits are created to that the last flit of the
packet is accepted at the destination, including source queu-
ing time. Throughput� is defined as the number of flits
received per cycle per node.

Numberv of lanes per physical channel 3
Size of a lane 2 flits

Size of an uploading buffer 4 flits
One packet 4 flits

Table 1. Simulation parameters

Simulation parameters are listed in Table 1. The size of a
lane was chosen to be two, which is the minimal amount of
buffer requirement for a lane in order to pipeline flits since
sending and receiving credits take two cycles.
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Figure 7. Performance comparison

Figure 7 compares the flit-admission approaches. Ad-
mitting flits via simplified crossbars and via output PCs
achieve similar performance since they are equivalent for
the input-queuing switch. Compared with admitting flits via
full crossbars, the three solutions agree well when channel
utilization� is below 0.5. When� is higher than 0.5, the av-
erage latency with admitting flits via full crossbars is worse.
This suggests that faster uploading of flits results in higher
congestion thus higher latency when the network is nearly
saturated. It is interesting to note that the three approaches
achieve the same channel utilization and throughput (point
A in the Utilization-Throughput figure) given the same traf-
fic patterns. Above this point, the packet buffers (refer to
Figure 3) start to overflow, given a bounded packet buffer
size. The Utilization-Throughput figure can serve as a val-
idation of the network operations. The slope of the three
lines is 9

8
, because� = C�=(MDavg), whereC, M , Davg

are the network capacity, the number of nodes, the average
distance traveled by all received flits, respectively. For the
2D mesh,C = 4K(K � 1), M = K2, Davg =

2

3
K for the

random traffic. WhenK = 4, � = 9

8
�.
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Figure 8. Arbitration impact

Figure 8 shows the performance of admitting flits via
output PCs with three different arbitration criteria:ran-
dom, priority uploading meaning that flits to be admitted

win contentions against network flits,priority advancing
meaning that network flits win contentions against flits to
be uploaded. We can see that the three arbitration policies
do not make significant difference. This is because, if the
arbitration gives priority to uploading flits, uploading flits is
faster, but the uploaded flits (network flits) lose arbitration
along their routes; if the arbitration favors network flits, they
win arbitration along their routes but are difficult to be ad-
mitted in the beginning. This sort of balance makes both
cases close to the effect of the random arbitration.

5 Conclusions

We have discussed flit admission approaches for worm-
hole virtual-channel switches. By coupling flit-admission
buffers with physical channels, the complexity of the cross-
bar can be reduced from2p� p to (p+1)� p for an input-
queuing switch; the additional complexity for admitting flits
is also minimal for an output-queuing switch. Simulation
results show that these solutions derived from the coupling
scheme do not compromise the performance. Although
our discussions are equally applicable to macro wormhole-
switched networks in parallel computing, the experiments
were designed for a NoC that employs a low-dimension
topology, deterministic routing, and smaller buffering cost.

Future work will consider flit admission together with
packet admission. A higher-level admission control strat-
egy can be devised to track network load so that packets
are admitted with reasonable rates. Another direction is to
combine flit admission with flit ejection. Practically cost-
effective flit ejection models must be taken into account
while evaluating the performance of the on-chip network.
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Abstract

An ideal flit-ejection model is typically assumed in the
literature for wormhole switches with virtual channels. With
such a model, flits are ejected from the network immedi-
ately upon reaching their destinations. This achieves opti-
mal performance but is very costly. The required number of
sink queues of a switch for absorbing flits isp � v, wherep
is the number of physical channels (PCs) of the switch;v

the number of lanes per PC. To achieve cheap silicon im-
plementations, flit-ejection solutions must be cost-effective.
We present a novel flit-ejection model and a variant of it
where the required number of sink queues of a switch isp,
i.e., independent ofv. We evaluate the flit-ejection mod-
els with uniformly distributed random traffic in a 2D mesh
network. Experimental results show that they exhibit good
performance in latency and throughput.

1 Introduction

Chip design is increasingly becoming communication-
bound other than computation-bound with the steady tech-
nology scaling [1]. Network-on-Chip (NoC) [5, 6, 8, 11]
addresses the design challenge by proposing networks to
replace buses as a scalable global communication platform.
In a NoC, heterogeneous resources such as processor cores,
DSPs, FPGAs/ASICs, and memories are interconnected by
switches, which route packets to enable communication be-
tween resources.

Network flow control governs how a packet is forwarded
in a network, concerning shared resource allocation and
contention handling. Wormhole switching [4] is a net-
work flow control scheme that allocates buffers and physical
channels (PCs) to flits instead of packets. A packet is de-
composed into one or more flits. A flit, the smallest unit on
which flow control is performed, can advance once buffer-
ing in the next hop is available to hold the flit. This results
in that the flits of a packet are delivered in a pipeline fash-
ion. For the same amount of storage, it achieves lower la-

tency and greater throughput. However, wormhole switch-
ing uses channels inefficiently because a PC is held for the
duration of a packet. If a packet is blocked, all PCs held by
this packet are left idle. To mitigate this problem, worm-
hole switching adoptsvirtual channels(lanes) to make ef-
ficient use of the PCs [3]. Several parallel lanes, each of
which is a flit buffer queue, share a PC. Therefore, if a
packet is blocked, other packets can still traverse the PC via
other lanes, leading to higher throughput. Because of these
advantages, namely, better performance, smaller buffering
requirement and greater throughput, wormhole switching
with lanes is being advocated for on-chip networks [6, 11].

The ejection of flits in a wormhole-switched network
concerns when and how the flits reaching destinations are
ejected from the network and stored in flit sink queues
(sinks) before being composed back into packets. An
ideal ejection model has been assumed for wormhole lane
switches. With such an ideal model, flits are ejected into
sink queues instantly once they reach destinations (after
routing). Also, ejecting flits does not interfere with advanc-
ing flits. Such a model is optimal for performance, but it is
too costly to be suitable for silicon implementations. Given
the number of PCs of a switch isp, the number of lanes per
PC isv, the required number of sink queues of the switch is
proportional top andv in order to realize the ideal model.

In this paper, we present a novelflit-ejection or sink
model and a variant of it for wormhole lane switches. Our
models sharply reduce the required number of sink queues
from p � v to p without compromising much performance.
In the sequel, Section 2 discusses related work. In Section 3
we describe a canonical wormhole lane switch and the ideal
flit-ejection model. We present our flit-ejection models in
Section 3, followed by experimental results in Section 4.
Finally, we conclude the paper in Section 5.

2 Related Work

The performance model of a wormhole switch that con-
siders implementation complexity was first noted by Chien
[2]. A more efficient canonical wormhole lane switch archi-



tecture and its performance model was presented in [10]. In
general, the design complexity of a wormhole lane switch
is the function ofp andv. To gain further performance,
flit-reservation flow control [9] was proposed which utilizes
control flits to reserve bandwidth and buffers before trans-
ferring data flits. All of these works assume an ideal flit-
ejection model while evaluating the network performance.

To our knowledge, no prior work discussing flit-ejection
models other than an ideal model was reported. Our mo-
tivation is to reduce the switch complexity to achieve cost-
effective designs on silicon. In line with this idea, Goossens
et al. proposed to customize the lane buffers as dedi-
cated hardware FIFOs instead of register-based or RAM-
based FIFOs to reduce the area and thus achieve reason-
able buffering cost [11]. Recently, cost-effective flit admis-
sion approaches for virtual-channel wormhole switches are
discussed in [7]. To reduce the control complexity of the
switches, deterministic routing is favored against adaptive
routing. This may also be justified by exploiting the traffic
predictability of specific applications [6], which NoCs tar-
get. Moreover, regular low-dimension topologies are con-
sidered for NoCs to further simplify the control [5, 8].

3 The Ideal Sink Model
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Figure 1. A canonical wormhole lane switch

Figure 1 shows a canonical wormhole switch architec-
ture with virtual channels at inputs [3, 10, 11], connecting
to a resource node. It hasp physical channels (PCs) andv
lanes per PC. A packet passes the switch through four states:
routing, lane allocation, flit scheduling, andswitch arbitra-
tion. In the routing state, the routing logic determines the
routing path a packet advances. In the state of lane alloca-
tion, the lane allocatorassociatesthe lane the packet occu-
pies with an available lane on its routing path in the next

hop. If the lane allocation succeeds, the packet enters into
the scheduling state. If there is a buffer available in the
associated lane, the lane enters into the switch arbitration.
The first level of arbitration is performed on the lanes shar-
ing the same PC. The second level of arbitration is for the
crossbar traversal. If the lane wins the two levels of arbi-
tration, the flit situated at the head of the lane is switched
out. Otherwise, the lane returns back to the scheduling state.
The lane association is released after the tail flit is switched
out. Credits are passed between adjacent switches in order
to keep track of the status of lanes. Note that a lane is al-
located at the packet level, i.e., packet-by-packet while the
PC bandwidth is assigned at the flit level, i.e. flit-by-flit. In
addition, flits from different lanes can not be interleaved in
a lane since flits other than head flits do not contain routing
and sequencing information. To guarantee this, a lane-to-
lane association must be unique at a time.
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Figure 2. The ideal sink model

In a traditional wormhole switch design, an ideal sink
model is assumed, as shown in Figure 2. The lane state is
extended with areceptionstate. If the routing determines
that the head flit of a packet reaches its destination, the lane
enters the reception state immediately. Since flits from dif-
ferent packets can not interleave in a sink queue, there must
bep � v sink queues, each of them corresponding to a lane,
in order to realize an immediate transition to the reception
state. The length of a sink is the maximum number of flits
of a packet. After the lane transitting to the reception state,
the head flit bypasses the crossbar and enters into its sink.
The subsequent flits of the packet are ejected into the sink
immediately upon arriving at the switch. When the tail flit
is ejected, the lane is freed. This model is beneficial in both
time and space. A non-head flit reaching its destination nei-
ther waits to be ejected nor occupies a flit buffer. Moreover,
it does not interfere with flits buffered in other lanes from
advancing to next hops. Upon receiving all the flits of a
packet, the packet is composed and delivered into the packet
sink. If the packet sink is not empty, the switch outputs one
packet per cycle from the sink in a FIFO manner.



4 Proposed Sink Models

4.1 A p-sink model

Our objective is to simplify the ideal sink model with
small performance penalty. We observe that the maximum
number of flits entering a switch per cycle isp. This means
that at maximump flits may need to be ejected from a
switch per cycle. This number is independent ofv. By this
observation, we can usep sink queues instead ofp � v sink
queues. The length of a sink is still the maximum number of
flits of a packet. Besides, in order to have a more structured
design, we could connect thep sink queues to the crossbar,
as illustrated in the dashed box of Figure 3.
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To enable ejecting flits by thep-sink model, we now ex-
tend the lane state to aarriving and areceptionstate. If
a head flit reaches its destination, the lane the flit occupies
transits from the routing to the arriving state. Then it will
try to associate with an empty sink, i.e., to establish alane-
to-sinkassociation. If the association is successful, the lane
enters thereceptionstate. Subsequently the other flits of the
packet follow this association exactly like flits advancing in
the network. Upon the tail flit entering into the sink, the
association is torn down. If the association fails, the head
flit is blocked in place holding the lane buffer. To speed up
flit ejection, the contentions for the crossbar input channels
and crossbar are arbitrated on priority. A lane in a reception
state has a higher priority than a lane in a state for forward-
ing flits. The drawback due to this sink model is the increase
of blocking time when flits reach their destinations. First,
the lane-to-sink association may fail since all sink queues
might be in use. Second, only one lane per PC can win ar-
bitration to a crossbar input channel. In case of more than
one lane of a PC are in an ejection state, only one can use
the channel.

To implement this model, the crossbar must double its
capacity from p-by-p (p p � 1 multiplexers) to p-by-2p

(2p p � 1 multiplexers). The number of control ports of
the crossbar is doubled proportionally.

4.2 A coupling scheme

To further simplify the switch, we could modify thep-
sink model by using a coupling scheme in which the flits
from a PC are dedicated to a sink. In other words, lane(i,
j), wherei (i 2 [1; p]) is the PC identifier andj (j 2 [1; v])
the lane identifier, is dedicated to sink(i). In this way, thep
p � 1 multiplexers for sinking flits can be replaced withp
1� 2 demultiplexers, as shown in Figure 4.
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Figure 4. The coupled p-sink model

Due to this coupling, lane(i, j) is not allowed to use a
sink(k), wherek 6= i, even if it is empty. This potentially in-
creases the blocking time of flits and the sink queues might
be under-utilized.

p� 1 Mux 1� 2 Demux Sink queue
Ideal model - p � v p � v

Decoupled model p - p

Coupled model - p p

Table 1. Cost of the sink models

Table 1 summarizes the number of each component to
implement the sink models.

5 Experiments

We developed a simulator in SystemC comprising the
input-queuing wormhole switch model and other support-
ing objects. The switch is a single-cycle, flit-level model.
The simulator is programmable as to network size, packet
injection rate, sink model, etc. We construct a 2D4 � 4
mesh network with bidirectional channels. The network
does dimension-orderX-Y routing, which is deadlock-free
and deterministic. The purpose of our experiments is to ex-
amine the performance (latency and throughput) of thep



sink model in Figure 3 and its coupled counterpart in Fig-
ure 4. The baseline is the ideal sink model in Figure 2.

The simulations were run with uniformly distributed
traffic. Resources injected 4-flit packets to random desti-
nations except for themselves at a constant rate. Except
otherwise noted, contentions for lanes and channel band-
width were resolved randomly. Each simulation was run
until the network reached steady state, i.e., increasing simu-
lated network cycles did not change the results appreciably.
We investigate the average latency of packets and the net-
work throughput. Latency of a packet is calculated from
the instant the packet’s flits are created to that the packet is
output to its destination resource, including source queuing
time and packet queuing time at the destination. Through-
put� is the number of packets received per cycle per node.

Numberv of lanes per physical channel 3
Length of a lane 2 flits

Length of a sink queue 4 flits

Table 2. Simulation parameters

Simulation parameters are listed in Table 2. To minimize
buffering cost, the lane length was two, which is the min-
imal depth requirement of a lane in order to pipeline flits
since sending and receiving credits take two cycles.
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Figure 5. Performance comparison

Figure 5 compares the performance of the proposed sink
models with that of the ideal model. The left figure gives the
average latency in the function of link utilization (network
load). Compared with the ideal model, the decoupledp-sink
model achieves equivalent performance below link utiliza-
tion � = 0.5. When� is higher than 0.5, the latency with
the ideal model is better. This is because slower ejection of
flits results in higher congestion thus higher latency when
the network is nearly saturated. As can be expected, the
performance of the coupledp sink model is worse than that
of its decoupled counterpart. However, the penalty is not
significant. Specifically, when the link utilization is below
0.4, the latency difference is about 0.5 cycle. The right fig-
ure reports the throughput versus the offered traffic, which

is measured in terms of the number of packets injected per
cycle per node. The saturation throughput for the coupled,
decoupled, and ideal model is 0.165, 0.178, and 0.186, re-
spectively. Normalized with the ideal model, the relative
throughput is 0.96, 0.89, and 1, respectively.

6 Conclusions

Cost-effective flit-ejection models for wormhole
switches are desired for chip implementations. We have
presented a novel sink model that achieves approximate
performance with the ideal model when the network is
reasonably loaded (below 0.5 capacity). By coupling a
physical channel with a sink queue, the switch complexity
is further reduced with small performance penalty. Al-
though our discussions are equally applicable to macro
wormhole-switched networks in parallel computing, the
experiments were designed for a NoC that employs a
low-dimension topology, deterministic routing, and smaller
buffering cost.

Future work will combine flit ejection together with flit
admission in order to achieve practically cost-effective flit
admission/ejection solutions. Such a combination is essen-
tial for evaluating the performance of an on-chip network.
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Abstract

Network-on-Chip (NoC) proposes networks to replace
buses as a scalable global communication interconnect for
future SoC designs. However, a bus is very efficient in
broadcasting. As the system size scales up to explore the
chip capacity, broadcasting in NoCs must be efficiently sup-
ported. This paper presents a novel multicast scheme in
wormhole-switched NoCs. By this scheme, a multicast pro-
cedure consists of establishment, communication and re-
lease phase. A multicast group can request to reserve vir-
tual channels during establishment and has priority on ar-
bitration of link bandwidth. This multicasting method has
been effectively implemented in a mesh network with dead-
lock freedom. Our experiments show that the multicast tech-
nique improves throughput, and does not exhibit significant
impact on unicast performance in a network with mixed uni-
cast and multicast traffic if the network is not saturated.

1 Introduction

As the technology steadily scales, chip design is increas-
ingly becoming communication-bound. Network-on-Chip
[1, 5, 10] addresses the design challenges by proposing net-
works to replace buses as a scalable global communication
platform. In a NoC, heterogeneous resources such as pro-
cessors, DSPs, FPGAs/ASICs, and memories are intercon-
nected by switches. These resources communicate by rout-
ing packets instead of using dedicated wires.

Buses (a single bus, segmented or crossbar-type buses
and a hierarchy of buses) do not scale well with the system
size in bandwidth and clocking frequency. However, a bus
is very efficient in broadcasting since all clients are directly
connected to it. A network allows many more concurrent
transactions, but it does not directly support multicast. As
there exists a variety of SoC applications, many applica-
tions necessitates to support multicast in the case of pass-
ing global states, managing and configuring the network,
and implementing cache coherency protocols etc. Partic-
ularly, real-time constrained, throughput-oriented embed-
ded applications for multi-media processing will demand

an efficient means to implement multicast. One crucial as-
pect for supporting multicast in SoCs is Quality-of-Service
(QoS), which means that the performance of multicast traf-
fic should be predictable. Implementing multicast by send-
ing multiple unicast messages is neither efficient nor scal-
able. In addition, in a network with a mixture of unicast
and multicast traffic, multicast traffic should not degrade the
performance of unicast traffic since multicast traffic takes
only a portion of the total network traffic.

In this paper we present a connection-oriented multicast
scheme in wormhole-switched networks on chip. Worm-
hole switching [3] is a network flow control mechanism that
allocates buffers and physical channels (PCs) to flits instead
of packets. A packet is encapsulated into one or more flits.
A flit, the smallest unit on which flow control is performed,
can advance once buffering in the next hop is available to
hold the flit. This results in that the flits of a packet are
delivered in a pipeline fashion. In order to make an effi-
cient use of link bandwidth, wormhole switching can em-
ploy virtual channels (VCs or lanes) to enhance throughput
[2]. Because of these advantages, namely, better perfor-
mance, smaller buffering requirement and greater through-
put, wormhole switching with lanes is being advocated for
on-chip networks [5, 8].

By our multicast scheme, multicasting consists of three
phases: group setup, communication, and group release. A
multicast is realized by sending a single copy of multicast
packets to multicast group members along a pre-established
path. This results in low packet overhead for multicast-
ing. During the setup phase, multicasting can be aware
of QoS in the sense that a multicast group may request
to reserve VCs, and enjoy a higher priority against uni-
cast packets for link bandwidth arbitration. Although the
three-phase (setup, transmission, and release) communica-
tion has been used for establishing virtual-circuit communi-
cation to support QoS in store-and-forward packet-switched
networks, applying the technique to implement multicast in
a wormhole-switched network on chip is the novel aspect
of this paper. Moreover, we shall look at how much impact
multicast traffic will exert on unicast traffic, and the perfor-
mance tradeoff between multicast without VC reservation
and multicast with VC reservation.
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2 Related Work

Multicasting in wormhole-switched networks has been ex-
tensively studied in parallel machines in order to support
collective communications such as barrier synchronization,
reduction and global combining [6, 9]. Multicast can be
achieved via software or hardware approach. With software
implementation of multicast, a multicast operation is im-
plemented by sending a separate copy of the messages from
the source node to every destination or to a subset of desti-
nations, each of which in turn forwards the message to one
or more other destinations in a multicast tree.

As the software approach is not efficient enough, hard-
ware support of multicast communication is proposed. With
the tree-based multicast [9], the destination set is parti-
tioned at the source, and separate copies of the message are
transmitted. A message may be replicated at intermediate
nodes and forwarded to disjoint subsets of destinations in
the tree. This scheme does not perform well to be dead-
lock free unless messages are very short because the entire
tree is blocked if any of its branches are blocked. A solu-
tion is to forbid branching at intermediate nodes, leading
to a multicast path pattern, called path-based multicast [6].
In order to reduce the length of the multicast path, the set
of destination nodes may be divided into multiple disjoint
subsets. A copy of the source message is sent across sev-
eral multicast paths, each path for each subset of the des-
tination nodes. In this scheme, multicasting is realized by
sending multi-destination messages. The header of multi-
destination messages must carry the addresses of all the des-
tination nodes. As the header is an overhead, the message
latency is increased and the effective network bandwidth is
reduced. Besides, multicast traffic does not reserve network
resources, equally competing with unicast traffic for buffers
and link bandwidth, resulting in no QoS for multicasting.

By the traditional multicast schemes, group formation
and multicast communication are not decoupled. The
multicast-packet overhead is high and there is no QoS con-
cern. In our multicast scheme, there is an explicit multicast
group setup phase. After a group is set up, multi-destination
messages carry only the group identity number not the ad-
dresses of all the destination nodes. In addition, a multicast
group can be aware of QoS by reserving lanes for perfor-
mance enhancement.

For a circuit-switched network on chip, a multicasting
scheme using global traffic information is proposed in [7].
This scheme is difficult to scale to a large system size
since it relies on the global network state. Connection-
oriented communication has been proposed in the Mango
[1] and thereal [5] NoCs to achieve QoS for unicas-
ting. In Mango, connections are created using asyn-
chronous/clockless circuitry. By reserving link bandwidth,

thereal builds connections to provide a virtual contention-

less path from sources to destinations. We use the
connection-oriented technique to realize QoS-aware multi-
casting in a best-effort network. As stated, the contention-
free route in the thereal NoC [5] and the looped containers
[10] in the Nostrum NoC can be used to realize multicast-
ing. But no concrete results are released so far.

3 The Multicast Scheme

3.1 Unicast in wormhole networks

Figure 1 sketches an input-buffering wormhole switch with
lanes. It employs credit-based link-level flow control to co-
ordinate packet delivery between switches.

VCs

Forward Credits

Flits

Credits

States

States

Controller

Flits

Lane
Status

CrossBar

Figure 1: An input-buffering wormhole switch

A packet is segmented into flits, which are then delivered
in the network. After the segmentation, a packet is typically
composed of a head flit, a tail flit and body flit(s). A single-
flit packet is also possible. A packet passes the switch
through four states: routing, lane allocation, flit schedul-
ing, and switch arbitration. In the routing state, the rout-
ing logic determines the routing path the packet advances.
Routing is performed only when the head flit of a packet
becomes the earliest-come flit in the lane. This means that
if flits of a previous packet still stay in the lane, the routing
will not be performed. Only when the earlier-coming flits
are switched out, the head flit becomes the earliest-come
flit. Then routing is performed, and the packet path and
output physical channel are determined. In the state of lane
allocation, the lane allocator associates the lane the packet
occupies with an available lane in the next hop on its rout-
ing path, i.e., to make a lane-to-lane association. Note that
it is not necessarily required that there is an empty buffer
in the lane in order for the lane to be associated or allo-
cated. A lane-to-lane association fails when all requested
lanes in the next hop are already associated to other lanes
in directly connected switches. If the lane-to-lane associ-
ation succeeds, the packet enters into the scheduling state.
If there is a buffer available in the associated lane, the lane
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enters into the switch arbitration. The first level of arbi-
tration is performed on the lanes sharing the same physical
channel. The second level of arbitration is for the cross-
bar traversal to output physical channels. If the lane wins
the two levels of arbitration, the earliest-come flit in the
lane is switched out. Otherwise, the lane returns back to
the scheduling state. Once the tail flit is switched out, the
lane-to-lane association is released, thus the allocated lane
is available to be used by other packets. Credits are passed
between adjacent switches in order to keep track of the stat-
ues of downstream/forward lanes, such as if a lane is free,
and a count of available buffers in the lane.

Sadr Dadr Data

... ...
Head TailPayload

Figure 2: Unicast packet format

Figure 2 shows a typical unicast packet format, which
consists of a head, a payload and a tail. The head and tail
are the overhead for transmitting the payload. The head typ-
ically consists of routing and sequencing information. Ba-
sic routing information includes source address (sadr) and
destination address (dadr). A switch uses the destination
address to perform routing and switches the packet to the
right output physical channel (PC). When the packet is split
into flits, each flit contains a flit type field to identify if it is
a head (H), body (B), tail (T) flit, or a single-flit packet.

3.2 The multicasting protocol

MultiID

Head

... ...
TailPayload

SadrDadr (GroupType + MemAdrs)/DataPacketType

Figure 3: Multicast packet format

In order to support multicasting, we expand the packet
format into that shown in Figure 3. We explain the packet
fields as follows:

PacketType indicates the purpose of a packet. It has
six options, namely, unicast, multicast setup, multicast
setup response, multicast data, multicast group release
and multicast group release acknowledgment.

Dadr: the destination address. In the case of multicast,
it is the address of the next group member.

MultiID: the multicast group identity number, which
is unique for each multicast group to be established.

Sadr: the source address. In the case of multicast, it
is the address of the node that initiates the multicast
setup. This node is called group master.

GroupType: the type of the multicast group. It is used
to inform the switches whether the multicast group will
reserve a lane or not. It occupies only one bit. One
group is allowed to reserve only one lane in a switch
since the number of lanes is limited.

MemAdrs: the multicast members’ addresses. The or-
der of the address list specifies the multicast path 1.
Specifically, the node with the first address in the list
will be reached first and then second and so on. Upon
reaching the node with address Dadr, the next member
address in the list will replace the Dadr field.

Fields GroupType and MemAdrs are only needed for
multicast setup packets, MultiID for multicast packets. A
response packet for multicast group setup or release is han-
dled as a unicast packet. By our scheme, a multicast group
can be established and released dynamically. A multicast-
ing procedure consists of three phases explained as follows:

1. Group establishment: First the group master sends
a setup packet, which passes downstream to all the group
member nodes along the predetermined path as indicated
by MemAdrs. When the setup packet reaches a node, the
switch records the multicast information and reserves re-
sources according to the group type. This record will be
used later to transmit multicast data. If the setup packet
reaches the last group member, a setup response packet will
be sent back to the group master to acknowledge the suc-
cess. If the setup fails in a node, for example, due to lane
unavailability, a response packet will be sent back to the
master from the current node.

2. Multicast communication: After a successful setup,
the master can send multicast data packets. The packets car-
rying MultiID will be transmitted along the same path and
the same VCs which the setup packet used before. When
a data packet reaches a destination node in the group, its
payload is replicated and the packet is forwarded to the
next member. In this way, all the members will receive the
packet. The group members can also send multicast data
packets, but only to the members in the downstream since a
multicasting path is simplex and thus only simplex commu-
nication is allowed.

3. Group release: A group can only be released by its
master by sending a release packet to its members. When
the release packet reaches a node, the multicast record in the
switch and the reserved lane will be freed after all on-going
group transactions complete. Upon reaching the last mem-
ber, a release acknowledgment is sent back to the master.

1In our approach, the multicast setup path can be diverse, and it shall
follow the path-based schemes. But this is not the focus of the paper.
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3.3 Multicast implementation

3.3.1 Extending the unicast switch

We have implemented the unicast switch in VHDL accord-
ing to the model shown in Figure 1. The implementation
consists of a data path and a control path. The data path is
concerned with the flit movement through the crossbar and
virtual channel. The control path realizes the functionality
of the controller. For flit ejection, we implement a -sink
model to reduce cost [8]. By this model, a switch uses flit
sinks to eject flits, where is typically equal to the number
of PCs per switch. These sinks are shared by the
lanes, where is the number of VCs per PC.

Based on the unicast switch model, we have imple-
mented the multicast scheme. The resultant switch supports
both unicast and multicast. The data path is maintained
the same as unicast while the control path is complicated.
Specifically, the controller is extended to distinguish differ-
ent packet types and perform actions according to the pro-
tocol. The switch must record the multicast information for
each group passing it. The record of a multicast group in-
cludes MultiID, GroupType, Sadr, VCID, VCID down-
stream, output PC, next member adr. , where VCID is
the identity number of the lane a multicast packet passes in
the current switch; VCID downstream is the lane allocated
downstream; output PC is the output physical channel the
packet is to be switched out; GroupType indicates if the
group reserves a lane or not. The current implementation
arbitrates link bandwidth in favor of multicast traffic.

3.3.2 Deadlock avoidance

Deadlock is catastrophic to a network. It happens when a
packet waits for an event that cannot happen. For example,
a group of packets are unable to make progress because of
waiting on one another to release buffers or channels. For-
bidding such a cyclic resource dependency is a sufficient
condition to design a deadlock-free network. Deadlock is
related to many factors such as the network topology, flow
control scheme, communication protocol and so on. Re-
stricting the routing choice and adding buffer classes are
the basic ways to deal with it.

Our multicast scheme has been implemented in a 2D
mesh network employing dimension-order XY routing,
which is proven to be deadlock free for unicast traffic on
meshes. We constrain that a multicast path follows XY
routing. This removes cyclic dependencies involving the
two dimensions. However, care must be taken when plan-
ning a multicast path. Resulting from an improper path,
a multicast packet may involve the turn from Y to X. As
shown in Figure 4, a cycle is formed if the group is orga-
nized as . To avoid such a cycle, a
group path must be organized so that no turn from Y to X

C

B

D

A

Figure 4: A cycle in a group

is resultant. For example, the group may be organized as
. This simplification avoids deadlock at

the expense of restrictions on planning groups and paths.
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Figure 5: Deadlock while sinking and forwarding

Since a multicast packet has to sink locally at a member
node and meanwhile to be forwarded downstream, the allo-
cation of both a local sink and a lane in the next hop must be
successful. In order not to introduce extra buffers and com-
plicate the control, we decide to sink a flit when both the
allocation conditions are true. This means that we perform
sinking and forwarding on a multicast flit simultaneously.
This may lead to deadlock with the -sink ejection. As il-
lustrated in Figure 5, two four-flit multicast packets pass
two adjacent switches. While sinking and forwarding, both
packets hold the sink the other waits for. The dashed lines
in Figure 5 shows the wait-for graph [3], which forms a de-
pendency cycle. Two solutions may be used to remove the
cycle. One is to make the lane size long enough to hold an
entire packet. The other is to ensure that the actual number
of sinks is larger than the number of multicast groups pass-
ing a switch, and a multicast packet does not wait for the
availability of a particular sink. This guarantees that there
is at least one sink available to break a possible dependency
cycle due to the exhaustion of sink resources.

When a multicast setup fails, a negative response (nack)
packet will be sent from the failing switch back to the group
master, which in turn will send a release packet to the net-
work. This may create a dependent loop (A positive re-
sponse does not cause a loop). By adopting the technique of
the credit-based end-to-end flow control and separate buffer
classes in [4], we are certain that this never causes deadlock.
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4 Experiments

The purposes of our experiments are to (1) compare mul-
ticasting with unicasting multiple packets; (2) investi-
gate the impact of multicast traffic on unicast traffic in a
mixed unicast-multicast network; (3) evaluate the multicast
scheme with/without lane reservation.

Using the multicast-supported wormhole model, we con-
struct a 1 7 and 4 4 mesh. The networks operate syn-
chronously. With the switch model, it takes 5 cycles for
a head flit and 3 cycles for other flits to pass through a
switch. Each switch has the same configuration parame-
ters as follows: the number of VCs per PC is four for the
1 7 mesh and six for the 4 4 mesh; the depth of a VC
is two, which is the minimal number in order to pipeline
flits; the number of sinks is eight for the 1 7 mesh and 24
for the 4 4 mesh. Four-flit packets are injected into the
network synchronously at a constant rate. Each node has
a workload of 1000 packets. Simulations terminate when
anyone of the nodes completes transmission. Latency of a
packet is recorded from the instant that the packet is queued
in the source FIFO to that the packet is ejected from the
network. Network load is the average percentage of active
links through the simulation cycles. Throughput is defined
as the number of packets received per cycle per node.

4.1 Multicast vs. unicast

2

44 5321 60
1

3
4

2
1

4
3

Figure 6: Traffic scenario in the 7-ary 1-mesh

As shown in Figure 6, we use the seven-node array in this
set of experiments. Either unicast or multicast packets exist
in the network. In the case of pure unicast, sending pack-
ets to multiple destinations is implemented by unicasting.
In the experiments, node 0 and 6 send packets to the other
six nodes randomly. In the multicast setting, four groups
per direction are created, and the multicast groups do not
reserve lanes. Node 0 and 6 are the group masters, which
send multicast packets to the four groups alternatively.

Figure 7 depicts the results. With the same injection rate,
the network is more loaded with the multicast, since multi-
cast packets are delivered to all other nodes until reaching
the other end while a unicast packet is sent to a particular
node. The latency is worse with the multicast packets, this
is due to the co-allocation of lane and sink for a multicast
packet. However, the throughput of the multicast case is six
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Figure 7: Multicast vs. unicast performance

times as much as that of the unicast case before the multi-
cast network reaches saturation.

4.2 Multicast vs. mixed traffic

(0,3) (3,3)

(3,0)(0,0)

1
2

3
4

Figure 8: Traffic scenario in the mesh

The 4 4 mesh is used, and two traffic scenarios are
created for the following experiments. One is purely uni-
cast traffic. All network nodes send unicast packets to ran-
dom destinations except themselves. The other is a mixed
unicast-multicast scenario where four multicast groups start
establishment upon simulation starts (meanwhile, unicast
traffic is also injected.). As illustrated in Figure 8, four
multicast groups are set up. From node (0, 3) to node (3,
0), group 1 and 2 are built following +X to -Y; from node
(3, 0) to node (0, 3), group 3 and 4 are built following -X to
+Y. Only the group masters send multicast packets to their
members. They send one multicast packet every four pack-
ets. If a multicast packet is sent to members, the amount
of traffic is counted as packets. The resultant multicast
traffic takes 16.2% percent of the total network traffic.

We consider two cases. Case 1: the multicast groups
do not reserve VCs (lanes); Case 2: the multicast groups
reserve VCs. Figure 9 and Figure 10 draw the network per-
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Figure 9: Performance without VC reservation
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Figure 10: Performance with VC reservation

formance with the two scenarios for case 1 and case 2, re-
spectively. In comparison with the purely unicast traffic,
the unicast in the mixed traffic scenario performs equiva-
lently to each other when the network load is below 0.45
for both cases. This means that the multicast traffic does
not degrade the unicast performance if the network is not
overloaded. The throughput is higher with the mixed traf-
fic if the network is not saturated, since a multicast uses
link bandwidth more efficiently. As shown in Figure 10,
if a group reserves lanes, the average latency of the mul-
ticast traffic is improved 4.6 cycles on average if the net-
work operates below load 0.45. However, due to lane reser-
vation, the network saturation throughput is decreased by
4.2% from 0.185 to 0.177 packet/cycle/node.

As can be observed in Figure 9 and 10, the average group
setup latency is 3-4 times as much as the average latency of
unicast packets even when the network is not overloaded,
since a group setup takes at least a round-trip time. This
overhead suggests that our multicast scheme is beneficial
to send block data where the amount of multicast traffic is
high, if a multicast group is to be established dynamically.
If a group is set up statically during the system warm-up
phase, this overhead may be ameliorated.

5 Conclusions

We have presented our multicasting scheme in wormhole-
switched networks on chip. With this scheme, multicast-
ing starts after a multicast group is established. During es-
tablishment, a multicast group can reserve virtual channels.
Our experimental results suggest that multicasting is bene-
ficial in throughput. In addition, in a network with mixed
unicast and multicast traffic, the multicast traffic does not
show negative impact on the performance of unicast traffic
if the network is not saturated. With the lane reservation, the
latency of multicast traffic can be improved at the expense
of slightly decreased throughput.

In future work, we aim at designing a synthesizable
wormhole switch supporting the multicast scheme in or-
der to obtain its cost overhead in area and speed penalty.
The optimization of the controller will be essential for en-
hancing the hardware speed. Another direction is to use the
QoS-aware multicast communication to emulate traditional
buses. This could potentially address the problem of large
amount of legacy code written for buses.
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TDM Virtual-Circuit Configuration in
Network-on-Chip Using Logical Networks
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Abstract— Configuring Time-Division-Multiplexing (TDM)
Virtual Circuits (VCs) on network-on-chip must guarantee con-
flict freedom for overlapping VCs besides allocating sufficient
time slots to them. Using the generalized concept of a logical
network, we develop and prove theorems that constitute sufficient
and necessary conditions to establish conflict-free VCs. Moreover,
we give a formulation of the multi-node VC configuration
problem and suggest a back-tracking algorithm to find solutions
by constructively searching the solution space.

Index Terms— Time Division Multiplexing, Virtual Circuit,
Logical Network, Quality of Service, Network-on-Chip

I. INTRODUCTION

TECHNOLOGY capacity and application complexity have
driven bus-based system-on-chip (SoC) towards network-

on-chip (NoC). As a global communication platform, signals
are routed as packets via switches instead of being hard-wired.
However, due to contention for shared links and buffers in
the network, routing packets brings about unpredictable per-
formance. To overcome the nondeterminism, researchers pro-
posed various resource reservation and priority mechanisms to
achieve Quality of Service (QoS), i.e., to provide guarantees
in latency and bandwidth. The Æthereal [1] and Nostrum
[2] NoCs establish Time-Division-Multiplexing (TDM) virtual
circuits (VCs) to offer guaranteed services. The Æthereal VC,
which is developed for a network using buffered flow control,
is open-ended. The Nostrum VC, which is designed for a
network employing bufferless flow control, is closed-loop.
Both networks operate synchronously. Packets on a VC are
consecutively transmitted in a pipeline by the nodes along
the VC route. The Mango [3] NoC realizes guarantees in
an asynchronous (clockless) network by preserving virtual
channels for end-to-end connections and using priority-based
scheduling in favor of connections in switches. Alternatively,
QoS may be achieved through traffic classification using a dif-
ferentiated service. For example, the QNoC [4] characterizes
traffic into four priority classes, and switches make priority-
based switching decisions.

In the paper, we address the multi-node TDM VC con-
figuration problem. VC is a connection-oriented technique in
which a deterministic path must be established and associated
resources are pre-allocated before packet delivery can start. A
TDM VC means that each node along the path configures
a time-sliced routing table to reserve time slots for input
packets to use output links. This reservation is accomplished
in the connection setup phase. In this way, VCs multiplex
link bandwidth in a time division fashion. As long as a

The authors are with the Royal Institute of Technology, Sweden.

VC is established, packets sent over it, called VC packets,
encounter no contention and thus have guarantees in latency
and bandwidth. In a network delivering both Best-Effort (BE)
and guaranteed-service traffic, BE packets utilize resources
that are not reserved by VCs. In case the requested resources
are not available, the BE packets are buffered if the network
uses drop-less buffered flow control. If the network realizes
bufferless flow control without dropping packets, the packets
are deflected to unfavored links. A VC is simplex, passing
at least one source node and one destination node. But, in
general, a VC may comprise multiple source and destination
nodes (multi-node). In fact, it is important to construct multi-
node VCs in order to use network bandwidth more efficiently.
The VC configuration is an indispensable process in the appli-
cation design flow because the establishment of VCs is the pre-
condition for the guaranteed service. Besides, well-planned
VCs (for instance, multi-node VCs and minimal routes) can
make a better utilization of network resources and achieve
better network performance. Configuring VCs involves (1)
path selection: This has to explore the network path diversity.
As a VC has a number of alternative paths, configuring a set
of VCs involves an extremely large design space. The space
is exponentially increased with the number of VCs; (2) slot
allocation: Since VC packets can not contend with each other,
VCs must be configured so that an output link of a switch is
allocated to one VC per slot. Both steps together must ensure
that VCs are contention free and equipped with sufficient slots.
The network must be deadlock free and livelock free.

Current approaches to the TDM VC configuration problem
can be found in [5] and [6]. These approaches have three
major drawbacks: (1) the technique of contention avoidance
is somewhat ad hoc. Contention is avoided mainly by locally
scheduling available slots to a set of sorted VCs one by one,
resulting in irregularly partitioned time slots. In case of lack
of slots along a VC’s shortest path, the VC uses a detour,
i.e., non-minimal path. The traffic model assumes periodic
messages and all message flows have the same period. To
use flexible routing in a network, messages within a flow are
scheduled individually and may use different routes [6]. Con-
sequently, the message scheduling has also to ensure the cor-
rect message ordering; (2) the proposed heuristic algorithms
are greedy, exploring only a very small subset of the solution
space. In effect, this saves run time but wastes effectiveness.
The heuristics limit the number of possible solutions, and for
many problems, they can not find a solution or lead to over-
dimensioning of the network; (3) a VC specification allows
only one source node and one destination node. This makes
the network utilization less efficient. Our work addresses these
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problems. For the first problem, we resort to a formal approach
by utilizing the generalized concept of a Logical Network (LN)
and developing theorems to guide the construction of conflict-
free VCs. For the second problem, we use a standard technique
to systematically search the solution space and constrain paths
to minimal routes. For the third problem, we consider a VC
specification with multiple source and destination nodes.

The rest of the paper is organized as follows. We outline
the related work in Section II, detailing the weakness of
the current approaches. In Section III, we describe the two
types of TDM VCs proposed for networks on chips, namely,
open-ended and close-looped VCs. Using logical networks to
construct contention-free, bandwidth-satisfied VCs is exempli-
fied in Section IV. Then we develop sufficient and necessary
conditions and prove the theorems for overlapping VCs to
be contention-free in Section V. Section VI formulates the
multi-node VC configuration problem. In Section VII, we
detail the multi-node VC configuration method including the
backtracking algorithm. Experimental results are reported in
Section VIII. Finally we conclude the paper in Section IX.

II. RELATED WORK

Researchers have formulated many sub-problems for NoC
application design. Hu and Marculescu [7] formulated an IP-
to-node mapping problem in presence of routing diversity. The
mapping and path selection phases are decoupled. They used
a branch-and-bound algorithm to optimize energy while ex-
ploiting minimal and deadlock-free routing functions. Murali
et al. presented scheduling methods [8] to satisfy performance
constraints of mapping multiple applications onto a single
NoC. Srinivasan et al. [9] formulated the NoC topology
synthesis problem as a linear programming problem, and
proposed heuristics to improve the run time.

The TDM-based VC configuration is a general problem for
reserving time slots to provide QoS in synchronous networks.
As we mentioned previously, possible solutions can be found
in [5] and [6]. The UMARS (Unified MApping, Routing and
Slot allocation) [5] is a single-objective algorithm unifying
the IP-to-node mapping, path selection and slot allocation.
It is a greedy algorithm that iterates over a monotonically
decreasing set of unmapped VCs until all VCs are allocated
or until allocation fails. The outer loop of UMARS consists
of three steps (1) select the VC with the highest bandwidth;
(2) find a mapping and a path; (3) allocate slots on this
path. The second step is guided by a cost function and finds
one locally optimal path. Although it is fast, it leaves a
wide solution space unexplored. Stuijt et al. analyzed the
necessity of exploring wider solution space in [6]. Their
experiments show that, if re-consideration of the path (path
alternative) is allowed, the number of solvable problems in
the synthetic benchmark set is improved 209%. However, the
improved algorithm is still greedy allowing a limited number
of path alternatives. They also demonstrated the significance
of performing a proper contention avoidance strategy. Before
scheduling message streams, they try to estimate the number
of slots that are needed in each of the links. This knowledge of
congestion on links is used to guide the path selection process.

Together with a slot-sharing allocation strategy, this improves
over UMARS by 334% with a small overhead on the run
time. Both algorithms in [5] and [6] allow non-minimal routes
to increase the solvable problem size. However, permitting
detour consumes additional buffering and link bandwidth. It
wastes power and may degrade the overall system performance
because it affects other traffic in the network. In our opinion,
detour can only be justified if the solution space is sufficiently
searched. This is particularly true if VC configurations are
derived off-line.

III. TDM-BASED VIRTUAL CIRCUITS IN NOC

A. Open-ended VCs

The TDM VCs on NoCs assume that the network is
synchronously clocked, thus all nodes share the same notion
of time. VC packets synchronously advance one step per
time slot. Since a VC packet encounters no contention, it
never stalls. A node must configure a routing table for VC
packets such that no simultaneous use of shared resources is
possible. The routing table, by configuration, knows the time
slot when a VC packet reaches which inport, and addressing
information about which outport to use. In effect, the routing
table partitions the link bandwidth and avoids contention. In
implementation, the routing tables may be implemented in the
switches. In this case, A VC packet does not need to carry
routing information in its head field. Alternatively, the slot
tables can be removed from the switches, and the information
is embedded in a VC packet. This saves area at the expense
of communication overhead in each VC packet.

Figure 1 shows two VCs, v1 and v2, and the respective
routing tables for the switches. The output links of a switch are
associated with a buffer or register. A routing table (t, in,out)
is equivalent to a routing function R(t, in) = out, where t
is time slot, in an input link, and out an output link. v 1

passes switches sw1 and sw2 through {b1 → b2}; v2 passes
switches sw3 and sw2 through {b3 → b2}. The Æthereal NoC
[1] proposes this type of VC for QoS. Since the path of such
a VC is not a loop, we call it an open-ended VC.

t in out

t in out

N

W E

S

t in out

2k W E
2k+1 W E
2k E

2k+1 W N

S

v1

v2

b1 b2

b3

sw1 sw2

sw3

Fig. 1. Open-ended virtual circuits

In open-ended VCs, packets may be partitioned into ad-
mission classes [10] by the slots they are injected into the
network. Formally, the admission class of a packet admitted
at time t0 with initial destination distance i(t0) is defined as
mod(t0 + i(t0),D), where D ∈ N. As an admission class owns
dedicated slots, packets of different classes do not collide
in buffers. By globally orchestrating the packet admission,
contention can be avoided for packets belonging to different
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VCs. As illustrated in Figure 1, v1 and v2 only overlap in
b2, denoted v1 ∩ v2 = {b2}. v1 packets are admitted on even
slots of b1. In sw1, (2k,W,E) means that sw1 reserves its E
(East) output link at slots 2k (k ∈ N) for its W (West) inport
(R(2k,W ) = E). As we can also see, v2 packets are admitted
on odd slots 2k + 1 of b3, and sw3 configures its odd slots
for v2. Since a v1 packet reaches sw2 one slot after reaching
sw1, sw2 assigns its odd slots to v1. Similarly, sw2 allocates
its even slots to v2. As v1 and v2 interleave on the use of the
shared buffer b2 and its associated output link, v1 and v2 do
not conflict.

B. Closed-loop VCs with Containers
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Fig. 2. Closed-loop virtual circuits

The Nostrum NoC [2] also suggests a TDM VC for QoS.
However, a Nostrum VC has a cyclic path, i.e., a closed loop.
On the loop, at least one container is rotated. A container is
a special packet used to carry data packets, like a vehicle
carrying passengers. The reason to have a loop is due to
the fact that Nostrum uses deflection routing [11] whereas
switches have no buffer queues. All packets are on the run
cycle-by-cycle. Since all outgoing links of a switch might be
occupied by all incoming packets, a looped container ensures
that there is an output link available for locally admitting a
VC packet into the container, thus the network. VC packets
are loaded into the container from a source, and copied (for
multicast) or unloaded at the destination, by-passing other
switches. Similarly to open-ended VCs, containers as VC
packet carriers have higher priority than BE packets and do
not contend with each other.

The Nostrum VC [2] uses the concept of a Temporally
Disjoint Network (TDN) to ensure conflict freedom. TDNs
are independent of VC paths. They are globally set up in
a network. The number of TDNs depends on the network
topology and the buffer stages in the switches. For example,
in a mesh network with one buffer per outport in the switches,
exactly two TDNs exist, TDN0 and TDN1. As shown in Figure
2, two VCs, v1 and v2, are configured. v1 loops on sw3, sw4,
sw1 and sw2 through {b0 → b1 → b2 → b3 → b0}; v2 loops on
sw3 and sw4 through {b0 → b4 → b0}; and v1 ∩v2 = {b0}. v1

and v2 subscribe to TDN0 and TDN1, respectively. Besides,
v1 launches two containers and v2 one container. The resulting
routing tables for switches are also shown in Figure 2. Since
TDNs are temporally disjoint, overlapping VCs allocated on
different TDNs are free from conflict.

IV. VC CONFIGURATION USING LOGICAL NETWORKS

A. An Overview of Multi-node VC configuration

VC implementation
(open−ended/closed−loop)

Multi−node VC 

Slot allocation

Path selection

Bandwidth conversion

Slot partitioning
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Slot refinement

Section VII

Section VI

A. Node visiting order

Section IV.B

Section IV.C

B. Back−tracking alg.

specification set

(Satisfy bandwidth)

(Avoid conflict)

Fig. 3. An overview of the multi-node VC configuration method

Figure 3 sketches our multi-node VC configuration ap-
proach. The problem formulation is given in Section VI. We
address both path selection and slot allocation in the paper.
For path selection, we first discuss the node visiting order in
a multi-node VC. This problem arises when a VC specifica-
tion contains multiple source and destination nodes and only
minimal routes are desired. We use a back-tracking algorithm
to explore the diverse paths of VCs. The path selection is
addressed in Section VII. But, our major contribution is to
use the generalized concept of a Logical Network (LN) to per-
form slot allocation. This involves avoiding conflict between
overlapping VCs and satisfying VC bandwidth requirements.
Therefore, we first exemplify our LN-oriented slot allocation
method in this section. Then, formal definitions and proofs for
the conflict freedom are presented in Section V.

In the following of this section, assuming that the path
selection is done, we give a loose definition of LN and exem-
plify the LN construction for conflict freedom in Section IV-B.
Then we show how to satisfy bandwidth demand using LNs
in Section IV-C. We shall see that our method is applicable to
both open-ended and closed-loop VCs.

B. Avoid Conflict using Logical Networks (LNs)

Both admission classes and TDNs are essentially logical
networks (LNs). A logical network is a composition of associ-
ated (time slot, buffer) pairs. Contention is avoided since VCs
inject packets on dedicated LNs. To be specific, the conflict
avoidance is assured through three steps: slot partitioning, slot
mapping and slot assignment. The first two steps partition
slots into logical networks. The last step assigns sets of (time
slot, buffer) pairs, thus logical networks, to virtual circuits. We
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describe the three steps with a pair of closed-loop VCs (v1,v2)
in Figure 2.

1) Slot partitioning: As conflicts might occur in a shared
buffer, we partition the slots of the shared buffer into slot
sets with a regular interval. In Figure 2, b0 is the only
shared buffer of v1 and v2, v1 ∩v2 = {b0}. We partition
the slots of b0 (b0 is called the reference buffer for v1 and
v2, Re f (v1,v2) = b0.) into two sets, an even set s2

0(b0)
for t = 2k and an odd set s2

1(b0) for t = 2k + 1. The
notation sT

τ (b0) represents pairs (τ + kT,b0), which is
the τth slot set of the total T slot sets, τ ∈ [0,T ) and
T ∈ N. The pair (t,b0) refers to the slot of b0 at time
instant t.
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Fig. 4. Creating logical networks by mapping slots on VCs

2) Slot mapping: The partitioned slot sets can be mapped
to slot sets of other buffers on a VC regularly and un-
ambiguously because a VC packet or container advances
one step each and every slot. For example, a v1 packet
holding slot t at buffer b0, i.e., pair (t,b0) will consecu-
tively take slot t +1 at b1 (pair (t +1,b1)), slot t +2 at b2

(pair (t +2,b2)), and slot t +3 at b3 (pair (t +3,b3)). Af-
ter mapping the slot set s2

0(b0) on v1 and s2
1(b0) on v2, we

obtain two slot sets {s2
0(b0),s2

1(b1),s2
0(b2),s2

1(b3)} and
{s2

1(b0),s2
0(b4)}. We refer to the logically networked slot

sets in a set of buffers of a VC as a logical network (LN).
We denote the two LNs as ln2

0(v1,b0) and ln2
1(v2,b0),

respectively. The notation lnT
τ (v,b) represents the τth

LN of the total T LNs on v with respect to b. We
illustrate the mapped slot sets for s2

0(b0) and s2
1(b0) and

the resulting LNs in Figure 4.
3) Slot assignment: We assign v1 and v2 to different LNs,

specifically, ln2
0(v1,b0) to v1, and ln2

1(v2,b0) to v2.

As ln2
0(v1,b0)∩ ln2

1(v2,b0) = /0, v1 and v2 are conflict free,
as we shall show formally in Section V.

C. Satisfy Bandwidth using Logical Networks (LNs)

v Buf. set bw N W LN Slot set

v1 b1,b2,b3 1/3 2 6 ln2
0(v1,b1) s6

0,2(b1), s6
1,3(b2), s6

2,4(b3)
v2 b1,b4 1/4 1 4 ln2

1(v2,b1) s4
1(b1), s4

0(b4)
v3 b2,b3 3/8 3 8 ln2

0(v3,b2) s8
0,2,4(b2), s8

1,3,5(b3)

TABLE I

VC PARAMETERS AND LN ASSIGNMENT RESULTS FOR FIG. 5

0 6 81 92 45 730 6 81 92 45 73 0 6 81 92 45 73

0 6 81 92 45 730 6 81 92 45 730 6 81 92 45 73
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Fig. 5. Packets admitted on slot sets or logical networks

In addition to be contention free, VCs must satisfy their
bandwidth requirements. This may be achieved through three
steps: bandwidth conversion, LN assignment and slot refine-
ment. We exemplify the three steps with Figure 5 that shows
three open-ended VCs, v1, v2 and v3. As can be seen, v1∩v2 =
{b1}, v1 ∩ v3 = {b2,b3} and v2 ∩ v3 = /0.

1) Bandwidth conversion: A VC is associated with a band-
width requirement in bits/second, which can be directly
translated into packets/cycle. As bandwidth is an average
measurement, we can further scale it to the number
of packets N per window W cycles. For example, we
translate bw1 = 1/3 into 2/6 (2 packets every 6 cycles),
i.e., N1 = 2, W1 = 6, as listed in Table I. Note that a
window defines the pattern of a regular packet flow. But
it is not a period since more than one packet (up to the
window size) may be sent during a single window.

2) LN assignment: In this step, we assign VCs to LNs using
the three steps for conflict avoidance in Section IV-B.
Additionally we must check whether bandwidth demand
can be satisfied. This check is conducted after the first
step slot partitioning. Given a pair of overlapping VCs,
the number T of partitioned sets with respect to the
reference buffer equals the number of LNs. To satisfy the
bandwidth requirement of a VC v, a sufficient number
Nln of LNs must be allocated to v. This number can be
derived from Nln = �NT/W� 1, because we must satisfy
Nln/T ≥N/W , where Nln/T is the bandwidth supported
by the allocated LNs and N/W the requested bandwidth.
The bandwidth requirements of the three VCs in Figure
5 are given in column bw of Table I.
We first perform the LN assignment with VC pair
(v1,v2). Since b1 is the only shared buffer of (v1,v2),
Re f (v1,v2) = b1. Let T = 2, we partition b1’s slots into
odd and even sets, implying two LNs. Either VC can be
allocated to one LN, i.e., Nln,1 = Nln,2 = 1, offering band-
width Nln,1/T = Nln,2/T = 1/2. Since the bandwidth
demand of v1 and v2 is less then 1/2, the resulting LN
assignment will meet the bandwidth constraint. Then we
can continue to map the even set on v1 and the odd set on

1�x� is the ceiling function that returns the least integer not less than x.
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v2, obtaining the even LN ln2
0(v1,b1) for v1 and the odd

LN ln2
1(v2,b1) for v2. Since ln2

0(v1,b1)∩ ln2
1(v2,b1) = /0,

v1 and v2 are conflict free.
Next, we perform the LN assignment with VC pair
(v1,v3). Let the reference buffer of v1 and v3 be b2,
Re f (v1,v3) = b2. Since v1 already holds even slots in
b1, it takes odd slots in b2, i.e., s2

1(b2). We assign the
remaining even slots in b2, i.e., s2

0(b2), to v3. Therefore,
Nln,3/T = 1/2 > 3/8. We are certain that the supported
bandwidth suffices the demand of v3. We map the slot
set s2

0(b2) on v3, obtaining ln2
0(v3,b2). As ln2

0(v1,b1)∩
ln2

1(v3,b2) = /0, v1 and v3 are also conflict free. The LN
assignments are shown in column LN of Table I.

3) Slot refinement: The success of LN assignment for all
VCs means that all VCs are conflict free and enough
bandwidth can be reserved. But, a VC may demand
only a fraction of slot sets from its assigned LNs. For
instance, “v2 on ln2

1(v2,b1)” means that v2 can use one
of every two slots. But N2 = 1 and W2 = 4, v2 actually
demands only one slot every four slots. This means that
we need to further refine the supplied bandwidth. We
first find the candidate slot sets of a reference buffer
and then only assign N of them within window size W
to v. For example, v3 has four candidate slot sets over b2,
s8

0,2,4,6(b2). We allocate any three of the four to v3, for
instance, s8

0,2,4(b2). These slot sets mapped to s8
1,3,5(b3),

forming the LN ln2
0(v3,b2). The slot sets reserved by

the three VCs are illustrated in Figure 5 and listed in
the column Slot set of Table I.

After the three steps above, the VCs are constructed without
conflict and with bandwidth requirements satisfied.

D. Problems with LN-oriented VC Configuration

We have described so far three techniques: (1) establishing
VCs by configuring slot-sliced routing tables; (2) partitioning
and mapping slots into LNs; (3) assigning different LNs to
VCs. These techniques must promise conflict freedom and
provide enough bandwidth. However, there are several key
questions that are not yet addressed:

• How many LNs exist when VCs overlap? LN is not global
for all VCs. Instead it is local for a set of overlapping
VCs. This number is crucial because it defines how to
partition and then map slots.

• In the examples, assigning different LNs to overlapping
VCs has secured conflict freedom. Is it a sufficient and
necessary condition, in general?

• LN is partitioned with respect to a reference buffer, which
is a shared buffer. As overlapping VCs may have many
shared buffers, how is this reference buffer selected? Are
LNs with respect to all shared buffers equivalent?

In the next section, we answer these questions formally.

V. FORMAL ANALYSIS

A. Assumptions and Definitions

We consider static VCs, meaning that VCs do not change
their paths and characteristics throughout system execution.

We also assume that one LN is allocated to only one VC. But
one VC may subscribe to multiple LNs.

Definition 1: A VC v comprises an ordered set of buffers <
b0,b1,b2, · · · ,bH−1 >. The size of v, denoted |v|, is the number
of buffers, H. d �bib j

is the distance (number of steps) from bi

to b j. On v, d �bibi+1
= 1, meaning that the buffers are adjacent.

A VC packet or container p on v, after initial delay τ ′
slots, starts from bi and visits each buffer in sequence one
per time slot and never stalls. The distance d ′ of p to buffer
b j equals τ′ +d �bib j

.

Definition 2: The packet-admission pattern on a VC re-
quires that N packets are admitted in a sequence of D
(D ≥ N) time slots. This gives a bandwidth requirement of
N/D packets/cycle, but the exact time slots for admitting
the N packets are not specified. A packet flow is defined by
infinitely repeating the packet-admission pattern. We call D
the admission cycle. With respect to a buffer b, we define a
packet-admission class as an infinite set of packets admitted on
modulo D slots, d +kD, k ∈ N, where d is the initial distance
of the admission class to buffer b, i.e., the distance of the first
packet on the admission class to buffer b.

For an open-ended VC, D = W , where W is the window
size of a VC packet flow. For a closed-loop VC, D = H, since
v is a loop and a container revisits the same buffer after H
slots. N is the number of containers launched on the VC.

Definition 3: Two VCs v1 and v2 overlap if they share at
least one buffer, i.e., v1 ∩ v2 	= /0. The two VCs conflict in
buffer b, denoted b ∈ v1 ∧ v2, if and only if it is possible that
two packets, one from each VC, visit buffer b at the same
time. v1 ∧ v2 = /0 means that v1 and v2 are conflict free.

Definition 4: Given a VC v =< b0,b1,b2, · · · ,bH−1 >, bi ∈
v, a natural T ≥ 1 and a natural τ, 0 ≤ τ < T , we define a
logical network (LN) lnT

τ (v,bi) as an infinite set of (time slot,
buffer) pairs as follows:

lnT
τ (v,bi) = {(t,b j)|t = τ+d �bib j

+ kT,0 ≤ j < H, k ∈ N}
Hence, a LN is defined for a given VC and one of its

buffers. The number of LNs for a VC is always equal to T .
The motivation of the LN is to precisely define the flow of
packets on the VC and each admission class is dedicated to
exactly one LN. The time when packets visit buffers of the VC
is given by the (time slot, buffer) pairs of the LN. On a LN,
every T cycles a packet visits a particular buffer. Consequently,
the bandwidth possessed by a LN is 1/T packets/cycle.

The LNs of a VC has an inherent property: if τ1,τ2 ∈ [0,T −
1] and τ1 	= τ2, then packets admitted on different LNs never
collide, because

lnT
τ1

(v,b)∩ lnT
τ2

(v,b) = /0

Definition 5: A LN-cover is a complete set of LNs defined
for a VC v with respect to a buffer bi, bi ∈ v,

LN−cover(v,bi,T ) = {lnT
τ (v,bi) | 0 ≤ τ < T}

Definition 6: VC-to-LN assignment/subscription: a VC v is
assigned to or subscribes to lnT

τ (v,bi) if and only if, on v,
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an admission class, which has an initial distance d to buffer
bi and the admission cycle D, satisfies mod(d + kD,T ) = τ,
k ∈ N.

If a VC v does not overlap with any other VCs, the
maximum number of LNs on v is D, since v allows for up
to D admission classes and one class uses exactly one LN.

B. Overlapping VCs

Lemma 1: Let v1 and v2 be two overlapping VCs. D1,D2

be their admission cycles, respectively. Let c1 and c2 be any
two admission classes on v1 and v2, respectively; d1 and d2

are the initial distances of c1 and c2 to a shared buffer b,
respectively. We have b ∈ v1 ∧ v2 iff ∃ k1,k2 ∈ N such that
d1 + k1D1 = d2 + k2D2.

Proof:
(1) Sufficient: We assume that ∃k1,k2 ∈ N such that d1 +

k1D1 = d2 + k2D2(= t). The left-hand side of the equation
implies that c1 enters buffer b at time slot t, and the right-hand
side implies that c2 enters b the same slot. Hence b ∈ v1 ∧v2.

(2) Necessary: Suppose, after t slots, v1 and v2 collide in
buffer b, b∈ v1∧v2. For c1, t = d1 +k1D1; for c2, t = d2+k2D2.
Therefore d1 + k1D1 = d2 + k2D2.

Theorem 1: The number T of LNs, which two overlapping
VCs, v1 and v2, can subscribe to without conflict, is a Common
Factor (CF) of the admission cycles of both VCs, D1 and D2.

Proof: Suppose that b is the reference buffer.
Let lnT

τ1
(v1,b) and lnT

τ2
(v2,b) be the LN subscribed by v1

and v2, respectively. According to Definition 6, we have τ1 =
mod(d1 + k1D1,T ) and τ2 = mod(d2 + k2D2,T ).

For τ1 = mod(d1 + k1D1,T ) ∀k1 ∈ N. When k1 = 0, d1 =
k′1T +τ1; when k1 = 1, d1 +D1 = k′′1T +τ1 and k′′1 > k′1. From
the last two equations, we get D1 = (k′′1 − k′1)T . This means
that T is a factor of D1.

Similarly, using τ2 = mod(d2 + k2D2,T ), ∀k2 ∈ N, we can
derive that T is a factor of D2.

Therefore T is a common factor of D1 and D2, i.e., T ∈
CF(D1,D2).

By Theorem 1, the number T of LNs for v1 and v2 can
be any value in the common factor set CF(D1,D2). The least
number of LNs is 1. However, if the number of LNs for two
VCs is 1, only one of the two VCs can subscribe to it. There
is no room for the other VC. Therefore we need at least two
LNs. In general, if n VCs overlap in a shared buffer, there
must be at least n LNs, one for each VC, to avoid conflict. In
order to maximize the number of options and have finer LN
bandwidth granularity, we consider the number T of LNs to
be the Greatest Common Divisor (GCD) throughout the paper.
Hence, for the two overlapping VCs, v1 and v2, the number T
of LNs equals the GCD(D1,D2).

Theorem 2: Assigning v1 and v2 to different LNs with
respect to any shared buffer is a sufficient and necessary
condition to avoid conflict between v1 and v2.

Proof: By Theorem 1, the maximum number T of LNs
for v1 and v2 is T = GCD(D1,D2). We can write D1 = A1T
and D2 = A2T , where A1 and A2 are co-prime.

By Definition 6, v1 and v2 subscribe to different LNs
⇔ mod(d1 + k1D1,T ) 	= mod(d2 + k2D2,T ). Since D1 = A1T

and D2 = A2T , mod(d1 + k1D1,T ) 	= mod(d2 + k2D2,T ) ⇔
mod(d1,T ) 	= mod(d2,T ).

(1) Sufficient: mod(d1,T ) 	= mod(d2,T ) ⇒ d1 +k′1T 	= d2 +
k′2T, ∀k′1,k

′
2 ∈N. When k′1 = k1A1 and k′2 = k2A2 ∀k1,k2 ∈N ⇒

d1 +k1A1T 	= d2 +k2A2T ⇒ d1 +k1D1 	= d2 +k2D2. According
to Lemma 1, v1 and v2 do not conflict, i.e., v1 ∧ v2 = /0.

(2) Necessary: Suppose v1 ∧ v2 = /0 ⇒ d1 + k1D1 	= d2 +
k2D2, ∀k1,k2 ∈N. But let us assume mod(d1,T ) = mod(d2,T ).
Then we have d1 −d2 	= k2D2 −k1D1 but d1 −d2 = kT , k ∈ Z.
⇒ k + k1A1 	= k2A2 ∀k1,k2 ∈ N. However, this inequality is
not always true, for example, when k1 = A2; k2 = A1 +1; k =
A2. Thus, our assumption cannot be true, and mod(d 1,T ) 	=
mod(d2,T ). This means that v1 and v2 subscribe to different
LNs.
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Fig. 6. Two or multiple shared buffers

By Theorem 2, VCs must stay in different LNs referring
to any shared buffer. However, as overlapping VCs may have
multiple shared buffers, LN partitioning might change with
a different reference buffer. Figure 6a shows that two open-
ended VCs, v1 and v2, overlap in buffers A and B. Apparently,
no conflict with respect to buffer A does not imply no conflict
with respect to another buffer B. We derive the following
theorem to check the reference consistency.

Theorem 3: Suppose that two overlapping VCs, v1 and v2,
have two shared buffers A and B. Let the distances from buffer
A to B along v1 and v2 be d �AB(v1) and d �AB(v2), respectively.
Let the initial distance of c1 to A be d1, to B be d ′

1; from
c2 to A be d2, to B be d ′

2. Assume that c1 on v1 and c2 on
v2 do not conflict in A, then d �AB(v1)− d �AB(v2) = kT , where
T = GCD(D1,D2) and k ∈ Z, is a sufficient and necessary
condition for c1 and c2 to be conflict-free with respect to B.
If so, we say the two shared buffers consistent.

Proof: As d �AB(v1) = d′
1 − d1 and d �AB(v2) = d′

2 − d2, ⇒
d �AB(v1)− d �AB(v2) = (d′

1 − d′
2)− (d1 − d2). Further, d �AB(v1)−

d �AB(v2) = kT ⇔ mod(d ′
1 − d′

2,T ) = mod(d1 − d2,T ). Condi-
tion mod(d1,T ) 	= mod(d2,T ) ⇔ mod(d ′

1,T ) 	= mod(d ′
2,T ).

Thus c1 and c2 are conflict free with respect to B.

By Theorem 3, we can further conclude that if two VCs have
multiple shared buffers, all shared buffers must be consistent in
order to be conflict-free. For instance, as shown in Figure 6b,
if the two closed-loop VCs, v1 and v2, have no conflict, then
all shared buffers v1 ∩ v2 = {A,B,C,D} must be consistent.
If the consistency is checked pair-wise, the total number of
checking times is C2

u = u(u−1)/2, where u is the number of
shared buffers. However, the check can be done efficiently.

Theorem 4: Suppose that v1 and v2 have at least three
shared buffers A,B,C ∈ v1 ∩ v2. If A and B, and B and C are
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consistent, then A and C are consistent.
Proof: As A and B are consistent, d �AB(v1)− d �AB(v2) =

k1T . As A and C are consistent, d �AC(v1)−d �AC(v2) = k2T . By
deducting the two equations, we have, d �AB(v1)− d �AB(v2)−
(d �AC(v1)−d �AC(v2)) = (k1 − k2)T . Further, we have d �BC(v1)−
d �BC(v2) = k3T k3 ∈ Z. According to Theorem 3, B and C are
consistent.

By Theorem 4, reference consistency may be linearly
checked. As a result, the total number of checking times is
reduced to u − 1. If all shared buffers are consistent, any
shared buffer can be used as a reference buffer to conduct
LN partitioning and assignment. If they are not consistent, v 1

and v2 conflict.

VI. THE PROBLEM FORMULATION

We introduce additional definitions, and then define the
multi-node VC configuration problem.

A. Definitions

Definition 7: A network is a directed graph G = M × E,
where each vertex ni ∈ M represents a node, and each edge
(link) ei ∈ E represents a link. On G, if there is an edge
directing from one node to another, the edge is unique.

Definition 8: A VC specification set V̄ comprises a set of
VCs to be configured on the network G. Each VC v̄ i ∈ V̄ is
associated with:

• mi ⊆ M: a subset of nodes in M to be visited by v̄ i. The
node set is not necessarily ordered and two consecutive
nodes in mi do not have to be adjacent in the network.

• b̄wi: minimum bandwidth requirement (bits/second) of v̄ i.
Definition 9: A VC implementation set V captures imple-

mentation options of V̄ on the network G. Each VC imple-
mentation vi ∈V , which implements v̄i, is associated with:

• Pi: a set of candidate shortest-distance paths which vi

may travel. A shortest path pi ∈ Pi is expressed by a
set of ordered and adjacent nodes on G, since a pair of
two adjacent nodes on G implies exactly the directed link
connecting them. ∀pi ∈ Pi, mi ⊆ pi.

• BWi: a set of supported bandwidth (bits/second) of v i.
bwi ∈ BWi is the bandwidth of implementation vi taking
path option pi.

• Ri, j: a partial routing table created for a visiting node n j

by vi. ∀ri, j ∈ Ri, j, ri, j is an entry (t,ein,i,eout,i), specifying
that node n j reserves slot t for a vi packet from input link
ein,i to use output link eout,i. Rj is the routing table of n j,
and R j = ∑i Ri, j.

Definition 10: On a network G, a path function: P : M → E
maps mi ⊆ M to one path pi ∈ Pi.

Definition 11: At node n j, a routing function R j :
(T,Ein, j) → Eout, j maps an ein, j ∈ Ein, j to an eout, j ∈ Eout, j

for slot t ∈ T.

B. The Problem

Using the definitions above, we formulate the problem as
follows:

Given a network G and a VC specification set V̄ , find a
VC implementation set V and determine from V (1) a path
function P() and (2) a routing function R j() for each node n j,
such that

∀ein,i 	= ein,k,R j(t,ein,i) 	= R j(t,ein,k) (1)

b̄wi ≤ bwi (2)

∀ edge ek, Bw(ek) ≤ κbw(ek) (3)

where Bw(ek) = ∑i bwi if ek ∈ Edge(pi)

Condition (1) says that VC packets from two different
input links of a switch can not be switched to the same
output link simultaneously, i.e., VCs must be set up without
conflict. Condition (2) expresses that each VC’s bandwidth
constraint must be satisfied. Condition (3) means that the total
normalized (with the link capacity) bandwidth reserved by all
VCs on a link cannot exceed the link bandwidth threshold κ bw,
which is defined in terms of the link capacity and 0≤ κbw ≤ 1.
κbw can be set for each link. If 0 ≤ κbw < 1 for a link, this
means the link has room for routing BE traffic.

VII. THE MULTI-NODE VC CONFIGURATION METHOD

A. The Node Visiting Order of a VC

2
2

2
4

2

2
n5 n6

n6

n7 n8 n8

n9
n9n10

n11

n11 n12

Fig. 7. The node set of a VC specification and its subgraph

A VC specification consists of a set of nodes, which may
be un-ordered. To visit the nodes in shortest distance, we must
first order them into a sequence, called a tour. We constrain
that a node appears exactly once in the sequence, implying
that we do not consider forked shortest paths. For each VC,
its node set can be used to construct a subgraph, where an
edge is weighted by the shortest distance between two nodes.
Figure 7 exemplifies the problem. On the partial mesh, a VC
specification has a node set {n11,n6,n8,n9}. The subgraph is
drawn on the right side by labeling the edge with the shortest
distance between a pair of nodes. If the VC implementation
is open-ended, the visiting order following {n 11 → n6 → n8 →
n9} requires 8 hops. A re-ordering of the nodes into {n 11 →
n8 → n6 → n9} leads to 6 hops. This is a shortest path. If
the VC implementation is a closed loop, however, this is not
shortest. If the loop visits nodes in order {n9 → n6 → n11 →
n8 → n9}, the traveling distance is 10. If the loop takes the
order {n9 → n11 → n8 → n6 → n9}, the traveling distance is
8. Therefore, for each VC, we need to order the node set so
that the traveling distance is shortest. It turns out that, for
open-ended VCs, finding a tour visiting each node exactly
once is the Hamiltonian Path Problem (HPP) [12]. We use the
randomized algorithm to solve it. For closed-loop VCs, finding
a tour visiting all nodes only once and back to its starting node
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is exactly the Traveling Sales Person (TSP) problem [12]. We
use a branch-and-bound algorithm to find a shortest tour.

B. The Back-Tracking Algorithm
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Fig. 8. Solution space

After ordering the node set for each VC specification into a
shortest tour, we can then find the path options of the tour. We
utilize a standard back-tracking algorithm to explore the path
diversity. The algorithm is a recursive function performing a
depth-first search, shown as Algorithm 1. The solution space
is generated while the search is conducted. Figure 8 shows an
example of solution space for three VCs, v1, v2 and v3. v1 and
v2 have three path options each, and v3 two options. The tree
has three mapped levels, each corresponding to determining
a path for one VC. Specifically, at level i (Li), vi is mapped.
Each level’s node consists of a path of its own level VC plus
a prefix that comprises the paths of its upper level VCs. For
example, node 12 at L2 means that v1 selects path option 1 and
v2 option 2. The last level nodes, called leaves, are solutions
found. For instance, leaf 321 at L3 is a solution in which v1

takes path option 3, v2 option 2 and v3 option 1.
The backtracking algorithm trades runtime for memory

consumption. At any time during the search, only the route
from the start node to the current expansion node is saved. As
a result, the memory requirement of the algorithm is O(m).
This is important since the solution space organization needs
excessive memory if stored in its entirety. Suppose that the size
of a VC specification set is m, each VC has p alternative paths,
such a tree has pm leaf nodes and (pm+1 − 1)/(p− 1) total
nodes. As a result, an algorithm that moves through all nodes
in the tree must spend Ω(pm) time. This is time-consuming
and not scalable. Therefore, bounding functions are required
to cut infeasible branches. In our case, the pair-wise feasibility
test of VC construction serves as a bounding function. While
reaching each node in the tree, the paths of corresponding VCs
are determined. This test then checks if VC-to-LN assignment
can be done without conflict and bandwidth constraints can be
satisfied. For example, at L2 nodes, the feasibility of (v2, v1)
is checked; at L3 nodes (leaves), the feasibility of (v3, v1) and
then (v3, v2) is checked. Note that the checking order must
be observed. If this test fails, the algorithm prunes the current
expansion node’s subtrees, thus making the search efficient.

C. VC-to-LN Assignment

The VC-to-LN assignment is the key step while constructing
VCs. It is conducted pair-wise and incrementally. We detail

Algorithm 1 The pseudo code of back-tracking algorithm
Input: Q: a queue of all VCs’ implementation options.
Output: S: a queue of feasible solutions (s: a solution).
Initially, cur level=0; Q.size=m; S and s are empty;
Sort Q by a priority criterion;
void back tracking(cur level, Q, S, s){
if (cur level==Q.size()){

// at a leaf, create routing tables
s.configure routing table();
S.push(s);

} else {
// not a leaf, expand subtrees
V=Q.pop(); // get options of current level’s VC
// try all branches of this level’s VC
for each v in V {
if (feasibility check(v, s)) //if false, prune the subtree

s.push(v);
back tracking(cur level+1, Q, S, s)}}

}
int feasibility check(v, s){

for each v’ in s
if (VC to LN(v,v’)==false)

return false;
return true; }

72 64 81 3 5 90

0
2ln ln 2

1

6

2 4 6 8

3 5 7 9

5 93 7

1

1

2 80 4

0

74 80 1 2 3 5 6 9
t

0
2ln

v1

v2 v3

b1 b2

b3

(t,b1):

(t,b2):

(t,b3):

(v1,b1) (v2,b1) (v3,b2)

Fig. 9. An example of VC-to-LN assignment

v Buf. set bw N W (D) LN Slot set

v1 b1,b2 1/2 1 2 ln2
0(v1,b1) s2

0(b1), s2
1(b2)

v2 b1,b3 1/4 1 4 ln2
1(v2,b1) s4

1(b1), s4
2(b3)

v3 b2,b3 3/8 3 8 ln2
0(v3,b2) s8

0,2,4(b2), s8
1,3,5(b3)

TABLE II

VC PARAMETERS AND LN ASSIGNMENT RESULTS FOR FIG.9

this function in Algorithm 2. The input to the algorithm is a
pair of VCs, (vi,v j) 2, and their paths are known. The function
returns true if VC-to-LN is done successfully for both VCs,
and returns false otherwise. Besides, the configuration updates
for vi and v j are stored and may be used in further tests. A VC
v has two configuration states, either 0 or 1. 0 means that VC-
to-LN is not performed for v yet; 1 means that the VC-to-LN
is done successfully.

2VC pairs (vi,v j) and (vj,vi) are equivalent in the paper.
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Algorithm 2 The VC-to-LN assignment procedure

int VC to LN(vi, v j){
if (vi ∩ v j == /0) return true;
if (reference consistency(vi, v j)==false) return false;
// vi and v j overlap but satisfy reference consistency
take any shared buffer b as the reference buffer Re f (v i,v j) = b;
compute the shared number T of LNs, T = GCD(Di,Dj);
if (state(vi)==0 && state(v j)==0) {

// Both states are 0
for v in {vi,v j} {
compute the available LN set ASln(v) for v;
compute the required number of LNs Nln(v) = �NT/D�;
if |ASln(v)| < Nln(v) return false;
assign LNs from ASln to v;
allocate slot sets in the assigned LNs within D to v;
state(vi)=1; state(v j)=1; }

return true; }
if (state(vi) != state(v j) {

// One state is 0 and the other 1
// suppose (state(vi)=0 and state(v j)=1)
map v j’s allocated slot sets to the new LN set as the

consumed LN set by v j, CSln(v j);
compute the available LN set ASln for vi;
compute the required number of LNs Nln(vi) = �NiTi/Di�;
if |ASln(vi)| < Nln(vi) return false;
assign LNs from ASln(vi) to vi;
allocate slot sets in the assigned LNs within Di to vi;
state(vi)=1;
return true; }

if (state(vi)==1 && state(v j)==1) {
// Both states are 1

map vi’s allocated slot sets to the new LN set as the
consumed LN set by vi, CSln(vi);

map v j’s allocated slot sets to the new LN set as the
consumed LN set by v j, CSln(v j);

if (CSln(vi)∩CSln(v j) == /0)
return true;

else return false;
}

We detail an example on how this VC-to-LN assignment
is conducted. Figure 9 shows three VCs, v1, v2 and v3. In
the figure, a bubble represents a buffer. Their parameters are
listed in Table II. Their paths are represented by the respective
ordered buffer sets. The VC-to-LN assignments are performed
in order (v1, v2), (v1, v3) and (v2, v3).

1) VC−to−LN(v1,v2): Re f (v1,v2) = b1. Since D1 = 2
and D2 = 4, T = GCD(D1,D2) = 2. We can partition
b1’s slots into two logical sets. Initially, state(v1)=0
and state(v2)=0. The branch of “Both states are 0”
is executed. We take v1 first. The available LN set
for v1 ASln(v1) = {0,1}, thus |ASln(v1)| = 2. The re-
quired number of LNs Nln(v1) = �N1T/W1� = 1. As
|ASln(v1)|> Nln(v1), there are enough LNs to support v1

bandwidth. We assign ln2
0(v1,b1) to v1. The consumed

LN set of v1 CSln(v1) = {0}. We then allocate slot sets

s2
0(b1) and s2

1(b2) to v1. The two sets constitute LN
ln2

0(v1,b1). Next, we take v2 up. ASln(v2) = {0,1}−
CSln(v1) = {1}. The required number of LNs of v2

Nln(v2) = �N2T/W2� = 1. We assign ln2
1(v2,b1) to v2.

Then we allocate slot sets s4
1(b1) and s4

2(b3) to v2. After
this assignment, state(v1)=1 and state(v2)=1.

2) VC−to−LN(v1,v3): Re f (v1,v3) = b2. As D1 = 2 and
D3 = 8, T = GCD(D1,D3) = 2. Since state(v1)=1 and
state(v3)=0, the branch of “One state is 0 and the other
1” is executed. We map ln2

0(v1,b1) with respect to
the reference buffer b2, resulting in an equivalent LN
ln2

1(v1,b2). Thus the consumed LN set of v1 CSln(v1) =
{1}. The available LN set of v3 is ASln(v3) = {0,1}−
CSln(v1) = {0}. The required number of LNs of v3

Nln(v3) = �N3T/W3� = 1. We assign ln2
0(v3,b2) to v3.

Then we allocate slot sets s8
0,2,4(b2) and s8

1,3,5(b3) to v3.
After this assignment, state(v3)=1.

3) VC−to−LN(v2,v3): Re f (v2,v3) = b3. As D2 = 4 and
D3 = 8, T = GCD(D2,D3) = 4. Since state(v2)=1 and
state(v3)=1, the branch of “Both states are 1” is executed.
In this step, we check whether the allocated slot sets for
v2 and v3 can stay in different LNs after mapping them
to the four LNs with respect to the reference buffer b 3.
We map s4

1(b1) of v2 on b3, obtaining an equivalent LN
ln4

2(v2,b3). Then we map s8
0,2,4(b2) of v3 on b3, obtaining

LN ln4
1,3(v3,b3). Because ln4

2(v2,b3)∩ ln4
1,3(v3,b3) = /0,

v2 and v3 are conflict free with their slot assignment.

After the above three steps, the VC-to-LN assignments
for the three VCs are successful. The slot sets are allocated
accordingly, as shown in Table II. These can be used to create
routing tables in switches.

D. Routing Table Creation

While reaching a leaf (cur level=Q.size()), a feasible solu-
tion is found. With each VC, a switch’s partial routing table
is created according to the VC’s path and the allocated LNs,
more accurately, the allocated slot sets within the admission
cycle. The slot sets determine when the VC passes a particular
buffer in a switch. For instance, if a VC v with an admission
cycle D subscribes to sD

τ1
(b) and sD

τ2
(b), then slots τ1 + kD

and τ2 + kD (k ∈ N) of b are reserved for v. The VC path
determines the input link ein and the output link eout of the
switch used by v packets at the reserved slots. Thus, two
routing table entries, (τ1 +kD,ein,eout) and (τ2 +kD,ein,eout),
can be created in the switch. By composing the partial routing
tables of all visiting VCs in a switch, we obtain a complete
routing table for the switch. Optimization is also used to shrink
the size of the routing tables. For example, entries (4k,e in,eout)
and (4k+2,ein,eout) can be reduced to one entry (2k,ein,eout).

VIII. EXPERIMENTAL RESULTS

A. Synthetic Communication Patterns

To investigate the tradeoff between capability and runtime
with our approach, we conduct experiments on mesh networks
using open-ended VCs. Although the experiments are per-
formed on meshes, our method is topology independent. Since
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the path diversity is the factor that complicates the exploration
of the solution space, we realize and compare three different
ways of considering alternative paths:

• One Path Option per VC (OPO): A VC considers one
and only one locally optimal path. This path is selected
from a set of candidates by minimizing the number of
overlapped links with the previous VC in the VC set.
This is a greedy scheme.

• Half Path Options per VC (HPO): A VC randomly
chooses half of its path alternatives.

• Full Path Options per VC (FPO): A VC considers all
alternative paths.

The back-tracking algorithm can be used to explore all
alternative paths of VCs, allowing us to find all possible solu-
tions. However, finding all solutions consumes long execution
time and may not be necessary in some cases, because all
solutions are equally good in the sense that VCs are conflict
free, VC bandwidth demand and link bandwidth constraints
are satisfied, and VC paths are shortest. Therefore we are
interested in finding the first solution in this experiment.

OPO HPO FPO
nv min. avg. max. min. avg. max. min. avg. max.

12 0.31 0.38 0.46 0.36 0.61 1.33 0.44 4.33 22
16 0.46 0.53 0.6 0.49 1.5 6.35 0.57 25.2 138
20 0.8 0.83 1.2 0.99 2.25 30 2.08 48.5 480

TABLE III

RUNTIME WITH OPO, HPO AND FPO

Because there is no standard NoC benchmark available, we
build a synthetic traffic generator to create random VC sets.
The traffic generator takes as arguments the number of VCs,
the bandwidth requirement of VCs and the maximum number
of nodes in a VC. Note that a randomly generated VC set
may not have a solution, for example, in case that VCs are
demanding bandwidth more than the capacity of a particular
link. To create only valid problems, we first run our program
using FPO as a filter to get the valid problem set. In a 4×4
network, we set the VC bandwidth up to 1/2 link capacity,
and the maximum number of nodes to 7. We vary the number
nv of VCs from 11 up to 20. We obtain 200 problems after
executing FPO, 20 for each nv in the range [11, 20]. Then
we run HPO and OPO on the problem set. The percentage of
the problems solved by HPO is 80%. The OPO solves only
22% of the problems. We compare their runtime in seconds
for nv = 12,16,20 in Table III.

As can be observed, OPO runs fastest, HPO the second, FPO
the slowest. Besides, both HPO and FPO show great runtime
variation from minimum to maximum. This is due to that a
different problem may vary very differently on which leaf a
solution exists. Since the solution is found while systematically
constructing the solution tree, the runtime variation is high.
The OPO does not exhibit much runtime variation because it
explores only a linear path in the solution tree. The variation
can be attributed to how fast the feasibility check is completed.
In summary, back-tracking with FPO is the most powerful but
takes longest execution time. The OPO method does no back-
tracking. It is the least effective but fastest. Back-tracking with

HPO sits in between. We also observed in our experiments,
if limiting the program execution time, HPO/OPO can find a
solution for some problems for which FPO/HPO cannot find
a solution before the time threshold is reached.

B. An Industrial Case Study
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Fig. 10. Traffic flows for a radio system

We applied our program to a real application provided by
Ericsson Radio Systems. As mapped onto a 4×4 mesh in
Figure 10, this application consists of 16 IPs. Specifically, n2,
n3, n6, n8, n10 and n11 are ASICs; n4, n7, n12, n13, n14 and n15

are DSPs; n5, n8 and n16 are FPGAs; n1 is a device processor
which loads all nodes with program and parameters at start-
up, sets up and controls resources in normal operation. Traffic
to/from n1 is for system initial configuration and no longer
used afterwards. There are 26 node-to-node traffic flows that
are categorized into nine types of traffic flows {a, b, c, d,
e, f, g, h, i}, as marked in the figure. The traffic flows are
associated with a bandwidth requirement. We use closed-loop
VCs in this case study.

The case study comprises two phases: VC specification
and VC configuration. The VC specification phase consists of
determining link capacity, normalizing VC bandwidth demand
and merging traffic flows. The VC implementation phase runs
the configuration program, exploring the path diversity using
FPO. In the following, we detail the case-study steps.

We first determine the minimum required link capacity by
considering a heaviest loaded link. For each link j, suppose
that Lj is a set of traffic flows passing it, we have

|Lj |
∑
i=1

bwi ≤ κbw ·bwlink

where bwi is the data rate (bandwidth) of a traffic flow i
and bwlink = lw · fclk where lw is the payload bit width of a flit
and fclk is the network clocking frequency. In the example,
a and h are multi-cast traffic, and others are unicast traffic.
The most heavily loaded link may be e(n5,n9). The a-type
traffic passes it and bwa = 4096 Mbits/s. As all traffic flows
are implemented using VCs, κbw = 1 in this case. To support
bwa, bwlink must not less than 4096 Mbits/s. We choose the
minimum 4096 Mbits/s for bwlink.

After obtaining the link capacity, we normalize the band-
width demand into a fraction of link capacity. For example,
512 Mbits/s is equivalent to 1/8 link capacity.
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Then we merge traffic flows by taking advantage of multi-
node VCs. This can be done for multicast and low-bandwidth
traffic. In the example, for the two multi-cast traffic a and h, if
a VC specification contains only one source node and one des-
tination node, we have to define 6 VCs for a and h, specifically,
v̄1(n5,n9), v̄2(n5,n10), and v̄3(n5,n11) for three a flows, and
v̄4(n5,n6), v̄5(n5,n3), and v̄6(n5,n2) for three h flows. Each of
them must provide a normalized bandwidth 1. However, there
are only 3 outgoing links for node n5 on the mesh. Hence
it is impossible to build such 6 VCs with the chosen link
capacity. As our VC specification considers multiple nodes, we
need to build only two multi-node VCs for traffic a and h as
v̄a(n5,n9,n10,n11) and v̄h(n5,n6,n2,n3). In the example, traffic
b, c and f require low bandwidth. We specify a VC to include
as many nodes as a type of traffic flow spreads. For traffic b,
we define a six-node VC, v̄b(n9,n10,n11,n13,n14,n15); for c, a
five-node VC v̄c(n13,n14,n15,n16,n7); for f, a three-node VC
v̄ f (n2,n3,n4). In addition, on vb, vc and v f , only one container
on each needs to be launched. The number n c of containers on
a VC implementation v is derived from nc≥ b̄w · |v|, where b̄w
is the normalized bandwidth demand of v̄ and |v| is the length
of the loop path of the VC implementation v. If n node-to-
node flows are specified and implemented with closed-loop
VCs, n VCs must be set up and at least n containers are
required, one for each VC. Furthermore, as we use a closed-
loop VC, two-simplex traffic flows can be merged into one
duplex flow. For instance, for two i flows, we specify only
one VC v̄i(n6,n7). Performing this traffic-merge step results
in 9 multi-node VCs, requiring 19 containers (6 for a, 6 for h
and 1 for each of the rest). If the 26 node-to-node flows were
specified with VCs containing only two nodes (one source
node and one destination node), 26 VCs would have been
defined, demanding at least 26 containers. This tells us that,
with the multi-node VC specification, the network can be much
more efficiently utilized.

With the three steps above, we complete defining the VC
specification set. While executing the program to configure
the VCs, we investigate the impact of VC sorting. Since VC
sorting determines the VC levels in the solution tree and the
VC-to-LN assignment order, it affects the runtime and the
number of solutions. We tried three sorting schemes: random,
higher bandwidth first, less number of path options first. In
order to compare the potential of the schemes, our algorithm
terminates after all solutions are found using FPO. We did
not do any tweaking or tuning but used the original IP-to-
node mapping and IP communication patterns without change.
Corresponding to the three sorting schemes, the numbers of
solutions found are 33, 30 and 76; the run time is 6, 6 and 12
seconds. Sorting by the number of path options is best in this
example. This means that VCs with fewer alternative paths
should be layouted first because they are more constrained.
As a result, pruning their subtrees is more effective when they
are considered in the upper levels in the tree.

IX. CONCLUSION

Configuring VCs is a general problem for NoC application
design with TDM-type guaranteed services. Its complexity

arises from the network path diversity and various path
overlapping scenarios. In the paper, based on the generalized
concept of a logical network, we develop theorems for the
configuration of conflict-free VCs. They are applicable to both
open-ended and closed-loop VCs in current NoC proposals.
Furthermore, we give a formulation on the multi-node VC
configuration problem, and propose a back-tracking algorithm
to constructively search for feasible solutions. Our experimen-
tal results with synthetic traffic and an industrial case study
justify our approach in effectiveness and efficiency.

While our algorithm can cut branches which do not possibly
lead to a solution, it allows us to find all possible solutions.
These solutions can be further evaluated using an objective
function, for example, for load balancing, to find optimal ones.
This also helps to make the search more efficient by cutting
more branches. This potential has not yet been explored, and
it remains to be done in the future.
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Abstract

Network-on-Chip (NoC) provides a network as a global
communication platform for future SoC designs. Evaluat-
ing network architectures requires both synthetic workloads
and application-oriented traffic. We present our traffic con-
figuration methods that can be used to configure uniform
and locality traffic as synthetic workloads, and to configure
channel-based traffic for specific application(s). We also
illustrate the significance of applying these methods to con-
figure traffic for network evaluation and system simulation.
These traffic configuration methods have been integrated
into our Nostrum NoC simulation environment.

1 Introduction

One crucial aspect of Network-on-Chip design is to
determine its network architecture [1]. It is challenging
mainly due to two facts. One is that there exists a huge
network design space with respect to topology, routing and
flow control schemes etc. The other is that the network de-
sign should be customized for applications or a class of ap-
plications under current consideration and even for future
upgrades or extensions. It is therefore very important to
evaluate the network extensively in order to make right de-
cisions on the network architecture.

Network evaluation commonly employs two kinds of
traffic [2]. One is application-driven traffic, and the other
synthetic traffic. Application-driven traffic models the net-
work and its clients simultaneously. This is based on full-
system simulation and communication traces. Full-system
simulation requires building the client models. Besides, the
feedback from the network influences the workload. Al-
ternatively, execution traces may be recorded in advance
and then replay this sequence for the network simulation.
Application-driven traffic can be too cumbersome to de-
velop and control. Synthetic traffic captures the salient as-
pects of the application-driven workload but can also be
more easily designed and manipulated. Because of this,

synthetic traffic is widely used for network evaluation.
In this paper, we present our traffic configuration

schemes for the evaluation of networks on chips. Our con-
tributions are (1) a unified representation for describing
synthetic traffic. This representation is used to construct
both uniform and locality traffic. The latter is essential to
capture the traffic characteristics that explore communica-
tion locality for performance enhancement and energy sav-
ing; (2) a method to configure application-oriented traffic.
Application-oriented traffic can be viewed as a traffic type
between application-driven traffic and synthetic traffic. The
spatial pattern of the application-oriented traffic reflects the
communication distribution of the application(s). The tem-
poral and message size specification may be synthetic or
characterized from execution traces.

The rest of the paper is structured as follows. Section 2
briefs related work. In Section 3, we first describe the traf-
fic configuration tree by which we introduce traffic charac-
teristic parameters, then we detail the unified synthetic traf-
fic representation and application-oriented traffic configura-
tion. The experiments of applying the traffic configuration
methods are reported in Section 4. Finally we conclude the
paper in Section 5.

2 Related Work

In the communication community, traffic traces from
physical networks are usually collected and analyzed to de-
tect, identify, and quantify pertinent characteristics. For
example, scale-invariant burstiness or self-similarity is an
ubiquitous phenomenon found in diverse context, from
LANs and WANs to IP and ATM protocol stacks [4].

For domain-specific applications, researchers use anal-
ysis or characterization methods to model the traffic of
applications. In [3], a method is proposed to create ab-
stract instruction-level workload models from source code
for simulating application domain-specific multi-processor
systems. It is shown in [8] that the traffic of multi-media
applications has self-similarity characteristics.

There exist a variety of sources for application-driven



workloads. Parallel computing benchmarks such as
SPLASH [9] or database benchmarks are possible tests for
processor interconnection networks. The construction of
synthetic workloads for network simulation can be found
in [2].

3 Traffic Configuration

3.1 The traffic configuration tree

Network messages (traffic) can typically be charac-
terized and constructed by considering their distributions
along the three dimensions: spatial distribution, temporal
characteristics, and message size specification. The spatial
distribution gives the communication partnership between
sources and destinations. The temporal characteristics de-
scribe the message generation probability over time. The
size specification defines the length of communicated mes-
sages. We use a traffic configuration tree to express the ele-
ments and their attributes of traffic in Figure 1.

random
(n) [1, n]

Network Traffic

(constant rate | random rate | normal rate) (uniform | random | normal)

uniform random
[1, n](n)

normal
(m, d)
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Spatial distribution

uniform locality

constant

(uniform | locality)
Traffic pattern
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(src. node, dst. node)

Size distribution

(src. node set, dst. node set, locality factors)(src. node set, dst. node set)

normal

or

and

Temporal distribution

(m, d)

Figure 1. Traffic configuration tree

By the spatial distribution, traffic is classified into two
categories: traffic pattern and channel-by-channel traffic.
Traffic patterns consist of uniform and locality traffic. Each
simulation cycle, the destinations of a traffic pattern may
vary. That is to say, the same source node may send mes-
sages to a different channel. 1 With a traffic pattern, all
the channels share the same temporal and size parameters.
In contrast, channel-by-channel traffic consists of a set of
channels with each channel taking its own temporal and size
parameters. In addition, channel-by-channel traffic stat-
ically defines communication channels before simulation
starts, implying that the source and destination nodes are
fixed during the whole network simulation.

The temporal distribution has a list of items such as con-
stant rate (periodic), random rate, and normal rate etc. The
size distribution has a list of items such as uniform, random,
and normal. As can be observed, these lists are just exam-
ples of possible distributions. Other interested distributions

1A channel in this paper refers to a logical path from a source node to
a destination node.

can be integrated into the tree with their associated param-
eters. By the tree, each traffic configuration can be set with
a set of parameters.

Please note that, although we have divided the traffic
configuration into three independent axes, it also allows one
to configure traffic by jointly considering two axes. For ex-
ample, the configuration of burstiness traffic may involve
both the time and size axis.

3.2 Traffic patterns

3.2.1 Communication distribution probability DP

In the tree, two classes of traffic patterns are considered,
namely, uniform and locality traffic. In order to build a uni-
fied expression for both traffic, we define communication
distribution probability in relation to communication prob-
ability as follows:

• Communication probability of node i P i: the proba-
bility of sending messages to the network from node
i.

• Communication probability from node i to node j
Pi>j : the probability of sending messages to node j
from node i. For any source node i with N destination
nodes numbering from 1 to N ,

∑N
j=1 Pi>j = Pi.

• Communication distribution probability from node i
to node j DPi>j : the probability of distributing mes-
sages to node j from node i while node i sends mes-
sages to the network. For any source node i with its N
destination nodes, we have Equation 1, meaning that
all the messages from node i are aimed to all the N
destination nodes in the network.

N∑
j=1

DPi>j = 1 (1)

By the definitions, we also have Pi>j = Pi · DPi>j .

We consider on-chip networks with regular topologies
such as 2D meshes/tori, rings, trees etc. The benefit of the
topological regularity is that the network nodes can be iden-
tified more structurally and with less bits. In the rest of
the section, we use two-dimension topology to illustrate our
representation for synthetic traffic patterns.

With two dimensions, the network topology directly
maps to the Cartesian coordinate. Each network node can
be identified and denoted as (x, y). For a source node
(xs, ys), we define its communication distribution matrix
M(xs,ys), which represents the spatial communication dis-
tribution of the node. Each item v in position (xd, yd) of the
matrix expresses the communication distribution probabil-
ity DP(xs,ys)>(xd,yd), i.e., from the given source node (xs,



ys) to the destination node (xd, yd). For example, the fol-
lowing gives the communication distribution matrix M (0,1)

of node (0, 1) in a 4x3 network.

M(0,1) =

⎡
⎣

0 0 0 0.3
0 0 0.2 0
0 0.5 0 0

⎤
⎦

From the matrix, we can see that DP(0,1)>(1,0)=0.5,
DP(0,1)>(2,1)=0.2, DP(0,1)>(3,2)=0.3. If an item in the ma-
trix is zero, it means that no traffic is distributed/sent to the
node from the source node.

3.2.2 Distribution coefficient coef

Suppose the distance between a source node (xs, ys) and
a destination node (xd, yd) is d, we define communica-
tion distribution probability DP(xs,ys)>(xd,yd) as a relative
probability to a common probability factor P c (0 ≤ Pc ≤ 1)
in Equation 2 and 3:

DP(xs,ys)>(xd,yd) = coef · Pc (2)

coef = 1 +
α

d + 1
(3)

where coef is the distribution coefficient; α is called lo-
cality factor. Since DP(xs,ys)>(xd,yd) ≥ 0, α ≥ −(d + 1).
This suggests that the valid region of α depends on distance
d. Particularly when α = −(d+1), DP(xs,ys)>(xd,yd) = 0;
when α = 0, DP(xs,ys)>(xd,yd) = Pc. Besides, when
−(d + 1) < α < 0, DP(xs,ys)>(xd,yd) is proportional to
the distance d; When α > 0, DP(xs,ys)>(xd,yd) is inversely
proportional to the distance d. Intuitively, we would have
defined the distribution coefficient as coef = α/d. We
use d + 1 instead of d in order to allow d = 0; We use
coef = 1+α/(d + 1) in order to incorporate the case when
α = 0. In this case, the distribution coefficient coef be-
comes independent of d, thus the traffic is uniformly dis-
tributed to nodes with a different distance.
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Figure 2. The distribution coefficient

By Equation 3, we depict a set of curves between coef
and d when α = 7, 5, 3, 0,−3,−5,−7 in Figure 2. Note

that the region when coef < 0 is invalid region. As can
be seen, the value range of coef differs when α > 0 from
that when α < 0. In order for coefficient coef to have a
symmetric range when α > 0 and α < 0, we constrain
the distribution coefficient coef(d) to be not greater than 2,
then the locality factor α falls into the region [−(d+1), (d+
1)] and 0 ≤ Pc ≤ 0.5. The distribution coefficient coef in
relation to locality factor α is shown in Figure 3.

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Locality factor α

Di
st

rib
ut

io
n 

co
ef

fic
ie

nt
 c

oe
f

d=0
d=1
d=2
d=3
d=4
d=5
d=6

Figure 3. The locality factor and distribution
coefficient

Applying the formula
∑N

j=1 DPi>j = 1 on Equation 2,
we have

D∑
k=0

Nkcoef k · Pc = 1 (4)

where Nk is the number of nodes with distance k and∑D
k=0 Nk = N ; D is the maximum distance between the

source node and the destination nodes; coef k is the distri-
bution coefficient for a destination node with distance k.

3.2.3 Common probability factor Pc
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The common probability factor Pc is calculated after
α(d) is given. This allows us to give the value(s) of α freely,
ignoring the details about the exact number of destination
nodes with a different distance. As this detail is dependent
on the source node position in the network topology, it may
vary from node to node. We use an example to illustrate
how Pc is determined. Figure 4 shows a 4 × 4 mesh topol-
ogy. We define on this mesh that α = 1, which means α
is a constant, i.e., irrespective of distance d. To determine
Pc for node (0, 0), we draw the dashed lines to indicate all
the destination nodes with a different distance. For its dis-
tance array [0, 1, 2, 3, 4, 5, 6], it has the array of the num-
ber of destination nodes [1, 2, 3, 4, 3, 2, 1]. By Equation 3,
we obtain the coefficient array coef (d) of node (0, 0) as
[2, 1.5, 1.3333, 1.25, 1.2, 1.1667, 1.1429].

Using Equation 4, we have

(1·2+2·1.5+3·1.3333+4·1.25+3·1.2+2·1.1667+1·1.1429)·Pc = 1

Solving the equation, we receive Pc = 0.0474. If α = 0,
Pc = 1/16 = 0.0625. After obtaining Pc, we can calculate
the distribution probability DP (d) from node (0, 0) to des-
tination node(s) with distance d by Equation 2 as an array
[0.0948, 0.0711, 0.0632, 0.0592, 0.0569, 0.0553, 0.0542].
Clearly, for a different source node, Pc may be different
even if α is the same, since its distance array and the
number of destination nodes with a certain distance may be
different.

Since locality factor α may be set individually with
d, we can control the amount of traffic distributed to
a certain distance. Again with the example in Figure
4, if we define the node (0, 0)’s locality factor array
α(d) as [−1, 0,−1.2,−2.4,−4.0,−5.4,−6.3], its distribu-
tion coefficient array coef (d) is [0, 1, 0.6, 0.4, 0.2, 0.1, 0.1].
Then its Pc = 0.1587. As a result, the com-
munication distribution array DP (d) of node (0, 0) is
[0, 0.1587, 0.0952, 0.0635, 0.0317, 0.0159, 0.0159].

If all the source nodes’ locality factors α are zero, their
distribution coefficients coef (d) to all destinations are one,
i.e., independent of distance d. In this case, the traffic is
uniformly distributed.

3.3 Application-oriented Workloads

Channel-by-channel traffic differs from the traffic pat-
terns in that the traffic’s spatial pattern is built on per-
channel basis and static. This type of traffic is used to con-
struct application-oriented workloads for specific applica-
tions. The temporal characteristics and message size spec-
ification may be approximated using analysis or commu-
nication traces. The set of traffic parameters of a chan-
nel is {s node, d node, T ,S}, where s node represents the
source node, d node the destination node, T its temporal
characteristics, and S is its message size specification. In

the following, we use a Motion JPEG (M-JPEG) encoder
to illustrate how to approximately construct its application
workload, supposing that its functional blocks are mapped
to network nodes in a one-to-one manner. For simplicity,
we assume a single synchronous clock.

A
Encoding

B C

Quantization Encoding

ReceiverVideo
Sequence

D

HGFE
DCT

DCT Quantization

Figure 5. An M-JPEG encoder

Figure 5 shows the functional blocks of an M-JPEG en-
coder where each frame is separately compressed into a
JPEG image [5]. The characters A, B, C, D, E, F, G,
H indicate eight communication channels between mod-
ules. The M-JPEG codec is decomposed into three indepen-
dent pipelined stages, namely, DCT (Discrete Cosine Trans-
form), quantization and an encoding module. The figure
consists of two parallel pipelines. Computations are per-
formed on an 8x8 pixel block. Suppose one pixel contains
8 bits, one block has 64 bytes. The encoding module pro-
cesses four blocks of data before outputting results. Due to
data compression, the output from this module has a vari-
able size. From recorded communication traces, we found
it falls in the region [16, 56] bytes.

Channels Period (Cycles) Size (bytes)

A, E; B, F; C, G; 160 64
D, H 640 [16, 56]

Table 1. Channel parameters

The DCT module is the performance bottleneck. To pro-
cess one block of data, it consumes 135 cycles [6]. Assum-
ing the maximum latency for processing one block of data
over the communication channels is 25 cycles, we could
consider that the critical path passes from the video se-
quence sender through the channel A/E and DCT. Following
the worst-case style for synchronous design, we can design
the period of the pipelined stages to be 160 cycles. Con-
sequently, we may configure the traffic to model the appli-
cation as follows: The channels A, B, C, and E, F, G are
periodic channels with a constant period of 160 cycles and
a uniform size of 64 bytes. The encoding modules may not
generate output periodically. But, with the support of traffic
shaping, the channel D and H can be assumed to transmit
messages with a period of 640 cycles and a random size in
region [16, 56] bytes. We summarize the traffic parameters
in Table 1.



4 Experiments

4.1 Use of the synthetic traffic patterns

We have integrated the traffic configuration methods
into our Nostrum Network-on-chip Simulation Environ-
ment (NNSE) [7]. Based on a SystemC NoC simulation
kernel, this tool allows one to construct a network and traf-
fic by using the network and traffic characteristic parame-
ters, and then evaluate the network with the traffic.

TRAFFIC d 0 1 2 3 4 5 6

Locality α -1 0 -1.2 -2.4 -4.0 -5.4 -6.3
coef 0 1 0.6 0.4 0.2 0.1 0.1

Uniform α -1 0 0 0 0 0 0
coef 0 1 1 1 1 1 1

Non-locality α -1 -1.8 -2.7 -3.2 -3 -2.4 0
coef 0 0.1 0.1 0.2 0.4 0.6 1

Table 2. Traffic specifications

In order to understand the network behavior for local-
ity traffic, we can create synthetic traffic using the method
described in Section 3.2. We first construct a 4×4 mesh
network operating synchronously. The network employs
wormhole-based virtual-channel (VC) flow control with
dimension-ordered XY routing, which is deterministic and
deadlock free on meshes. The switch model is a single-
cycle model. The number of VCs per physical channel of a
switch is 4 and the depth of a VC is 2. The network diameter
is 6. Then we inject one of the three classes of traffic into the
network: locality traffic, uniform traffic, and non-locality
traffic. With the uniform traffic, a network node sends pack-
ets to other nodes with the same probability. With the local-
ity traffic, a network node sends packets to its nearer nodes
with higher probability. With the non-locality traffic, a net-
work node sends packets to its further nodes with higher
probability. We list the traffic’s locality factors α(d) and
calculated distribution coefficients coef (d) in Table 2. All
the network nodes are both packet sources and sinks. The
source nodes inject packets into the network via bounded
FIFOs with a constant rate. The flits of packets are ejected
from the network immediately once they reach destinations.
One message contains only one packet and each packet is
4-flit long. By our configuration tree, all the traffic classes
belong to periodic traffic with a uniform message size.

The left one of Figure 6 illustrates the average latency
of packets. This figure demonstrates that, the more local-
ity the traffic has, the lower average latency the network
achieves. Note that, with the same injection rate, the of-
fered load is different for the three types of traffic since the
average packet distance is different. The non-locality traf-
fic results in the largest offered load since it has the largest
average packet distance. The uniform traffic is the second,
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Figure 6. Performance with traffic classes

followed by the locality traffic. This also implies that the lo-
cality traffic allows higher packet injection rate before sat-
uration. Besides, due to buffer overflow, the offered load
does not increase proportionally when the injection rate is
high. The right one of Figure 6 shows the throughput in
relation to the packet injection rate. As can be observed,
under the same amount of workload, the network can reach
a higher throughput if the locality of traffic is higher.

Clearly the network shows significant performance im-
provement if the traffic is more locally distributed. We can
conclude that, with the dimension-order routing, the worm-
hole network can efficiently benefit from traffic locality.
Our traffic configuration method can flexibly enable to ex-
plore this by changing the traffic’s locality factors.

4.2 Use of the application-oriented traffic

In NNSE, we manually map the functional modules of
the M-JPEG model in Figure 5 onto the 4×4 mesh network
described above. The mapping is done in a one-to-one fash-
ion. Messages from these modules are encapsulated into
packets. One packet has a payload length of 96 bits. This
means a message with size s bytes will be decomposed into
�s/12� packets. The traffic is created and injected into the
network according to Table 1. Simulation results show that
the average latency of the packets is 9.68 cycles, the link
utilization is 14.7%. Designers can use the simulated re-
sults to optimize the mapping or adjust the pipeline period
to achieve design goals. Since the network is under-utilized,
the designers may decide to shrink the network size to 3×3,
or to implement more concurrent pipelines in the network.

5 Conclusions

We have proposed and demonstrated our traffic configu-
ration schemes for evaluating networks on chips. The uni-
fied expression for configuring regular traffic patterns al-



lows designers to adjust the locality of traffic so as to ana-
lyze the network behavior under locality traffic. The con-
figuration of application-oriented traffic enables to take into
account the spatial communication patterns of the appli-
cation while generating traffic, and it maintains the flex-
ibility of synthetic traffic. The configured synthetic and
application-oriented traffic can help designers to evaluate
and thus make right decisions on the network architecture.
In addition, the configuration of application-oriented traffic
is beneficial to obtain performance data at an early design
phase, thus useful for fast design space exploration.

Future work will fledge the traffic configuration tree to
include more traffic distributions. Another direction is to in-
tegrate Quality-of-Service (QoS) traffic into the framework
in order to evaluate NoC architectures supporting QoS with
different guarantees on throughput and delay bounds.
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ABSTRACT
Deflection routing is being proposed for networks on chips
since it is simple and adaptive. A deflection switch can be
much smaller and faster than a wormhole or virtual cut-
through switch. A deflection-routed network has three or-
thogonal characteristics: topology, routing algorithm and de-
flection policy. In this paper we evaluate deflection networks
with different topologies such as mesh, torus and Manhattan
Street Network, different routing algorithms such as random,
dimension XY, delta XY and minimum deflection, as well
as different deflection policies such as non-priority, weighted
priority and straight-through policies. Our results suggest
that the performance of a deflection network is more sen-
sitive to its topology than the other two parameters. It is
less sensitive to its routing algorithm, but a routing algo-
rithm should be minimal. A priority-based deflection policy
that uses global and history-related criterion can achieve
both better average-case and worst-case performance than
a non-priority or priority policy that uses local and stateless
criterion. These findings are important since they can guide
designers to make right decisions on the deflection network
architecture, for instance, selecting a routing algorithm or
deflection policy which has potentially low cost and high
speed for hardware implementation.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids — Simulation; C.4.1 [Performance of
Systems]: Design studies — Deflection routing

General Terms: Design, Performance

Keywords: Network-on-Chip, System-on-Chip communi-
cation network, Performance evaluation

1. INTRODUCTION
During the past five years, Network-on-Chip (NoC) [4,

10, 11, 13] has been suggested as a systematic approach
to cope with the future System-on-Chip (SoC) design chal-
lenges such as interconnect difficulty, design productivity
and stringent power constraints. Instead of using dedicated
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Copyright 2006 ACM 1-59593-347-6/06/0004 ...$5.00.

wires like bus interconnects, on-chip networks route pack-
ets to communicate data. First, by allowing concurrent
transactions, NoC can potentially overcome the bandwidth
limitation of buses to deal with the alarming design com-
plexity enabled by the steady technology scaling [4]. Sec-
ond, a network with a well-defined interface could serve as
a communication platform to provide various services with
diverse guarantees to upper-layer IP blocks. The possibility
of the architectural reuse may reduce the Non-Recurring
Engineering (NRE) cost and shrink time-to-market since
an efficient domain-specific platform may be shared across
many applications [8]. Third, the concurrent computation-
communication structure and localized clock synchroniza-
tion can efficiently reduce power consumption and thus sat-
isfy power constraints, which are increasingly becoming de-
sign bottleneck and have to trade off with performance [12].

On-chip network is the core of network-on-chip. In gen-
eral, a network has a much larger design space than a bus. A
packet-switched network may be characterized by its topol-
ogy, flow control and routing algorithm. For on-chip net-
works, a regular topology is favored against an irregular
topology since it simplifies routing and layouting, and en-
ables to modularize switches. Deflection routing [1, 2, 3, 6,
7, 10, 11] is a decentralized and adaptive routing mechanism.
The distinguishing feature of a deflection switch lies in that
it has no buffer queues. Packets are always on the run cycle
by cycle, routing towards their destinations. Upon contend-
ing for links, packets with a lower priority will be misrouted
to unfavored links according to a deflection policy. Since
it has no buffer and flow management, a deflection switch
can be designed with higher speed and lower cost than a
wormhole or virtual cut-through switch. Thanks to its fully
adaptive nature, it is also possible to avoid hot spots and
provide fault-tolerance in the network.

The performance of a deflection network is the function of
three parameters, namely, the topology, routing algorithm
and deflection policy. In this paper, we explore the design
space by means of cycle-true simulation. It is crucial to ex-
plore these design alternatives since they are implemented
in hardware and may not be dynamically configurable or
too costly to permit dynamic configuration. Therefore iden-
tifying the significance of each factor and evaluating their
alternatives play a vital role in helping designers to make
right decisions on the network architecture.

In the sequel, we brief the related work in Section 2. Then
we describe and exemplify the characteristics of a deflection
network in Section 3. Experimental results are reported in
Section 4. Finally we draw conclusions in Section 5.
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Figure 1: Three 4 × 4 network topologies

2. RELATED WORK
Deflection routing, which is also called hot potato rout-

ing, has its root in [1]. It has been widely used in optical
networks where buffering optical signals is too expensive.
Because of its simplicity and adaptivity, it is also adopted
and implemented in communication networks embedded in
massively parallel computers such as the Connection ma-
chine [7]. It was initially proposed for on-chip networks in
the Nostrum NoC [10, 11]. As projected in [11], a deflection
switch can run 2.38 GHz with a gate count of 19370 in 65
nm technology.

Both average-case and worst-case performance in deflec-
tion networks have been analytically studied in [2, 3, 6].
Greenberg and Goodman [6] presented two approximate per-
formance models to estimate the steady state throughput
and average packet latency in the Manhattan Street Net-
work (MSN). A deflection network is deadlock free but it
has to avoid livelock, i.e., a packet continues routing in the
network but never reaches its destination. A lot of work
was focusing on deriving a performance bound based on as-
sumptions of network traffic. Brassil and Cruz [3] derived
upper bounds on the evacuation time of batch admissions
1 on an arbitrary topology and bounds on worst-case tran-
sit delay for hypercube networks admitting packets contin-
uously. Borodin et al. presented bounds of deterministic
algorithms for many-to-many traffic patterns in hypercube,
mesh and torus networks [2]. A performance comparison be-
tween wormhole networks and deflection networks on chip
can be found in [13].

Our work evaluates different kinds of deflection networks
by simulation. The evaluation results are aimed to help
make architectural decisions for on-chip deflection networks.

3. DEFLECTION ROUTING
A packet-switched deflection network is characterized by

its topology, routing algorithm and deflection policy. We
describe them with examples in this section.

3.1 Topology
The topology of a network defines how the network nodes

1Batch admission refers to that packets are admitted at a
time slot in a batch without subsequent admissions.

are physically connected. It generally influences network di-
ameter, switch degree, link capacity and layout & wiring for
any kinds of networks. The network diameter is the length
of the maximum shortest path between any two nodes. The
switch degree is the number of input/output ports of a
switch. The link capacity represents the number of links of
the network. The layout & wiring refer to how the switches
may be laid out and how links between switches may be
wired. For deflection networks, the network topology has
implications on two additional network properties, deflec-
tion index [3] and don’t-care density [6].

• Deflection index is the largest number of hops that a
single deflection adds to a packet’s shortest path.

• Don’t-care density is the percentage of destination nodes
to which a source node has more than one non-overlapped
shortest path to send packets. As a packet has mul-
tiple preferred links to take out of a node, whichever
preferred link to take is regarded as a favorable choice.
Hence the choice of link at this node for the packet is
don’t-care.

We consider two dimensional regular topologies since lower
dimension and regular structure have advantages in simpli-
fying the routing controller of switches, wiring, as well as
potentially refraining Deep SubMicron (DSM) effects over
wires [4, 10]. Examples are the 2D torus network proposed in
[4] and the 2D mesh network suggested in [10]. Specifically
we consider three 2D topologies with the same number of
nodes, namely, 2D mesh, 2D torus and the Manhattan Street
Network (MSN) [6]. Along each of the two dimensions, there
are K nodes. The mesh network has bi-directional links be-
tween nodes. But it has no toroidal connections. The torus
network can be viewed as a mesh network with wrap-around
connections. The MSN has a uni-directional 2D torus struc-
ture. But on a MSN, horizontal and vertical paths alternate
in direction. Similarly to [6], for a MSN, we constrain K is
a multiple of 4. The three topologies are depicted in Figure
1. We qualitatively compare them in Table 1.

Note that the switches in the torus and MSN networks
can be connected with equal-length of wires [4]. The don’t-
care density in Table 1 is calculated as follows: The three
topologies are all node-symmetric. We can pick up any node
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Mesh Torus MSN

Diameter 2(K-1) K K+1
Switch degree 2,3,4 4 2

Deflection index 2 2 4
Link capacity 4K(K-1) 4K2 2K2

Don’t-care density (K=4) 60% 73% 60%

Table 1: The topological factors of three networks

to calculate the don’t-care density. For example, on the
K×K mesh, any node has K2−1 destination nodes. Among
them, 2(K − 1) nodes lie either on the same row or column
as the source node. The source node sending packets to
the 2(K − 1) nodes has only one shortest path, but sending
packets to the other (K −1)2 nodes has two non-overlapped
shortest paths. Therefore the don’t-care density of the mesh
is (K − 1)2/(K2 − 1). When k = 4, it equals 60% (9/15).

3.2 Routing Algorithm
A routing algorithm determines the path and thus link

a packet is to be delivered. Obviously a packet should be
delivered along its shortest path whenever possible to reduce
latency and increase throughput. For deflection routing,
a routing algorithm determines a packet’s favorable path
and link. A deflection occurs only when a packet has to
deviate from its shortest path, no matter whether a routing
algorithm is minimal or not.

We consider four routing algorithms: Random, Dimension
XY, Delta XY and Minimum deflection. Using random algo-
rithms for on-chip network communication is beneficial for
fault-tolerance, as discussed in [5].

• Random: A switch randomly chooses an available path
to send packets.

• Dimension XY: A packet tries to first route along the
X axis and then the Y axis.

• Delta XY: it routes packets by the minimal number of
hops along the X (Δx) and Y (Δy) axis a packet has
to travel. Δx/Δy is the difference along the X/Y axis
between a packet’s source and destination address. Δ
can be negative. If both desired links are available, it
randomly chooses one. It differs from Dimension XY in
that it does not prefer the X against the Y axis.

• Minimum deflection: it minimizes the occurrence of de-
flection at each hop. When a switch prepares to send
packets, the switch calculates all possible permutations
of packets’ emission. Then it chooses the arrangement
that the minimum number of packets will be deflected.

Among the above routing algorithms, the Dimension XY
and Delta XY route packets with best-effort along their short-
est paths, and thus are minimal. The others are not mini-
mal. The routing by the Random algorithm is probability-
based. While making routing decisions, the Minimum deflec-
tion algorithm tries to minimize the number of deflections
by the local and oblivious 2 criterion. Note that it is not
appropriate to separate a deflection policy from this routing
algorithm. Since it makes routing and deflection decisions
all at once, we can view Minimum deflection as both a routing
algorithm and a deflection policy.
2Oblivious means stateless, i.e., do not consider the history
of packet delivery, such as age and deflection times.

3.3 Deflection Policy
A deflection policy resolves packet contentions for links.

Together with a routing algorithm, it determines packet-to-
link assignment rules according to a pre-determined crite-
rion. In addition, it can be used to design a livelock-free
network. Since a higher priority packet wins link arbitra-
tion, the packet tends to reach its destination step-by-step
deterministically. Nevertheless, it is difficult to derive an
upper bound for arbitrary traffic patterns analytically [2].

In addition to the Minimum deflection, we consider both
non-priority and priority-based deflection policies. For priority-
based policies, we consider the straight-through [6] and a
weight-based priority policy. With a priority policy, packet-
to-link resolution is performed in favor of packets with a
higher priority. A tie is resolved randomly.

• Non-priority: Misrouting decisions are made randomly.
Packets have equal probability to be misrouted.

• Straight-through: A straight-through direction has a
higher priority than a turn. The packet that arrives
on the incoming row/column link is emitted on the
outgoing row/column link.

• Weighted priority: The priority of a packet is based on
multiple properties of the packet. It is explained in
detail as follows.

The weighted priority takes into account a packet’s multiple
properties, such as age, distance, deflection times, and de-
fault value. Age indicates how long the packet has been alive
in the network. A packet has a hop count field that records
the number of hops (age) the packet has been routed. A
higher hop count implies an elder age. The distance refers
to the minimal number of links the packet has to travel
from current node to its destination. Each packet also has
an overhead field of deflection count, which bookkeeps the
times of deflection during its delivery. In addition, packets
may be of a different purpose. A default priority may be as-
signed to a packet from application by the source node. As
all these properties can be meaningful for the packet priority,
we use a weighted expression to calculate the priority. Each
property i is associated with a weight wi, and

� |wi| = 1.

P = wa × A + wh × H + wd × D + wf × F (1)

where P indicates the value of priority; A is the age of
packet; H is the distance; D represents the times of de-
flection; F is the initial priority level; wa, wh, wd and wf

refer to the weight of age, distance, deflection times and ini-
tial level, respectively. A weight embodies the impact that
a certain packet property exerts on the packet priority. For
example, if wa=0, it implies the packet priority has nothing
to do with its age; if wa > 0, it means that an elder packet
has higher priority than a younger one; if wa < 0, a younger
packet will result in a higher priority than an elder one. The
absolute value of a weight |wi| reveals the significance of the
property i on the packet priority.

A deflection policy can take advantage of don’t-care pack-
ets. For example, on the mesh or torus, if packet G1 goes
from node (1,1) to (2,2), and packet G2 routes via node (1,1)
to (2,1), contention for the eastern link occurs by Dimension
XY routing. But G1 is a don’t-care packet at node (1,1), it
can be routed to the southern link without deflection and
G2 takes the eastern link. If a deflection policy does not
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consider G1’s don’t-care preference, G2 may be misrouted if
PG1 ≥ PG2 . In implementation, we can use one extra bit in
a packet to denote if it is don’t-care. This attribute has to
be checked and set at each hop. If it is asserted, the packet
priority is temporarily negated for the local priority com-
parison, causing the don’t-care packet to lose arbitration.

4. SIMULATION
In this section, we report results of simulations experi-

menting topology, routing algorithm and deflection policy.

4.1 Experimental setting
In order to evaluate the alternatives on network topology,

routing algorithm and deflection policy, we construct 4 × 4
networks in our network-on-chip simulation environment [9].
This tool has a cycle-true NoC simulation kernel developed
in SystemC. Besides it features a Graphical User Interface
(GUI) which allows one to conveniently configure network
parameters, traffic parameters, and then invoke kernel sim-
ulation. The deflection switch is a single-cycle packet-level
model. Delivering packets through a switch takes exactly
one cycle. The traffic pattern is uniformly-distributed ran-
dom traffic. Each node sends traffic to other nodes with
equal probability at a constant rate. The highest injection
rate is one packet per cycle per node. Each node is equipped
with a packet source queue. Packets are injected into the
network through the source queue. The queue has concep-
tually infinite depth since it does not drop packets. The
packet ejection model is ideal. Whenever a packet reaches
its destination, it is ejected from the network immediately.
In the case of multiple packets reaching destinations, all of
them will be immediately sunk. Each simulation runs to the
steady state, meaning that increasing simulation cycles does
not change the results appreciably. Performance statistics
are then collected at the steady state.

We measure both time-related and volume-related perfor-
mance. For the time-related metrics, we consider latency
T and network delivery time Tnet. Latency T is counted
from the instant a packet is injected into the source queue
until that it reaches destination. The delivery time Tnet is
the time a packet routes in the network after leaving its
source queue until reaching destination. Therefore latency
T comprises network delivery time Tnet and source queu-
ing time Tsrc which is the time a packet waits in the source
queue. The hop count of a packet gives its network deliv-
ery time. It is incremented by one for each hop. For the
volume-related measurement, we consider throughput. It is
defined as the average number of packets received per cycle
in normalization with the number of nodes or links. We also
measure link utilization, which is the average percentage of
active/utilized links. It is important because the links are
valuable network resources besides switches, and therefore
should be efficiently used. The link capacity of a network
gives an absolute constraint on network performance. An
over-dimensioned network may use more links than neces-
sary to improve performance. In addition, the number of
active links directly relates to power consumption.

4.2 Topology
For this set of experiments, we set the routing algorithm to

Dimension XY; the deflection policy is the Weighted priority
policy with weight for age wa = 0.3, for distance wh = 0.2,
for deflection count wd = 0.5 and for initial priority wf = 0.

The deflection does not take advantage of don’t-care packets.
The performance results are shown in Figure 2.

As the packet injection rate r increases, the network deliv-
ery time increases (Figure 2(b)). The increase is not linear
but rather exponentially. This trend sustains until the net-
work is saturated. For the MSN and mesh, they saturate
at r = 0.35 and r = 0.6, respectively. The torus does not
saturate at even the highest rate r = 1, since it has twice
ideal throughput as much as the mesh and MSN (The bisec-
tion bandwidth of the torus, mesh and MSN is 16, 8, and 8
packets/cycle, thus the ideal throughput under the uniform
traffic is 2, 1 and 1 packet/cycle/node, respectively).

With minimal routing, the network delivery time Tnet is
related to the deflection count D and deflection index I by

Tnet = D · I + Hmin (2)

where Hmin is the average shortest distance of traffic. For
example, as can be seen in Figure 2(a), when r = 1, D(mesh) =
1.15, D(MSN) = 0.66 and D(torus) = 0.9. As Hmin(mesh) =
2.67, Hmin(MSN) = 2.93 and Hmin(torus) = 2, we have
Tnet(mesh) = 4.97, Tnet(MSN) = 5.6, and Tnet(torus) =
3.8. These figures match those on Figure 2(b). At the very
low injection rate (r = 0.025), the deflection count is not
zero. This is because the nodes inject traffic into the net-
work synchronously, leading to contentions even under low
load. When r > 0.58, the mesh incurrs the highest number
of deflections (Figure 2(a)). This is because the traffic tends
to conjest in the center, not well-balanced like the torus and
MSN, since it has no toroidal connections. Figure 2(c) im-
plies that the source queuing time Tsrc (Tsrc = T −Tnet) be-
comes extremely high when the network is saturated. From
Figure 2(e), we can see that the link utilization in a deflec-
tion network can reach 100% upon network saturation.

The torus performs best because it has the highest link
bandwidth and wrap-around connections to balance traffic.
If we normalize the throughput in Figure 2(d) with the link
capacity, it turns out that the MSN has the highest through-
put per link before the network saturation (Figure 2(f)).

4.3 Routing Algorithm
In this set of experiments, the topology is the mesh; the

deflection policy is the Weighted priority policy used in sec-
tion 4.2, but utilizes packets’ don’t-care preference. The
results are depicted in Figure 3.

As can be seen, the Random algorithm performs worst in
terms of latency and throughput since this algorithm does
not guarantee packets to progress towards their destinations
at each hop even there is no contentions for links. Even at
the lower injection rate r ≈ 0.2, the network is saturated
and link is utilized 100%. The Dimension XY and Delta XY
perform equivalently in latency, throughput and link uti-
lization. The Minimum deflection algorithm performs a bit
worse than Dimension XY and Delta XY, because its rout-
ing is not minimal and its deflection policy does not take
packet delivery history into account. Although it minimizes
deflection at each switch, the resulting overall performance
is inferior when the network contention is high (r > 0.7).

4.4 Deflection Policy
In this group of experiments, we use the mesh network.

The routing algorithm is Dimension XY.
We compare the performance with the three deflection

policies (Non-priority, Weighted priority and Straight-through)
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Figure 2: Performance of different topologies
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Figure 3: Performance of different routing algorithms

in Figure 4. The priority weights use the same values as
before. For the non-priority and priority policies, we con-
sider both cases. One is with don’t-care, the other without
don’t-care. As can be observed, the Weighted priority pol-
icy achieves better performance than the Non-priority pol-
icy. This is because distinguishing priority ensures higher-
priority packets not misrouted, hence progressing faster to
destinations. The Straight-through policy performs the mid-
way between those with priority and those without priority,
since it uses a sort of constant policy in favor of either the
X or Y dimension to resolve contentions. More importantly,

those policies considering don’t-care achieves much better
performance than those without considering don’t-care. The
saturation throughput is improved about 24% from 0.6 to
0.745 (Figure 4(c)). Meanwhile the network delivery time
decrements about 1 cycle by 19% (Figure 4(a)). Since con-
sidering don’t-care packets reduces deflections, packets are
delivered faster and more. As a result, the reduction of
source queuing time Tsrc is also significant (45%), as shown
in Figure 4(b). We performed other experiments with dif-
ferent weighted values, for example, wa = 1 and wd = 1.
Their performance are close to each other.
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Figure 4: Performance of different deflection policies
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Figure 5: Distribution of deflection count

Given a topology, the deflection count D is the most cru-
cial factor for network performance (Equation 2). We com-
pare the distribution graphs of deflection count when r = 0.7
for the Priority without don’t-care, Priority with don’t-care and
Minimum deflection policies in Figure 5. The priority is given
to deflection count in this case, i.e., wd = 1. The distribu-
tion graphs are subject to the similar envelope. As can be
seen, a very large percentage of packets are deflected only
once. However, there exist packets experiencing much more
deflections. The observed maximum deflection count is 36,
6, 19, respectively. Clearly, considering the don’t-care pref-
erence of packets can improve the worst-case performance.

5. CONCLUSION
Determining the architecture of a deflection network is

not a simple task because there exist many alternatives con-
cerning network topology, routing algorithm and deflection
policy. In this paper we have evaluated those alternatives
that are currently being proposed for on-chip networks. We
can conclude from our results that the network topology is
the most significant factor, since it directly determines the
deflection index and don’t-care density. As long as a rout-
ing algorithm chooses the shortest path, the performance of
different algorithms is close to each other. To improve the
average-case, worst-case behavior and resolve livelock, pack-

ets should be prioritized, and a deflection rule should use the
priority information and take packets’ don’t-care attribute
into account. We believe these conclusions can be guidelines
to select a deflection network architecture.

Our future work is to include application-specific traffic in
the evaluation framework so that we can make guidelines for
deflection networks targeting domain-specific applications.
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Abstract—The feasibility of a message in a network concerns if
its timing property can be satisfied without jeopardizing any mes-
sages already in the network to meet their timing properties. We
present a novel feasibility analysis for real-time (RT) and nonreal-
time (NT) messages in wormhole-routed networks on chip. For
RT messages, we formulate acontention treethat captures con-
tentions in the network. For coexisting RT and NT messages, we
propose a simplebandwidth partitioning methodthat allows us to
analyze their feasibility independently.

I. I NTRODUCTION

Network-on-Chip (NoC) [3, 4, 10] design starts with a sys-
tem specification which can be expressed as a set or sets of
communicating tasks. The second step is to map these tasks
onto the nodes of a NoC instance. With a mapping, application
tasks running on these nodes load the network with messages,
and impose timing requirements. Timely delivery of messages
is essential for performance and predictability. However, rout-
ing messages in a network is inherently nondeterministic be-
cause messages experience various contention scenarios which
stem from sharing buffers at routers and links between the
routers. These contentions cause indeterminate delay and jit-
ter, leading to possibly the violation of the timing constraints
of the messages. It is therefore important to conduct an anal-
ysis on messages to determine their feasibility. Given a set
of already scheduled messages, a message is termedfeasible
if its own timing property is satisfied irrespective of any ar-
rival orders of the messages in the set, and it does not prevent
any message in the set from meeting its timing property [2].
In general, on-chip messages can be categorized asreal-time
(RT) and nonreal-time(NT) messages [10]. Messages with a
deterministic bound, which must be delivered predictably even
under worst case scenarios, are RT messages. Messages with
a probabilistic bound, which request an average response time,
are NT messages.

Wormhole flow control with lanes (virtual channels) is being
advocated for NoCs due to its shorter latency, greater through-
put and smaller buffering requirement [3, 10]. However, few
studies have been performed to analyze the message feasibility
for wormhole-routed networks. For real-time messages, the
lumped link model [2, 5] is a path-based model in which all
the links along a messageMi’s path are lumped into a single
link. The message is scheduled on this link together with other

competing messages. The feasibility test algorithms based on
this model are efficient [2, 5]. However, due to lumping, all the
competing messages must be scheduled in sequence. As a re-
sult, direct and indirect contentions are treated in the same way.
Also, no concurrent use of the links onMi’s path can be taken
into account. In [6], Kim et al. used a blocking dependency
graph to express the contentions a message may meet and de-
rived the message’s delivery upper bound. However, this graph
does not reflect the possible concurrent use of links, too.

In the paper, we present a novel feasibility analysis for both
RT and NT messages on wormhole-routed networks on chip.
Section II describes the communication models delivering the
RT and NT messages. In Section III, we first classify mes-
sages according to the type of performance bound and timing
requirements on delay or jitter. Then, for the RT messages,
we formulate a contention tree that can accurately reflect con-
tentions and link usage. Specifically, it can distinguish direct
and indirect contentions and captures concurrent use of links.
Finally, we use a bandwidth partitioning method to test the fea-
sibility of RT and NT messages coexisting in the network. The
experiments are described in Section IV, followed by conclu-
sions in Section V.

II. T HE COMMUNICATION MODELS

A. The Nonreal-time Communication Model

In wormhole routing, a message is divided into a num-
ber of flits (flow control units) for transmission1. The head
flit carrying routing and sequencing information governs the
route. As the head flit advances, the remaining flits follow
in a pipeline fashion. The message transmission is complete
when its last flit is delivered to the destination. When required
resources are unavailable, the messages are blocked in place.
Wormhole routing manages two types of resources: the lanes
and the physical link bandwidth. In conventional wormhole
routers, the shared lanes are arbitrated on First-Come-First-
Serve (FCFS), and they are multiplexed over the shared link
bandwidth on demand [9]. This model is fair and produces
good average-case latency results. But there is no guarantee
that the messages are delivered before deadline. Therefore this
communication model is suitable for the delivery of NT mes-
sages. With this NT model, the average network latencyTnt

1The effect of packetization is not considered in this study.

 960

PI-8

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005



of delivering a message withL flits is calculated by [1]:

Tnt = L=Bnt +HR+ ! = a+ ! (1)

whereBnt is the minimum link bandwidth allocated to the
message along its route;H denotes the number of hops the
message passes;R is the routing delay per hop. The first two
terms represent the non-contentional or base latencya, which
is the lower bound onTnt; ! is the average contention delay
due to the message being unable to access the shared lanes and
link bandwidth.

B. The Real-time Communication Model

Real-time messages must be served in such a way that the
message delivery is predictable and guaranteed. Li and Mutka
[7] developed a range of flow control schemes for real-time
messages concerning priority mapping strategies, priority ad-
justment methods, and arbitration functions. In [2], based on
a global priority, Preemptive Pipelined Circuit Switching for
Real-Time (PPCS-RT) decouples the message delivery into
two phases: path establishment and data delivery, where the
path setup is preemptable. In [11], a flit-level preemption flow
control is developed to resolve the priority inversion problem,
i.e., a higher priority message is blocked by a lower priority
message occupying shared resources. These real-time models
complicate wormhole router design.

We assume a real-time (RT) message delivery model without
a complicated router architecture and without a special service.
All messages are globally prioritized (priority ties are resolved
arbitrarily). This model arbitrates shared lanes and link band-
width by priority. The priority, which may be assigned accord-
ing to rate, deadline or laxity [5, 7], takes a small number of
flits. With this RT model, assuming the same routing delayR
for the head flit and other flits, the worst-case latencyT rt of
delivering a message withL flits is given by :

T rt = (L+ Lpri)=B
rt +HR+ � = c+ � (2)

whereBrt is the minimum link bandwidth allocated to the
RT message along its route;Lpri is the number of flits taken
by the message priority. The first term counts for the transmis-
sion time of all the message flits including that occupied by the
priority; the sum of the first two terms is the non-contentional
latencyc, which is the lower bound onT rt; the last term� is
the worst-case blocking time due to contentions.

III. F EASIBILITY ANALYSIS

A. The Message Model and Quality Classes

We consider messages or message streams that can be char-
acterized by four parametersM = (S; p; D; j), whereS
denotes the maximum size of all the message instances;p is
the message period meaning that all the inter-arrival times of
the message instances are never less thanp; D is the end-to-
end delay constraint;j is the jitter constraint. Though the de-
layD is a constraint on the end-to-end communication latency,

which is the sum of the latency due to the resource nodeTnode
and the networkT , we focus on the network latencyT . The
effects ofTnode can be straightforwardly incorporated into the
delay constraint resulting in a more stringent deadline.

Depending on the type of performance bound (deterministic
or probabilistic) and that of timing requirement (delay or jit-
ter), we define the Quality Class (QC) of a message, which
can be viewed as an index representing the Quality of Ser-
vice (QoS) requirement(s) of the message. For a probabilis-
tic bound, we refer to constrain the bound to be an average
response time. We define four quality classes as follows:

QC1: jitter constrained,D � j � T � D.

QC2: delay constrained,T � D, j = D.

QC3: average jitter constrained,D � j � Tavg � D.

QC4: average delay constrained,Tavg � D, j = D.

QC1 andQC2 messages are RT traffic whileQC3 andQC4

are NT traffic. Also,QC2 andQC4 messages can be regarded
as a special case ofQC1 andQC3 messages whenj = D,
respectively.

B. Real-Time Messages

According to Equation (2), a feasible real-time (RT) mes-
sageMi satisfies its timing constraint:

8Mi 2 QC1 Di � ji � ci + �i � Di

8Mi 2 QC2 ci + �i � Di
(3)

To estimate the worst-case latency of an RT messageMi, we
must first determine all the contentions the message may meet.

In flit-buffered networks, the flits of a messageMi are
pipelined along its routing path. The message advances when it
receives the bandwidth of all the links along the path. The mes-
sage may directly and/or indirectly contend with other mes-
sages for shared lanes and link bandwidth.Mi has a higher
priority setSi that consists of adirect contentionsetSDi

and
an indirect contentionset SIi , Si = SDi

+ SIi . SDi
in-

cludes the higher priority messages that share at least one link
with Mi. Messages inSDi

directly contend withMi. SIi in-
cludes the higher priority messages that do not share a link
with Mi, but share at least one link with a message inSDi

, and
SIi \ SDi

= ;. Messages inSIi indirectly contend withMi.
As an example, Fig. 1a shows a fraction of a network with four
nodes and four messages. The messagesM1,M2,M3 andM4

pass the links AB, BC, AB!BC!CD, and CD, respectively.
A lower message index denotes a higher priority. The message
M1 has the highest priority, thusS1 = ;. For the message
M2, it directly contends withM3, but it has a higher priority,
thusS2 = ;. The messageM3 has a higher priority message
setS3 = SD3

= fM1;M2g, SI3 = ;. For the messageM4,
SD4

= fM3g andSI4 = fM1;M2g becauseM1 or M2 may
blockM3 which in turn blocksM4.

To capture both direct and indirect contentions, we have
formulated acontention treedefined as a directed graphG :
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Fig. 1. Network Contentions and Contention Tree

M � E. A messageMi is a nodeMi in the tree, and vice
versa. An edgeEij(i < j) directs from nodeMi to nodeMj ,
representing the direct contention betweenMi andMj . Mi is
calledparent, Mj child. Given a setn of RT messages, after
mapping to the target network, we can build a contention tree
with the following three steps:

Step 1. Sort the message set in descending priority sequence
with a chosen priority assignment policy.

Step 2. Determine the routing path for each of the messages.

Step 3. Form a tree. IfMi shares at least one link withMj

wherei < j � n, an edgeEij is created between them.
Each tree node only maintains a list of its parent nodes.

In a contention tree, a direct contention is represented by
a directed edge while an indirect contention is implied by a
“walk” via parent node(s). A walk is a path following directed
edges in the tree. The contention tree for Fig. 1a is shown in
Fig. 1b, where the three direct contentions are represented by
the three edgesE13, E23 andE34, and the two indirect con-
tentions forM4 are implied by the two walksE13 ! E34 and
E23 ! E34 viaM4’s parent nodeM3. Since knowing the rout-
ing path is a priori, creating a contention tree is more suitable
for deterministic routing. For adaptive routing, it is difficult to
figure out the worst-case routing path.

TABLE I
MESSAGE PARAMETERS AND LATENCY BOUNDS

Message Periodp DeadlineD Base latencyc Lat. bound

M1 10 10 7 7
M2 15 15 3 3
M3 30 30 5 20
M4 30 30 8 28

Table I shows the message parameters for Fig. 1, where
the priority is assigned by rate, and deadlineD equals period
p. The worst-case schedules2 for the three links are illustrated
separately in Fig. 2a. The latency bounds for the four mes-
sages are also listed in Table I. We can see that all the four
messages are feasible. Looking into the schedules, we can ob-
serve that (1)M1 andM2 are scheduled in parallel. This con-
currency is in fact reflected by thedisjoint nodes in the tree.
We call two nodesdisjoint if no single walk can pass through
both nodes. For instance,M1 andM2 in Fig. 1b are disjoint,

2A schedule is a timing sequence where a time slot is occupied by a mes-
sage or left empty.

therefore their schedules do not interfere with each other; (2)
M3 is scheduled on the overlapped empty time slots [8, 10]
and [19, 20] left after schedulingM1 andM2. The competed
slots [1,7] and [11,18] are occupied byM1 or M2. This is
implied in the tree whereM3 has two parents,M1 andM2;
(3) M4 is scheduled only afterM3 completes transmission at
time 20. The indirect contentions fromM1 andM2, which are
reflected via slots [1,7] and [11,18],propagatevia its parent
nodeM3. ForM3, these slots are directly competed slots. For
M4, they become indirectly competed slots. The four message
schedules are individually depicted in Fig. 2b. If the concur-
rent use of the two links, AB byM1 and BC byM2, was not
captured,M3 andM4 would be considered infeasible sinceM2

would occupy the slots [8, 10] and [18, 20], levaving only three
empty slots before slot 30 forM3 andM4.
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Fig. 2. Message Scheduling

In a contention tree, all levels of indirect contentions prop-
agate via the intermediate node(s). This might be pessimistic
since many of them are not likely to occur at the same time. If
the number of shared lanes increases, the indirect contentions
due to lane unavailability decrease. Also, a lower priority mes-
sage can use the link bandwidth if a competing message with
a higher priority is blocked elsewhere. To balance this pes-
simism, we have neglected priority inversion. As discussed in
[2, 5], this problem can be alleviated by packetization.

C. Nonreal-Time Messages

According to Equation (1), a feasible nonreal-time (NT)
messageMi satisfies its timing constraint:

8Mi 2 QC3 Di � ji � ai + !i � Di

8Mi 2 QC4 ai + !i � Di
(4)
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To analytically estimate the average contention delay!i is
a difficult task because it is dependent on the network charac-
teristics such as topology, routing algorithm, flow control, as
well as the network communication patterns. Since this esti-
mation is not the focus of this paper, we consider only special
cases. To this end we use the closed form of contention delay
[1] that Agarwal developed for random traffick-ary d-cubes
using dimension-order wormhole routing and unbounded in-
ternal buffers. For a 2D mesh network,!i is roughly calcu-
lated by:!i = 3

2 �
Li

B
� �

(1��) :
(Hi�1)
Hi

, where� is the network
utilization calculated by� =

P
i(Hi � 1)qi=C, whereC is

the network capacity measured in the total number of network
links; qi is the probability of a network request a cycle.

Scheduling a new NT message leads to an increase in�. The
timing constraints of the already scheduled messages must be
met with the new�. Otherwise, the new message is infeasible.

D. Real-Time and Nonreal-Time Messages

In a network supporting both RT and NT messages, esti-
mating the values of worst-case blocking time� and average
blocking time! becomes more complicated due to the possi-
ble interactions while delivering both classes of messages. For
example, with respect to!, if the NT messages are allowed to
use the unused bandwidth reserved by the RT messages, the RT
messages may suffer from severe priority inversion problems,
i.e., they may be blocked by the NT messages for an uncertain
amount of time; with respect to� , the portion of the shared
resources available to the RT messages may be dynamically
changing, leading to intractability. This dynamic network be-
havior is not in accordance with our static analysis approach.
In fact, such dynamic resource sharing schemes complicate the
router design; for instance, it becomes too costly for the sched-
uler to adjust the allocated bandwidth. Therefore we have cho-
sen to isolate the RT and NT traffic into two disjoint virtual
networks. Such a nonwork-conserving service discipline has
been discussed in [12].

B

Link bandwidth
NT lane

RT lanes
Lanes

B
rt

B
nt

Fig. 3. Bandwidth Partitioning

Suppose the link bandwidthB is normalized to 1, then each
class of traffic has a weighted portion ofB, as shown in Fig. 3.
Let Bnt andBrt be the bandwidth assigned to the NT traffic
and RT traffic, respectively,Bnt + Brt = 1. As a result, the
link bandwidth is arbitrated by weighted round robin where
the weights (Bnt andBrt) can be chosen a priori based on all
types of traffic the router is designed to carry [8]. Concerning a
network with uniform traffic, the same weights may be selected
for all the routers. We can then apply our analysis method in
Section III.B and III.C to the RT and NT traffic, respectively.

IV. EXPERIMENTS

We have implemented a feasibility test algorithm based on
the contention tree for RT messages and the bandwidth par-
titioning scheme for coexisting RT and NT messages. Then
we conducted feasibility tests on messages in a 2D 8 X 8
mesh NoC with bidirectional links (the network capacityC
is 4 � 8 � (8 � 1) = 224). The network uses wormhole flow
control with dimension-order X-Y routing, which is a deter-
ministic and deadlock-free algorithm. Lower dimension net-
works and deterministic routing algorithms are beneficial for
NoCs in order to reduce the control complexity of the routers
[4]. The purposes of our experiments are two-fold. First, we
investigate how messages with a different Quality Class (QC)
affect the NoC performance. Second, we examine the impact
of a bandwidth partitioning on the system performance.

A message with the four parameters(S; p; D; j) is ran-
domly generated between a pair of nodes. The message sizeS
including protocol overhead randomly takes a value from32,
64, 128, and512 in flits. For each of the message sizes, the pe-
riod p takes a random value from50�, 100�, 200�, and800�,
where� 2 f1; 2; 3g, respectively, andp = D. In this way, a
longer message is likely to have a longer period. The routing
delay per hopR is chosen to be2.

The amount of traffic isgeneratedgiven a threshold� from
0:1 to 1 (normalized with the network capacity) with a step
length of 0:1. For any message generated, we must ensure
that the link capacity is not violated. Let the probability of
a network request of an RT and an NT messageMi on any
given cycle beqrti andqnti , respectively. With a period ofpi,
qrti = (Li + Lpri;i)=pi andqnti = Li=pi. Let qij be the link
bandwidth requirement ofMi on link j, qij = qi. For a linkj
with m RT andk NT messages, the link constraint is:

8j
mX

i=1

qrtij +

kX

i=1

qntij � Brt +Bnt = 1 (5)

If a new message generated does not lead to violate Inequal-
ity 5, the message isofferedinto the network; otherwise, it is
discarded. By our traffic generation method, theofferedtraf-
fic, which is the input of the feasibility test, is up to62% of
the generated traffic as illustrated by the dashed line in Fig. 4.
Also, we treat infeasible RT and NT traffic differently. If an RT
message fails the feasibility test, it will not be considered any
more. In contrast, all the offered NT messages are always in-
volved. This is because a feasibility test needs to be conducted
before admitting an RT message into the network while such
a test is usually not necessary for an NT message. For each�,
the simulation runs50 times to steady states and reports aver-
age results ofpass ratio, i.e. the percentage of the messages
that pass the feasibility test, and of thenetwork link utilization
of these feasible messages. In general, the more messages that
fulfill their timing constraints, the higher the performance of
the system. A higher utilization may imply a lower design cost
while a lower utilization may imply an over-designed network.

We designed three groups of experiments. The first two
groups consider delay-constrained messages. The first (Fig. 4)
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concerns only delay-constrained RT traffic (QC2), andBrt =
1 andBnt = 0. An RT message with a shorter period has a
higher priority. The overhead due to the priority is two flits.
The second one (Fig. 5) concerns both delay-constrained RT
(QC2) and delay-constrained NT (QC4) traffic with various
values of bandwidth partitioning. The last one (Fig. 6) consid-
ers jitter-constrained traffic, i.e.,QC1 andQC3 messages. The
jitter j is set to be0:15p; thus the network latency of a feasible
message falls in the region[0:85p; p].
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Fig. 4. Delay-constrained RT Traffic (QC2)

In Fig. 4, as the generated traffic increases, the pass ratio de-
creases but the network utilization increases up to around0:37.
Closing to this point, the network is near to saturation where
the network latency increases exponentially but the throughput
does not improve any more [1]. Therefore the gap between the
offered traffic and the feasible traffic increases rapidly. Also,
the pass ratio with this uniform traffic pattern is always below
1. For ahard real-time system that requires100% pass ratio,
this means we need to find an application-specific mapping and
our feasibility assessment can support such a mapping.

In Fig. 5,QC2 andQC4 messages are randomly generated;
thus the number and message sizes of the RT and NT traffic
have equal probability. With the value ofBnt : Brt increas-
ing, the network tends to achieve higher pass ratio and utiliza-
tion. In Fig. 6,QC1 andQC3 messages are also randomly
generated. Comparing with Fig. 5, the corresponding pass ra-
tio and network utilization are reduced. This is because a jitter
constraint adds another condition (D � j � T ) besides the
deadline constraint (T � D), leading to fewer messages that
pass the feasibility test.

V. CONCLUSION

We have presented a feasibility analysis of messages in
wormhole-routed networks on chip which is a crucial step in a
NoC design flow. The contention tree we formulate can accu-
rately reflect the network contentions but relies on determinis-
tic routing. The static bandwidth partitioning method for co-
existing RT and NT messages is simple but can illustrate some
non-obvious results. From the experiments conducted, we can
see that the feasibility analysis is useful for performance/cost
tradeoff analysis of mapping messages with different QoS re-
quirements on a NoC.
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Fig. 5. Delay-constrained Traffic (QC2-QC4) with Bandwidth Partitioning
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Fig. 6. Jitter-constrained Traffic (QC1-QC3) with Bandwidth Partitioning

Future work will investigate methods to enhance the pass
ratio and/or network utilization by combining the feasibility
assessment with task-to-node mappings.
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Chapter 2

REFINING SYNCHRONOUS COMMUNICATION
ONTO NETWORK-ON-CHIP BEST-EFFORT SERVICES

Zhonghai Lu, Ingo Sander, and Axel Jantsch
Department of Electronic, Computer and Software Systems
Royal Institute of Technology, Sweden
{ zhonghai, ingo, axel} @imit.kth.se

Abstract We present a novel approach to refine a system model specified with perfectly
synchronous communication onto a Network-on-Chip (NoC) best-effort com-
munication service. It is a top-down procedure with three steps, namely,channel
refinement, process refinement, andcommunication mapping. In channel refine-
ment, synchronous channels are replaced with stochastic channels abstracting
the best-effort service. In process refinement, processes are refined in terms of
interfaces and synchronization properties. Particularly, we usesynchronizersto
maintain local synchronization of processes and thus achievesynchronization
consistency, which is a key requirement while mapping a synchronous model
onto an asynchronous architecture. Within communication mapping, the refined
processes and channels are mapped to a NoC architecture. Adopting theNos-
trum NoC platform as target architecture, we use a digital equalizer as a tutorial
example to illustrate the feasibility of our concepts.

Keywords: Synchronous Model; Communication Refinement; Network-on-Chip.

1. Introduction
For system design, a synchronous design style is attractive since it allows

us to separate timing from function. The designer can focus on the design
of the system functionality without being distracted by unnecessary low-level
communication details. This also facilitates the verification task, which is a
key activity at the system level. Later,refinementexplores the implementation
space under constraints, making design decisions and filling in implementation
details. Network-on-Chip (NoC) is an emerging SoC paradigm aimed to cope
with the scalability problem of various buses in order to connect tens or per-
haps even hundreds of microprocessor-sized heterogeneous resources, such as
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processor cores, DSPs, FPGAs/ASICs, and memories. The complex integra-
tion is desired by ever-increasing functionality and enabled by the steady tech-
nology scaling. Nostrum ([11–13]) is our NoC architecture offering a packet-
switched communication platform. To satisfy different performance/cost re-
quirements, Nostrum provides two classes of communication services, namely,
Best Effort (BE) and Guaranteed Bandwidth (GB) services. The BE service is
connection-less where packets are routed without resource reservation. The
GB service is connection-oriented where packets are delivered after enough
bandwidth is reserved. It achieves better performance at the expense of higher
cost.

Clustering & Resource allocation

Hardware Software

process model
Synchronous NoC

platform

Channel refinement

Process refinement 

Communication mapping

Synthesis

Computation  refinement Communication  refinement

Figure 2.1. A NoC design flow

In this work, we are interested in mapping a system specified as a syn-
chronous model onto a NoC. To this end, we propose a NoC design flow shown
in Figure 2.1 where we concentrate on the communication problem. There are
three communication-related tasks:clustering & resource allocation, commu-
nication refinementandsynthesis. The clustering flattens the hierarchy in the
model and groups processes into new processes with perhaps coarser granu-
larity. With resource allocation, the grouped processes are allocated to net-
work nodes, either HW or SW execution resources. Communication refine-
ment bridges the gap between the communication model in the specification
and the NoC communication implementation via adapters. With synthesis,
these processes and adapters are synthesized into HW and/or SW.

We address thecommunication refinementthat starts from a synchronous
communication model and ends with the Nostrum NoC best-effort communi-
cation service. With the specification model, communication is perfectly syn-
chronous with a global logical clock and cleanly separated from computation.
With the NoC communication service, communication introduces variable de-
lays and crosses multiple clock domains connected by a packet-switched net-
work. Clearly the communication in the implementation domain is not syn-
chronous, thus not consistent with that in the specification domain. Our con-
tributions are (1) a novel approach to realize this communication refinement;
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(2) a classification of process synchronization properties asstrict, nonstrict,
strong, andweaksynchronization in order to formally analyze processes’ lo-
cal synchronization requirement(s) (Section 5.2); (3) usingsynchronizers(syn-
chronization adapters) to maintain synchronization consistency during refine-
ment (Section 5.3). We will focus on the synchronization issue while keeping
the process computation untouched. Note that, this synchronization issue lies
at the system modeling level, not at the lower implementation levels such as
shared memory synchronization using locks or semaphores, as well as mes-
sage passing synchronization using blocking or nonblocking semantics. We
assume that, after a clustering, the resulting processes, more precisely, pro-
cess networks, are top-level entities. Each process may comprise a hierarchy of
sub-processes, which are intended to reside in a synchronous implementation
domain. Besides, we consider that a resource maintains a local synchronous
region. Consequently a process is to be mapped to one resource and one re-
source hosts exactly one process.

2. Related Work
Based on the isolation of communication from computation, a large body of

work on communication refinement exists. Through the Virtual Component In-
terfaces (VCI) of the VSI Alliance ([9]), the COSY-VCC design flow ([3]) sup-
ports communication refinement from specification to performance estimation
and to implementation. IPSIM ([5]) developed on top of SystemC 3.0 supports
an object-oriented methodology and establishes two inter-module communi-
cation layers. The message box layer concerns generic and system-specific
communication, while the driver layer implements higher level application-
dependent communications. The SpecC methodology defines four levels of
abstraction, namely at the specification, architecture, communication and im-
plementation level, and the refinement transformations between them ([6]).
These works do not assume a synchronous specification.

With synchronous communication, latency insensitive theory ([4]) targets
synchronized HW design where synchronization can still be achieved using
relay stations even if interconnecting synchronous IP blocks experiences in-
definite wire latencies; Desynchronization for SW design was addressed in
[1]. Furthermore, some mathematical frameworks were developed to sup-
port refinement-based design methods. Benveniste et al. present a theoretical
framework for modeling heterogeneous systems, and derive sufficient condi-
tions to maintain semantic-preserving transformations when deploying a syn-
chronous specification onto GALS and the loosely time-triggered architec-
tures ([2]). Another framework is proposed in [7] concerning the refinement of
a polysynchronous specification, which allows the existence of multiple clocks
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instead of a single clock. All these works are complementary to ours but none
of them provides a detailed refinement approach targeting a NoC platform.

3. Refinement Overview

3.1 The perfectly synchronous model
The synchronous modeling paradigm is based on an elegant and simple

mathematical model, which is the ground of synchronous languages such as
Esterel, Signal, Argos and Lustre. The basis is the perfect synchrony hypoth-
esis, i. e., both computation and communication take no observable time. A
system is modeled as a set of concurrent communicating processes via signals.
Processes use ideal data types and assume infinite buffers. Signals are ordered
sequences of events. Each event has a time slot as a slot to convey data. If
the data contains useful information, the event ispresentand called atoken.
Otherwise, the event isabsentand modeled as at representing a clock tick.
Each signal can be related to the time slots of another signal in an unambigu-
ous way. The output events of a process occur in the same time slot as the
corresponding input events. Moreover, they are instantaneously distributed in
the entire system and are available to all other processes in the same slot. Re-
ceiving processes in turn consume the events and emit output events again in
the same time slot. The medium a signal passes can thus be viewed as an ideal
communication channel which has no delay for any event data types (unlimited
bandwidth). A process specified in the synchronous paradigm is a synchronous
process. For feedback loops, the perfect synchrony creates cyclic dependency
between output and input, and thus leads to deadlock, which can be resolved
with initial events in the specification. A synchronous model is deterministic,
i. e., given the same input streams, it generates the same output streams.
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Figure 2.2. The digital equalizer

As a tutorial example, Figure 2.2 illustrates an equalizer model. It adjusts
the bass and treble volume of the audio stream according to button control lev-
els. In addition it prevents the bass level from exceeding a predefined threshold
to avoid damaging the speakers. Its function can be described by the follow-
ing set of equations, where the initial value ’1’ is used to resolve the feedback
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loops:

AudioOut = Equalizer(Buttons,AudioIn)
where
AudioOut = Sum(AudioBass,AudioTreble)
(Bass,Treble) = LevelControl(Buttons,AudioOut)
AudioBass = BassFilter(AudioIn, init : Bass)
AudioTreble = TrebleFilter(AudioIn, init : Treble)
init = 1

This model is specified in the functional language Haskell and is executable.

3.2 Nostrum communication services
In Nostrum, each resourceRi (i = 1,2, · · · ,n) is equipped with a Resource-

Network-Interface (RNI) in order to access the network, as shown in the lower
part of Figure 2.3. The RNI and the network belong to the Nostrum proto-
col stack. Nostrum provides a message passing platform with two communi-
cation services, i. e., best-effort and guaranteed bandwidth. The BE service (
[12]) is connection-less. Packets are routed in the network without reserv-
ing network resources such as storage and link bandwidth. The end-to-end
flow control, re-ordering, packetization and packet admission control are per-
formed by RNIs. The BE service maintains message order, and is lossless
and corruptless. It has no guarantee on timely delivery, but must have an up-
per bound on delivery time. To this end, we assume that the communication
protocols can prevent the network from saturation and guarantee bounds on
delay. The GB service is connection-oriented. Bandwidth is negotiated during
a connection establishment phase. Packets are delivered after a connection is
established. The GB service is implemented by using looped containers and
temporally disjoint networks ([11]). The RNIs hide the service implementation
details and make the servicestransparentlyaccessible to applications. The ac-
cess methods are communication primitives offered to the higher layer.

Within Nostrum, we define a set of basic communication primitives for mes-
sage passing as follows:

int open(int src, int dst, int service, struct bandwidth): it opens a simplex
channel between a source src process and a destination dst process. The
service denotes the channel service class, 0 for the BE service, 1 for
the GB service. The bandwidth is a user-defined record with three fields
{ int min bw, int avgbw, int maxbw}which specifies the minimum,
average and maximum bandwidth (bits/second) requirement of the chan-
nel. The method returns a unique channel identity number (cid) upon
successfully opening the channel. Otherwise, it returns various reasons
of failure, such as a destination invalid, or performance not satisfied.
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bool write(int cid, void msg): it writes msg to the specified channel cid. The
size of messages is bounded. It returns the status of the write.

bool read(int cid, void *msg): it reads channel cid and writes the received
data to the address starting at msg. It returns the status of the read.

We have implemented these primitives with the BE service using SystemC
in our layered NoC simulatorSemla([13]). The write () and read () are presently
implemented with nonblocking semantics. Semla is programmable as to net-
work topology, process-to-resource mapping, routing algorithm, and traffic
pattern. The current implementation opens channels statically during compile
time and the opened channels are never closed during simulation.

3.3 The refinement procedure
Given a synchronous system specification, our objective is to refine the syn-

chronous communication onto the Nostrum best-effort (BE) service. For this
communication refinement, we propose a three-step procedure:channel re-
finement, process refinement, andcommunication mapping. We illustrate the
procedure via a pair of producer-consumer processes in Figure 2.3. The three
steps are marked by a circle with a step number inside it.

P

2

3 Communication mapping

Process refinement

Channel refinement

Feedback loop
Maintain sync. consistency

Interfacing channels
Analyze process sync. propertyBE channel

ch

Network

RNIRNIRNI

R2

Nostrum

RnR1

write
adapter

s

s

P′

2

3 3

2

1

P Q
1

read
adapter

s′

Q′

Q

Figure 2.3. Communication refinement overview

Step 1: With channel refinement, we first abstract the behavior of the Nos-
trum BE service as that of stochastic channels which are then used to
replace the ideal communication channels for passing signals. In Fig-
ure 2.3, the ideal channel for signals between producerP and con-
sumerQ is refined to a BE service channelch. After being delivered
via the service channel, signals turns into signals′, which is a derived
version ofs. Furthermore,s ands′ are not synchronous since different
clock domains are involved in the service channel.
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Step 2: With process refinement, we discuss how to connect a process to
the service interface and how its synchronization property can be met
by using adapters to wrap the process. Particularly, to guarantee a cor-
rect refinement, the process synchronization property must be consistent
from the specification to the refined model. We classify and analyze the
synchronization property of processes and then discuss how to main-
tain synchronization consistency. The process synchronization property
can be annotated by designers on processes to enable automatically in-
stantiatingsynchronizersto achieve synchronization consistency in the
process refinement. Moreover, we consider design decisions to handle
feedback loops, by which the process synchronization may be relaxed
in order to optimize performance since a synchronous specification may
over-specify the system. In Figure 2.3,P and Q are wrapped with a
write and a read adapter, respectively. Note that an adapter contains
both a component to interface with the service channel (writer/reader)
and component(s) to achieve synchronization consistency (synchroniz-
ers) whenever necessary.

Step 3: Finally, together with a process-to-resource allocation scheme, the
communication mapping is to implement the adapters and map the
service channels on a NoC, in this case, the Nostrum simulator Semla.
In Figure 2.3, the refined processesP′ and Q′ are mapped to the re-
sourcesR1 andRn, respectively. Accordingly, the service channelch is
implemented via the interfaces provided by the RNIs of the resourcesR1

andRn.

4. Channel Refinement
The Nostrum BE service provides in-order, lossless and bounded-in-time

communication between processes. However, its performance isnondeter-
ministic since the message delivery experiences dynamic contentions in the
RNIs and network. To capture its characteristics, we resort to a stochastic
approach. Formally, we develop a unicast BE service channel as a point-to-
point stochasticchannel: given an input signal of messages{m1,m2,· · · ,mn}
to the service channel, the output signal is{d1,m1,d2,m2, · · ·, dn,mn}, where
messagemi (i = 1,2, · · · ,n) is bounded in size;di denotes the delay ofmi,
which may be expressed as the number of absent (t) values and is subject to
a distribution with a minimumdmin and maximumdmax value. The actual dis-
tribution, which may differ from channel to channel, is irrelevant. We do not
make any further assumptions about this. Ifdi = n (n is a positive integer), it
means there aren absent values betweenmi−1 andmi. We can identify two
important properties of the generic service channel behavior: (1)di is vary-
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ing; (2) di is bounded. This behavior is purely viewed from the perspective of
application processes and its implementation details are hidden.

Replacing the ideal channel (zero delay and unlimited bandwidth) with a
stochastic channel (varying delay and limited bandwidth) leads to the violation
of the synchrony assumption. In the specification, a channel is ideal so that we
can use asinglesignals to connect a producer to a consumer process. After
replacing the ideal channel with a service channel, the signals can be seen as
beingsplit into a pair of signals, the original signals and its derived signals′,
as shown in Figure 2.3. For a process with two synchronous input signals, for
example, theSumprocess of the equalizer (Figure 2.2), if both signalss3 and
s4 are delivered via a service channel, they are split, resulting in two derived
signalss′3 ands′4, which are now the input signals to theSumprocess. Appar-
ently, the two pairs of signals,s3 ands′3, s4 ands′4, and the two derived signals
s′3 ands′4 are not synchronous. A synchronous system becomes globally asyn-
chronous, leading to possibly nondeterministic behavior which deviates from
the specification. It is therefore important for a refinement to maintain syn-
chronization consistency for functional correctness.

5. Process Refinement
We first describe how to interface with the service channels in general, and

then discuss the synchronization property of processes followed by methods
to achieve synchronization consistency. At the system level (a composition of
processes), we discuss feedback loops.

5.1 Interfacing with the service channels
Once an ideal channel is replaced by a service channel, the processes can

not be directly connected to the interface of the service channel. They must be
adaptedin terms of data and control because (1) the input/output data type of a
service channel is of a bounded size while a signal in the specification assumes
an ideal data type, whose length is finite but arbitrary, e. g., a 32/64-bit integer,
a 64-bit floating point or a user-defined 256-bit record type, etc.; (2) the ser-
vice channel has bounded buffers and limited bandwidth while a signal uses
unlimited resources. The sending and receiving of messages use shared re-
sources and thus control functionality has to be added to allocate shared re-
sources, schedule multiple threads and achieve thread-level synchronization.
These adaptations are achieved by a writer and reader process. Specifically,
to interface with the service channels, a producer needs to be wrapped with a
writer, a consumer with areader.
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5.2 Process synchronization property
In the system model, all signals of processes are synchronous. However,

whether or not the input signals of a process must be synchronous is subject
to the evaluation condition of processes, specifically, the local condition(s) to
evaluatethe input events. Because of the tight synchronization in the model,
some processes may be over specified, limiting the implementation alterna-
tives. During the refinement, the designer(s) must inspect and determine the
synchronization property of the processes.

Inspired by [8], we usefiring rules to discuss the synchronization property
of synchronous processes. For a synchronous process withn input signals,
PI is a set ofN input patterns,PI = {I1, I2, · · · , IN}. The input patterns of
a synchronous process describe its firing rules, which give the conditions of
evaluating input events at each event cycle.I i (i ∈ [1,N]) constitutes a set
of event patterns, one for each ofn input signals,I i = {Ii,1, Ii,2, · · · , Ii,n}. A
patternIi, j contains only one element that can be either a token wildcard∗ or
an absent valuet, where∗ does not includet. Based on the definition of firing
rules, we propose four levels of process synchronization properties as follows:

Strict synchronization. All the input events of a process must be present be-
fore the process evaluates and consumes them. The only rule that the
process can fire isPI = {I1} whereI1 = {[∗], [∗], · · · , [∗]}.

Nonstrict synchronization. Not all the input events of a process are absent
before the process fires. The process cannot fire with the patternI =
{[t], [t], · · · , [t]}.

Strong synchronization. All the input events of a process must be either present
or absent in order to fire the process. The process has only two firing
rulesPI = {I1, I2}, whereI1 = {[∗], [∗], · · · , [∗]} andI2 = {[t], [t], · · · , [t]}.

Weak synchronization. The process can fire with any possible input patterns.
For a 2-input process, its firing rules arePI = {I1, I2, I3, I4} whereI1 =
{[∗], [∗]}, I2 = {[t], [t]}, I3 = {[∗], [t]} andI4 = {[t], [∗]}.

We can identify processes with astrict, strong, andweaksynchronization
property in the equalizer (Figure 2.2). TheBass Filter(s0 ands1) andTreble
Filter (s0 ands2) have a strict synchronization. Both filters are composed of a
FIR filter and an amplifier. The FIR filter is specified as an FSM, whose state
transition is sensitive to time, thus at value in an audio stream can change the
values of its output sequence. Meanwhile, the amplifier must have an amplifi-
cation level, thus at value makes the amplifier undefined. TheSumprocess (s3

ands4) has a strong synchronization. It is a combinational process and thus tol-
erable to events with at value. However, the two events ofs3 ands4 must be
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synchronized before being processed since they represent the low and high fre-
quency components of the same audio sample. TheLevel Control(sb ands5)
process has a weak synchronization. It can fire even when either or both of the
events ofsb ands5 are absent since pressing buttons happens irregularly and
the bass level surpassing the threshold occurs only aperiodically.

5.3 Achieving synchronization consistency
Apparently, for processes with a strict or strong synchronization, their syn-

chronization properties can not be satisfied if any of their input signals passes
through a service channel since the delays via the channel are stochastic. Al-
though globally asynchronous, the processes can be locally synchronized by
using synchronizersto satisfy their synchronization properties. To achieve
strong synchronization, we use an align-synchronization processsync; to achieve
strict synchronization, we use three processes,sync, deSyncandaddSync. We
use a two-input process to illustrate these processes in Figure 2.4. An align-
synchronization processsyncaligns the tokens of its input events, as shown
in Figure 2.4(a). It does not change the time structure of the input signals. A
desynchronizerdeSyncremoves the absent values, as shown in Figure 2.4(b).
All its input signals must have the same token pattern, resembling the out-
put signals of thesyncprocess. Removing absent values implies that the pro-
cess isstalled. The desynchronizer changes the timing structure of the in-
put signals, which must be recovered in order to prevent from causing unex-
pected behavior of other processes that use the timing information. An add-
synchronizeraddSyncadds the absent values to recover the timing structure,
as shown in Figure 2.4(c). It must be used in relation to adeSyncprocess. If
the input events of thedeSyncis a token, theaddSyncreads one event from its
internal buffers for each output signal; otherwise, it outputs at event. The two
processesdeSyncandaddSyncare used as a pair to assist processes to fulfill
strictness.

We can now use these synchronizers in connection with thereader and
writer processes to wrap the original processes to interface with the service
channels and maintain the synchronization consistency from the specification
model to the refined model. For instance, as shown in Figure 2.5, we use a
syncprocess and a pair ofreader/writer processes to wrap theSumprocess
in the equalizer to maintain its strong synchronization. We use the three pro-
cesses,sync, deSyncand addSync, and a pair ofreader/writer processes to
wrap theBass/Treble Filterprocess (Figure 2.2) to maintain their strict syn-
chronization.

The refinement of processes with a nonstrict synchronization should be in-
dividually investigated according to their firing rules.
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5.4 Feedback loops
In the specification, feedback loops are resolved by using initial events. If

the feedback signals pass through a service channel, the delays are nondeter-
ministic. If following the initial event approach in the refinement procedure,
we encounter a problem since we are not certain how many initial events are
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required to resolve the deadlock. Consider theBass/Treble Filter, if the tokens
of s1/s2 are not available, it can not fire. This implies it may not be able to
process enough audio samples in time, leading to violate the system’s perfor-
mance constraint. However, if the amplification level signals,s1 (Bass) and
s2 (Treble), are delayed and thus not available, the amplifiers should continue
functioning by, for example, using the previous amplification level or simply
using a constant level like 1. In this case, the effect of pressing buttons may
be delayed several cycles. This is tolerable since the human sensing of the
changes in the audio volume is not instantaneous.

By this observation, we can in factrelax the strict synchronization of the
processesBass/Treble Filter, using a relax-synchronization processrelax illus-
trated in Figure 2.4(d). If the input event is a token, it outputs the token; oth-
erwise, a tokenx0 is emitted. The exact value ofx0 is application dependent.
Relaxing synchronization is a design decision leading to behavior discrepancy
between the specification and the refined model. Care must be taken to validate
the resulting system.

6. Communication Mapping
The inputs to this task are the refined model as well as a process-to-resource

allocation scheme; the output is a communication implementation on Semla.

6.1 Channel mapping
With a resource allocation scheme, all processes are allocated to resources

in a one-to-one manner. Note that this is not a limitation but due to the as-
sumption on the clustering and resources (refer to Section 1). With such a
clustering, inter-process signals, which represent inter-resource communica-
tions, are mapped to service channels. Since the processes may be hierarchi-
cal, we need to flatten the hierarchy to the level that each signal mapped to
a service channel can be uniquely identified with a pair of a producer and a
consumer process withfiner granularity. For simplicity, we do not consider
mapping multiple service channels to one implementation channel. Mapping
channels is thus straightforward. Each pair of processes communicating via
a service channel in the refined model results in its dedicated unicast imple-
mentation channel, which is mapped to the open channel primitive open(). For
example, with the producer-consumer case, a BE channel setup is fulfilled by
a single line of code: int ch[1]=open(P,Q,BESERVICE,NULL).

6.2 Communication process mapping
After the process refinement, a refined process consists of the original com-

putational process, the writer and reader, and perhaps the synchronizer(s) to
satisfy their synchronization properties. Our refinement keeps the original
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processes intact. Therefore, the tasks of communication process mapping are
to implement the writer/reader, and the synchronizers such assync, deSync,
addSyncandrelax, and to coordinate the writing and reading operations.

In SystemC, processes are implemented as modules. The reader/writer may
be implemented as separate modules or in the same modules as processes.
We implement a process and its adapter(s) in a single module. For imple-
mentation, execution control in the module must be considered. Suppose the
module has a single thread of control, we need to find a Periodic Admissi-
ble Sequential Schedule (PASS) for process executions ([10]). For the process
in Figure 2.6, a PASS could be PASS={reader, sync, deSync, Bass/Treble Fil-
ter, addSync, writer}. Besides, a control signalwrite rdy must be asserted by
the writer to the reader to enable reading the channel(s) for the next-round
PASS execution, as shown in Figure 2.6. This leads to a local feedback loop,
and we adopt the initial event approach to deal with it. In this case,write rdy is
initially asserted. Using the communication primitives defined in Section 3.2,
the SystemC module for Figure 2.6 is sketched as follows, with each compo-
nent explained briefly in commentary:

/ / i n i t i a l l y w r i t e r d y =1;
/ / r e a d c h 0 r d y = 0 ; r e a d c h 1 r d y =0
/ / sync r dy = 0 ; computedone =0;
i f ( w r i t e r d y ==1){
/ / ( 1 ) r e a d e r : nonb lock ing read ch1 and ch2

i f ( r e a d c h 0 r d y ==0)
i f ( ( read ( ch [0] ,& r msg1 ))== t r u e )

r e a d c h 0 r d y =1;
i f ( r e a d c h 1 r d y ==0)

i f ( ( read ( ch [1] ,& r msg2 ))== t r u e )
r e a d c h 1 r d y =1;

/ / ( 2 ) sync : s y n c h r o n i z e t h e two e v e n t s
i f ( r e a d c h 0 r d y ==1 && r e a d c h 1 r d y ==1)

sync r d y =1;
e l s e sync r d y =0;
/ / ( 3 ) deSync : d e s y n c h r o n i z a t i o n by guard
i f ( s ync r dy ==1 && compute done ==0){

/ / p r o c e s s computa t ion
/ / r e t u r n w msg and s e t computedone t o 1
w msg=compute ( rmsg1 , r msg2 ) ;
w r i t e r d y = 0 ; computedone =1;}

}
/ / ( 4 ) addSync : f i l l s y n c h r o n i z a t i o n

i f ( s ync r dy ==1 && compute done ==1){
/ / ( 5 ) w r i t e r : nonb lock ing wr i t e ch3
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i f ( w r i t e r d y ==0)
i f ( w r i t e ( ch [ 3 ] , w msg)== t r u e ){

w r i t e r d y =1;
sync r dy = 0 ; computedone =0;
r e a d c h 0 r d y = 0 ; r e a d c h 1 r d y =0;}}

}
In the implementation domain, whether to emit and passt via a service chan-

nel either as a special message or using one bit to indicatepresenceandabsence
can be a design decision. To preserve the semantics,t must be transported.
However, this incurs too much overhead on computation and communication,
and may be meaningless since its value is useless. Thereforet is usually ne-
glected. Only in cases where the timing information carried byt is used by
other processes, it must be emitted and passed. In the equalizer case,t is
neglected since its timing information is not used by any of the four processes.

R9

TFBF

switch

R1 R2 R3 R4

R8R7R6R5

R13 R14 R15 R16

R12R11R10

LC

RNI

RNI

RNI RNI RNIRNI

RNI RNI RNI

RNI

RNIRNI

RNIRNI

RNIRNI Sum

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

(a) Resource allocation

Avg. Delay Throughput
(%) (cycles)

9.06 15.00 0.0667

16.96 16.53 0.0605

25.16 18.52 0.0540

Load

29.97 20.24 0.0494

35.36 22.59 0.0443

43.28 35.14 0.0285

(samples/cycle)

(b) Performance

Figure 2.7. The equalizer mapped on a NoC

We have implemented the equalizer in Semla. The purpose is to validate
the concepts of our refinement approach. Figure 2.7(a) illustrates the mapped
equalizer in a 4×4 mesh NoC. All the five inter-resource signalss1,s2, · · · ,s5

in Figure 2.2 use the BE service. The resources and the network run with the
same speed. The switches operate synchronously with the switching per hop
taking one cycle. The message streams ons3 ands4 are injected into the net-
work conservatively so that a new audio sample will not be processed by the
filters until the previous sample has been handled by theSumprocess. This
implies that the audio samples are not processed in a pipeline fashion in the
network. In addition, we inject background traffic with uniformly distributed
random destinations in the network. The motivation is to load the network with



Refining Synchronous Communication onto NoC Best-Effort Services 37

reasonable amount of traffic since the equalizer example can only make use of
a small fraction of the network capacity. Figure 2.7(b) shows the equalizer per-
formance, where the network load is the average percentage of active links per
cycle. The process computations are function calls and complete instantly. We
observe the average delay that is the time (in cycles) to process one sample.
Since the audio processing is not pipelined, the throughput (samples/cycle) is
simply the inverse of the average delay. In Figure 2.7(b), the first row shows
the case where there is no background traffic. As expected, when the network
is increasingly loaded, the average delay is increased and the throughput de-
creased. The average delay can be seen as the time to respond to a button
press or to activate bass control. We noted that the audio output sequences are
different from those observed from the specification due to relaxing the syn-
chronization for the feedback loops. We conducted other experiments in which
we removed the feedback loops, and could validate that the output sequences
agree with each other in all traffic setting cases.

7. Conclusions and Future Work
Communication refinement is a crucial step in a NoC design flow. We

have presented a refinement approach that allows us to map a perfectly syn-
chronous communication model onto the NoC best-effort service accessible
through communication primitives. Particularly we classify the synchroniza-
tion properties of processes and describe methods to achieve synchronization
consistency during the refinement upon the violation of the perfect synchrony
hypothesis. For feedback loops, we relax the synchronization with the toler-
ance of system requirements. In this paper we use Nostrum as target, but with
few adjustments, this approach is also applicable for other NoC platforms.

In future work, we plan to develop formalism for synchronization consis-
tency and realize automatically analyzing the synchronization properties of
processes. During refinement, we take either automatic analysis that yields cor-
rect synchronization and system behavior, or manual analysis with design de-
cisions on the synchronization refinement combined with a systematic verifi-
cation of the resulting implementation. For the refinement of feedback loops,
we intend to use the Nostrum GB service to reach a systematic solution.
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Abstract

We present a performance-oriented refinement approach
that refines a perfectly synchronous communication model
onto Network-on-Chip (NoC) communication. We first
identify four basic forms of NoC process interaction pat-
terns at the process level, namely, producer-consumer,
peers, client-server, and multicast. We propose a three-
step top-down refinement method: channel refinement,
protocol refinement and channel mapping. For the
producer-consumer pattern, we describe it in detail. In
channel refinement, we deal with interfacing multiple
clock domains and use a stochastic process to model chan-
nel delay and jitter. In protocol refinement, we show
how to refine communication towards application require-
ments such as reliability and throughput. In channel map-
ping, we discuss channel convergence and channel merge
arising from channel overlapping. All the refinements
have been conducted and validated as an integral de-
sign phase towards implementation in ForSyDe, a formal
system-level design methodology based on a synchronous
model of computation.

1 Introduction

Network-on-Chip (NoC) is deemed to be a paradigm to
tackle System-on-Chip (SoC) design challenges in the bil-
lion transistor era. Due to lack of scalability, a bus-based
(single level or multi-level) architecture is becoming per-
formance bottleneck to interconnect tens or even hundreds
of microprocessor-sized heterogeneous resources. Most
probably a bus-based design will be used at the local re-
source level and complemented with a network platform
at the chip global level. Meanwhile the deep submicron
technology limits the maximum synchronous region on a
chip to a local resource area. Globally Asynchrony Lo-
cally Synchrony (GALS) is regarded as a future SoC syn-
chronization mechanism. From the design methodology
perspective, raising design abstraction to system level is

considered to be indispensable to cope with relentlessly
increasing design complexity.

Keutzer et al. discuss system-level design in [12]. They
point out, that “to be effective a design methodology that
addresses complex systems must start at high levels of
abstraction”. Particularly, a design methodology should
separate (1) function (what the system is supposed to do)
from architecture (how it does it) and (2) communication
from computation. They “promote to use formal models
and transformations in system design so that verification
and synthesis can be applied to the advantage of the de-
sign methodology”. These arguments not only support but
also establish the foundations of ForSyDe. The ForSyDe
[13, 14] methodology addresses the design of SoC appli-
cations. Starting with a formal system specification model
that captures the system functionality at a high abstraction
level, it provides formal transformation methods to refine
the system model into an implementation model , which
serves as a starting point for synthesis into HW and SW.

In this paper we present the top-down communica-
tion refinement method towards NoC communication in
ForSyDe, focusing on techniques to satisfy communica-
tion reliability and to leverage throughput and network uti-
lization. The related work is briefed in section 2. We then
introduce the ForSyDe methodology in section 3, and the
process communication patterns, our NoC platform and its
services in section 4. In section 5, we discuss our incre-
mental communication refinement steps, channel refine-
ment, protocol refinement and channel mapping. A tuto-
rial example is shown in section 6, followed by conclusion
in section 7.

2 Related Work

Based on the isolation of communication from computa-
tion, a large body of work on communication refinement
exists in the literature. Through the Virtual Component
Interfaces (VCI) of the VSI Alliance [10], the COSY-
VCC design flow [3] supports communication refinement
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from specification, to performance estimation and to im-
plementation. IPSIM [5] developed on top of SystemC
3.0 supports an object-oriented methodology and estab-
lishes two inter-module communication layers. The mes-
sage box layer concerns generic and system-specific com-
munication, while the driver layer implements higher
level application-dependent communications. The SpecC
methodology defines four levels of abstraction, namely at
the specification, architecture, communication and imple-
mentation level, and the refinement transformations be-
tween them [6]. In the course of communication refine-
ment, methods to allow architecture exploration and pro-
tocol selection can be found in [11] and [9], respectively.
These works do not assume a synchronous specification,
thus are not applicable to our context.

With synchronous communication, latency insensitive
theory [4] targets synchronized HW design where syn-
chronization can still be achieved even if interconnecting
synchronous IP blocks experiences indefinite wire laten-
cies; De-synchronization for SW design was addressed in
[1]. Furthermore, some mathematical frameworks were
developed to support refinement-based design methods.
Benveniste et al. present a theoretical framework for mod-
eling heterogeneous systems, and derive sufficient con-
ditions to maintain semantic-preserving transformations
when deploying a synchronous specification onto GALS
and the loosely time-triggered architectures [2]. Another
theoretical framework is proposed in [8] concerning the
refinement of a polysynchronous specification, which al-
lows multiple clocks instead of a single clock. All these
works are complementary to our work but none of them
provides a detailed refinement approach targeting a NoC
platform. Furthermore, this paper concentrates on re-
finement techniques to satisfy performance requirements
based on process interaction patterns.

3 The ForSyDe Methodology

3.1 The Design Process

The ForSyDe [13, 14] design process starts with the devel-
opment of an abstract functional specification expressed
in the functional language Haskell. This model is then
refined inside the functional domain by a stepwise ap-
plication of well defined design transformations into an
efficient implementation model. As the implementation
model is a refined version of the specification model, the
same validation and verification methods can be applied
to both models. In the partitioning phase, the implemen-
tation model is partitioned into HW and SW blocks, which
are mapped on architectural components. Only now, in the
code generation phase, we leave the functional domain to
generate VHDL or C code for the HW and SW.

3.2 The Specification Model

The specification model follows the synchronous model-
ing paradigm. This paradigm is based on an elegant and
simple mathematical model, which is the ground of syn-
chronous languages such as Esterel, Signal, Argos and
Lustre. The basis is the perfect synchrony hypothesis, i.e.,
both computation and communication take no observable
time. In order to formally describe our synchronous com-
putational model, we follow the denotational framework
of Lee and Sangiovanni-Vincentelli [16]. They define sig-
nals as a set of events, where each event e has a tag t and
a value v, i.e. e t v T V . As our system model
is synchronous, T is the set of natural numbers, and all
signals have the same set of tags. In order to model the
absence of an event, a data type D can be extended into a
data type D by adding the special value , which is used
to model the absence of a value. Absent values are used to
establish a total order of events when dealing with signals
with different or aperiodic event rates.

31
5 47 6

26

Absent Value Value

TagEvent

32
5 47 6

37

Signal

Inc

Figure 1: Modeling of signals and processes

Figure 1 illustrates the modelling of signals and the be-
havior of processes. At the event cycle n a process eval-
uates the events of each signal with the tag n and outputs
the result at the same tag n.

We implement the synchronous computational model
with the concept of process constructors. A process con-
structor is a higher order function that takes combina-
tional functions, i.e. functions that have no internal state,
and values as input and produces a process as output.
There is a clean separation between synchronization (cap-
tured by process constructors) and computation (imple-
mented by combinational functions). In addition, each
process constructor has a structural hardware and soft-
ware semantics which is used to translate the implemen-
tation model into a hardware/software implementation.

As an example, the process constructor mealySY mod-
els a finite state machine of Mealy type. It takes a function
ns to calculate the next state as first argument, a function
out to calculate the output as second argument and a value
s0 for the initial state as last argument. Thus a process
Mealy mealySY ns out s0 implements the behavior of
a finite state machine.

Processes can be glued together to build a network of
processes. Such a network is called a block. Figure 2
shows how a block is formed by a network of processes.
The function of a block is expressed by a set of equations.
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Block

P1 P2

P3

s1
s2

s3
s4

s5

Block s1 s5

where s2 s3 P1 s1

s5 P2 s2 s4

s4 P3 s3

Figure 2: A network of processes

In the same way, blocks can be composed into higher level
blocks, subsystems and eventually a hierarchical system.

3.3 Refinement of the Specification Model

The specification model abstracts from implementation
details, such as buffer sizes and low-level communica-
tion mechanisms. This enables the designer to focus on
the functional behavior of the system rather than struc-
ture and architecture. This abstract nature leaves a wide
space for further design exploration and design refine-
ment, which is supported by our transformational refine-
ment technique. During the refinement phase the speci-
fication model is stepwise refined into a final optimized
implementation model.

4 NoC Communication

4.1 Process Communication Patterns

A NoC application can be represented as a process net-
work with a set of functional equations in ForSyDe. Ac-
cording to the interactions among processes [7], we iden-
tify the basic forms of inter-process communication pat-
terns as follows:

Producer-consumer. This is a one-to-one pattern
where a producer generates data which in turn are
consumed by a consumer. The consumer may or may
not send back acknowledgments depending on appli-
cation requirements.

Peers. Similar to the producer-consumer, but both
processes send/receive data and perhaps acknowl-
edgments to/from each other.

Client-server. This is a multiple-to-one pattern. Mul-
tiple clients send requests to a server which responds
with various services. It works in a request-response
manner in that a server will not respond to a client
until a valid request is asking for service. The server

may offer a uniform service or multiple services. For
example, a memory only serves data read/write ser-
vice. A microprocessor may provide various com-
puting services such as remote procedure calls.

Multicast. This is a one-to-multiple pattern. The
group master actively reads/writes data to its multi-
cast group members.

Next, we will take the producer-consumer pattern to
demonstrate our communication refinement approach.

4.2 The NoC Platform and its Services

Our NoC platform [15] is a mesh structure composed of
switches where each switch is connected to a resource, as
shown in figure 3. The resources, which may work with
different clock rates, are placed on the slots formed by the
switches. The area of a resource is constrained within the
maximal synchronous region in a given technology. The
Resource-Network-Interfaces (RNIs) offer network com-
munication services to resources.

S

S

S

Resource

RNI

Resource

RNI

Resource

RNI

S

S

Resource

RNI

Resource

RNI

S

S

S

Resource

RNI

Resource

RNI

S

Resource

RNI

Resource

RNI

Figure 3: A NoC of mesh structure with 9 nodes

Our NoC platform provides two kinds of services. One
is best-effort or connection-less delivery of messages. The
other is connection-oriented virtual circuit that provides a
resource-to-resource connectivity. In best-effort service,
messages are routed in the network. The data sequence is
maintained by re-ordering and data will not be lost. Nei-
ther the bandwidth nor the latency can be guaranteed. In
virtual circuit services, messages are reliably delivered in
order with guaranteed bandwidth. In terms of latency pre-
dictability, the services can be further classified as two
kinds: virtual circuit with latency commitment and virtual
circuit with relaxed latency commitment. In both cases,
there is a bounded range with minimum and maximum la-
tency value. For the second case, the upper bound is the
worst case latency along the virtual circuit path.

Our NoC architecture provides a message passing plat-
form. Processes communicate in the platform via chan-
nels which use one of the services. A message pass-
ing procedure between processes consists of three phases:
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channel setup, data transmission and channel tear-down.
If a channel intends to use the best-effort service, the chan-
nel setup is handled locally relying on an admission proto-
col in order not to saturate the network. If a channel asks
for a virtual circuit service, the initiating process sends
a setup message using the best-effort service to negoti-
ate with the network for bandwidth and delay during the
channel setup phase. Once the request is granted, the cir-
cuit path is fixed, and the bandwidth is reserved. The data
transmission unit from process to process is message. A
message comprises a channel identity number and pay-
load. After the data transmission phase, the channel has
to be explicitly torn down.

5 NoC Communication Refinement

Domain
Interface

Domain
Interface Network

event rate: fnevent rate: f1 event rate: f2

Mapping

Resource Resource

Producer Consumer
channel

Figure 4: The producer-consumer and the target NoC

In figure 4, the upper part shows a producer-consumer
pattern where the producer P communicates with the con-
sumer Q via a logical channel 1. The lower part shows a
NoC instance with two resources , . In a GALS ar-
chitecture, the resources , and the network may work
in different clock domains f1, f2 and fn, respectively. We
assume that all clocks have the same phase. The time
structures from these clock domains have to be arbitrated
when cross-domain communication is incurred. To this
end we have explicitly highlighted the two domain inter-
faces, though they may be implemented as part of RNIs
on resources. Our task is to map the producer-consumer
onto the NoC. As for this pattern, the fundamental prob-
lem is data loss which occurs when the data-producing
speed is higher than the data-consuming speed. Our re-
finement is not solving this problem. Instead we assume
that the data-producing speed is not higher than the data-
consuming speed. Also, the only meaningful read scheme
for the consumer in this case is blocking read since the
consumer can not react if no data is received.

In ForSyDe this pattern is initially modeled with a net-
work of two processes, P and Q, as shown in figure 5.
Process P models the producer P. Process Q models the
consumer Q. The two processes communicate in a per-
fectly synchronous manner via the signal d. A signal in
the specification is to be mapped to a service channel.

1For convenience, we also call an arc connecting a pair of interacting
processes a channel. It is logical and not associated with a service yet.

Q

Consumer Q

P
sin soutd

Producer P

sout QP sin

where d P sin

sout Q d

Figure 5: The producer-consumer model in ForSyDe

5.1 Refinement Overview

Our objective is to refine this perfectly synchronous
producer-consumer model onto the NoC communication
services. The service selection is subject to the chan-
nel characteristics. The resultant producer and consumer
model should fulfill application requirements such as re-
liability and throughput. For reliability, the producer asks
from the consumer for acknowledgment for each mes-
sage sent. For throughput, the producer-consumer has to
make full use of the channel bandwidth honored during
the channel setup. If the channel is not established, noth-
ing will happen. Therefore we concentrate our refinement
on the data transmission phase.

ConsumerChannel
PN

Producer

(2) Multiple clock domain com.

(1) Synchronous communication

(3) Model channel delay/jitter

(4) Refinement for reliability

(6) Mapping to NoC services

(5) Refinement for throughput

Consumer QProducer P

InrIrn

ResourceResource Network

Producer ConsumerChannel
PN

PnP

QP

Inr QP Irn

Q

Figure 6: Refinement to NoC communication services

From now on we assume that the channel in figure 4
is granted with either of the two virtual circuit services.
During the refinement steps we focus on how the process
networks (PNs) will evolve. The overall refinement steps
and the resultant process networks are illustrated in figure
6. The initial model (figure 5) is the perfectly synchronous
model where there is only one clock domain. In step (2)
we consider different clock domains and interfacing the
clock domains. The process Irn models the domain inter-
face connecting a resource to the network. The process
Inr models the domain interface connecting the network
to a resource. In step (3) we model the channel delay
and jitter with the process Pn. We call the steps (2) and
(3) channel refinement covered in section 5.2. In fact the
channel refinement builds the channel model for refining
the producer P and the consumer Q. In steps (4) and (5)
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the process networks are refined to satisfy the reliability
and throughput, respectively. We call the steps (4) and (5)
protocol refinement covered in section 5.3. In step (6) cov-
ered in section 5.4 we discuss channel convergence and
channel merge while mapping the channel to NoC com-
munication services.

5.2 Channel Refinement

5.2.1 The clock domain interfaces

First of all we build models for the two clock domain in-
terface processes Irn and Inr. Introducing a synchronous
sub-domain into the system model was presented in [13]
where the clock rate of the sub-domain is 1

n (n is a positive
integer) of the main domain. Here we consider a generic
domain interface that connects a clock domain with even-
t/clock rate f1 to another clock domain with event rate f2.
The simplest form of the fraction f1

f2
is m

n . The generic in-
terface is constructed as I f1 f2 Pdn m Pup n , where

is the composition operator. The processes, Pup n and
Pdn m , are formally defined as follows:

Pup n x1 x2

n 1

x1

n 1

x2

Pdn m x1 x2 xm

m

xm 1

m

xm xm 1

The up-sampling process Pup n samples out n times of
the input events, and does not result in event loss. The
down-sampling process Pdn m samples out 1

m times of
the input events. At each down-sampling cycle, m 1
events are discarded and only the last valid event value
(non-absent value) is kept. The interface first does up-
sampling and then down-sampling. If f1 f2, no event
drop, hence no data is lost. If f1 f2, events are cycli-
cally dropped. But data may or may not be lost because
the data rate may not match the event rate. If there is no
data at an event cycle, only an event with absent value
is inserted into the signal.

Pup 3 Pdn 2
1 2 1 21 2

Figure 7: A clock domain interface

Figure 7 shows the interface process network for con-
necting the clock domain f1 to the clock domain f2 with
the ratio f1

f2
2
3 . Knowing the clock rates of the re-

sources and the network, we can similarly build the inter-
face processes Irn and Inr. Our assumption is that the data-
producing speed is not higher than the data-consuming
speed. Besides, the NoC communication services guar-
antee that no data will be lost at the network. The two
conditions guarantee that there is no data loss at the inter-
faces Irn and Inr.

5.2.2 Model channel delay/jitter

We have assumed that the channel uses either of the two
virtual circuit services fulfilling the bandwidth require-
ment. If viewing from a process’s perspective, the net ef-
fect of delivering messages is delay and delay variances
called jitter. To model the channel delay/jitter, we intro-
duce stochastic characteristics to the network process Pn.
The stochastic process D min max generates a random de-
lay within a given range min max for each event. A delay
is modeled as an event with the absent value . Figure 8
shows a stochastic delay process with the jitter range 0 3 .

D 0 3
1 2 3 1 2 3

Figure 8: A stochastic delay process

After inserting the stochastic process, we receive a
channel-refined producer-consumer, as shown in figure 9.

P
P

d QInrIrn D min max
data

Q
data

Figure 9: The channel-refined producer-consumer model

5.3 Protocol Refinement

5.3.1 The acknowledged producer-consumer

Although the channel is lossless and errorless, the con-
sumer may be out of function or experience buffer over-
flow. In such a case, it is necessary for the producer to
receive an acknowledgment before sending the next mes-
sage in order to prevent the producer from overloading
the network. This results in a feedback loop from the con-
sumer to the producer shown in figure 10. If no acknowl-
edgment is received, the producer will wait and not feed
more data to the network, and the incoming data from the
process P will be silently dropped.

Inr

Irn

Irn

Inr

D min max

D min max
ack

data Qα Q

a

P d Pα

ack

d̃ data

Figure 10: The acknowledged producer-consumer model

The processes Pα and Qα in figure 10 implement the
acknowledgment protocol. The process Pα has two states,
Idle and Wait. It is modeled as a mealy FSM with the
process constructor mealySY as follows:

d̃ Pα d a
where Pα mealySY ns out Idle
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The process Qα receives data from the channel, then
passes the data to the process Q and generates acknowl-
edgment.

At this step, the producer P is refined into the two pro-
cesses P and Pα. The consumer Q is refined into the two
processes Q and Qα. The reliability is achieved through
acknowledgment.

5.3.2 Buffering

In figure 10, during waiting for acknowledgment, the next
incoming data will be silently dropped. To avoid this, a
bounded FIFO buffer process Pbuffer is inserted between
the process P and the process Pα. Data produced by the
process P is first pushed into the buffer. The process Pα
is refined into the process Pβ that has an additional signal
readBuf to read the buffer, as shown in figure 11. When
the previously sent data is acknowledged, the process Pβ
reads the buffer until successfully fetching data.

Inr

Irn

Irn

Inr

D min max

D min max

data

ack

data

ack

readBu f
P d

a

PβPbuffer

data rate: r

Qα Q

Figure 11: The acknowledged producer-consumer after
buffering

It is easily seen that, if the data-emitting speed is higher
than that of receiving acknowledgment, any bounded
buffer will eventually overflow. The fastest data-emitting
speed rmax without buffer overflow is governed by the fol-
lowing formula:

rmax rmax
f

1 2 Dmin f

where Dmin is the minimum channel delay and f the pro-
ducer’s clock frequency. The minimum buffer size is 1.

At this step, the producer P is refined into the three pro-
cesses P, Pbuffer and Pβ shown in figure 11. The consumer
Q has no change.

5.3.3 Data pipelining

In figures 10 and 11, each message is individually ac-
knowledged. The data transmission speed is limited by
the variable channel delay. This leads to a waste of chan-
nel bandwidth, and, in some cases, data loss at the pro-
ducer due to the buffer overflow. To solve this problem we
elaborate the protocol. Instead of generating one acknowl-
edgment for one received message, we can acknowledge
a batch of data altogether. After sending a batch of data
with size w, the producer waits for an acknowledgment
from the consumer. Upon receiving the acknowledgment
for the w data, the producer starts to emit the next batch of
data into the channel. In this way, the channel utilization is

largely improved. The maximum allowable data-emitting
speed without buffer overflow can be increased with a fac-
tor of nearly w, but no more than the channel capacity.
The window size w is affected by the channel delay and
bandwidth, and the consumer buffer size. It is initially de-
termined during the channel setup phase. Later it may be
dynamically adjusted in case of network congestion con-
trol. Further, we can even improve the channel throughput
by prediction. We assume an acknowledgment will come
at the right time, thus we can first emit 2 w size of data
before waiting for the acknowledgment. If the acknowl-
edgment for the first w data comes in time, the producer
starts to emit the third batch, and so forth. Otherwise, the
producer has to wait. Compared with the previous pipelin-
ing, this will improve the channel throughput by up to a
factor of two leading to a fully data-pipelined channel.

To accomplish the data pipelining, we need a counter
process at both the producer and the consumer side, shown
in figure 12. The counter process Qcounter at the consumer
side counts up to the window size w and generates one
acknowledgment. The counter process PcounterRst at the
producer side counts the number of sent data. If the win-
dow size w or 2w is not reached, more data can be fetched
from the buffer. In contrast to the process Qcounter, the
process PcounterRst is reset upon receiving an acknowledg-
ment. That means, if an acknowledgment comes, it re-
starts to count from 0.

D min max Inr

D min max IrnInr

Irn

PcounterRst Qcounter
ack

Qα
datadata

ack

readBu fdP Q

start

PβPbuffer

Figure 12: The acknowledged producer-consumer after
windowing

At this step, the producer is refined into the four pro-
cesses, and the consumer is refined into the three pro-
cesses, shown in figure 12. Now the acknowledged
producer-consumer can efficiently use the channel band-
width. Our protocol refinement objective is thus achieved.

5.4 Channel Mapping

5.4.1 Channel convergence

After the protocol refinement, the producer and the con-
sumer are mapped to their allocated resources. The chan-
nel uses the network communication services via the RNIs
on the resources. Figure 13 shows two pairs of the non-
acknowledged producer-consumer, and , and .
The two producers and are mapped to the resource

. The two consumers and are mapped to the re-
source . The two channels ch1 and ch2 use the virtual
circuits vc1 and vc2 via and , respectively.
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One pre-condition for message passing is that the chan-
nel has to be established before communicating. Since no
NoC platform can provide unlimited bandwidth, the num-
ber of channels which can be opened simultaneously is al-
ways limited. The channel setup may become the commu-
nication bottleneck. On the other hand, during the map-
ping of the producers and the consumers onto the NoC
platform, some producers may be mapped to one resource
and some consumers may be mapped to another resource,
leading to overlapped channels. In some cases, if one vir-
tual circuit can satisfy the latency requirement of these
channels, and can provide enough bandwidth, the produc-
ers and the consumers can in fact share the virtual cir-
cuit. We call this channel convergence. In figure 13, if
the latency of the virtual circuit vc1 or vc2 satisfies the la-
tency requirements of the two channels, ch1 and ch2, and
its bandwidth is not less than the sum of the two channel
bandwidth, the two channels can share the virtual circuit
vc1 or vc2.

domain
interface

domain
interface

ch1

ch2

ch1

ch2

Resource R2

ch2

vc1

vc2

D min1 max1

D min2 max2

B CA D

ch1

1 2

Resource R1 Network

Figure 13: Channel mapping and channel convergence

5.4.2 Channel merge

Merge

a3 a2 a1a3 a2 a1

b3 b2 b1 b3 b2 b1

vc
Split

b1

a1a2
b2

a3
b3 b1

a1a2
b2

a3
b3

Figure 14: Channel merge and split

Further, if the message format can contain the payloads
from the two channels, ch1 and ch2, there is a possibility
of merging the two channels into one channel. One ad-
ditional requirement is that the merged message format
should be transparent to the destination processes, and
be correctly split. In our refinement, we use the process
Merge to realize merge, and the process Split to realize
split, as illustrated in figure 14. This may decrease the
overhead of arbitrating resource sharing, for example, at

. In particular, it may benefit for synchronizing the
two consumers and . And one virtual circuit suf-
fices.

6 A Tutorial Example

6.1 The Audio Amplifier

We use an audio amplifier as a tutorial example to illus-
trate our refinement steps. The amplifier regulates the
audio input signal in response to the button levels. It is
structurally decomposed into three functional blocks illus-
trated in figure 15. The audio sampling rate is 64K bps.
There are two buttons “+” (Up) and “-” (Down) used to
increase and decrease the amplification ratio, respectively.
The maximum rate of button press is once per second.

Amplification

AudioSampling

ButtonControl

AudioIn

Buttons

AudioOut

ch2

ch1

audio stream

button signal

Figure 15: The audio amplifier and its process network

There are two channels ch1 and ch2. Both work as
the producer-consumer pattern. The system requires ac-
knowledgment for the audio channel ch1. The button
channel ch2 does not need acknowledgment, but the but-
ton signals must be delivered in order (to keep causal-
ity) within tolerable period. In the system specification
model, the audio output responds to the button press syn-
chronously.

6.2 The Distributed Amplifiers

Analyzing the channel characteristics, we know that the
two channels, ch1 and ch2, need to use a virtual circuit ser-
vice. As we have refined the general producer-consumer
model onto the virtual circuit services, we can choose one
of the refined models for both channels. According to
the system requirements, we adopt the producer-consumer
model after channel refinement (figure 9) for the button
channel ch1, and the acknowledged producer-consumer
with windowing (figure 12) for the audio channel ch2.

Then we map the two refined producer-consumer mod-
els onto a NoC. Since the button channel uses less band-
width, and the button signals contain less information bits,
we assume that it is possible to converge and merge it with
the audio channel. As a result, there are four choices for
channel mapping:

(1) Map the producers , and the consumer to
three resources , and , respectively. Both
channels, ch1 and ch2, have their own virtual circuit,
vc1 and vc2, respectively.

(2) Map the producers and to the resource , the
consumer to another resource . Both channels,
ch1 and ch2, maintain their own virtual circuit, vc1

and vc2, respectively.
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(3) Mapping is the same as in case (2). But the two chan-
nels share one virtual circuit.

(4) Mapping is the same as in case (2). But the two chan-
nels are merged into one channel.

We only take case (2) to show the whole refined system
model in figure 16. Ideally the model should be plugged
into the interface models offered by the network service
layer, specifically the ’s model and the switch’s model.
Different models yield different results. In our experi-
ments, we choose a parallel-to-serial conversion process
P S if there is a need to arbitrate resource sharing, the
points and . We choose a one-input two-output router
process R to separate channel messages according to the
channel id, the points and . The refined models for the
other three cases can be derived accordingly.
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QcounterPcounterRst
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Inr Irn

IrnreadBu f

P1

P2 Qα

ch1

ch2

ch1

D min2 max2

D min2 max2

D min1 max1

d

P S P SR R

Pβ
ch2Pbuffer

A CB

vc2

vc2

vc1

D

Network

ch2 ch2

Figure 16: The refined amplifier model (Case (2))

Given the same set of parameters such as channel de-
lays and window sizes, we have compared the four cases
in terms of the average response delay of a button press
to the amplification. In cases (1) and (2), the button sig-
nals may arrive ahead of the audio stream sampled dur-
ing the buttons pressed, resulting in amplifying the pre-
vious sent audio data. This is because the two channel
messages are delivered in different virtual circuits inde-
pendently. In cases (3) and (4) the two channels can be
synchronized since they share one virtual circuit. We can
at least conclude that sharing virtual circuit may facilitate
synchronization between channels. However, the virtual
circuit bandwidth has to be high enough (case (3)), and
the message format must be able to contain enough in-
formation (case (4)). Alternatively, data compression and
de-compression may be introduced.

7 Conclusion

With the producer-consumer interaction pattern, this pa-
per presents refinement procedures from perfectly syn-
chronous communication onto NoC communication. Dur-
ing the refinements, application requirements such as re-
liability and throughput are satisfied. In ForSyDe, all the
refinements are conducted within the functional domain,
and are an integral design phase towards implementation.

The future work will focus on the refinements for the
other three process interaction patterns defined in section

4.1, and consider the mixed effects in an application pro-
cess network comprising two or more of the four process
interaction patterns.
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