
A Network on Chip Architecture and Design Methodology

Shashi Kumar1, Axel Jantsch1, Juha-Pekka Soininen2, Martti Forsell2,
Mikael Millberg1, Johny Öberg1, Kari Tiensyrjä2 and Ahmed Hemani3

1 Laboratory of Electronics and Computer Systems, Department of Microelectronics and Information
Technology, Royal Institute of Technology, 164 40 Kista, Stockholm, Sweden

2 VTT Electronics, Box 1100, Oulu, FIN-90571, Finland
3 Spirea AB, Kista Science Park, Electrum 209, S-164 40, Stockholm

Abstract

We propose a packet switched platform for single chip
systems which scales well to an arbitrary number of
processor like resources. The platform, which we call
Network-on-Chip (NOC), includes both the architecture
and the design methodology.

The NOC architecture is a m × n mesh of switches and
resources are placed on the slots formed by the switches.
We assume a direct layout of the 2-D mesh of switches
and resources providing physical- architectural level
design integration. Each switch is connected to one
resource and four neighboring switches, and each
resource is connected to one switch. A resource can be a
processor core, memory, an FPGA, a custom hardware
block or any other intellectual property (IP) block, which
fits into the available slot and complies with the interface
of the NOC. The NOC architecture essentially is the on-
chip communication infrastructure comprising the
physical layer, the data link layer and the network layer of
the OSI protocol stack. We define the concept of a region,
which occupies an area of any number of resources and
switches. This concept allows the NOC to accommodate
large resources such as large memory banks, FPGA areas,
or special purpose computation resources such as high
performance multi-processors.

The NOC design methodology consists of two phases.
In the first phase a concrete architecture is derived from
the general NOC template. The concrete architecture
defines the number of switches and shape of the network,
the kind and shape of regions and the number and kind of
resources. The second phase maps the application onto
the concrete architecture to form a concrete product.

1. Introduction

Current algorithm on chip and system on chip design
methodologies cannot respond to the needs of the billion-
transistor area. The design would take too much time and

mapping of applications to dedicated architectures would
be impossible. The possible solutions must be searched
from platform based design and computer system design,
which rely on the reuse of components, architectures,
applications and implementations. The essential issue is
the trade-off between generality and performance.
Generality provides reusability of hardware, operating
systems and development practices, while performance
(delay, cost, power, etc.) is achieved by using application
specific structures.

We propose a NOC platform, consisting of architecture
and design methodology, which scales from a few dozens
to several hundred or even thousands of resources. A
resource may be a processor core, a DSP core, an FPGA
block, a dedicated HW block, a mixed signal block, or a
memory block of any kind such as RAM, ROM or CAM.
We base this proposal on three assumptions:
1. Moore's law will continue to hold for another five to

15 years. In that case our platform should prove useful
in the time period 2005-2015 [1].

2. Single processors will not be able to utilize the
transistors of an entire chip. Single synchronous clock
regions will span only a small fraction of the chip area
[16, 2, 3].

3. Applications will be modeled as a large number of
communicating tasks. The different tasks may have
very different characteristics (e.g. control or data flow
dominated) and origins (most of them are reused from
earlier products or from external sources) [4]. This
will make a heterogeneous implementation with
different kind of resources for different tasks the most
cost effective solution.

From this we conclude that a large number of different
kinds of blocks, each of the size of a few hundred thousand
gates, will constitute the computational resources. They
have to be connected efficiently.

Increasing non-recurring cost of these chips require that
design cost of chips must be shared across applications.
Furthermore, the same or different variants of the same
application have to be mapped onto different variants of

the product, each establishing a different solution of the
cost/performance/functionality trade-off. If this can be done
quickly and cost effectively, many product versions for
various market niches can be supported. Physical level
and architectural level design integration will be very
useful for this. This implies that physical layout and
implementation issues are kept in mind while taking
architectural decisions, or the architectural design is carried
out within constraints of physical size and a floor plan.

The proposed NOC platform would effectively separate
the specification of inter-task communication from the
implementation of that communication; separate the
design, implementation and verification of individual tasks
from the rest of the application (a precondition for task
reuse); separate the development, optimization and
verification of the individual resource from the network
infrastructure. We argue that the consequent separation of
different concerns is a way to develop high-performance,
cost-effective products while boosting design productivity.

Here is not the place to speculate about the kind of
products to be expected within five to ten years. However,
we assume that the future devices will have the following
requirements and features:
1. Processing of multiple ultra high data rate (> 100

MB/sec) streams of data including audio and video
data. The devices will be required to store this data
and process it in real time.

2. Devices will be multi-functional. The functionality
could be a mix of entertainment (like games, music
instruments), communication, remote control,
surveillance etc.

3. Devices will have high-capacity wire line or more
likely wireless interfaces to standard networks like
telephone network, Internet, and will need to be able
to handle multiple communication protocols
simultaneously

4. Security and secrecy of data stored and flowing
through these devices will become important.
Clearly, a NOC based design will not always be the

preferred solution for all kinds of applications. We expect
that NOC based designs will provide good solutions for
flexible products that should be reconfigurable and
programmable; for designs which are the basis for several
product variants; for applications with a heterogeneous task
mix; for applications with stringent time to market
requirements; for products where reuse both at the block
and the function and feature level is considered valuable.

The design costs can be justified by increasing the
implementation volumes and it is likely that the billion-
transistor chips are not designed for single product
instances or single applications. The design methodology
must therefore support product family management.
Tolerance of incomplete specifications, management of
configurations and modifications, support for multiple
languages and methods, and capability to handle different
abstraction levels simultaneously are desirable
characteristics.

Verification and testing are ever increasing challenges in
today's design routines. With every new technology
generation they are becoming more pressing. We argue that
the NOC platform effectively addresses these challenges by
separating the computation resources from each other and
from the communication network for all issues of design,
verification and testing.

In section 2, we list some other research work related to
complex system design on a chip. In section 3 we describe
the basic ideas and concepts of our proposed NOC
architecture. In section 4 we describe the principles of
design methodology for NOC based systems. In section 5
we discuss issues of physical implementation and
performance for NOC architecture.

2. Related work

It is being realized, by all research groups involved in
system level design, that it is absolutely necessary to
allow reuse of already designed components or blocks.
Gajski et. al. [5] have proposed an IP-centric embedded
system design methodology. The major challenges in the
IP centric methodologies are the interface synthesis among
various IP blocks and system verification. Recently,
Platform Based Design methodology [6] has been
proposed which not only allows reuse of components but
also reuse of system architectures and topologies. The
basic idea is that an architecture, which is suitable and
efficient for one application will also be suitable and
efficient for many similar applications. The idea of using
the same architecture (platform) for development of
application not only speeds up application design but also
reduces its verification time. Keutzer et. al. [7] have
extended the idea of platform based design by including a
layer of software on top of the hardware platform to help
application development. This layer is called Software
Platform. The combination of hardware and software
platforms is referred as System Platform. It has also been
realized that the key to reuse and integration of IP
components is the communication from the physical to the
system and conceptual level, and consequently
communication centric architectures, platforms and
methodologies have been developed [8, 9, 10].

Many architectural templates have been proposed for
hardware platforms for future SoCs. There is a general
emphasis on providing efficient and standardized
communication infrastructure for connecting multiple
resources on the chip [11, 8, 9]. There is a trend to adapt
layered approach of OSI reference model towards on Chip
communication [12, 10, 13].

It is estimated that video and audio processing are
going to be common tasks in many applications. These
applications are going to require storage and processing of
large amount of data. It is predicted that memories are
going to take around two third of the chip area in future
system on chips [14]. Many researchers have concentrated
on analyzing hierarchical organizations of memories and

optimization of memory sizes and data storage strategies
for data intensive applications [15]. Researchers have alos
simulated theoretically elegant shared memory model on
message passing parallel computers in order to develop
data intensive applications on them [19].

The future system on a chip, incorporating many
different types of processing and memory elements, has to
operate using Globally Asynchronous Locally
Synchronous (GALS) paradigm [16], at least at the
hardware level. GALS paradigm not only avoids the
problem of clock skew but also leads to lower power
consumption.

3. Network on Chip Architecture

The NOC architecture provides the communication
infrastructure for the resources. We have two main
objectives. Firstly, it is possible to develop the hardware
of resources independently as stand-alone blocks and create
the NOC by connecting the blocks as elements in the
network. Secondly, the scalable and configurable network
is a flexible platform that can be adapted to the needs of
different workloads, while maintaining the generality of
application development methods and practices.

3.1. The NOC network

We chose a simple mesh interconnection topology as
basic topology, because it is simplest from a layout
perspective and the local interconnections between
resources and switches are independent of the size of the
network. Moreover, routing in a two-dimensional mesh is
easy resulting in potentially small switches, high capacity,
short clock cycle, and overall scalability.

A NOC consists (Figure 1) of resources and switches
that are connected using channels as a mesh (Manhattan-
like structure) so that they are able to communicate with
each other by sending messages. A resource R is a
computation or storage unit or their combination. A
switch S (Figure 2) routes and buffers messages between
resources. Each switch is connected to four other
neighboring switches through input and output channels.
A channel C consists of two one-directional point-to-point
buses between two switches or a resource and a switch.
Switches may have internal queues to handle congestion.
We call this approach Chip-Level Integration of
Communicating Heterogeneous Elements (CLICHÉ).

The precise layout and geometry depends on the
technology generation. We expect that the area of a
resource is the maximal synchronous region in a given
technology. It is expected to shrink with every new
technology generation. Consequently the number of
resources will grow, the switch-to-switch and the switch-
to-resource bandwidth will grow, but the network wide
communication protocols will be unaffected. Figure 1
illustrates the principles of the physical floor plan within
the NOC. Consider a 60nm CMOS technology expected in

2008, a 22mm × 22mm chip size, and a resource size of
2mm × 2mm and a minimum wire pitch of 300nm. A
NOC would accommodate 10 × 10 resources, each switch
would occupy 30µm × 30µm and the channels would be
30µm wide. Assuming that we can use 3 metal layers for
the switch-to-switch connection we have space for 300
wires. Since we need control, handshaking and signaling
bits will yield an effective data bus width of 256 bits.

S S S

S S S

S S S

Resource

rni

Resource

rni

Resource

rni

Resource

rni

Resource

rni

Resource

rni

Resource

rni

Resource

rni

Resource

rni

S

S

S

Resource

rni

Resource

rni

Resource

rni

S S S

Resource

rni

Resource

rni

Resource

rni

S

Resource

rni

Figure 1. A NOC with 16 resources.

mux

mux

m
ux

m
ux

SWITCH

queue

queue

queue

selection
logic

selection
logic

selection
logic

selection
logic

mux

s.
log

ic

Figure 2. Block diagram of a switch.

3.2. NOC resources

The NOC would allow for arbitrary resources. Typical
examples would be embedded processor and DSP cores
provided with caches as well as local memories, dedicated
hardware resources, and configurable hardware resources.
Since the area of resource equals one synchronous clock

domain, the resource can be a combination of all previous
types. The internal communication inside a resource is
synchronous. In Figure 3 RNI=resource network interface,
P=processor core, D=DSP core, c=cache, M=memory and
re=reconfigurable block.

S S S

S S S

S S S

P
Mc

re

rni
P

Mc
re

rni

P
Mc

re

rniP

M

c rni P

M

c rni

P

M

c rni

re

rni

D M
c

rni

D M
c

rni

Figure 3. A typical NOC CLICHÉ featuring
various types of resources.

The model of computation is a heterogeneous network
of resources executing local computation. Communication
between the resources is implemented by passing messages
over the mesh network. Resources operate asynchronously
with respect to each other. Synchronization is provided by
synchronization primitives, which are implemented by
passing messages around the network. Even a non-local
memory is accessed through message passing.

In order to make the NOC interface with the outside
world dedicated resources such as I/O elements are needed.
The I/O could be of various kinds, they could glue many
NOC chips together, interface with external memory or
implement a TCP/IP interface. Interface modules also
handle data buffering and packet reordering.

3.3. Communication

Every resource has a unique address and is connected to
a network via a switch. It communicates with the switch
through a RNI. Thus, any resource can be plugged into the
network if its footprint fits into an available slot and if it
is equipped with an RNI. The NOC defines four protocol
layers:
1. The physical layer determines the number and length

of wires connecting resources and switches.
2. The data-link layer defines the protocol to transmit a

cell between a resource and a switch and between two
switches. Both, the physical and the data link layer are
dependent on the technology. Thus, for each new
technology new technology generation these two
layers are defined. Let w be the number of wires in the
physical layer and c be the cell size of the data link

layer. We expect that c=n(w-wc) with n=1,2,3 or 4.
For n=2,3 or 4 the channel would be pipelined,
accommodating n data link cells at any time instant.
wc is the number of control wires required by the
physical layer, e.g. synchronization signals.

3. The network layer defines how a packet is transmitted
over the network from an arbitrary sender to an
arbitrary receiver directed by the receiver's network
address. This layer is again technology dependent and
each network layer packet, together with the
destination address, is exactly 1 data link cell. Thus,
taking up our previous example, we have w=300 and c
may be 290. We need roughly 10 bits for the address
and a few control bits (e.g. a hop count) for switching.
Hence, the network packet would be 256 bit.

4. The transport layer is technology independent. The
transport layer message size can be variable. The RNI
interface has to pack transport layer messages into
network layer packets.

The RNI implements all four layers towards the network.
The switch-to-switch interfaces implement only the three
lower protocol layers. The basic communication
mechanism envisioned among computing resources is
message passing. However, it is possible to add additional
protocols on top of the transport layer to provide for
instance a virtual shared memory abstraction, which will
help the programmers in development of data and
computation intensive application.

3.4. Regions and wrappers

A 2-D mesh topology provides access to all resources
of the NOC, it is scalable and it has a simple structure.
However, there are applications for which CLICHÉ
structure is not suitable for performance reasons. Examples
can found from parallel computation, digital signal
processing and data flow processing areas.

A region G is an area inside the NOC, which is
insulated from the network and which may have different
internal topology and communication mechanisms. The
concept of region allows for resources of larger size than
the atomic slots in the mesh. In this way development,
management, communication and instantiation concerns of
various regions can be separated. Regions are connected to
the NOC by special communication arrangements called
wrappers W, which route packets so that regions are
insulated from external traffic. Specific IO wrappers Wio

allow communication between the region and its
environment. It is also responsible for converting the
messages into appropriate format. Thus, the region concept
in NOC can be seen to address four aspects:
1. A region can be used to dedicate a set of resources and

a part of the network to a specific task like processing
of streaming-oriented data, processing of block-
oriented data or parallel processing.

2. One can arrange communication inside a region
differently than in the other regions. A NOC designer
may e.g. want to define a region with high

communication capacity for efficient work-optimal
implementation of shared memory abstraction [20].

3. A region can be used to insulate a set of resources
from the traffic happening between the resources not
belonging to the region.

4. A region can be used for encapsulating a specific
technology into a NOC. For example an area dedicated
to FPGA or embedded memory could be larger than
the area of resource.

However, the shape of regions cannot be arbitrary but
their boundaries must be convex. This definition of
regions imply that resources requiring high-capacity
intercommunication need to be placed into the same
region, because wrappers between regions may cause some
constraints to capacity and latency of communication.
From the point of view of the network layer, regions do
not form separate sub-networks, instead they can be
considered as just lightweight mechanisms to organize
communication in a more efficient and rational way.

4. Backbone-Platform-System Methodology

Our NOC concept is based on the idea to have a
backbone based application specific platform where the
final applications can be mapped as software or
configurable hardware. Combination of design productivity
and system quality requirements has led us to the
backbone-platform-system design methodology (BPS). The
idea with the BPS is to encapsulate the design work into
reusable platforms. A NOC based system consists of a
hierarchy of structural and behavioral objects, e.g.
backbone, platform and system concepts. BPS has two
main phases, platform development and application
mapping, as depicted in Figure 4.

Even in a small 4x4 meshes of switches and resources
there are 16 subsystems with a complexity of current state-
of-the-art SOC design each. Management of such
complexity must be based on extremely structured
architecture and extensive reuse. In BPS methodology the
generic, structured architecture and system development
principles are described as a backbone concept.
Development of several SOC complexity level
subsystems, e.g. resources in CLICHÉ topology, must be
based on the reuse of optimized virtual components or
even computer systems. If we assume that current SOC
design has a moderate complexity of 10 million gates,
then even in small 4x4 mesh the hardware complexity
would approach 200 million gates.

The computational capacity of NOC based system
depends on the type of resources. If we assume that
resources are general-purpose processor based computer
systems with a capacity of 1000 MIPS each, the 4x4 mesh
would have a total capacity of 16 GIPS. In real system,
part of the capacity would be wasted due to
communication and allocation problems, but it is obvious
that reuse of applications, middleware and system
architectures is required.

Communication
structure

Processors
and hardware

Code and
configuration

Platform
development

Application
mapping

Optimised
virtual
components

Optimised
intellectual
property

“Application area
specific IPR”

“Product
specific IPR”

Generic backbone

Product area specific platform

NOC system

Figure 4. NOC based system design.

4.1. Backbone design

The NOC backbone encapsulates the topological and
communication issues such as channels, switches, and
network interfaces. The backbone is the development
platform for all NOC based systems, so it is important
that every system follows the basic operation principles
defined in the backbone.

During the backbone design the focus is the network
communication resources, e.g. switches and interfaces, and
NOC system services and performance of different region
topologies. From the definition of resource area follows
that the connections between neighboring switches and the
switch design are issues where physical design has an
important role. The system-level communication
challenges the technological limits. The amount of wires,
wire lengths, synchronization, and buffering are all
problems were physical layout and characteristics sets
constraints. Customized region topology enables NOC
based systems were the quality of the application mapping
is optimized in the beginning. Definition of region
requires that potential applications are analyzed and
modeled. Mathematical and performance analyses and even
performance simulations are the main tools to be used.

4.2. Platform design

The objective of platform development is to create a
computation platform for an intended application area.
Scaling of the network, definition or regions, design of the
resource nodes, and definition of the system control are the
main activities. It requires thorough understanding of the
functionality of the target systems, but due to the platform

nature it is not possible to use exact applications as a
starting point for architecture requirement definition. Use
of optimized virtual components and knowledge of
application-area requirements are essential in managing the
complexity and performance requirements of the target
system. During the development the characterization of
application area domain and architecture and system
quality estimations are essential tools. The application area
specific platform encapsulates the hardware design
problems and serves as a manufacturing integration
platform for system developers.

For example, in 4x4 mesh CLICHÉ system, we have to
define and design 16 resources, e.g. 16 communicating
computer systems, if the NOC platforms would be used
for the parallel implementation of heterogeneous
applications. If we want to optimize the platform for some
specific application area, we certainly need very efficient
ways of making the right decisions and new figures of
merit to describe the quality of NOC. Currently used
metrics: performance, utilization, capacity must be adapted
to handle temporal and spatial effects that are inevitable
with target systems. For example with combined
communication and computing systems, the required
architectural features may vary from bit-based processing to
parallel manipulation of huge data sets. The
communication throughput and latency requirements are
different in the same way.

4.3. System design

In the application mapping the functionality of
application is mapped to the resources. The NOC concept
should ultimately support both dynamic and static
mapping of applications, but the main problems with both
are the resource allocation, optimisation of network usage
and verification of performance and correctness. Basically
these issues are rather similar to what distributed and
parallel system designers have to face.

The proposed NOC platform is very heterogeneous. The
resources can vary from configurable hardware to
multiprocessor computers of almost every type. Therefore,
several modeling languages should be supported by NOC
application development environment making it easy to
integrate different tools into the design flow. As with
platform design, the decision support and quality
validation needs special attention and new approaches.

4.4. Methods and tools

Implementation of the BPS methodology or any other
design flow for NOC systems will be a challenge for EDA
industry. The traditional SOC, platform, and intellectual
property based design flows must be extended to cover
network-related issues, e.g. distribution and parallelism
effects as described in Table 1.

Table 1. Design responsibilites during
different phases of NOC development.

Instance Responsibilities during design
Backbone
development

Region types
Communication channels and switches
Network interfaces of resources
Communication protocols (specification)

Platform
development

Region scaling
Resource design (units, interconnections)
Dedicated hardware blocks
System level control (implementation of
communication, diagnostics, monitoring)

Application
development

Resource level control (OS)
Functionality of resources (SW, configurable
HW)
Control of the network
Functionality of the network

Our NOC backbone defines the implementation of the
network. The main task for designer at system level is to
decide what to put into the NOC as resources, how to map
functionality into those resources, and how to validate the
decisions. The actual design relies on the reuse of virtual
components and intellectual property, and enhanced
methods and tools to support them are required. Especially
at system level it is important to use abstract models and
descriptions of both resources and applications. Otherwise
the computational complexity of analyses, estimations and
simulations will exceed the computational capacity of
design tools. In traditional system design approaches the
design space exploration has been done using with
analytical approaches or with similar design methods and
tools than the actual design. Most often, only the
abstraction level of system models has been different.

In NOC design, we propose a clear distinction between
decision making support, development and verification
methods and tools. The decision environment should
include methods for advanced complexity estimation,
resource selection, and network analysis. Complexity
estimation is needed for the scaling of NOC and for region
type selection. The characteristic of computation is one
issue that needs to be added to operational complexity. In
the resource selection the mappability of algorithms and
architectures is one alternative extension to currently used
performance metrics that could provide more knowledge on
the potential quality of the system. Similar analysis could
be used during application mapping. Analysis of network
behavior is a critical part of region definition and
allocation of resources to functions. Modeling of network
behavior, workload characterization and efficient
simulation are the potential methods, if adapted to NOC
concept. The development and verification environments
should provide a virtual machine and development
environment for software development, and tools for
hardware design. Complexity is the biggest challenge in
both. Abstraction, partitioning of problems and
distribution of computation looks as viable alternatives.

5. Discussion

Design of a new product using NOC architecture is
similar to the problem of designing a computer network
with some computing and communication requirements.
We have adapted ns-2 from Univ. of Berkeley at
California, to study various design options in NOC
architecture and their effect on performance[17].

0

0,05

0,1

0,15

0,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

log2 Buffer size

D
ro

p
P

ro
ba

bi
lit

y

 80 Mb/sec
100 Mb/sec
120 Mb/s
150 Mb/s
190 Mb/s

Traffic rates

Figure 5. Drop probability vs. buffer size.

We have used a homogeneous 5 x 5 NOC architecture
for our simulation experiments. In particular, we have
studied the effect of buffer size in switches and network
traffic (called network load) on delay and probability of
message loss. These simulation experiments have been
carried out using various types of network traffic cases like
random traffic and local traffic and mix of these. The
figure below shows relationship between the probability of
a packet being dropped verses the size of buffer in the
switch for each direction. We have assumed that a link
between two switches supports a maximum traffic of
200Mbits/sec. Various lines in the graph show the drop
probability verses buffer size for various actual traffic rates.
We observe that for actual traffic of up to 100Mbits/sec,
the drop probability is very close to zero if a buffer size of
four packets is used. Traffic rate is controlled by
controlling the rate at which a subset of resources generate
packets and by controlling the destination address of the
generated packets. The traffic generated for this study had a
mix of local and random traffic. We have carried out many
other similar experiments [17].

These simulation studies have resulted in many
interesting conclusions: For moderate traffic, a buffer size
of 8 messages for each direction leads to almost zero drop
probability. Message delay increases with buffer size as
well as network load. Message delay is more sensitive to
network load than to buffer size. If the network load
increases beyond 50% of network capacity, then it is
impossible to avoid message drop even with large buffers.

This study helps us to decide size of buffer in switches.
It also emphasizes the need for good mapping of
applications to the NOC architecture so that the resulting
traffic is local to a small area of the NOC. This will reduce
network traffic.

5.1. Physical Aspects of NOC

We have investigated some physical issues in the
design of the switches and the inter-switch connections for
on-chip communication networks like NOC [18]. In
particular, we have compared two distinct layouts for a
switch, called “thin switch” and “square switch”. In thin
switch, the switch functionality is distributed around a
resource and wires are routed across the resources. A
square switch is placed on the crossings in dedicated
channels left between resources. The wires are routed in
these channels.

We have considered wireability, delay and maximum
signal bandwidth between switches, positioning of pads
and positioning of repeaters in our study. The study has
been conducted based on the 60nm CMOS technology
expected in about 6 years. The main conclusion is that in
five years 10 x 10 NOC architectures will be feasible. It
will be possible to route 256 wires between a resource and
a switch and between two neighboring switches in the
mesh. The study also shows that the square switch option
is superior with respect to performance and bandwidth
while the thin switch requires relatively low area.

5.2. System development

The main objective for the NOC development
environment will be to separate different concerns and
activities and to shield some tools and design tasks from
details in other tools and tasks.

The BPS methodology tries to benefit from reuse as
much as possible and to give support for application
development. The idea has also been to find an optimal
balance between manufacturing and system level
integration platforms. The role of the backbone is to
provide a solid starting point for ASIC design with
guidelines and flexibility.

The NOC system development environment will
provide layered system services, which will shield an
application developer from the details of the NOC lower
level architecture. It will provide application level
communication, synchronization, memory management,
and resource management services.

Design tools, which map applications onto the NOC,
must eventually implement all communications between
resources by means of the three protocol layers provided by
the network. This can be considered as a contract. If the
applications comply with these protocols the network
guarantees the communication services. Ideally we would
like to extend this contract also to performance issues, for
instance with a contract where applications guarantee a
maximum number of messages per time unit and the
network guarantees a maximum transport delay of all
messages. It is part of our future work to define the
conditions under which such a contract is feasible.

6. Conclusions

In this paper we have described an architectural
template, called network on chip architecture, for
developing large and complex systems on a single chip.
The architecture supports physical level and architectural
level design integration. Basic communication mechanism
between resources is envisioned to be packet switched
message passing through the switches. NOC architecture
defines four layered inter-resource communication protocol
(physical, data-link, network and transport layer), which
are adapted from OSI standard. These protocols must be
implemented in the resource to network interface (RNI) for
every resource in NOC. We have also described a two-
phase design methodology for developing systems for the
proposed NOC architecture.

The NOC concept has been necessitated by three
factors: First there is the increasing demand of on-chip
interconnect bandwidth. The second equally crucial factor
is to amortize the enormous engineering cost involved in
designing such large chips over multiple applications. The
third factor is demand for easy-to-use methods to exploit

the parallel processing capacity provided by multiple
computational resources. Programmable interconnectivity
and efficient implementation of shared memory abstraction
are keys to provide this generality.

Before NOC architectural template can be used to
develop applications, one needs to work out the details of
architecture, communication, design flow, and system
services. Currently we are building many simulators for
evaluating various architectural and communication
options at different levels. We are also interested in
analytical analysis of architectural options for NOC.

7. Acknowledgements

We gratefully acknowledge many valuable discussions
we had with Dr. Li-Rong Zheng and Dinesh Pamunuwa.
This work is a part of the joint Finnish-Swedish EXSITE
(Explorative System Integrated Technologies) research
program. This work was sponsored by TEKES (The
National Technology Agency of Finland), VINNOVA
(Swedish Agency for Innovation Systems), Nokia Oyj,
Ericsson Radio Systems AB, and Spirea AB Kista.

References

[1] Semiconductor Industry Association, International
Technology Roadmap for Semiconductors, World
Semiconductor Council, Edition 1999, 1999.

[2] D. Sylvester and K. Keutzer, “Getting to the Bottom
of Deep Submicron”, Proc. of the Int. Conference on
Computer-Aided Design, 1998, 203-211.

[3] D. Sylvester and K. Keutzer, “Getting to the Bottom
of Deep Submicron II: a global wiring paradigm”,
Proc. of the 1999 Int. Symp. on Physical Design,
1999, 193-200.

[4] C. Szyperski, Component Software: Beyond Object
Oriented Software, Reading, MA, ACM/Addison
Weseley, 1998.

[5] D. Gajski, R. Dömer and J. Zhu, “IP-Centric
Methodology and Design with the SpecC Language”
in System Level Design, Edited by Ahmed A. Jerraya
and Jean Mermet, Nato Science Series 357, 1999.

[6] F. Vahid and T. Givargis, “Platform Tuning for
Embedded Systems Design”, IEEE Computer 34, 3.

[7] K. Keutzer, S. Malik, A. Newton, J. Rabaey and A.
Sangiovanni-Vincentelli, “System Level Design:
Orthogonolization of Concerns and Platform-Based
Design”, IEEE Trans. on Computer-Aided Design o f
Integrated Circuits and Systems 19, 12 (Dec. 2000).

[8] W. Dally and B. Towles, “Route Packets, Not Wires:
On-Chip Interconnection Networks”, Proc. of the
Design Automation Conference, Jun. 2001.

[9] D. Wingard, “MicroNetwork-Based Integration of
SOCs”, Proc. of the 38th Design Automation
Conference, Jun. 2001

[10] M. Sgroi et. al., “Addressing the System-on-a-Chip
Interconnect Woes Through Communication-Based
Design”, Proc. of the 38th Design Automation
Conference, Jun. 2001.

[11] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg,
M. Millberg, and D. Lindqvist, “Network on Chip:
An architecture for billion transistor era”, Proc. o f
the IEEE NorChip Conference, Nov. 2000.

[12] A. Jantsch, J. Soininen, M. Forsell, L. Zheng, S.
Kumar, M. Millberg, and J. Öberg, “Networks on
Chip”, Workshop at the European Solid State
Circuits Conference, Sep. 2001.

[13] L. Benini and G. DeMicheli, “Powering Networks on
Chip”, Proc. of the 14th Int. Symp. on System
Synthesis, 33-38, Oct. 2001.

[14] F. Catthoor, D. Verkest, and E. Brockmeyer, ”Proposal
for unified system design meta flow in task-level
and instruction –level design technology research
for multi-media applications”, Proc. 11th Int. Symp.
on System Synthesis, 1998, 89-95.

[15] P. Panda, N. D. Dutt, and A. Nicolau,, ”Local Memory
Exploration and Optimization in Embedded
Systems”, IEEE Trans. on Computer Aided Design o f
Integrated Circuits and Systems 18, 1 (1999), 3-13.

[16] A. Hemani et. al. , ”Lowering power consumption in
clock by using Globally Asynchronous Locally
Synchronous Design style”, Proc. of Design
Automation Conference, 1999, USA.

[17] Yi-Ran Sun, “Simulation and Performance
Evaluation for Network on Chip”, MSc thesis, Dept.
of Microelectronics and Information Technology,
Royal Institute of Technology, Stockholm.

[18] Dinesh Pamunuwa et. al., “ A study of Physical Issues
in the design of an on-chip regular communication
network”, submitted to DAC 2002.

[19] V. Leppänen, Studies on the realization of PRAM,
Dissertation 3, TUCS, University of Turku, 1996.

[20] M. Forsell and S. Kumar, Virtual Distributed Shared
Memory for Network on Chip, Proc. of the 19th IEEE
NORCHIP Conference, Nov. 12-13, 2001, Kista.

