
The Usage of Stochastic Processes
in Embedded System Specifications

Axel Jantsch, Ingo Sander, Wenbiao Wu
Royal Institute of Technology, Stockholm, Sweden

ABSTRACT
We review the use of nondeterminism and identify two dif-
ferent purposes. The descriptive purpose handles uncertain-
ties in the behaviour of existing entities. The constraining
purpose is used in speci�cations to constrain implementa-
tions. For the speci�cation of embedded systems we suggest
a stochastic process � instead of nondeterminism. It serves
mostly the descriptive purpose but can also be used to con-
strain the system. We carefully distinguish di�erent inter-
pretations of these concepts by the di�erent design activities
simulation, synthesis and veri�cation.

1. INTRODUCTION
Nondeterminism as a modelling concept has been used

with two di�erent objectives. One objective is to capture
an aspect of the world which is not completely known and
which behaves in an unpredictable manner. We call this
usage the descriptive purpose. The second objective is to
designate di�erent possibilities for implementation, which
we call the constraining purpose.
Following Dennis and Gao [4] we use the terms \determi-

nate" and \deterministic" in the following sense. An entity
is deterministic if its entire internal mechanism is fully func-
tional, i.e. in each part and in each step the same output is
produced for the same input. An entity is determinate if its
externally visible behaviour is functional, i.e. if the entity
always produces the same output for the same input. Thus,
a nondeterministic system may be determinate but a non-
determinate system cannot be deterministic. Our interest
here is mainly in what can be observed from outside, hence
we mostly use the term determinate.
Nondeterminism describes a situation where we do not

have enough information to predict a speci�c behaviour. If
we say an entity E generates 0s and 1s nondeterministically,
we admit that we cannot predict what the next generated
value will be. We cannot exclude any possibility, not even
corner cases such as that no 1 is ever produced. If we require
that E is fair, we constrain its behaviour and request that

Submitted to CODES 2001

if E produces an in�nite sequence, it must produce both in-
�nitely many 0s and in�nitely many 1s, thus it cannot block
the generation of 1s forever. To require that the generated
sequence has a speci�c stochastic distribution, is a stronger
constraint. It means not only that the number of 0s and 1s
must be in�nite in an in�nite sequence, we also de�ne the
relative number of 0s and 1s. For instance if we request a

uniform distribution we require that the ratio count(0)
count(1)

be-

comes 1 when the sequence length becomes in�nite.
Nondeterminism allows to express uncertainties and dif-

ferent possible behaviours. In contrast a determinate model
can only express one de�nite behaviour explicitly. Thus,
nondeterminism increases the expressiveness of a modelling
language. However, nondeterminism makes the task of anal-
ysis, formal veri�cation, validation by simulation, and syn-
thesis much more complex.
We argue that it is bene�cial to use a stochastic distribu-

tion instead of nondeterminism for three reasons. First, very
often we know more about an entity than nondeterminism
would suggest. E.g. we know that its behaviour follows a
speci�c probabilistic distribution. The additional informa-
tion can be useful for simulation, synthesis and validation.
Second, stochastic behaviour can be modeled by means of
a pseudo random generator, which essentially is determi-
nate. In this way we can avoid some of the di�culties that
come with nondeterminism, but increase the expressiveness
as compared to determinate models. Third, nondeterminate
behaviour can be approximated by stochastic behaviour. In
particular fair nondeterminism can be approximated rather
well by a stochastic process. We acknowledge that nonde-
terminism cannot be fully simulated by a stochastic process
but we have not yet encountered a concrete example where
it is an advantage to use a nondeterminate model rather
than a stochastic one.
In the next section we trace the history of determinate

and nondeterminate models which forms the context for our
proposal to use a stochastic process to get almost the ex-
pressiveness of nondeterminate models and to keep almost
all the advantages of full determinism. Then we introduce
some basic concepts of the Formal System Design (ForSyDe)
methodology which sets the context for the discussion there-
after. In section 4 we introduce the stochastic � process. In
section 5 we discuss transformations which re�ne stochas-
tic processes into non-stochastic, determinate processes. Fi-
nally we conclude the paper in section 6 with a general dis-
cussion on the use of stochastic processes.

2. RELATED WORK

2.1 The Descriptive Purpose
In theoretical computer science nondeterminism has re-

ceived continuous attention over decades due to the di�cul-
ties to deal with it in a satisfactory manner. On one hand
nondeterminism has been considered mandatory as a mod-
elling concept when writing distributed programs. When
these programs are compiled and executed on a particular
machine, the delays of computation and communication de-
pend on the details of the target machine. If the di�erent
delays potentially lead to di�erent behaviour, the abstract
program is nondeterminate. Hence, nondeterminism is used
to capture the timing behaviour of the target machine.

2.1.1 Determinate Models
However, the inclusion of nondeterminism severely com-

plicates the attempt to de�ne a precise semantics for a com-
puter program. One track of research has therefore excluded
nondeterminism by de�ning the semantics of a language in
such a way, that its behaviour is independent of the execu-
tion delays of the target machine. In Kahn's language for
parallel programs [7] both the individual processes as well as
an composition of processes are determinate functions over
in�nite input streams. Kahn's semantic is very elegant and
useful and had long lasting in
uence on various research di-
rections and application �elds. But the restriction that he
imposed for the sake of determinate behaviour sometimes
impede the programmer to formulate more e�cient solu-
tions to a problem. For instance one restriction in Kahn's
language is that processes cannot test for the emptiness of
an input channel, a feature known as \blocking read". Of-
ten it is obvious to a programmer that resources are better
utilized if a process may check if input data is available and
do something else if it is not.
While Kahn process networks and its descendants, e.g.

data
ow networks, took the approach to de�ne a behaviour
which is independent of timing properties, the perfectly syn-
chronous languages [1] impose on any implementation the
constraint that it has to be \fast enough". For programs
and their implementations which ful�ll this assumption, the
behaviour is determinate, again by separating timing prop-
erties from the behaviour.
Clocked synchronous models have been used in hardware

design to achieve the same. A circuit behaviour can be de-
scribed determinately independent of the detailed timing of
gates, by separating combinatorial blocks from each other
with clocked registers. An implementation will have the
same behaviour as the abstract circuit description under the
assumption that all combinatorial blocks are \fast enough".
This assumption has been successfully used for design, syn-
thesis and formal veri�cation of circuits.
In summary, determinate models achieve determinate be-

haviour by separating timing properties from behavioural
properties. Variants of Kahn process networks de�ne the
semantics such, that any behaviourally correct implementa-
tion is acceptable independent of its timing. On the other
hand perfectly synchronous and clocked synchronous mod-
els divide possible implementations into two classes, those
which are \fast enough" are acceptable and those which are
\too slow" are not acceptable.

2.1.2 Nondeterminate Models
Nondeterminism has been studied in data
ow networks

with asynchronous, in�nitely bu�ered communication and

in process algebras with synchronous, unbu�ered communi-
cation.
One approach to generalize Kahn's theory for nondeter-

minate process networks is to use history relations rather
than history functions. A history relation maps an input
stream onto a set of possible output streams instead of a
single determinately de�ned output stream. However, his-
tory relations are not su�cient to model nondeterminism.
Brock and Ackerman [2] showed with examples that two
components with identical history relations, if placed in the
same context of a bigger system, may cause the system to
behave in a di�erent way, i.e. the system has di�erent his-
tory relations. This means, that history relations are not
su�cient to capture all relevant information about a com-
ponent. In particular causality information between events
must be included. Brock [2, 3] gave a formal semantics based
on history relations and scenarios, which represent causal-
ity. Kosinski [8] described a semantics for nondeterminate
data
ow programs based on the idea to annotate each event
with the sequence of nondeterminate choices that leads to
that event. Park's formal semantics of data
ow [10] models
nondeterminism with oracles. Each nondeterminate merge
operator is provided with an extra argument called the ora-
cle. It is a random sequence and controls from which input
stream the next token for the output stream is selected. We
follow this idea to some extent but replace the nondetermi-
nate oracle with a stochastic oracle.
Hoare's CSP (Communicating Sequential Processes) [5]

and Milner's CCS (Calculus of Communicating Systems)
[9] have been developed in response to two di�culties with
data
ow models. First, it appeared di�cult to �nd ele-
gant solutions for the formal semantics of nondeterminate
data
ow languages. Second, data
ow models require un-
bounded bu�ers for communication which lead to di�culties
in implementation. In almost the entire work on process al-
gebras nondeterminism is assumed and signi�cant e�ort has
been spent to establish properties, equalities, and methods
to guarantee a speci�c behaviour of the system in the pres-
ence of nondeterminism. For CCS, Milner de�nes the con-
cept of weak determinacy [9], which is based on observational
equivalence. A system in a given state with given inputs can
enter a set of di�erent successor states nondeterministically.
If the system in all successor states behaves identically, as
far as it can be observed from the outside, the system is
weakly determinate. A somewhat broader concept is weak
con
uence. A system is con
uent if for every two possible
actions, the occurrence of one can never preclude the other.
Thus, even though one of the two is selected nondetermin-
istically the other will eventually also occur. Milner then
gives a set of construction rules which preserve con
uence
[9].
In summary, determinate models restrict the model to

guarantee a well de�ned behaviour in the presence of non-
deterministic mechanisms. To the same end the construc-
tion process is constrained for nondeterminate models. Non-
deterministic mechanisms are part of the implementation
realm for the determinate models and part of the models
themselves for the nondeterminate models.

2.2 The Constraining Purpose
For the purpose of describing requirements on a system

various techniques related to nondeterminism have been used.
Relations divide the possible responses of a system to a given

input into two parts: those acceptable and those not accept-
able. execution time(Program)<5ms and size(Chip)<1cm2

are two relations constraining the nonfunctional properties
of a system. The relation de�ning a sorted integer array has
been used numerous times as an example of a functional re-
quirement. Dennis and Gao [4] describe the example of a
transaction server, which accepts requests at several inputs
and processes them (�gure 1). The merge process, which

Transaction

Server

-

-
-

-

-�
�
�
�

..
.

Requests

M
e
rg
e

Figure 1: A transaction server with request merger.

decides the order in which requests are served, is subject
to several functional and nonfunctional constraints. Appar-
ently each request should eventually be served. Perhaps
we require that the average response time is similar for re-
quests on all input lines. And most likely we would like to
have a high performance of the merge operator itself while
minimizing its implementation cost. Clearly, the functional
speci�cation should not de�ne a determinate merge mecha-
nism to allow the allow the design process to �nd the best
solution. The speci�cation should rather be content with
de�ning all allowed behaviours.
While relations constrain the functionality, perfectly syn-

chronous and clocked synchronous models constrain the tim-
ing behaviour. With respect to functionality these models
are fully determinate, hence we have discussed them in sec-
tion 2.1.1. However, with respect to timing they constrain
the implementation to be \fast enough".

3. ForSyDe METHODOLOGY
In order to make the features of stochastic � processes

(section 4) understandable we need to introduce a few key
concepts of the Formal System Design (ForSyDe) Methodol-
ogy for which we have developed the � process. ForSyDe [12,
13] is a fully determinate system speci�cation and modelling
technique. It adopts the perfectly synchronous assumption
that neither communication nor computation takes time. It
employs skeletons, which give the system description a struc-
ture, separate functionality from timing, and have explicit
interpretations for hardware and software implementations.
Skeletons are templates for processes which are connected
by streams. In the following section we introduce the � pro-
cesses and the ForSyDe skeletons which encapsulate them.

4. THE � PROCESS
A � process is a pseudo random generator with a de�ned

statistical distribution. We use it in two ways.
First, we use it to constrain the implementation of the

system with respect to behaviour. Depending on the precise
kind of the � process, the implementation may or may not
be required to respect the statistical properties of the spec-
ifying process. Note, that we do not use the � process to
constrain the timing behaviour. For the timing behaviour
we strictly follow the approach of the synchronous languages
by requiring that the implementation is \fast enough" [13].
Second, environment elements can be modeled with � pro-

cesses when we cannot or do not want to represent their

exact behaviour or timing. We think a statistical distribu-
tion is more appropriate than nondeterminism. Consider
an ATM switch which receives ATM cells from the environ-
ment. The type of ATM cells, user cells, alarm cells, mainte-
nance cells, erroneous cells, etc., follow a statistical distribu-
tion. To generate ATM cells according to given probabilities
is both more accurate and more useful for the design and
validation of the ATM switch.

- -&%
'$
�n<s;r;m;d>

... ,Integer&%
'$
�u<s;r>

... ,Integer

Figure 2: The � processes for uniform and normal

distributions. s denotes the seed value, r the range,

m the mean value, and d the standard deviation.

A � process is instantiated with a few parameters which
de�ne the statistical properties of the generated in�nite stream
of integers (�gure 2). The �u process generates a uniform
distribution within a given range r and the �n process gen-
erates a normal distribution de�ned by the mean value m

and the standard deviation d. � processes for other dis-
tributions can be de�ned as needed. The � processes are
true functions because they use a pseudo random genera-
tor which is initialized with a speci�c seed value s. For the
sake of simplicity we use only �u processes in the rest of the
paper.
In the ForSyDe methodology we assign di�erent interpre-

tations to the � processes, depending on the design activity.
The description that we have given above is the interpreta-
tion for simulation. For synthesis and veri�cation we adopt
a di�erent interpretation. We distinguish two variants:
A synthesized sigma bar process �� can generate any of the

possible outputs of a �� process without restriction. The out-
put of the synthesized process may or may not have the sta-
tistical properties of the speci�cation process. For instance a
synthesized ��u<s;[0;1]> could be implemented in such a way,
that it generates always a 0 and never a 1. On the other
hand sigma tilde processes ~� have to be implemented such
that the statistical properties are preserved.
The merge of the transaction server in �gure 1 de�nitely

requires a ~� process. However, consider the bar-merge op-
eration illustrated in �gure 3. In each processing step the

&%
'$
��u<s;r>

-
-

-

-

�
�
�
�

bar-merge:

if (bi = 0)

else emit yi; xi

then emit xi; yi
O

... ; x1; y1; y0; x0
... ; x1; x0 I2

... ; y1; y0 I1

Ictrl... ; b1; b0

Figure 3: A merge which uses a �� process.

bar merge receives one token from each of its two inputs I1
and I2 and emits the two tokens in arbitrary order. Since
we do not want to specify the order of the two output tokens
deterministically, we use a �� process to drive the third input
of the bar-merge. If that token is a 0, �rst an x and then a
y is emitted; if it is a 1, the tokens are emitted in reversed
order. For the implementation we are free to select any or-
der; we may select a hardwired solution to always emit x

before y.

Formal veri�cation and analysis is only allowed to use
the statistical properties of the sequences generated by �,
which are guaranteed by any implementation. Hence, formal
analysis follows the interpretation of synthesis.
If desirable, more process types with di�erent interpreta-

tions can be de�ned. For instance it should be investigated
if a � process type with a fair synthesis and analysis inter-
pretation is useful.

4.1 ForSyDe Skeletons
Strictly speaking the ForSyDe models are still fully de-

terminate because � processes are based on pseudo ran-
dom generators to produce sequences with speci�c statistical
properties. Then we request synthesis and veri�cation tools
to respect only these statistical properties and to ignore the
speci�c values of those sequences.
The � processes are not directly visible to the user. ForSyDe

is based on skeletons which provide the system structure and
the system timing. Furthermore, skeletons have speci�c in-
terpretations in the context of design and implementation
which allow for an e�cient, template driven synthesis [12].
Consequently, we use skeletons to encapsulate the � pro-
cesses.
In the following we discuss one simple ForSyDe skeleton,

namely mapS. mapS repeatedly applies a combinatorial func-
tion on individual values of the input stream and thus pro-
duces the consecutive values of the output stream. Now we
develop a variant which also contains a � process. We can
do this in two di�erent ways. First, we can use a select
operator which applies one out of two functions on an input
value depending on the result of a � process. Second, we
can internalize the choice into the combinatorial functions.
In this paper we only present the �rst option.

&%
'$
~�u<s;[0;1]>

�

�

�

�
-

-

-

O

if (bi = 0)

else emit g(xi)

then emit f(xi)

select1:

... ; g(x1); f(x0)

I

Ictrl
... ; b1; b0

... ; x1; x0

Figure 4: The selMapS skeleton.

The skeleton selMapS uses the select operator and a �

process sigma to apply one out of two functions repeatedly
on the values of the input stream (�gure 4). select(x; b; f; g)
evaluates to f(x) if b = 0, and to g(x) if b = 1. selMapS
takes four instantiation parameters. f and g are the two
functions which are possibly applied to the values of the in-
put stream. s is the seed for sigma, and sigmatype de�nes
if sigma is a bar or a tilde process.
Stochastic variants can be developed for many other ForSyDe

skeletons in a similar way.

5. TRANSFORMATIONS
ForSyDe is a transformation based methodology [14], which

distinguishes between semantic preserving and decision mak-
ing transformations. When a � process is re�ned into an
implementation, typically a design decision is made. In this
section we give examples of transformations that transform
a � process into a non-stochastic implementation. As we
will see, each transformation embodies a particular design
decision.

For the sake of conciseness we do not use the ForSyDe
language but an abbreviated notation. As example we use a

- FIFO

- FIFO

"!

-

-
?

-
dmerge

w

v

smerge

�

�u<s;[0;1]>

u

Figure 5: A merge process with a stochastic oracle.

simple merge process, which is borrowed from D. Park [10]
and adopted to our needs. Both inputs are bu�ered with
in�nite FIFOs as illustrated in �gure 5. The bu�ers prevent
loss of data if there is temporarily more data on the two
inputs than can be emitted to the output. We assume the
bu�ers are in�nite to concentrate on the merge operation
itself. We use the following conventions: f and g are de-
terminate functions implementing the merge operation. u; v
and w are in�nite sequences at the inputs and outputs. a

and b are individual data values in these streams. We use
the dot notation to concatenate values and streams, e.g. a:u
is a value a followed by the stream u. ? is a token in the
stream indicating the absence of a value. Remember that
we use a perfectly synchronous model, which means that we
can detect when no data is available at a particular time
instance. The FIFOs do not store ? tokens but an empty
FIFO emits a ? at each time instance. � is the in�nite
streams of 0s and 1s coming from the � process. With this
we de�ne the dmerge of �gure 5 as follows.

dmerge � f(a:u; v; 0:�) = f(u; a:v; 1:�) = a:f(u; v; �)

dmerge takes the �rst token from one of the input streams,
depending on the current value from the � process, and
emits it to the output. The stochastic merge smerge con-
tains dmerge and the � process.
Strict round robin: One possible implementation of

smerge is strict round robin as de�ned by strictRR:

strictRR � f(a:u; v) = a:g(u:v)
g(u; b:v) = b:f(u; v)

strictRR transmits even ? tokens. This may be no problem
if the load on both input streams is on average less than or
equal to half the bandwidth on the output stream. If this
is not the case our merge process cannot handle the inputs
quickly enough, even if the combined load on both input
streams is less then the bandwidth of the output stream.
The reason is that we dedicate a full time slot alternately to
each input stream independent if there is a value or not.
The ForSyDe transformation rule for transforming a smerge

into a strictRR merge is

smerge strictRR = [] j= smerge, strictRR

smerge strictRR is the name of the rule. The expression
in square brackets is the premise of the rule, which in this
case is empty because strictRR is equivalent to smerge.
Let wn be the nth element in stream w, and let Pv(wn) be
the probability that wn 2 v. Then it is easy to see that
Pv(wn) = Pu(wn) = 0:5 for both smerge and strictRR.
?-sensitive round robin: If above solution is not ac-

ceptable we can adopt a round robin procedure which is

sensitive to the absence of values.

sensitiveRR � f(? :u; b:v) = b:g(u; v)
f(a:u; v) = a:g(u; v) a 6=?
g(a:u;? :v) = a:f(u; v)
g(u; b:v) = b:f(u; v) b 6=?

The problem here is that we deviate from the behaviour
of the smerge even with respect to the stochastic proper-
ties. We can still formulate a transformation from smerge to
sensitiveRR but only under certain conditions. Let P0(�n)
be the probability that the nth element of the �-stream is 0,
and let Pp(vn) be the probability that the nth element of v
is a valid data, i.e. it is not ?. Then we can formulate the
transformation rule as follows.

smerge sensitiveRR =
[8n : P0(�n) � Pp(vn) ^ P1(�n) � Pp(un)]
j= smerge, sensitiveRR

The premise here relates the stochastic properties of the �

process to the stochastic properties of the input streams u
and v. For instance, if the � process has a uniform distri-
bution as in �gure 5, the load on both inputs must be less
than or equal to 50%, which is equivalent to the require-
ment that 8n : Pp(vn) � 0:5 ^ Pp(un) � 0:5. Consequently,
if we expect di�erent loads on the input streams, we have
to adapt the � process accordingly in order to maintain the
same stochastic properties for speci�cation and implemen-
tation. This will work as long as the combined load of the
input streams is less or equal to the maximum load on the
output stream.
Unfair arbiter: The sensitiveRR may be a more e�-

cient solution but not the best one for all situations. Assume
we have to maximize throughput and we have to pay a high
delay penalty when we switch from one input stream to the
other. On the other hand, our FIFOs are su�ciently long to
bu�er even long bursts. For this the unfair arbiter unfairA
might be a preferable solution.

unfairA � f(? :u; b:v) = b:g(u; v)
f(a:u; v) = a:f(u; v) a 6=?
g(a:u;? :v) = a:f(u; v)
g(u; b:v) = b:g(u; v) b 6=?

unfairA transmits data from one input as long as there is
input. It only switches to the other input when a ? is en-
countered.
The corresponding transformation rule is

smerge unfairA =
[8n : P0(�n) � Pp(vn) ^ P1(�n) � Pp(un)]
j= dmerge, sensitiveRR

Note, that the premise here is the same as for sensitiveRR,
because we assume in�nite bu�ers at the inputs of the merge.
However, the choice of the merge implementation has an
impact on the required bu�er size. For the sake of brevity
and comprehensiveness of this discussion we have assumed
in�nite bu�ers, which allows us to operate with stochastic
properties on in�nite streams. To select a �nite bu�er size
for the FIFOs we must consider stochastic properties of �-
nite subsets of the in�nite streams. This is beyond the scope
of this paper but we would like to emphasize, that the basic
principle is the same, which is to relate a design decision
to stochastic properties of the environment. These relations
are expressed in the premises of transformation rules as ex-
empli�ed above. In our methodology we use the premises

as documentation and, partially, as proof obligations. They
document the design decisions taken, under which condi-
tions they are allowed, and how these decisions constrain
other parts of our system or the environment. If the premises
constrain other parts of our system, e.g. if the input streams
to the merge originate within our system, we have to prove
that the a�ected parts comply with these constraints. In
this way stochastic properties are propagated through the
system until they can be �rmly based on properties of the
environment.

6. USAGE OF STOCHASTIC SKELETONS
In the introduction we have stated that we use the stochas-

tic skeletons with similar objectives as nondeterminism. We
have also discussed brie
y how di�erent design activities
should interpret these skeletons. Now we summarize our
objectives and delineate them from issues that we do not
intend to address.

6.1 The Descriptive Purpose
One important application of stochastic skeletons is to

model environment components. Very often we do not know
the exact behaviour of the environment, or that we do not
care about all details. The uncertainty about the environ-
ment concerns both the functional as well as the timing be-
haviour. With nondeterminism we allow di�erent environ-
ment behaviours and we give no further information about
how likely the di�erent cases are. If we add a notion of fair-
ness we exclude a few speci�cally undesirable possibilities.
However, very often we know a bit more and we would like
to assign probabilities to the di�erent possible behaviours.
The simulations that we can perform based on probabilistic
environment behaviour will be often more realistic.
We have to acknowledge though, that the notion of nonde-

terminism is broader than any speci�c probability distribu-
tion, because it encompasses all possible probabilistic distri-
butions. A nondeterminate process may generate sequences
of numbers which exhibit any possible probability distribu-
tion, while a stochastic process can only generate sequences
with a given probability distribution. However, for two rea-
sons we doubt that this di�erence is of practical importance.
First, any sequence that a nondeterminate process can gen-
erate, can also be produced by a stochastic process. Second,
all implementations of simulators which allow to simulate
nondeterminate behaviour, use in fact some stochastic pro-
cess for this. Our computer technology does not allow us to
simulate nondeterminate behaviour which does not follow
a speci�c probability distribution. These arguments justify
the substitution of a nondeterminate process by a stochastic
process. However, we go even further and claim that it is
an advantage to do this. If a user includes a nondetermi-
nate process in a model, she has no control over what the
implementation of the simulator is in fact doing. Since a
nondeterminate process may generate any sequence of num-
bers, the implementor of the simulator typically selects one
of the possibilities which is most convenient for her. But
this decision is often unknown to the end user who uses the
simulator. On the other hand the simulator must respect
de�ned statistical properties. Thus, the end user has a bet-
ter control over the behaviour of the model. Furthermore,
by using pseudo random generators a particular simulation
run is repeatable which greatly helps debugging.
While we advocate strongly the usage of stochastic pro-

cesses for the description of the environment, we do not pro-
pose them for describing uncertainties of the system under
design. In the context of speci�cation we �nd the notion,
that we do not know the exact behaviour, with respect to
timing or function, not satisfactory. We design, implement
and manufacture the system. So in principle we have full
control and knowledge about it if we decide to dedicate the
necessary e�ort. Sometimes we may not want to spend the
e�ort because we do not care as long as the behaviour falls
into a given class or range of acceptable behaviours. Conse-
quently, we prefer the notion that we constrain the system.
We do this although we acknowledge that in software de-
velopment the uncertainty about timing properties of the
underlying hardware machine was the foremost motivation
for nondeterminism. However, we do not address problems
of general software development but we discuss the speci�ca-
tion and modelling of embedded systems, hardware and em-
bedded software, where we always are concerned with per-
formance issues and we often face hard timing constraints.
Therefore we �nd the concept of constraining the timing
behaviour of the implementation more appealing than the
assumption, that the timing behaviour could be arbitrary.

6.2 The Constraining Purpose
The functional and timing behaviour of a system imple-

mentation can be constrained in a variety of ways and stochas-
tic processes should only be used in some speci�c cases. The
ForSyDe methodology uses a perfectly synchronous timing
model, which is very well suited to constrain the timing
behaviour. Both in hardware and in embedded software de-
sign, a synchronous design style has been used with great
success. It e�ectively separates functionality from timing is-
sues. Static timing analysis can be done independently from
functional validation and veri�cation. A rich set of pipelin-
ing and retiming techniques have been developed to tune
the timing behaviour while keeping the functionality.
The general method to express constraints on the func-

tionality is by means of relations. In the early phase of sys-
tem development, the requirements analysis phase, general
requirements and constraints are formulated in terms of rela-
tions. However, because relations allow a huge design space,
e�cient synthesis techniques. A system speci�cation model,
which captures most of the high level design decisions, is
therefor a necessity [6]. This model should be determinate
because nondeterminism greatly complicates synthesis and
validation.
However, as we tried to illustrate in several examples in

this paper, there are occasions when we would prefer to
leave several options open in order to give the later design
phases more opportunities to �nd optimal implementations.
Stochastic processes are a good way to address this issue.
For simulation they allow to exercise all possibilities which
might occur in a concrete implementation. Synthesis can
exploit the possibilities that a stochastic process exposes.
Validation can use their statistical properties to verify sys-
tem properties.

7. CONCLUSION
We have thoroughly reviewed the history of determinate

and nondeterminate models to reveal the inherent trade-o�
involved. Determinate models are signi�cantly easier to an-
alyze, verify and synthesize. On the other hand nondetermi-
nate models are more expressive. For the speci�c purpose of

speci�cation of embedded mixed hardware/software systems
we propose to use stochastic processes to approximate the
expressiveness of nondeterminate models while preserving
much of the analytic capabilities for determinate models.

8. REFERENCES
[1] Albert Benveniste and G�erard Berry. The synchronous

approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270{1282, September
1991.

[2] J. Dean Brock and William B. Ackerman. Scenarios:
A model of non-determinate computation. In J. Diaz
and I. Ramos, editors, Formalism of Programming
Concepts, volume 107 of Lecture Notes in Computer
Science, pages 252{259. Springer Verlag, 1981.

[3] Jarvis Dean Brock. A Formal Model for
Non-deterministic Data
ow Computation. PhD thesis,
Massachusets Institute of Technology, 1983.

[4] Jack B. Dennis and Guang R. Gao. Multiprocessor
implementation of nondeterminate computation in a
functional programming framework. Technical Report
Computation Structures Group Memo 375,
Laboratory for Computer Science, Massachusetts
Institute of Technology, January 1995.

[5] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666{676, August
1978.

[6] Axel Jantsch and Ingo Sander. On the roles of
functions and objects in system speci�cation. In
Proceedings of the International Workshop on
Hardware/Software Codesign, 2000.

[7] Gilles Kahn. The semantics of a simple language for
parallel programming. In Proceedings of the IFIP
Congress 74. North-Holland, 1974.

[8] Paul R. Kosinski. A straight forward denotational
semantics for nondeterminate data
ow programs. In
Proceedings of the 5th ACM Symposium on Pronciples
of Programming Languages, pages 214{219, 1978.

[9] Robin Milner. Communication and Concurrency.
International Series in Computer Science. Prentice
Hall, 1989.

[10] David Park. The 'fairness' problem and
nondeterministic computing networks. In De Baker
and van Leeuwen, editors, Foundations of Computer
Science IV, Part 2: Semantics and Logic, volume 159,
pages 133{161. Mathematical Centre Tracts, 1983.

[11] Ingo Sander and Axel Jantsch. Formal design based
on the synchronous approach, functional models and
skeletons. In Proceedings of the Twelfth International
Conference on VLSI Design, 1999.

[12] Ingo Sander and Axel Jantsch. System synthesis based
on a formal computational model and skeletons. In
Proceedings of the IEEE Computer Society Annual
Workshop on VLSI, 1999.

[13] Ingo Sander and Axel Jantsch. System synthesis
utilizing a layered functional model. In Proceedings of
the 7th International Workshop on Hardware/Software
Codesign, pages 136{141, May 1999.

[14] Wenbiao Wu, Ingo Sander, and Axel Jantsch.
Transformational system design based on a formal
computational model and skeletons. In Proceedings of
the Forum on Design Languages, September 2000.

