Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Functional Validation of Mixed Hardware/Software
Systems based on Specification, Partitioning, and
Simulation of Test Cases

Axel Jantsch, Royal Institute of Technology, Stockholm, Sweden,
Johann Notbauer, Thomas Albrecht, Siemens Austria AG, Vienna, Austria.

Abstract: Tecs is a test case development methodology for the functional validation of large
electronic systems, typically consisting of several custom hardware and software components. The
methodology determines a hierarchical top-down test case development process including test
case specification, validation, partitioning and implementation. The test case development process
addresses the functional validation of the system and its components such as ASICs, boards, HW
and software modules; it does not facilitate timing or performance verification. The system
functions are used to define test cases at the system level and to derive sub-functions for the system
components. Test cases are specified, using a special purpose formalism, and validated before they
are applied to the system under test. Furthermore, we propose a technique to partition test cases
corresponding to the partitioning of the system into sub-systems and components. This technique
can significantly reduce system simulation time because it allows the full validation of system
functions by simulation at the sub-system and component level. The system model must only be
simulated with a reduced set of stimuli to validate the interfaces between sub-systems. We present
a test case specification language and tools that support the proposed methodology. The validation
of a switching function illustrates methodology, language, and tools.

1. INTRODUCTION

For the validation of system functionality, simulation is the most important means today. In the
past, the entire system has very often not been validated at all before the first product samples were
manufactured. This is not an advisable procedure any more, because the high complexity makes
errors quite likely, which are only visible at the system level. The simulation of complex systems is

a demanding task, in particular when software modules are included. The simulation setup consists
of the system under test, a set of test cases, and a testbench which includes the system’s environ-
ment to the extent it is necessary in the simulation. The development of the test cases at the system

Page 1

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

level constitutes a major development effort. Table 1 shows the lines of code for typical public

Table 1. Lines of code (LOC) for system level test cases

LOC of Number Average LOC of
LOC of
test- of test LOC per test-
System
cases cases test case bench
VHDL 690 725 2500 50 23679
Project A 50
Assembler 0 290 000 5800 0
VHDL 1925076 39 658 502 357 208
Project B 79
Assembler 541 000 256 592 3248 0

switching network components and the lines of code for the system level test cases and the test-
bench. Projects A and B are described in more detail in [1] and [2], respectively. In project A no
software modules have been included in the system simulation, but in project B we also integrated
SW modules, such as device drivers, real-time operating system, boot software, into the system
simulation activity with the Eagle HW/SW cosimulation framework from Synopsys [9]. Each test
case covers one or several connected system functions which typically involves two or more sys-
tem components, either HW or SW. The system simulation has to validate that the components
work together properly and the system functions are executed as specified. This validation of sys-
tem functions is beyond individual components.

Simulation time at system level is extensive, as can be seen in Table 2, in particular because each

Table 2. Simulation and simulated time per test case

simulated time simulation time
min average max min average max
Project A 800 s 3 hours

50 test cases

Project B 150ps | 300ps | 16000us | 10min | 5hours| 40 hours
79 test cases

test case has to be simulated again for each modification and enhancement of the design to guaran-
tee that a design modification did not break an already tested and approved system function. A
complete regression simulation takes 150 hours and 395 hours of simulation time for projects A
and B, respectively. To minimize simulation time the test cases must not overlap such, that the
same function is validated twice.

For illustration of system functions and test cases consider a simple switch (Figure 1), which we
will also use throughout the paper to introduce important concepts. It can connect any of its two
inputs with any of its two outputs. The state variables determine which output is connected to

Page 2

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Switch
il ol
Prstate_vl| |
—>i2 state_v2 = -

T cmnd input

FIGURE 1. A switch with 2 data inputs, 2 outputs, 1 command input, and 2 state variables whjch
determine the connectivity.

which Input. For the functional validation of the switch It Is only relevant what type of events it

accepts at the inputs, what type of events it produces at the outputs, and certain important internal
state variablesSystem functiorsndtest caseare then described in terms of events and state vari-
ables. Examples for system functions for the switch are: Transmitting an event, which is received
at one of the data inputs, to one of the outputs, depending on the values of the state variables;
Changing the state variable as reaction to specific events on the command input. Test cases have to
validate system functions. Thus, a test case might inject a specific event at the command input,
which sets the state variable 1 such, that the output 1 is connected to the input 1; then it injects a
data event at input 1; finally it checks, if the data event appears at output 1 after a certain delay, and
if it appears at output 2; if it appears at output 1 but not at output 2, the system has passed the test
case.

In the following we present a systematic top-down method for the specification and implementa-
tion of test cases. The main objectives for methodology and tools are:

* to allow to specify test cases unambiguously;

* to support the detection of overlapping test cases;
* to support the detection of unchecked functions;

¢ to minimize simulation time;

* to partition test cases in a formal way.

A complete system specification reference model is desirable but not current practice. Conse-
guently, the Tecs methodology does not assume such a model. Instead, the human designer is sup-
ported by modelling elements at thght abstraction level and by an analysis tool which conveys
important information effectively.

The Tecs methodology proposes a top down development of test cases in parallel to the develop-
ment activities starting in early system specification and design phases. This allows the validation

Page 3

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

engineer to influence the development, e.g. to make system functions easier to simulate or to influ-
ence the order in which system functionality is developed. A strong coordination of design and
validation activities is of particular importance to remove the validation phase from the critical
path in the project and to minimize overall development time. Thus, design-for-validation becomes
a reality as much as design-for-test is today. Figure 2 illustrates how the test case development fits

System specification

— v

Hardware specification | | Test case specification
and simulation

— | T

| Synthesizable VHDL| | Test case implementatiorl

Development l \

7

Software specification|

—

Compilable C

and validation HW simulation
Hardware HW-SW cosimulation

manufacturing

\

| System integration

Development
and validation

uonepifea pue juawdojonsp osed

FIGURE 2. Design process with the Tecs validation method

into the system development process.

The methodology does not address timing or performance verification. Hence, it has to be comple-
mented with timing analysis. Since the test case model is based on a synchronous execution, the
timing analysis can be static and has only to verify, that the individual actions in each time slot can
be performed in the given time. Traditional static timing analysis can be applied to the hardware
parts. For the software parts, static task scheduling in conjunction with software performance anal-
ysis can be used.

The rest of the paper is organized as follows. Section 2 discusses related work, Section 3 describes
the test case development methodology, Section 4 discusses the test case partitioning method,
Section 5 describes the Tecs language and tools, and Section 6 illustrates Tecs with a switching
system application.

2. RELATED WORK

We discuss relevant work in three separate sections, the test case development methodology, the
test case specification language and the test case partitioning technique.

Page 4

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

2.1 TECS Methodology

The proposed test case development methodology targets mixed hardware/software embedded sys-
tems, which typically consist of a few structural hierarchy levels: system level, board level, ASIC
level, and blocks and cores inside the ASIC. System design methodologies which target similar
applications, do not formulate functional system validation as an independent activity, but it is
integrated into the design activities. Calvec [7] for instance describes in great detail a system
development methodology and also emphasizes the need for validation in all phases. However, no
method to specify and develop test cases is described.

The software engineering literature treats testing extensively. Complete software testing methodol-
ogies cover a variety of design phases, from requirements testing to maintenance testing, and
applications such as client-server applications and graphical user interfaces [12, 19, 20, 27]. For
instance, the 1ISO has standardized a general testbench development notation, TTCN [21], and the
ITU has standardized a notation to describe message sequences in test cases, MSC [5]. Telelogic
has developed a tool suite around these notations allowing sophisticated test development, specifi-
cally targeted towards protocol testing in telecom applications [22, 23]. These tools are used in
conjunction with SDL and recently also with UML [24]. Our methodology is more specifically tar-
geted towards development of embedded systems, where hardware and software are co-designed
in a combined VHDL-C setting. Much of the testing literature in software engineering is con-
cerned with guidelines and rules to help engineers write unambiguous, consistent and complete
test cases, e.g. [12, 19, 20, 26]. It is often application specific, e.g. for user interfaces or protocols.

Structural testing [28, 29] derives coverage metrics and test cases from the implementation and
strives to cover every statement, every branch, or every path. Behavioural testing [19] avoids
assumptions about the structure and implementation and derives test cases from requirements and
functional specification. It uses various techniques based on control flow, data flow, data access,
state space analyses, etc. It applies these techniques at both the component and the system level
and pays special attention to the integration of components. Our approach falls into the category of
behavioural testing but unlike other methods, we focus on the systematic derivation of component
and interface test cases from system test cases. This is complementary to other behavioural testing
techniques, which focus on the definition of the test cases. It is beneficial when used in conjunction
with them, because it provides almost a guarantee, that at the component and interface level all
system level tests are covered. Therefore, it has the potential to significantly reduce simulation
time at the system level. This is of particular importance for heterogeneous implementations, when
different parts require different simulation environments, such as mixed hardware/software sys-
tems.

Page 5

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Most methodologies and textbooks on software testing emphasize the need for automatic test case
generation from a requirements definition or system specification document, e.g. [17, 25], and
there exist many tools which support automatic test case generation. We fully agree, that this is the
ultimate goal. However, we realize that today the overwhelming majority of industrial projects for
development of embedded systems do not write or utilize a specification at a higher level than
VHDL or C++. One reason is a lack of an appropriate system level specification language, which

is underscored by recent industrial and academic attempts to develop such a language [13, 14, 15,
16]. Our methodology and the test case specification language addresses the current need, to spec-
ify and develop test cases in the absence of an apropriate requirements definition or system specifi-
cation model. Once an appropriate system specification is well established and test cases can be
automatically generated, our methodology would merge into the development of the functional
system specification, adding the definition of the test cases to the system specification. The pro-
posed partitioning of test cases would be part of such a unified methodology, providing a technique
to refine test cases according to the structural refinement of the system.

2.2 Tecs Language

Our proposed test case specification language, the Tecs language, is event and state oriented in the
sense of [17], which makes it similar to languages based on finite state machines, e.g. [3, 8]. Itis
not a full-fledged modelling language but is specialized to facilitate test case specification and sim-
ulation analysis. For instance, events in Tecs are defined by their origin and cause and not by their
effect as in most other languages. This does not mean a different model of computation but has
proved to be more efficient in practice for analysis of system and test case behaviour.

In that sense Tecs is similar to message sequence charts, standardized by the ITU [5]. However,
message sequence charts do not define actions which we require to simulate the test cases. The
timing diagrams described in [6] are also focused on events but the main emphasis is on temporal
relationships and interface implementation, while our focus is on causal relationships and the func-
tional behaviour. The Tecs language is specialized for the specification and simulation of test cases
in a synchronous system which requires the description of causal event chains.

Although the Tecs language has certain interesting features, its main purpose is to demonstrate, at
which abstraction level test cases should be specified. Furthermore, we use it as foundation to for-
malize refinement and validation tasks, which faciliates improved tool support. In [10] and [11] the
Tecs language and the simulation environment, which includes a VHDL generation tool, has been
described. Based on this, we focus in this paper on the overall validation methodology and on the
test case partitioning method.

Page 6

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

2.3 Test case Partitioning

Automatic test case partitioning to derive test cases for sub-systems and components has, to the
best of our knowledge, not been addressed in the literature. It is not related to partition testing [18],
which refers to a general family of testing strategies, which partition the domain of input variables
into ranges. The behaviour of a system in reaction to inputs is equivalent in some sense for values
within one patrtition. This allows for a significant reduction of test cases. In contrast, we address
the partitioning of system level functional test cases into sub-test cases according to the system
structure.

In summary, Tecs addresses the problem of defining and refining test cases for an embedded sys-
tem consisting of custom hardware and software parts. The test case partitioning technique is a
novel contribution, which has been developed as part of the Tecs methodology, but is more gener-
ally applicable to other test case development methodologies. Together, methodology, language
and partitioning technique address a relevant problem in today’s system development, which, to
the best of our knowledge, has not been adequately addressed elsewhere.

3. TECS METHODOLOGY

The Tecs methodology determines a hierarchical top-down test case development process consist-
ing of the following steps (Figure 3):

1. Enumeration of system functions;

2. Definition and development of a test case for each system function in the Tecs notation (test
case definitions and system function descriptions in the Tecs notation are fully automatically
translated into VHDL for simulation);

3. Partitioning of the system functions into sub-functions vis-a-vis the partitioning of the system
into boards, ASICs, cores, hardware blocks and software modules;

4. Partitioning of test cases (will be fully automated);

5. Implementation of the sub-function test cases and their simulation in the system simulation
environment; (The compilation of test cases into VHDL/C/assembler will be fully automated;
the comparison of simulation results will be partially automated.)

Note, that the enumeration, definition and partitioning of system functions would ideally be part of
the design flow. However, if it is not it must be done in the test case development.

Page 7

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Test case Development Flow Design Flow

System Specification

1. Enumeration of system
functions;

2. Definition of system test cases

Partitioning into boards,
ASICs, HW modules,
cores, SW modules

3. Partitioning of system functions

4. Partitioning of test cases

5. Implementation of sub-function
test cases

FIGURE 3. Test case development flow in relation to the design flow.

Component Specification

3.1 Step 1: Enumeration of system functions

In the first step all the system functions are enumerated and intuitively defined. This set basically

specifies what the system must fulfil in order to be considered a “good” system. If one of the sys-

tem functions is not performed correctly, the system is faulty.

An example set of system functions for the switch in Figure 1 is shown in Figure 4.

the data event to output 1;
the data event to output 2;
the data event to output 2;

the data event to output 1;

SF 5: If an event “connect-il-to-01” appears at the command input, set state variable 1 such,
connects output 1 with input 1 and it does not connect output 1 with input 2;

SF 6: If an event “connect-i2-to-01” appears at the command input, set state variable 1 such,
connects output 1 with input 2 and it does not connect output 1 with input 1;

SF 7: If an event “connect-i2-to-02” appears at the command input, set state variable 2 such,
connects output 2 with input 2 and it does not connect output 2 with input 1;

SF 8: If an event “connect-il-to-02” appears at the command input, set state variable 2 such,
connects output 2 with input 1 and it does not connect output 2 with input 2;

is not connected to any input;

2 is not connected to any input;

FIGURE 4. Set of system functions for the 2x2 switch.

SF 1:If a data event appears at input 1 and if state variable 1 connects input 1 with output 1, trapsmit
SF 2:1If a data event appears at input 1 and if state variable 2 connects input 1 with output 2, trapsmit
SF 3:If a data event appears at input 2 and if state variable 2 connects input 2 with output 2, trapsmit

SF 4:1f a data event appears at input 2 and if state variable 1 connects input 2 with output 1, trapsmit

that it

that it

that it

that it

SF 9:If an event “disconnect-01” appears at the command input, set state variable 1 such, that odtput 1

SF 10:If an event “disconnect-02” appears at the command input, set state variable 2 such, that putput

Page 8

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

This set also defines the task of the validation engineers. They must eventually convince them-
selves and the project management that their test cases would detect any malfunction of the sys-
tem. Thus, the selection and formulation of the system functions is critical, because all relevant
functionality of the system must be covered, but the mutual overlapping of test cases should be
kept to a minimum to avoid superfluous implementation and simulation effort. However, it is much
easier to achieve this at the system level than at the component level, because the total number of
system functions is much smaller than the number of component functions. Furthermore, system
functions are usually more obvious and much easier to comprehend than component functions.

3.2 Step 2: Test cases for system functions

In the next step for each system function one or more test cases are developed. A test case consists
of a description of the system function itself and a sequence of stimuli from the environment. An
example test case, which tests the first system function in Figure 4, is shown in figure 5

Set the state variable 1 such, that input 1 is connected to output 1;

inject a data event at input 1;

check if the data event appears at output 1 or output 2;

if it appears at output 1 but not at output 2, the system has passed the test case.

FIGURE 5. Test case for system function 1 of figure 4.

The system function is modeled in the Tecs notation together with the environment for this partic-
ular function. The function’s environment provides input and reactive stimuli to the function and is
essentially the test case. It also contains test expressions to detect errors in the system’s response.
Thus, the system function’s environment is a complement of the function. This means the function

is actually modelled twice: once directly and once as its complement with a built-in error detection
mechanism. In this way the confidence is increased that the intended functionality is modelled cor-
rectly.

This step is crucial in finding the minimum set of test cases which covers all the systems function-
ality. The Tecs methodology supports this by (a) providing the right abstraction level, (b) allowing

to simulate the test case specifications, and (c) visualizing the simulation output in a graphical
form. The right abstraction level for test case specification allows the user to deal with relevant
system states and events. For the switch example, the relevant system state for a test case developer
is the connection status of the switch, i.e. which input is connected with which output. The relevant
events are commands, which change the connection status, e.g. CONNECT and DISCONNECT
events, and data packets applied at the switch inputs and emitted at the switch outputs. The value
of the data packets is not relevant. Thus, the test case developer will formulate test cases dealing
only with these events and states, and would not like to be concerned about how these events and

Page 9

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

states are realized. At this level of abstraction the test case developer can much easier devise a set
of test cases, which fully cover the desired functionality with a minimum amount of overlap
between test cases. If she/he had to do this at the test case implementation level, it would be much
harder because simple events like CONNECT might involve long descriptions on how to code the
message, how to implement the protocol to talk to the switch, many checks about consistency of
states, data and responses, availability and allocation of resources, etc.

The simulation and the visualization of simulation results greatly facilitates the analysis and
understanding of the test cases. In particular, the visualization with the relevant events and system
states as visible objects is a crucial help in understanding, which event and state sequences are trig-
gered and covered by a test case. An example of such a visualization is given in Figure 18.

3.3 Step 3: Partitioning of functions

Since it cannot be expected that all system functions can be simulated and validated with the entire
system, test cases for system components must be defined and simulated. To this end the system
functions defined in step 1 are partitioned into sub-functions which can be assigned to specific
components of the system. Hence, the partitioning of the system functions into sub-functions mir-
rors the structural partitioning of the system into boards, ASICs, cores, hardware blocks and soft-
ware modules.

Assume that the switch is implemented with an architecture shown in Figure 6. The buffer and the

receiver 1 - g
il L Wity - ¢ trans-
— | S | mitter 1 [T
5 ol
"
receiver 2 controller g]?t’t‘g;) -
12 02
|cmnd

FIGURE 6. The 2x2 switch is implemented with a high speed buffer, into which thp
inputs from the receivers are serially written, and a sequencer, which reads out|the
buffer in a sequence, which is determined by the connectivity status of the switcir.

sequence operate on twice the speed of the inputs and outputs. The receivers write the received
packets in a fixed order into the buffer. The sequence reads out the packets from the buffer in an

Page 10

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

order, determined by the connectivity status of the switch, and passes them on to the transmitters in
fixed order. This requires that the buffer can store at 4 packets. The controller interprets the com-
mands and configures the sequencer accordingly.

The system functions from step 1, must be broken down into sub-functions according to this archi-
tecture. For instance, the first system function in Figure 4 would be partitioned into sub-functions

Sub-function 1.1 (receiver 1) If data appears at the input of transceiver 1, propagate it to the Outplllt of
receiver 1;

Sub-function 1.2 (buffer). If data appears at input 1 of the buffer, store it at location 1;

Sub-function 1.2 (buffer): If a request comes from the sequencer naming a certain storage locdtion,
transmit the data on that location to the sequencer;

Sub-function 1.3 (sequencer)lf the sequencer’s state variable connects input 1 with output 1, reqpest
data from storage location 1 from the buffer and pass the data to the transmitter 1.

Sub-function 1.4 (transmitter 1): If data appears at the input of transmitter 1, propagate it to the qut-
put of transmitter 1;

FIGURE 7. Sub-system functions derived from system function 1 (figure 4) for the architecture in
figure 6. 'Ie

as illustrated in figure 7. From this example it becomes apparent, that functions and sub-functions
are not independent from each other. For instance for the sequencer a sub-function has to be for-
mulated which serves many of the system functions.

3.4 Step 4. Partitioning of test cases

Test cases defined at the system level are partitioned with the technique described in Section 4 in
correspondence to the partitioning of system functions into sub-functions. In fact, steps 3 and 4
must be repeated several times depending on the depth of the hierarchy of the structural partition-
ing of the system. Frequently we encounter two to four levels in the hierarchy: 1: system; 2: board;
3: ASIC; 4: HW block and SW module.

For our example of the switch, we need to derive sub-test cases from the test case in figure 5 for
each of the sub-functions in figure 7 to take care of system function 1. Since system functions are
not independent from each other, sub-functions and their corresponding test cases exhibit some-
times a high degree of redundancy. The challenge is, to derive a minimal set of sub-test cases
which together check the system function but allow simulation at the sub-system level as much as
possible.

Page 11

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

3.5 Step 5: Test case implementation and simulation

Up to this point the system under observation has not been simulated, and only in the last step the
test cases are coded in a combination of VHDL, C, and assembler and simulated together with
parts of the system or the entire system, which is modelled in C and VHDL.

3.6 Function and test case validation

The correct behaviour of a system function is checked in three ways as illustrated in Figure 8: (A)

TC for system function system function

(Tecs notation)

Simulation
(Tecs notation)

e

o oo
2

(.5 -
=| Comparison (C)
g
o

Y

TC for system function
(VHDL, Assembler)
A A

el
e
(A) (B)

FIGURE 8. Validation of the behaviour of a function.

System
(VHDL, Assembler)

Simulation

the test case implementation contains automatic checks; (B) validation engineers compare the sim-
ulation result with their intuitive understanding of the function; (C) the system simulation result is
compared with the simulation result of the Tecs model; an automation of this step is feasible and is
intended in the future.

Note, that Tecs models cannot directly be simulated but are translated into VHDL first. But this
translation is not identical to the implementation of a test case, which in general is a mixture of
VHDL and C or assembler code. For the sake of simplicity this translation step is not shown in fig-
ures 8 and 9.

Furthermore, the test case specification and implementation are validated and checked in several
ways as illustrated in Figure 9§ The Tecs specifications are simulatef8l; éll test cases for sub-
functions are simulated together and validated against the Tecs model of the function at the next
higher level; §) the simulation results of the test case implementation with the unit under test are

Page 12

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

a
TC for system function m system function
(Tecs notation) (Tecs notation)

Partitioning Partitioning

(@)

function 1

TC for function 1
(Tecs notation)

Simulation

(Tecs notation)

a

Simulation

function 2
(Tecs notation)

TC for function 2
(Tecs notation)

TC for system function
(Tecs notation)

Simulation system function

(Tecs notation)

Partitioning Partitioning

B Comparison

(b)

TC for function 1
(Tecs notation)

function 1
(Tecs notation)

Simulation

function 2

function 2

(Tecs notation) (Tecs notation)

FIGURE 9. Test case validation.

compared with simulation results of the test case spechication, which 1s 1dentical 1o (C
(Figure 8).

above

This complex procedure might seem to be an exaggeration, because the test case partitioning has
been proven to be correct. However, there are still two main possibilities, where errors can be

introduced. The partitioning of functions into sub-functions, which define the test case partition-

ing, could be flawed, and at several points simulation results are investigated manually with the

possibility to miss false behaviour. Hence, this procedure still cannot guarantee correct implemen-

tations, but it results in a very high confidence that errors in the system are detected.

Page 13

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000
4. TESTCASE PARTITIONING

4.1 Introduction

We first introduce test case partitioning intuitively before we develop the method formally in the
following sections. Figure 10 illustrates the overall flow. Given a system function, a test case to

System function Test case for
system function

P s

Partitioning into Event sequence chart
sub-functions

N /

Partitioning of the
event sequence chart

l

Derivation of test cases
for sub-functions and
interfaces

FIGURE 10. Test case partitioning flow. Input to the test case partitioning is the partitioning |of
system functions into sub-functions and event sequence charts, generated by applying a test cage on a
system function.

validate this function, and a partitioning of the function into sub-functions are derived. The parti-
tioning of a system function into sub-functions corresponds typically to the structural partitioning

of a system into sub-systems and components. The test cases for sub-functions are not directly
derived from the system function test case, but indirectly via the generation and partitioning of
event sequence charts. An event sequence chart is generated by applying a test case to a function,
typically by simulation. Although event sequence charts are usually infinite, our method will in
practice only deal with finite subsets.

In the following we use the switch example to illustrate the partitioning process (Figure 11). A
system function F is defined for this switch, which determines the causes and impacts of the state
variables, external and internal events (Figure 12). The behaviour of F is more complicated than
the system functions in figure 4 and includes all, what one would expect from a simple switch, i.e.
setting up connections, releasing connections, and transporting speech signal events from the
inputs to the connected outputs. For this system function a test case is defined, which establishes

Page 14

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Switch
; i1 ol int_ss ol
ext_ss il i > s o1 >
ext_ss_il int ss 02
i s ol | —p- 0

ext_col_i1® ext col_i2
ext_co2_il| ext_co2_i2
ext_dol ext_do2
FIGURE 11. A switch with 2 inputs and 2 outputs. The state variables s 0l and s_02 defirje the
connectivity of the switch. External events to establish a connection (ext_ol_il, ext 0l _i2, ext [02_i1,
ext_02_i2), to release a connection (ext_dol, ext_do2), and for speech signals can be applied. Based on

the state variables and the external speech signals, the switch reacts with submitting speech ifternally
generated signals on its outputs (int_ss_o1, int_ss_02).

(WO connections In sequence and applies speech signals. When the test case IS simulated, an event

sequence chart is generated (Figure 12).

A system function is defined by state variables, external event types and internal event types, as
illustrated in Figure 12. A test case is defined by external events and the time instance they occur.
Applying a test case to a system function generates an event sequence chart. An event is character-
ized by the time instance it occurs and by the event type it is associated with. The event type is
characterized by the condition under which an event of this event type occurs, i.e. the occurrence
of other events and specific values of state variables. Thus, many events of one event type can

occur at different time instances during simulation.

The partitioning of a system function into sub-functions is defined by assigning each state variable
and each internal event type to exactly one of the sub-functions as illustrated in Figure 13. External
event types can be common to all sub-functions.

Page 15

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

System function

Test case Event sequence chart
< o0

-

FIGURE 12. Application of a
test case to a system functig
results in an event sequeng -

chart.

The example is a switch with 2
inputs and 2 outputs. THl

ext_ss_i

connectivity is stored in the tw
state variables s 01 and s_
which define to which input the
outputs ol and 02, respectivel
are connected. The extern
events, ext cX establish
connection between an inpu
and an output. Thus, the
modify the staa\te (\j/ariables. Th
events, ext_dX disconnect a —
output. The events ext_ss_. ot _doz @ 13 I
introduce a speech signal at 4
input, by triggering internal|[14
events int_ss_iX. According tq
the connectivity stored in the state variables s_X, input speech signals will trigger output speech|signals
int_ss_oX.
The test case applies external events at specific time instances to connect input il to output 01, [to insert
a speech signal at input i1, which propagates to output 01. The output o0l is disconnected and optput 02
is connected to input i1. Again, a speech signal is inserted to input i1 which propagates to output 02.
Finally, output 02 is disconnected again.

ext_ss_i

(A ext_ss_i1l @ 10 —

Page 16

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

system function F

(ext_col_il) (ext_coZ_il)
(ext_ss_il) (ext_ss_iZ)

(s W(inss o)
(iisso1) (intss o2)

s_ol

Qnt_ss_il) Gnt_ss_ol)

s_02

(ext_coZ_il) (ext_doz)
Gnt_SS_iz) Gnt_ss_oZ)

system
function F1

system
function F2

FIGURE 13. Partitioning of a system function into two functions. Sub-function F1 contains statg
variable s_ol and the internal events int_ss_il and int_ss_o0l. Sub-function F2 contains s |
int_ss_i2, and int_ss_o02. All external events are in principal part of both sub-functions, but hd
only those are shown, which will be needed for the given test case.

02,
re

Page 17

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Corresponding to a partitioning of a system function, the event sequence chart is also partitioned.
This is illustrated in Figure 14. For each sub-function a corresponding event sequence chart is

event sequence chart
event sequence chart covering the interface
corresponding to F

[<_oalf [=_od

s_ol

ext_ss_i

event sequence chart
corresponding to F1

ol

event sequence chart
corresponding to F2

[s_o2
s o2

|s_o2

ext_ss_i

M
@

FIGURE 14. Partitioning of an event sequence chart into two event sequence charts for the sub-fupctions
and one for the interface between the sub-functions. One part of the event sequence chart, which deals
with the connection from input i1 to output o1, falls entirely into the realm of sub-function F1. The pther
part, which connects input i1 to output 02 involves both sub-functions, F1 and F2. Hence, it contribjtes to
the test cases for F1, F2, and the test case for the interface between sub-functions F1 and F2.

derived. In addition another event sequence chart covers all the interface arcs together with all their
causal predecessors. Note, that in this example the event sequence chart for F2 contains a new
external event, ext_new, which was not contained in the original event sequence chart. This is used

Page 18

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

to simulate the effect of event int_ss_il in the original chart. From these event sequence charts test

cases are derived. For our example the resulting test cases are shown in Figure 15.

Test case
for F

(ext_col_il @ 1)

(ext_ss_il @ 3)

(ext_dol @ 6)

(ext_coz_il @ 8)

(ext_ss_il @ 10)

Test case
for F1

Test case
for F2

Test case for
the interface

(ext_col_il @ 1)

(ext_ss_il @ 3)

(ext_dol @ 6)

(ext_coz_il @ 8)

(ext_new @ 11)

(ext_coz_il @ 8)

(ext_ss_il @ 10)

(ext_ss_i 1 @ 10)

(ext_doZ @ 13)

(ext_doz @ 13)

FIGURE 15. Resulting test cases for sub-functions and interface. Based on the partitioning of theevent

sequence charts in Figure 14, three test cases are derived, one for sub-function F1, one for sub-function
F2, and one for the interface between F1 and F2. Only the latter has to be applied to the complete $ystem,
the former two test cases can be applied to the sub-systems, corresponding to F1 and F2.

4.2 Problem formulation

In order to specify, simulate, and partition a test case we will formally define a system fuRction

a test casé&C, and an event sequence che$t, which results from applying a test case to a system
function. The model is based on events and state variables. Intuitively an event occurs at a specific
instance in time and a state variable always holds a particular value and can assume new values at
particular time instances. A change of a state variable is also considered an event.

LetE! be a set of event typeE, a set of eventgpe :E - E! a mapping of events to event types.
t: E -~ N is a mapping of events onto natural numbers, which can be interpreted as time instances.
S is a set of state variables artl a set of values a state variable can assumes Lei: S - B

be a set of functions which define possible assignments of values to variables, and let the functions
ay ay, ..., a, 0 A define the values of state variables at specific time instances. The functions
f, fo fl fS T characterise events. For each event defines the condition under which it can
occur. f:E!- (E" - Bool) , where E" denotes the cartesian product of events and
Bool = {true falsé the set of boolean values. An event can depend on a combination of occur-
rences of other event$: E ~ E' denotes the set of events upon which an occurrence of an event

depends. An everd occurs if and only if all eventsfirge) have occurred one time step earlier.
fl: Et & (Et)n denotes the set of event types upon which an occurrence of an event of a particular
type dependsf!: E! - S' denotes the set of state variables which are modified by an event of a

particular type.f{ : Et - (S B" denotes the new values assigned to state variables by an event.

Page 19

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

An evente or event typed for whiclil(e') = O, f (e) = O , is called external, otherwise it is
called internal. An event typet for which{(e') = O , is called atomic, otherwise it is a state var-
iable modification event.

A systemfunction F is a 5 tupleF = [E', S B g0 , where all event typesdh must be internal.

A test cas€elC is a 3 tupleTC = [E!, E, tO , which defines the events, generated by the test case and
applied to the system. All event types in a test case must be external. defines at which time
instances the events are generated.

The application o:FxTC - ESC of a test caseTC = [E!,E,t0 to a system function
F=1[ELS B g defines an event sequence chafsC = (EL,E t,SB A d , where

A = {ayay...,a,} defines the values of state variables, andA x E"L A is a state update
function defining a new state variable assignment based on an old state variable assignment and a
set of events, which can include state variable modification evenBanda,, are givé€raoyg

FandE! = E! O E! .E, t anda,...a, are recursively defined, starting with events for which is 0,
which can only be external events fraih. An event witht' = k>0 occurs if its condition function

f evaluates to true, which depends on events of the previous time indtarice . In this way the
event sequence chart unfolds and is potentially infinite. We caliSanfully expandedf for any

subsetE' JE of events, the evest with the relatityte) = E', etype(e) O E! , is also an element
of E. An ESC can be represented as a directed, acyclic griagith; = 0V, CO , WhereE isa
set of vertices representing all events, abé {(e i) : e0 E Oi OE,, , 0eD f (i)} is a set of

arcs representing causal relationships between events.

A partitioning T : F - (F4, F,) of a system function into two sub-functions is required when the
system is partitioned into two components. The internal event types and the state variables are par-
titioned into disjoint subsets, such, that each internal event type can occur in only one of the two
sub-functions and each state variable resides only in one of the two sub-functions but each internal
event type and each state variable is part of one of the two sub-functions. The set of external event
types in each sub-functidfy is determined by the causal predecessor $gts of the internal event
types of the sub-function. All external eventsFofvhich are part of the causal predecessor set of
any internal event iifrg is an external event type &%, In addition, internal event types 8&f which

do not belong td-¢ but which are part of the causal predecessor set of an internal event tiype in
become external event types . In this way, all event types of all causal predecessor sets of
event types in a sub-function belong also to the sub-function, either as internal or as external event.
In other words, events which would come from the other sub-function are modelled as external
events and must be provided by the test case when the sub-function is simulated in isolation.

Page 20

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

The set of state variable valugs and the initial assignmagnt are assumed to be identical in the
system function and in both sub-functions for the sake of simplicity in this argument, although
they can be more restricted.

Based on these definitions a test case partitioning problem can be formulated as follows. Given a
functionF, a test cas&C and a function partitioningr. : F - (F,, F,) , find test cases which gener-

ate the same events and causal event chains when appheB;t@andF,, as the test cask when

applied toF. The objective is to minimize the number of events generated by test cases applied to
F.

4.3 Event sequence chart and test case partitioning

The application of the test cag€ to the system functior generates an event sequence chart.

First we define a partitioning of the event sequence chart into three event sequence charts corre-
sponding to the two sub-functions and to the interface of the sub-functions. From the event
sequence charts we derive three test cases and we show that the application of the test cases to the
sub-functions and to the system function is equivalent to the application of the original test case to
the system function with the potential of significant reduction of simulation time.

A partitioning T : ESC —~ ESC, x ESC, x ESC, of an event sequence chart is based on the parti-
tioning - of the corresponding system function and defines three new event sequence charts
ESC,, ESC,, andESCy. Intuitively, ESC captures the interaction betweBRC, andESC, and the
sequence of events that lead to this interaction. Below we treat it more precisely, but first we define
ESCswith s = 1, 2.

The internal event types &SCg are identical with the internal event types of the corresponding
sub-functionFg The internal events iBSCg are precisely those internal eventssSE which corre-
spond to the internal event types&SCq. The external event types &65Cg are identical with the
external event types of the corresponding sub-fundtipiThe external events iBSCg correspond

to the external event types ESCg and are derived from external or internal event&®€ which
belong to a causal predecessor §gt of internal everiSGg The state variables iBSCg are
identical to the state variables . The set of state variable valués , the set of assignment func-
tions A and the initial assignmemf; are assumed to be eqidNESC,, ESC,, andESCy, even
though they could be more restricted in the derived event sequence charts. Also the time marking
functiont is identical in all four event sequence charts in the sense, that for internal events in
ESC, which are transformed into external evesits ESQg, t(e) = ty(e,)

Page 21

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

The set of event pai8 represents the total causal dependence [EE8GeandESC,:
P={(e,&):((e,0E,Oe,0E,) O(e; IE,Ue,E,)) Oe, 0 f.(&))}

where E; ande, are the set of eventsiBfC; and ESC,, respectively. The transitive closure
f::E - E"of f, includes all direct and indirect causal predecessors of an event

fo(e) = {€DE:((e0f(e)O(E"Of(e):(eDf(e))}

Based on these definitions we construct a third event sequenceEdtartwhich includes all

causal event pairs betwe&S8C, andESC, and all their causal predecessor€&Bt. A causal event

pair i are two events, one of which depends on the occurrence of the other one time step earlier.
The events irESC, form a subset of the events #5C and therefore the event types and state vari-
ables inESCp are subsets of the corresponding setBS3@, because they are defined by the func-
tions etype andf! . No conversion of internal to external events is necessary for the construction
of ESCp because it eventually shall be derived from the system funétiby applying a test case

TCp to be defined below.

The reduction p : ESC - TC of an event sequence chart to a test case removes all internal event
types and events, including state variable changes, while the external event types and events are
identical inESC andTC. Also the time marking is identical which guarantees that the external
events occur at the right time instancps. derives three testtagd€,, andTCx from the event
sequence chariSC,y, ESCy, andESCp.

Finally we show, that the derived test cases indeed trigger all internal events and causal effects
which are triggered by the original test cage

The equationa(p(ESC,), F,) = ESC, holds, iF, and ESC, have identical external event types,
internal event types, state variables, and state variable values@8(, i fully expanded. This is

the case foF, - ESC; andF, - ESC, due to the definition of the partitioningz . However, these

sets iNESC, are not identical to those iR but they are subsets. In that case, above equation turns
into a relationa (p(ESC,), F,) O ESC, , meaning that the event types, events, and state variables of
the right hand side are subsets of the corresponding sets of the left hand side, and that the time
marking t is identical for events which exist in both event sequence charts. Let
ESCX = a(p(ESC,), F) OESC, be the event sequence chart, for which we have to establish the the-
orems below.

Based on this observation, we have to show (a) that all internal eveB&€iare present in either
ESC4, ESC,, or ESCX, (b) that the time marking of the internal events are identical in all event

Page 22

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

sequence charts, and (c) that all causal relations between event pBBEG aiso exist in either
ESC4, ESC,, or ESCX .

Theorem 1The union of internal events ESC,, ESC,, and,ESCX is equal to the set of inter-
nal events ieSC, E; , O E; ,0 EX, = E;, if all event sequence charts are fully expanded.
According to the partitioningt: 0ESC each internal event d&SC is either inESC, or in ESC,
such thatg; ; OE; , = E; . Internal events &SCx are by definition ofrz only events that are
also inESC. Since the event types and state variableB3ifandESCX are identical and the set of
external events iESC{ is a subset of the set of external evel®SINESCK cannot contain events
that are not part oESC. If there were an internal evertD EX| Oe E , its causal predecessors
f.(e) mustinclude at least one event which is noEBC. If all events off (e) were also i&SC,
evente were irESC too, sinceESC is fully expanded. This argument can recursively be applied
until f (e) contains only external events. Since the set of external eveagEn is a subset of the
set of external events ESC, there can be now such event] .

A direct implication of this theorem is that the time marking for the same everiSdn ESC,,
ESCX , andESC are identical. External events derived from internal events have the same time
marking as the original internal events by definitiongf

However, it is not sufficient to have the same events. When we validate a system function we are
also interested in the causal chains that lead to the occurrence of events. Thus, we must also show,
that the causal relations between events are preserved by the partitioning. Let
C = {(e fu(e)):e0EOf (e) DED(t(e) = k) O(De O fyq : t(€) =k-1)} be thecausal setof

an event sequence chart representing causal relationships between events.

Theorem 2 The union of causal sets B6C,, ESC,, and,ESC) is equal to the causal set in
ESC, c,0c,0c) = C, if all event sequence charts are fully expanded.

Let c = (g f (e))) be a causal relation iBSC. Due to Theorem 1 the events arig(e) must

either be inESC, or inESC,. We distinguish several cases:

(1) Evente andits causal séf(e) isify c. mustbedp because the time marks are identi-
cal. The same argument can be applied if all events of dfg in

(2) Evente isinE; andits causal séf(e) is#y .Allpafs,e) ,where f (e) ,arein
by definition of P for the partitioning operatar. . Consequently they are alsesoy , hence
cO CX. A similar argument holds # is g, and its causal gge) B4in

Page 23

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

(3) Evente and at least one element of its causal setigin and at least one event of its causal set
is in E, .By definition of i , the events iE, are transformed into external events and become
part of ESC;. Thus, based on the assumption that an event transformed in this way is equivalent to
the original, isc inC,; . Note, that this is an important assumption and a potential cause of errors,
if events applied by a testbench during simulation are not modelled accurately. A similar argument
holds ife isinE, and its causal seéf(e) is distributed dwer BHd

We have shown by now thateacll C isals&Cipnd C,0CY . To see that the other direction of
the theorem holds as well, consider tiiat is a supers&, ofs, , Ejnd . Therefore, any in
C,, C,,0rCx mustalso be i [l.

The test casekC,, TCy, andTCp can fully replace the original test ca®é in the validation proce-
dure, because by construction they trigger the same events and state variable cha@gesas
ever, in many situations they will require much less simulation time becEisandTC, can be
applied to the isolated components and ofly, which addresses the interconnections, must be
applied at the system level.

This two way partitioning technique can be generalised to multi-way partitioning in several ways.
A straight forward method reduces oneway partitioning inton-1 2-way partitionings which
leads to B-1 derived test cases.

5. TECS LANGUAGE AND TOOLS

5.1 Tecs language

The Tecs language is based on the model introduced in Section 4 and it is used to describe test
cases and functions. A more elaborate description of the language can be found in [10] and [11].
The main motivation for developing a special purpose language was

* to provide the right facilities to describe test cases, which are events, states and their causal
dependences;

* to have control over it to build useful features around it, e.g. to visualise the simulation output
in a convenient form, and to generate test case implementations in VHDL and C automatically;

* to provide an implementation of the formal model, for which the test case partitioning tech-
nique has been developed.

To minimize the development effort, VHDL is used as simulation engine, because it was signifi-
cantly easier to develop a Tecs to VHDL translator than to develop a Tecs simulator. While this has
the disadvantages of a front-end language, such as the difficulty of debugging, the advantages have

Page 24

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

so far clearly outweighed the drawbacks. However, on the long run we expect that either Tecs
develops into a VHDL independent language with its own simulator or that other commercial lan-
guages and tools provide the useful features and properties of the Tecs language. For instance
VHDL itself could be directly used when accompanied with appropriate guidelines and tools.
Thus, we do not claim that the Tecs language is superior to other languages like VHDL, because
we are well aware of the flexibility and expressiveness of such languages on one hand, and of the
difficulties to learn and use many different languages on the other hand. But we use Tecs as a vehi-
cle to (A) demonstrate the essential language features for test case specification, and (B) to imple-
ment our refinement and partitioning method.

Tecs’ central elements are events and state variables. An event is characterized by its unique name,
by some parameters, a condition which triggers the event, and a verbose message text, which is
written into the simulation trace file which greatly increases the readability of the event sequence
charts. An example of an event definition is as follows:

EVENT disconnect (port_number:INTEGER RANGE 0 TO 31) IS
TEXT IS “Disconnecting port $port_number$”;
IF disc_request (0,*)
THEN disconnect.port_number:=disc_request.p2;

END EVENT;

Events can have parameters which is a convenient way of defining a large number of different
events. Ther clause describes the causal condition of the event, armhHtire clause describes the
new value of the parameter.

A state variable is defined by a name, a data type, a set of parameters, and a set of trigger condi-
tions which cause a value change. Simulation output messages can be defined for particular values,
which allows to trace state variables in the simulation output. A typical state variable definition is
as follows:

STATEVAR connect_O5_to IS

TYPE IS integer;

IF connect(5,*)

THEN connect_O5_to.val:=connect.output_port;

IF disconnect(5) THEN connect_O5_to.val:=-1;

TEXT FOR -1 IS “Output O5 disconnected”;

TEXT FOR * IS “Output O5 is connected to Input Ival”;
END STATEVAR,;

A test case is modelled in terms of a set of events, which can be applied sequentially or in parallel
to the system. In addition, there are structures for controlling the test case flow. Thegeare
statements for stopping the test case execution for a specified number of simulatiomEsgeps,
SAGE-statements for creating entries in the simulation trace file,FoRdLOOP-statements for a
repeated execution of statements.

Page 25

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

An example for a test case containing all modelling elements is shown in Figure 16.

TESTCASE Test1l OF sn IS

Message(" Test case Test1"); Message statement

di sconnect (0);
di sonnect (1);

(di sconnect (2), di sconnect (3)); | Paralel stimulation

FORinp INO TO 3 LOCP

FOR outp INO TO 3 LOOP

connect (outp,inp);

VAIT FOR 2 STEPS;

speechsi gnal (i np);

’ Sequential event stimulation ‘

END LOCP;
END LOOP;

END TESTCASE;

FIGURE 16. Test case definition.

5.2 Tecs tools

Two tools, which have been described in more detail in [10] and [11], have been developed to sup-
port the test case specification process:

* spcom: to translate a Tecs model to VHDL which provides a simulation environment;
* graphgen: to convert the event sequence chart of a simulation into a graphical representation

The spcom tool converts a system or test case specification in Tecs notation to VHDL. This con-
version makes the Tecs language an executable specification language without the need for a dedi-
cated tool for the simulation of Tecs models. The top level consists of two entities, one for the
system and one for the test case description as illustrated in Figure 17. These entities are connected

Top level entity

external eventg

. ‘ Test case
System function specification

derived from Tecs—? derived from
model internal events Tecs model
state variables

Several VHLD Packages

FIGURE 17. Architecture of the VHDL model.

through signals which represent external and internal events and state variables. External events
are generated by the test case. State variables and internal events are defined inside the system
entity but can be observed by the test case.

Page 26

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

The simulation results are event sequence charts which are displayed in a graphical format with the
daVinciTool [4] as illustrated in Figure 18. It makes causal dependencies explicit which is a very
valuable aid to interpret a system functions behaviour.

6. TESTCASE DEVELOPMENT FOR A SWITCH

The following example shows the development of a simple test case for a switching network with
four input and four output ports. In addition there is a control port where commands from a central
switch control are received. These commands define which ports to connect or disconnect. For
simplicity only the basic functions of a switching network are modelled: namelynaectand a
disconnectunction. The system functionality is modelled with four state variables, each of them

is associated with one output port. Its value defines, if the output port is connected and to which
input port it is connected. Two external parameterised events, named CONNECT and DISCON-
NECT, determine how the state variables change their values. Another parameterised external
event, named SPEECH_IN, can be applied to inputs and causes internal parameterised
SPEECH_OUT events at output ports.

The following test case initially removes all connections, then establishes two connections through
the network, supplies the input with speech signals, disconnects one output, and applies the same
speech signals again.

TESTCASE testl OF sn IS
(disconnect(0), disconnect(1), disconnect(2),

disconnect(3)); -- concurrent disconnect
(connect(3,2), connect(1,1); -- concurrent connect
(speech_in(0), speech_in(1),

speech_in(2), speech_in(3)); -- apply inputs
disconnect(3); -- change connection
(speech_in(0), speech_in(1),

speech_in(2), speech_in(3)); -- apply inputs
END TESTCASE;

The event sequence chart resulting from the simulation is shown in Figure 18. The visualization of
simulation outputs is a significant part of the Tecs methodology because it promotes the under-
standing of a test case considerably. It facilitates the detection and analysis of overlapping and
incomplete test cases. In our experience it is a very valuable aid.

In this simple example the checking for the correct behaviour is done manually. In a real test case
automatic checks are included in the test case model.

Although this is a small example, we want to emphasize that real test cases are not much bigger at
the specification level due to the high level of abstraction used. The real switch is a very complex

Page 27

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

Output 00 is connected to Input IUniniialized| g — State

Initial State Output O1 is connected to Input IUninitialized
Output 02 is connected to Input IUninitialized| EVent

Output O3 is connected to Input IUninitialized

Disconnect Output Disconnect Output
o1 02

Disconnect Output
00

- - Cle
»

Causal dependence arc

[oupucois |foutput o is Jfoupur 0z2is o |[owputosis | Time dependence arc
1 - S
1 .- ~
Connect Output 03
Connect Output O1
' with Input 12
\ with Input 11
.
n
3 Output O1 is connected|
E : to Input 11
1 - ’ \ ~
R e -
73 | .- Y2 h
E Speech signal on Speech signal on Speech signal on
I: ! Input 12 Input 11 Input 10 Input 13
.
'
I% Speech signal on Speech signal on
; Output 03 Output 01
' :
'
Disconnect Output O3,

-- -3

- El=

s ~
.

Speech signal on
input 10

Output 03 is disconnecteq
- Ll s ~ S
. ~

~
Speech signal on Speech signal on Speech signal on
Input 1 Input 12 Input 13
Speech signal on
Output O1

FIGURE 18. Switching network simulation result as event sequence chart. At the left
there is the sequence of time stamps. Square boxes denote state variable assignments;
round boxes denote events. Bold lines denote causal dependences; dotted lines denote
time dependences.

system but the specification in Tecs for the test case which validates the connect/disconnect behav-

!

iour is only a few times bigger than what we have shown here. Its implementation in VHDL and
assembler code, however, is 50 to 100 times bigger. We indeed observed a code reduction by 50 in

Table 3. Code size of test case specification and implementation

LOC of assembler impl. | LOC of Tecs specification| Code reduction with Tec$
1800 30 98.3%

one project as shown in Table 3. This is due to the higher abstraction level of Tecs statements,
leaving out many details of a test case implementation. For instareenext event requires sev-

Page 28

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

eral lengthy tasks in the implementation. First, a message must be sent to the switch, containing
the necessary information. Depending on the communication channel and the involved protocols,
this by itself can be an extensive procedure, with multiple acknowledgements, feed-backs and tests
for error conditions. Second, the establishment of the connection will depend on the structure and
organization of the switch. If it consists of several stages, e.g. a common time-switch space-switch
time-switch structure, there will be more than one possibility for a path through the switch for the
required connection. In that case a search algorithm to find a non-blocked path must be invoked.
Then the individual stages must be coordinated and the memories in the stages must be accessed.
Depending on the memory organization this can again be a sophisticated procedure. Finally, an
acknowledgment of success or a report of failure must be sent back to the unit, which emitted the
connect event. In addition, the procedure has to deal with various exceptions and failure conditions.
All these details have to be considered for the test case implementation but they are not relevant for
the definition and specification of the test case. Hence, the difference does not come from the dif-
ferent languages used, Tecs on one hand and assembler or VHDL on the other hand. The differ-
ence comes from the different abstraction levels used. The same high level of abstraction could be
provided in VHDL with appropriate libraries and modelling guidelines, which would have differ-

ent advantages and disadvantages compared to an approach based on a specialised language like
Tecs.

The partitioning method described in Section 4 can significantly reduce the simulation time.
Assuming we want to simulate every possible connection in the switch, we must connect, test, and
disconnect every output port with every input port. Each connect-test-disconnect sequence
requires six events, namely CONNECT, state-variable-change, SPEECH_IN, SPEECH_OUT,
DISCONNECT, state-variable-change. Altogether we need to go through 16 such sequences
which results in 96 events to be simulated with the entire system. Next we assume a partitioning
(Figure 19), where each part contains two outputs. The test case partitioning method results in
three test cases, one for each part and one for the entire system. The test cases for the two parts
generate eight connect-test-disconnect sequences, four for each output, which results in 48 events
to be simulated with each part. The system test case now has to deal with shorter, 4 event long
sequences, because the DISCONNECT and its following state-variable-change events do not
affect the interface between the two partitions. Hence, the system test case generates eight such
sequences, two for each of the four outputs, which results in 32 events. Assuming that each event
in one partition requires half the simulation time than an event simulated with the whole system,
we gain a simulation time reduction of 17%. If we repeat the partitioning a second and a third time,
we achieve simulation reductions of 25% and 30%, respectively.

Page 29

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

(e R (Egy

01 0504 s ol 0505 bs ol 050 bs
Test case 1: Test case 2: Test case I:
sequence length = 6; sequence length = 6; sequence length = 4;
8 sequences; 8 sequences; 8 sequences;

FIGURE 19. Test cases for a 4x4 switch, partitioned into two parts.

These reductions are very helpful in practice because of extensive simulation times. With respect
to the figures for project B in Table 2, the total simulation time for a complete regression simula-
tion is reduced from 395 hours to 276.5 hours, assuming a 30%reduction. For the longest test cases
(40 hours) a 30% reduction to 28 hours would mean, that the result of a simulation can be exam-
ined the next day, rather than two days later, which is a significant advantage in today’s time-to-
market driven projects. Moreover, the partitioning of a test case brings many practical advantages,
because more smaller test cases are easier to handle than few big test cases. They can be dealt with
concurrently, they can be executed on smaller workstations, the effects of a workstation crash in
the middle of a simulation are reduced, etc. It also allows to run simulations in parallel. Instead of
one long system simulation (40 hours), we have one short system simulation (13.3 hours) and two
even shorter sub-system simulations (10 hours each), for the case of a two way partitioning. A
repeated partitioning results in even shorter simulations, with the potential for significant engineer
productivity.

Note, that this is a very conservative estimation, because a switch with the given validation strat-
egy is the worst possible case. Every output is connected to every input and a partitioning cannot
take advantage of a locality of event interdependence. Thus, above figures on simulation time
reduction can be viewed as lower bounds. In fact, a more realistic validation strategy for the
switch, where only selected connections are tested, gives simulation time reductions of more than
40% after the first partitioning. In addition, specific techniques to remove redundant test cases
could be applied. For the switch this would result in avoidance of all system test cases, because a
closer analysis reveals, that all system test cases are in fact fully covered by the partitioned test
cases. Thus, applying this technique, which can be automated, would reduce the simulation time
by 50% in the first step. We are not considering this here, because its effect in general is not clear
and most likely less beneficial than for the switch example. But it underscores, that our estimation
definitely is conservative.

Page 30

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

All this noteworthy improvement comes at no cost with respect to validation coverage and confi-
dence.

7. RESULTS

The main benefit of the Tecs methodology comes in terms of increased validation coverage and
designer productivity. Both can only be measured reliably when the methodology is used in a real-

istic project, which has not been done yet. We have done initial experiments as part of a large

project and in the following we present data from these experiments and show the consequences, if
the methodology had been consequently applied to the entire project.

Table 4 compares the test case development time of the traditional methodology, which has actu-

Table 4. Test case development time comparison

Test case develop- | Test case implementa- | Testcase development|

ment

tion

time reduction

Traditional methodology

10 man-months

0%

Tecs methodology

2 man-months

2 man-months

60%

ally been used in the project, to the development time in the Tecs methodology. The project is the
same as project B in Table 1 and Table 2 in the introduction of this article. These figures are esti-
mates since we developed a few test cases and extrapolated the results for the remaining test cases.
Table 5 compares the simulation run time in the traditional methodology to the Tecs methodology

Table 5. Test case simulation run-time comparison

Simula-
. Test case . System Regres- .
Tecs simu- o Tecs sim- . . . tion run
ST partition- . simula- sion simu- .
lation time . ulation : . L time
ing tion time lation time reduction
. 5h*79 = 20 * 395h
- - - 0,
Traditional methodology 395n — 7900h 0%
0.5h*79= 5h*79 = 20 * 395h
- - _ 0,
Tecs methodology 39.5h 395h — 7900h 0.5%
* * *
Tecs methodology with| 0.5h*79= | 0.5h*79= | 1h*79= oh 7? 29 39_5h o
test case partitioning 39.5h 39.5h 79h 0.7= 0.7 = 24.5%
' ' 276.5h 5530h

with and without partitioning. All figures are based on the performance of the VHDL simulator
Quick HDL from Mentor Graphics. Regression simulation is the process of simulating the entire
suite of test cases for each new version of the design to make sure that all test cases run correctly
after each design modification. We assume 20 full regression simulations for the entire project.
The run-time of the test case partitioning is estimated since the algorithm has not been imple-

Page 31

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

mented yet. Its complexity is proportional to the number of events in the event sequence chart.
Since this is also true for the simulation run-time we assume the same figure for the partitioning;
most likely it will be significantly faster. We also assume a three-level partitioning which is realis-
tic and corresponds to the typical structural hierarchy system-board-component. This leads to a
30% reduction in simulation time which is conservative as discussed in the previous section. The
overall net reduction amounts to 25% pure simulation time. This is significant due to the high
absolute number of simulation hours which typically occur during the last design phases when
most of the regression simulations are necessary.

In this calculation we have not considered the main benefit of the Tecs methodology, which is the
higher quality of the test cases. With high quality we mean good coverage of the functionality and
little overlap between test cases.

8. CONCLUSIONS

The Tecs methodology is based on an executable test case specification language, a technique to
derive test cases for sub-systems and components, and a strategy to validate the test cases and
apply them to the system, its sub-systems and components. Because a formal language is used,
ambiguous test case specifications are avoided. Because test case specifications are simulated and
validated at a higher abstraction level before they are implemented, more effort is spent in the test
case specification phase. This increased effort together with a convenient visualization of simula-
tion results in form of event sequence charts facilitates the identification of overlapping test cases
and relevant system states and event sequences, which are not covered by any test case.

An important consequence of the methodology is, that test case definition and development can
start in parallel with functional specifications as soon as a first enumeration of system functions
has started. It allows to simulate system functions early in the design process and to provide feed-
back to the design engineers.

In the future we will automate test case partitioning and test case implementation which promise
additional increase in design productivity. Furthermore, we plan to automate the comparison of
results from system simulations against simulations of test case specifications. This is now a very
tedious and error prone task and its automation would result in a significant increase of productiv-
ity and confidence.

Page 32

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

REFERENCES

[1] T. Albrecht, “Concurrent Design Methodology and Configuration Management of the Siemens EWSD-
CCS7E Processor System SimulatioRfpceedings of the 32nd Design Automation Confereh@85.

[2] T. Albrecht, J. Notbauer, and S. Rohringer, “HW/SW Coverification, Performance Estimation &
Benchmark for a 24 Embedded RISC Core Design”, Proceedings of the Design Automation Confer-
ence, June 1998.

[3] D. D. Gajski, F.Vahid, S.Narayan, J.Gongpecification and Design of embedded Systémantice
Hall, 1994,

[4] M. Frohlich, M. Werner:The Graph Visualization System daMin@ User Interface for Applications
Technical Report No. 5/94, Department of Computer Science, University of Bremen, June 1996.

[5] Z.120 MSC: Message Sequence Chditd, Geneva, 1994.

[6] G. Boriello, “Formalized Timing Diagrams’European Design Automation Conferenpp. 372 - 377,
1992.

[7] J.P. CalvezEmbedded Real-Time Systedwshn Wiley & Sons, 1993.

[8] D. Harel, “Statecharts: A Visual Formalism for Complex Systen&tience of Computer Program-
ming, vol. 8, pp. 231 - 274, 1987.

[9] Synopsys Inc., “Hardware/Software Co-Verification”, http://www.synopsys.com/products/hwsw/
hwsw.html.

[10] Axel Jantsch, Johann Notbauer, and Thomas Albrecht, “Test case Development for Large Telecom Sys-
tems”, Proceedings of the International High-level Design Validation and Test Workstayember
1997.

[11] Johann Notbauetestfall und Testfallumgebung: Spezifikation in VHDL basierend auf Ereignissen und

ZustandenMasters thesis, Technische Universitat Graz, Austria, 1996.
[12] William Perry,Effective Methods for Software Testidghn Wiley & Sons, 1995.

[13] Second Workshop on System Design Langydggs//www.ecsi.org/ecsi/Doc/OtherDoc/SLDL, Italy,
1997.

[14] Forum on Design Languagésttp://c3iwww.epfl.ch/fdl98/, Lausanne 1997.

[15] VSI System Level Design Model Taxonprersion 1.0, Virtual Socket Interface Alliance, October
1998.

[16] VSI Alliance Roadmayversion 1.0, Virtual Socket Interface Alliance, 1997.

[17] Robert M. Poston, “Automated Testing from Object Mode@3mmunications of the ACMol. 37, no.
9, pp. 48 - 58, September 1994.

[18] Elaine J. Weyuker and Bingchiang Jeng, “Analyzing Partition Testing StratedielSE Transactions
on Software Engineeringol. 17, no. 7, pp. 703-711, July 1991.

Page 33

Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

[19] Boris BeizerBlack-box TestingJohn Wiley & Sons, 1995.

[20] Boris BeizerSoftware Testing Technigyd4én Nostrand Reinhold, New York, 1990.

[21] Tree and Tabular Combined Notation (TTANPD/IEC 9646-3, ISO, 1992.

[22] ITEX Methodology Guideling3elelogic Tau 3.4, Telelogic AB, Malmd, Sweden, 1998.

[23] ITEX Getting StartedTelelogic Tau 3.4, Telelogic AB, Malmé, Sweden, 1998.

[24] Methodology Guidelines - Part 1: The SOMT Meth®DT 3.2, Telelogic AB, Malmd, Sweden, 1997.

[25] Deepinder P. Sidhu and Ting-Kau Leung, “Formal Methods for Protocol Testing: A Detailed Study”,
IEEE Transactions on Software Engineeringl. 15, no. 4, pp. 413-426, April 1989.

[26] William E. Perry and Randall W. Ric&urviving the Top Ten Challenges of Software Testing: A People-
Oriented ApproachDorset House Publishing Co., 1997.

[27] Thomas Ostrand, Aaron Anodide, Herbert Foster, and Tarak Goradia, “A Visual Test Development
Environment for GUI Systems”ACM International Symposium on Software Testing and Analysis
(ISSTA) 1998.

[28] Simeon C. Ntafos, "A Comparison of Some Structural testing StratedieSE Transactions on Soft-
ware Engineeringvol. 14, no. 6, pp. 868-874, June 1988.

[29] Thomas J. Ostrand, "Categories of Testinghcyclopedia of Software Engineeringphn Wiley &
Sons, edited by John Marciniak, pp. 90-93, 1994.

Page 34

	Functional Validation of Mixed Hardware/Software Systems based on Specification, Partitioning, an...
	Axel Jantsch, Royal Institute of Technology, Stockholm, Sweden, Johann Notbauer, Thomas Albrecht,...
	Abstract: Tecs is a test case development methodology for the functional validation of large elec...

	1. INTRODUCTION
	Table 1. Lines of code (LOC) for system level test cases
	Table 2. Simulation and simulated time per test case
	FIGURE 1. A switch with 2 data inputs, 2 outputs, 1 command input, and 2 state variables which de...
	FIGURE 2. Design process with the Tecs validation method

	2. RELATED WORK
	2.1 TECS Methodology
	2.2 Tecs Language
	2.3 Test case Partitioning

	3. TECS METHODOLOGY
	1. Enumeration of system functions;
	2. Definition and development of a test case for each system function in the Tecs notation (test ...
	3. Partitioning of the system functions into sub-functions vis-a-vis the partitioning of the syst...
	4. Partitioning of test cases (will be fully automated);
	5. Implementation of the sub-function test cases and their simulation in the system simulation en...
	FIGURE 3. Test case development flow in relation to the design flow.

	3.1 Step 1: Enumeration of system functions
	FIGURE 4. Set of system functions for the 2x2 switch.

	3.2 Step 2: Test cases for system functions
	FIGURE 5. Test case for system function 1 of figure 4.

	3.3 Step 3: Partitioning of functions
	FIGURE 6. The 2x2 switch is implemented with a high speed buffer, into which the inputs from the ...
	FIGURE 7. Sub-system functions derived from system function 1 (figure 4) for the architecture in ...

	3.4 Step 4: Partitioning of test cases
	3.5 Step 5: Test case implementation and simulation
	3.6 Function and test case validation
	FIGURE 8. Validation of the behaviour of a function.
	FIGURE 9. Test case validation.

	4. TESTCASE PARTITIONING
	4.1 Introduction
	FIGURE 10. Test case partitioning flow. Input to the test case partitioning is the partitioning o...
	FIGURE 11. A switch with 2 inputs and 2 outputs. The state variables s_o1 and s_o2 define the con...
	FIGURE 12. Application of a test case to a system function results in an event sequence chart. Th...
	FIGURE 13. Partitioning of a system function into two functions. Sub-function F1 contains state v...
	FIGURE 14. Partitioning of an event sequence chart into two event sequence charts for the sub-fun...
	FIGURE 15. Resulting test cases for sub-functions and interface. Based on the partitioning of the...

	4.2 Problem formulation
	4.3 Event sequence chart and test case partitioning
	Theorem 1 The union of internal events in ESC1, ESC2, and, is equal to the set of internal events...
	Theorem 2 The union of causal sets of ESC1, ESC2, and, is equal to the causal set in ESC, , if al...

	5. TECS LANGUAGE AND TOOLS
	5.1 Tecs language
	FIGURE 16. Test case definition.

	5.2 Tecs tools
	FIGURE 17. Architecture of the VHDL model.

	6. TESTCASE DEVELOPMENT FOR A SWITCH
	FIGURE 18. Switching network simulation result as event sequence chart. At the left there is the ...
	Table 3. Code size of test case specification and implementation
	FIGURE 19. Test cases for a 4x4 switch, partitioned into two parts.

	7. RESULTS
	Table 4. Test case development time comparison
	Table 5. Test case simulation run-time comparison

	8. CONCLUSIONS
	REFERENCES
	[1] T. Albrecht, “Concurrent Design Methodology and Configuration Management of the Siemens EWSD-...
	[2] T. Albrecht, J. Notbauer, and S. Rohringer, “HW/SW Coverification, Performance Estimation & B...
	[3] D. D. Gajski, F.Vahid, S.Narayan, J.Gong: Specification and Design of embedded Systems, Prent...
	[4] M. Fröhlich, M. Werner: The Graph Visualization System daVinci - A User Interface for Applica...
	[5] Z.120 MSC: Message Sequence Charts, ITU, Geneva, 1994.
	[6] G. Boriello, “Formalized Timing Diagrams”, European Design Automation Conference, pp. 372 - 3...
	[7] J. P. Calvez, Embedded Real-Time Systems, John Wiley & Sons, 1993.
	[8] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer Programm...
	[9] Synopsys Inc., “Hardware/Software Co-Verification”, http://www.synopsys.com/products/hwsw/ hw...
	[10] Axel Jantsch, Johann Notbauer, and Thomas Albrecht, “Test case Development for Large Telecom...
	[11] Johann Notbauer, Testfall und Testfallumgebung: Spezifikation in VHDL basierend auf Ereignis...
	[12] William Perry, Effective Methods for Software Testing, John Wiley & Sons, 1995.
	[13] Second Workshop on System Design Languages, http://www.ecsi.org/ecsi/Doc/OtherDoc/SLDL, Ital...
	[14] Forum on Design Languages, http://c3iwww.epfl.ch/fdl98/, Lausanne 1997.
	[15] VSI System Level Design Model Taxonomy, version 1.0, Virtual Socket Interface Alliance, Octo...
	[16] VSI Alliance Roadmap, version 1.0, Virtual Socket Interface Alliance, 1997.
	[17] Robert M. Poston, “Automated Testing from Object Models”, Communications of the ACM, vol. 37...
	[18] Elaine J. Weyuker and Bingchiang Jeng, “Analyzing Partition Testing Strategies”, IEEE Transa...
	[19] Boris Beizer, Black-box Testing, John Wiley & Sons, 1995.
	[20] Boris Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 1990.
	[21] Tree and Tabular Combined Notation (TTCN) ISO/IEC 9646-3, ISO, 1992.
	[22] ITEX Methodology Guidelines, Telelogic Tau 3.4, Telelogic AB, Malmö, Sweden, 1998.
	[23] ITEX Getting Started, Telelogic Tau 3.4, Telelogic AB, Malmö, Sweden, 1998.
	[24] Methodology Guidelines - Part 1: The SOMT Method, SDT 3.2, Telelogic AB, Malmö, Sweden, 1997.
	[25] Deepinder P. Sidhu and Ting-Kau Leung, “Formal Methods for Protocol Testing: A Detailed Stud...
	[26] William E. Perry and Randall W. Rice, Surviving the Top Ten Challenges of Software Testing: ...
	[27] Thomas Ostrand, Aaron Anodide, Herbert Foster, and Tarak Goradia, “A Visual Test Development...
	[28] Simeon C. Ntafos, "A Comparison of Some Structural testing Strategies", IEEE Transactions on...
	[29] Thomas J. Ostrand, "Categories of Testing", Encyclopedia of Software Engineering, John Wiley...

