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Abstract: Tecs is a test case development methodology for the functional validation of l

electronic systems, typically consisting of several custom hardware and software componen

methodology determines a hierarchical top-down test case development process includin

case specification, validation, partitioning and implementation. The test case development p

addresses the functional validation of the system and its components such as ASICs, board

and software modules; it does not facilitate timing or performance verification. The sys

functions are used to define test cases at the system level and to derive sub-functions for the

components. Test cases are specified, using a special purpose formalism, and validated befo

are applied to the system under test. Furthermore, we propose a technique to partition test

corresponding to the partitioning of the system into sub-systems and components. This tec

can significantly reduce system simulation time because it allows the full validation of sy

functions by simulation at the sub-system and component level. The system model must

simulated with a reduced set of stimuli to validate the interfaces between sub-systems. We p

a test case specification language and tools that support the proposed methodology. The vali

of a switching function illustrates methodology, language, and tools.

1.   INTRODUCTION

For the validation of system functionality, simulation is the most important means today. In

past, the entire system has very often not been validated at all before the first product sample

manufactured. This is not an advisable procedure any more, because the high complexity

errors quite likely, which are only visible at the system level. The simulation of complex system

a demanding task, in particular when software modules are included. The simulation setup co

of the system under test, a set of test cases, and a testbench which includes the system´s e

ment to the extent it is necessary in the simulation. The development of the test cases at the
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level constitutes a major development effort. Table 1 shows the lines of code for typical p

switching network components and the lines of code for the system level test cases and th

bench. Projects A and B are described in more detail in [1] and [2], respectively. In project

software modules have been included in the system simulation, but in project B we also integ

SW modules, such as device drivers, real-time operating system, boot software, into the s

simulation activity with the Eagle HW/SW cosimulation framework from Synopsys [9]. Each

case covers one or several connected system functions which typically involves two or mor

tem components, either HW or SW. The system simulation has to validate that the compo

work together properly and the system functions are executed as specified. This validation o

tem functions is beyond individual components.

Simulation time at system level is extensive, as can be seen in Table 2, in particular becaus

test case has to be simulated again for each modification and enhancement of the design to

tee that a design modification did not break an already tested and approved system funct

complete regression simulation takes 150 hours and 395 hours of simulation time for proje

and B, respectively. To minimize simulation time the test cases must not overlap such, th

same function is validated twice.

For illustration of system functions and test cases consider a simple switch (Figure 1), whic

will also use throughout the paper to introduce important concepts. It can connect any of it

inputs with any of its two outputs. The state variables determine which output is connect

Table 1.  Lines of code (LOC) for system level test cases

LOC of
System

LOC of
test-
cases

Number
of test
cases

Average
LOC per
test case

LOC of
test-

bench

Project A
VHDL 690 725 2 500

50
50 23 679

Assembler 0 290 000 5 800 0

Project B
VHDL 1 925 076 39 658

79
502 357 208

Assembler 541 000 256 592 3 248 0

Table 2.  Simulation and simulated time per test case

simulated time simulation time

min average max min average max

Project A
50 test cases

800 µs 3 hours

Project B
79 test cases

150µs 300µs 16 000µs 10 min 5 hours 40 hours
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which input. For the functional validation of the switch it is only relevant what type of event

accepts at the inputs, what type of events it produces at the outputs, and certain important in

state variables.System functionsandtest casesare then described in terms of events and state va

ables. Examples for system functions for the switch are: Transmitting an event, which is rec

at one of the data inputs, to one of the outputs, depending on the values of the state var

Changing the state variable as reaction to specific events on the command input. Test cases

validate system functions. Thus, a test case might inject a specific event at the command

which sets the state variable 1 such, that the output 1 is connected to the input 1; then it inj

data event at input 1; finally it checks, if the data event appears at output 1 after a certain dela

if it appears at output 2; if it appears at output 1 but not at output 2, the system has passed t

case.

In the following we present a systematic top-down method for the specification and implem

tion of test cases. The main objectives for methodology and tools are:

• to allow to specify test cases unambiguously;

• to support the detection of overlapping test cases;

• to support the detection of unchecked functions;

• to minimize simulation time;

• to partition test cases in a formal way.

A complete system specification reference model is desirable but not current practice. C

quently, the Tecs methodology does not assume such a model. Instead, the human designe

ported by modelling elements at theright abstraction level and by an analysis tool which conve

important information effectively.

The Tecs methodology proposes a top down development of test cases in parallel to the de

ment activities starting in early system specification and design phases. This allows the valid

state_v1

Switch

o1

o2

i1

i2

cmnd input

state_v2

FIGURE 1. A switch with 2 data inputs, 2 outputs, 1 command input, and 2 state variables which
determine the connectivity.
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engineer to influence the development, e.g. to make system functions easier to simulate or to

ence the order in which system functionality is developed. A strong coordination of design

validation activities is of particular importance to remove the validation phase from the cri

path in the project and to minimize overall development time. Thus, design-for-validation bec

a reality as much as design-for-test is today. Figure 2 illustrates how the test case developm

into the system development process.

The methodology does not address timing or performance verification. Hence, it has to be co

mented with timing analysis. Since the test case model is based on a synchronous executi

timing analysis can be static and has only to verify, that the individual actions in each time slo

be performed in the given time. Traditional static timing analysis can be applied to the hard

parts. For the software parts, static task scheduling in conjunction with software performance

ysis can be used.

The rest of the paper is organized as follows. Section 2 discusses related work, Section 3 de

the test case development methodology, Section 4 discusses the test case partitioning m

Section 5 describes the Tecs language and tools, and Section 6 illustrates Tecs with a sw

system application.

2.   RELATED WORK

We discuss relevant work in three separate sections, the test case development methodolo

test case specification language and the test case partitioning technique.

System specification

Hardware specification Software specification

Synthesizable VHDL Compilable C

System integration

Hardware
manufacturing

FIGURE 2. Design process with the Tecs validation method

Development
and validation

Development
and validation

Test case specification

Test case implementation

HW-SW cosimulation
HW simulation

Test case developm
ent and validation

and simulation
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2.1  TECS Methodology

The proposed test case development methodology targets mixed hardware/software embedd

tems, which typically consist of a few structural hierarchy levels: system level, board level, A

level, and blocks and cores inside the ASIC. System design methodologies which target s

applications, do not formulate functional system validation as an independent activity, but

integrated into the design activities. Calvec [7] for instance describes in great detail a sy

development methodology and also emphasizes the need for validation in all phases. Howe

method to specify and develop test cases is described.

The software engineering literature treats testing extensively. Complete software testing met

ogies cover a variety of design phases, from requirements testing to maintenance testin

applications such as client-server applications and graphical user interfaces [12, 19, 20, 27

instance, the ISO has standardized a general testbench development notation, TTCN [21], a

ITU has standardized a notation to describe message sequences in test cases, MSC [5]. T

has developed a tool suite around these notations allowing sophisticated test development,

cally targeted towards protocol testing in telecom applications [22, 23]. These tools are us

conjunction with SDL and recently also with UML [24]. Our methodology is more specifically t

geted towards development of embedded systems, where hardware and software are co-d

in a combined VHDL-C setting. Much of the testing literature in software engineering is c

cerned with guidelines and rules to help engineers write unambiguous, consistent and com

test cases, e.g. [12, 19, 20, 26]. It is often application specific, e.g. for user interfaces or pro

Structural testing [28, 29] derives coverage metrics and test cases from the implementatio

strives to cover every statement, every branch, or every path. Behavioural testing [19] a

assumptions about the structure and implementation and derives test cases from requireme

functional specification. It uses various techniques based on control flow, data flow, data a

state space analyses, etc. It applies these techniques at both the component and the syst

and pays special attention to the integration of components. Our approach falls into the categ

behavioural testing but unlike other methods, we focus on the systematic derivation of comp

and interface test cases from system test cases. This is complementary to other behavioura

techniques, which focus on the definition of the test cases. It is beneficial when used in conju

with them, because it provides almost a guarantee, that at the component and interface le

system level tests are covered. Therefore, it has the potential to significantly reduce simu

time at the system level. This is of particular importance for heterogeneous implementations,

different parts require different simulation environments, such as mixed hardware/software

tems.
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Most methodologies and textbooks on software testing emphasize the need for automatic te

generation from a requirements definition or system specification document, e.g. [17, 25]

there exist many tools which support automatic test case generation. We fully agree, that this

ultimate goal. However, we realize that today the overwhelming majority of industrial projects

development of embedded systems do not write or utilize a specification at a higher leve

VHDL or C++. One reason is a lack of an appropriate system level specification language, w

is underscored by recent industrial and academic attempts to develop such a language [13,

16]. Our methodology and the test case specification language addresses the current need,

ify and develop test cases in the absence of an apropriate requirements definition or system

cation model. Once an appropriate system specification is well established and test cases

automatically generated, our methodology would merge into the development of the funct

system specification, adding the definition of the test cases to the system specification. Th

posed partitioning of test cases would be part of such a unified methodology, providing a tech

to refine test cases according to the structural refinement of the system.

2.2  Tecs Language

Our proposed test case specification language, the Tecs language, is event and state oriente

sense of [17], which makes it similar to languages based on finite state machines, e.g. [3, 8

not a full-fledged modelling language but is specialized to facilitate test case specification and

ulation analysis. For instance, events in Tecs are defined by their origin and cause and not b

effect as in most other languages. This does not mean a different model of computation b

proved to be more efficient in practice for analysis of system and test case behaviour.

In that sense Tecs is similar to message sequence charts, standardized by the ITU [5]. Ho

message sequence charts do not define actions which we require to simulate the test cas

timing diagrams described in [6] are also focused on events but the main emphasis is on tem

relationships and interface implementation, while our focus is on causal relationships and the

tional behaviour. The Tecs language is specialized for the specification and simulation of test

in a synchronous system which requires the description of causal event chains.

Although the Tecs language has certain interesting features, its main purpose is to demonst

which abstraction level test cases should be specified. Furthermore, we use it as foundation

malize refinement and validation tasks, which faciliates improved tool support. In [10] and [11

Tecs language and the simulation environment, which includes a VHDL generation tool, has

described. Based on this, we focus in this paper on the overall validation methodology and o

test case partitioning method.
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2.3  Test case Partitioning

Automatic test case partitioning to derive test cases for sub-systems and components has

best of our knowledge, not been addressed in the literature. It is not related to partition testing

which refers to a general family of testing strategies, which partition the domain of input varia

into ranges. The behaviour of a system in reaction to inputs is equivalent in some sense for

within one partition. This allows for a significant reduction of test cases. In contrast, we add

the partitioning of system level functional test cases into sub-test cases according to the s

structure.

In summary, Tecs addresses the problem of defining and refining test cases for an embedd

tem consisting of custom hardware and software parts. The test case partitioning techniqu

novel contribution, which has been developed as part of the Tecs methodology, but is more

ally applicable to other test case development methodologies. Together, methodology, lan

and partitioning technique address a relevant problem in today’s system development, wh

the best of our knowledge, has not been adequately addressed elsewhere.

3.   TECS METHODOLOGY

The Tecs methodology determines a hierarchical top-down test case development process c

ing of the following steps (Figure 3):

1. Enumeration of system functions;

2. Definition and development of a test case for each system function in the Tecs notation

case definitions and system function descriptions in the Tecs notation are fully automat

translated into VHDL for simulation);

3. Partitioning of the system functions into sub-functions vis-a-vis the partitioning of the sys

into boards, ASICs, cores, hardware blocks and software modules;

4. Partitioning of test cases (will be fully automated);

5. Implementation of the sub-function test cases and their simulation in the system simu

environment; (The compilation of test cases into VHDL/C/assembler will be fully automa

the comparison of simulation results will be partially automated.)

Note, that the enumeration, definition and partitioning of system functions would ideally be pa

the design flow. However, if it is not it must be done in the test case development.
Page 7
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3.1  Step 1: Enumeration of system functions

In the first step all the system functions are enumerated and intuitively defined. This set bas

specifies what the system must fulfil in order to be considered a “good” system. If one of the

tem functions is not performed correctly, the system is faulty.

An example set of system functions for the switch in Figure 1 is shown in Figure 4.

System Specification

Partitioning into boards,
ASICs, HW modules,

Component Specification

1. Enumeration of system
functions;

2. Definition of system test cases

3. Partitioning of system functions
4. Partitioning of test cases

5. Implementation of sub-function
test cases

Design FlowTest case Development Flow

FIGURE 3. Test case development flow in relation to the design flow.

cores, SW modules

SF 1: If a data event appears at input 1 and if state variable 1 connects input 1 with output 1, transm
the data event to output 1;

SF 2: If a data event appears at input 1 and if state variable 2 connects input 1 with output 2, transm
the data event to output 2;

SF 3: If a data event appears at input 2 and if state variable 2 connects input 2 with output 2, transm
the data event to output 2;

SF 4: If a data event appears at input 2 and if state variable 1 connects input 2 with output 1, transm
the data event to output 1;

SF 5: If an event “connect-i1-to-o1” appears at the command input, set state variable 1 such, tha
connects output 1 with input 1 and it does not connect output 1 with input 2;

SF 6: If an event “connect-i2-to-o1” appears at the command input, set state variable 1 such, tha
connects output 1 with input 2 and it does not connect output 1 with input 1;

SF 7: If an event “connect-i2-to-o2” appears at the command input, set state variable 2 such, tha
connects output 2 with input 2 and it does not connect output 2 with input 1;

SF 8: If an event “connect-i1-to-o2” appears at the command input, set state variable 2 such, tha
connects output 2 with input 1 and it does not connect output 2 with input 2;

SF 9: If an event “disconnect-o1” appears at the command input, set state variable 1 such, that outp
is not connected to any input;

SF 10: If an event “disconnect-o2” appears at the command input, set state variable 2 such, that out
2 is not connected to any input;

FIGURE 4. Set of system functions for the 2x2 switch.
Page 8
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This set also defines the task of the validation engineers. They must eventually convince

selves and the project management that their test cases would detect any malfunction of th

tem. Thus, the selection and formulation of the system functions is critical, because all rel

functionality of the system must be covered, but the mutual overlapping of test cases shou

kept to a minimum to avoid superfluous implementation and simulation effort. However, it is m

easier to achieve this at the system level than at the component level, because the total num

system functions is much smaller than the number of component functions. Furthermore, s

functions are usually more obvious and much easier to comprehend than component functio

3.2  Step 2: Test cases for system functions

In the next step for each system function one or more test cases are developed. A test case

of a description of the system function itself and a sequence of stimuli from the environmen

example test case, which tests the first system function in Figure 4, is shown in figure 5

The system function is modeled in the Tecs notation together with the environment for this p

ular function. The function´s environment provides input and reactive stimuli to the function a

essentially the test case. It also contains test expressions to detect errors in the system’s re

Thus, the system function´s environment is a complement of the function. This means the fun

is actually modelled twice: once directly and once as its complement with a built-in error dete

mechanism. In this way the confidence is increased that the intended functionality is modelle

rectly.

This step is crucial in finding the minimum set of test cases which covers all the systems fun

ality. The Tecs methodology supports this by (a) providing the right abstraction level, (b) allow

to simulate the test case specifications, and (c) visualizing the simulation output in a grap

form. The right abstraction level for test case specification allows the user to deal with rele

system states and events. For the switch example, the relevant system state for a test case d

is the connection status of the switch, i.e. which input is connected with which output. The rel

events are commands, which change the connection status, e.g. CONNECT and DISCON

events, and data packets applied at the switch inputs and emitted at the switch outputs. The

of the data packets is not relevant. Thus, the test case developer will formulate test cases d

only with these events and states, and would not like to be concerned about how these eve

• Set the state variable 1 such, that input 1 is connected to output 1;
• inject a data event at input 1;
• check if the data event appears at output 1 or output 2;
• if it appears at output 1 but not at output 2, the system has passed the test case.

FIGURE 5. Test case for system function 1 of figure 4.
Page 9
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states are realized. At this level of abstraction the test case developer can much easier devi

of test cases, which fully cover the desired functionality with a minimum amount of ove

between test cases. If she/he had to do this at the test case implementation level, it would be

harder because simple events like CONNECT might involve long descriptions on how to cod

message, how to implement the protocol to talk to the switch, many checks about consiste

states, data and responses, availability and allocation of resources, etc.

The simulation and the visualization of simulation results greatly facilitates the analysis

understanding of the test cases. In particular, the visualization with the relevant events and s

states as visible objects is a crucial help in understanding, which event and state sequences

gered and covered by a test case. An example of such a visualization is given in Figure 18.

3.3  Step 3: Partitioning of functions

Since it cannot be expected that all system functions can be simulated and validated with the

system, test cases for system components must be defined and simulated. To this end the

functions defined in step 1 are partitioned into sub-functions which can be assigned to sp

components of the system. Hence, the partitioning of the system functions into sub-function

rors the structural partitioning of the system into boards, ASICs, cores, hardware blocks and

ware modules.

Assume that the switch is implemented with an architecture shown in Figure 6. The buffer an

sequence operate on twice the speed of the inputs and outputs. The receivers write the re

packets in a fixed order into the buffer. The sequence reads out the packets from the buffe

receiver 1

receiver 2

buffer

se
qu

en
ce

r

controller

trans-
mitter 1

trans-
mitter 2

i1

i2

o1

o2

cmnd

FIGURE 6. The 2x2 switch is implemented with a high speed buffer, into which the
inputs from the receivers are serially written, and a sequencer, which reads out the
buffer in a sequence, which is determined by the connectivity status of the switch.
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order, determined by the connectivity status of the switch, and passes them on to the transmi

fixed order. This requires that the buffer can store at 4 packets. The controller interprets the

mands and configures the sequencer accordingly.

The system functions from step 1, must be broken down into sub-functions according to this

tecture. For instance, the first system function in Figure 4 would be partitioned into sub-func

as illustrated in figure 7. From this example it becomes apparent, that functions and sub-fun

are not independent from each other. For instance for the sequencer a sub-function has to

mulated which serves many of the system functions.

3.4  Step 4: Partitioning of test cases

Test cases defined at the system level are partitioned with the technique described in Secti

correspondence to the partitioning of system functions into sub-functions. In fact, steps 3

must be repeated several times depending on the depth of the hierarchy of the structural pa

ing of the system. Frequently we encounter two to four levels in the hierarchy: 1: system; 2: b

3: ASIC; 4: HW block and SW module.

For our example of the switch, we need to derive sub-test cases from the test case in figure

each of the sub-functions in figure 7 to take care of system function 1. Since system function

not independent from each other, sub-functions and their corresponding test cases exhibit

times a high degree of redundancy. The challenge is, to derive a minimal set of sub-test

which together check the system function but allow simulation at the sub-system level as mu

possible.

Sub-function 1.1 (receiver 1): If data appears at the input of transceiver 1, propagate it to the output o
receiver 1;

Sub-function 1.2 (buffer): If data appears at input 1 of the buffer, store it at location 1;
Sub-function 1.2 (buffer): If a request comes from the sequencer naming a certain storage locatio

transmit the data on that location to the sequencer;
Sub-function 1.3 (sequencer): If the sequencer’s state variable connects input 1 with output 1, reque

data from storage location 1 from the buffer and pass the data to the transmitter 1.
Sub-function 1.4 (transmitter 1): If data appears at the input of transmitter 1, propagate it to the out

put of transmitter 1;

FIGURE 7. Sub-system functions derived from system function 1 (figure 4) for the architecture
figure 6.
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3.5  Step 5: Test case implementation and simulation

Up to this point the system under observation has not been simulated, and only in the last st

test cases are coded in a combination of VHDL, C, and assembler and simulated togethe

parts of the system or the entire system, which is modelled in C and VHDL.

3.6  Function and test case validation

The correct behaviour of a system function is checked in three ways as illustrated in Figure 8

the test case implementation contains automatic checks; (B) validation engineers compare th

ulation result with their intuitive understanding of the function; (C) the system simulation resu

compared with the simulation result of the Tecs model; an automation of this step is feasible

intended in the future.

Note, that Tecs models cannot directly be simulated but are translated into VHDL first. Bu

translation is not identical to the implementation of a test case, which in general is a mixtu

VHDL and C or assembler code. For the sake of simplicity this translation step is not shown i

ures 8 and 9.

Furthermore, the test case specification and implementation are validated and checked in

ways as illustrated in Figure 9: (α) The Tecs specifications are simulated; (β) all test cases for sub-

functions are simulated together and validated against the Tecs model of the function at th

higher level; (γ) the simulation results of the test case implementation with the unit under tes

TC for system function

(Tecs notation)

system function

(Tecs notation)

TC for system function
(VHDL, Assembler)

System

(VHDL, Assembler)

Simulation

Simulation

C
om

pi
la

tio
n

Checking

Code

Checking

Code

Comparison

(A) (B)

(C)

FIGURE 8. Validation of the behaviour of a function.
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compared with simulation results of the test case specification, which is identical to (C) a

(Figure 8).

This complex procedure might seem to be an exaggeration, because the test case partition

been proven to be correct. However, there are still two main possibilities, where errors ca

introduced. The partitioning of functions into sub-functions, which define the test case part

ing, could be flawed, and at several points simulation results are investigated manually wi

possibility to miss false behaviour. Hence, this procedure still cannot guarantee correct imple

tations, but it results in a very high confidence that errors in the system are detected.

TC for system function

(Tecs notation)

system function

(Tecs notation)
Simulation

TC for function 1

(Tecs notation)

TC for function 2

(Tecs notation)

function 1

(Tecs notation)

function 2

(Tecs notation)

Partitioning Partitioning

Simulation

Simulation

function 1

(Tecs notation)

function 2

(Tecs notation)

Simulation

(a)

(b)

FIGURE 9. Test case validation.
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4.   TESTCASE PARTITIONING

4.1  Introduction

We first introduce test case partitioning intuitively before we develop the method formally in

following sections. Figure 10 illustrates the overall flow. Given a system function, a test ca

validate this function, and a partitioning of the function into sub-functions are derived. The p

tioning of a system function into sub-functions corresponds typically to the structural partitio

of a system into sub-systems and components. The test cases for sub-functions are not d

derived from the system function test case, but indirectly via the generation and partitionin

event sequence charts. An event sequence chart is generated by applying a test case to a f

typically by simulation. Although event sequence charts are usually infinite, our method w

practice only deal with finite subsets.

In the following we use the switch example to illustrate the partitioning process (Figure 11

system function F is defined for this switch, which determines the causes and impacts of the

variables, external and internal events (Figure 12). The behaviour of F is more complicated

the system functions in figure 4 and includes all, what one would expect from a simple switch

setting up connections, releasing connections, and transporting speech signal events fro

inputs to the connected outputs. For this system function a test case is defined, which esta

System function Test case for

Event sequence chartPartitioning into
sub-functions

Partitioning of the
event sequence chart

Derivation of test cases
for sub-functions and
interfaces

system function

FIGURE 10. Test case partitioning flow. Input to the test case partitioning is the partitioning of
system functions into sub-functions and event sequence charts, generated by applying a test case
system function.
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two connections in sequence and applies speech signals. When the test case is simulated,

sequence chart is generated (Figure 12).

A system function is defined by state variables, external event types and internal event typ

illustrated in Figure 12. A test case is defined by external events and the time instance they

Applying a test case to a system function generates an event sequence chart. An event is ch

ized by the time instance it occurs and by the event type it is associated with. The event ty

characterized by the condition under which an event of this event type occurs, i.e. the occu

of other events and specific values of state variables. Thus, many events of one event ty

occur at different time instances during simulation.

The partitioning of a system function into sub-functions is defined by assigning each state va

and each internal event type to exactly one of the sub-functions as illustrated in Figure 13. Ex

event types can be common to all sub-functions.

s_o1

s_o1

Switch

ext_ss_i1

ext_ss_i1

int_ss_o1

int_ss_o2

o1

o2

i1

i2

ext_co1_i1 ext_co1_i2
ext_co2_i1 ext_co2_i2
ext_do1 ext_do2

FIGURE 11. A switch with 2 inputs and 2 outputs. The state variables s_o1 and s_o2 define
connectivity of the switch. External events to establish a connection (ext_o1_i1, ext_o1_i2, ext_o2
ext_o2_i2), to release a connection (ext_do1, ext_do2), and for speech signals can be applied. Bas
the state variables and the external speech signals, the switch reacts with submitting speech inte
generated signals on its outputs (int_ss_o1, int_ss_o2).
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nals

insert
ut o2
t o2.
FIGURE 12. Application of a
test case to a system function
results in an event sequence
chart.
The example is a switch with 2
inputs and 2 outputs. The
connectivity is stored in the two
state variables s_o1 and s_o2,
which define to which input the
outputs o1 and o2, respectively,
are connected. The external
events, ext_cX establish a
connection between an input
and an output. Thus, they
modify the state variables. The
events, ext_dX disconnect an
output. The events ext_ss_X
introduce a speech signal at an
input, by triggering internal
events int_ss_iX. According to

s_o1 s_o2

ext_co1_i1

System function Test case Event sequence chart

ext_co1_i2

ext_co2_i1 ext_co2_i2

ext_do1 ext_do2

ext_ss_i1 ext_ss_i2

int_ss_i1 int_ss_i2

int_ss_o1 int_ss_o2

ext_co1_i1 @ 1

ext_ss_i1 @ 3

ext_do1 @ 6

ext_co2_i1 @ 8

ext_ss_i1 @ 10

ext_do2 @ 13

s_o1 s_o2

ext_co1_i1

s_o1

ext_ss_i1

int_ss_i1

int_ss_o1

ext_co2_i1

ext_do1

s_o1

s_o2

ext_ss_i1

int_ss_i1

int_ss_o2

ext_do2

s_o2

the connectivity stored in the state variables s_X, input speech signals will trigger output speech sig
int_ss_oX.
The test case applies external events at specific time instances to connect input i1 to output o1, to
a speech signal at input i1, which propagates to output o1. The output o1 is disconnected and outp
is connected to input i1. Again, a speech signal is inserted to input i1 which propagates to outpu
Finally, output o2 is disconnected again.
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,

FIGURE 13. Partitioning of a system function into two functions. Sub-function F1 contains state
variable s_o1 and the internal events int_ss_i1 and int_ss_o1. Sub-function F2 contains s_o2
int_ss_i2, and int_ss_o2. All external events are in principal part of both sub-functions, but here
only those are shown, which will be needed for the given test case.

system function F

system

system

s_o1 s_o2

ext_co1_i1

ext_co1_i2

ext_co2_i1

ext_co2_i2

ext_do1 ext_do2

ext_ss_i1 ext_ss_i2

int_ss_i1 int_ss_i2

int_ss_o1 int_ss_o2

s_o1

ext_co1_i1

ext_do1 ext_ss_i1

int_ss_i1 int_ss_o1

s_o2

ext_co2_i1 ext_do2

int_ss_i2 int_ss_o2

function F2

function F1
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Corresponding to a partitioning of a system function, the event sequence chart is also partit

This is illustrated in Figure 14. For each sub-function a corresponding event sequence ch

derived. In addition another event sequence chart covers all the interface arcs together with a

causal predecessors. Note, that in this example the event sequence chart for F2 contains

external event, ext_new, which was not contained in the original event sequence chart. This i

FIGURE 14. Partitioning of an event sequence chart into two event sequence charts for the sub-funct
and one for the interface between the sub-functions. One part of the event sequence chart, which
with the connection from input i1 to output o1, falls entirely into the realm of sub-function F1. The oth
part, which connects input i1 to output o2 involves both sub-functions, F1 and F2. Hence, it contribute
the test cases for F1, F2, and the test case for the interface between sub-functions F1 and F2.

s_o1 s_o2

ext_co1_i1

s_o1

ext_ss_i1

int_ss_i1

int_ss_o1

ext_co2_i1

ext_do1

s_o1

s_o2

ext_ss_i1

int_ss_i1

int_ss_o2

ext_do2

s_o2

s_o1

ext_co1_i1

s_o1

ext_ss_i1

int_ss_i1

int_ss_o1

ext_do1

s_o1

s_o2

ext_co2_i1

s_o2

ext_new

int_ss_o2

ext_do2

s_o2

s_o2

ext_co2_i1

s_o2

ext_ss_i1

int_ss_i1

int_ss_o2

event sequence chart
corresponding to F

event sequence chart
corresponding to F1

event sequence chart
corresponding to F2

event sequence chart
covering the interface

ext_ss_i1

int_ss_i1
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to simulate the effect of event int_ss_i1 in the original chart. From these event sequence cha

cases are derived. For our example the resulting test cases are shown in Figure 15.

4.2  Problem formulation

In order to specify, simulate, and partition a test case we will formally define a system functioF,

a test caseTC, and an event sequence chartESC, which results from applying a test case to a syste

function. The model is based on events and state variables. Intuitively an event occurs at a s

instance in time and a state variable always holds a particular value and can assume new va

particular time instances. A change of a state variable is also considered an event.

Let be a set of event types, a set of events, a mapping of events to event t

is a mapping of events onto natural numbers, which can be interpreted as time insta

is a set of state variables and a set of values a state variable can assume. Let

be a set of functions which define possible assignments of values to variables, and let the fun

define the values of state variables at specific time instances. The func

characterise events. For each event defines the condition under which i

occur. , where denotes the cartesian product of events

the set of boolean values. An event can depend on a combination of oc

rences of other events. denotes the set of events upon which an occurrence of an

depends. An event occurs if and only if all events in have occurred one time step ea

denotes the set of event types upon which an occurrence of an event of a part

type depends. denotes the set of state variables which are modified by an even

particular type. denotes the new values assigned to state variables by an e

Test case Test case Test case Test case for
for F for F1 for F2 the interface

FIGURE 15. Resulting test cases for sub-functions and interface. Based on the partitioning of the ev
sequence charts in Figure 14, three test cases are derived, one for sub-function F1, one for sub-fun
F2, and one for the interface between F1 and F2. Only the latter has to be applied to the complete sys
the former two test cases can be applied to the sub-systems, corresponding to F1 and F2.

ext_co1_i1 @ 1

ext_ss_i1 @ 3

ext_do1 @ 6

ext_co2_i1 @ 8

ext_ss_i1 @ 10

ext_do2 @ 13

ext_co1_i1 @ 1

ext_ss_i1 @ 3

ext_do1 @ 6

ext_co2_i1 @ 8

ext_new @ 11

ext_do2 @ 13

ext_co2_i1 @ 8

ext_ss_i1 @ 10
ext_ss_i1 @ 10

Et E etype :E Et→

t : E N→

S B A a: S B→{ }=

a0 a1 … an A∈, , ,

f f c f,
c
t f s

t f b
t, , , f

f : Et E
n

Bool→( )→ E
n

Bool true false,{ }=

f c: E E
n→

e fc e( )

f c
t : Et Et( )n→

f s
t : Et S

n→

f b
t : Et S B,( )n→
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An event or event type for which , is called external, otherwise it

called internal. An event type for which , is called atomic, otherwise it is a state

iable modification event.

A systemfunction F is a 5 tuple , where all event types in  must be internal

A test caseTC is a 3 tuple , which defines the events, generated by the test case

applied to the system. All event types in a test case must be external. defines at which

instances the events are generated.

The application of a test case to a system functio

defines an event sequence chart , whe

defines the values of state variables, and is a state upd

function defining a new state variable assignment based on an old state variable assignmen

set of events, which can include state variable modification events. are given byTC and

F and . are recursively defined, starting with events for which is

which can only be external events fromTC. An event with occurs if its condition function

evaluates to true, which depends on events of the previous time instance . In this wa

event sequence chart unfolds and is potentially infinite. We call anESC fully expandedif for any

subset of events, the event with the relation , is also an elem

of . An ESC can be represented as a directed, acyclic graph , where

set of vertices representing all events, and is a set

arcs representing causal relationships between events.

A partitioning of a system function into two sub-functions is required when t

system is partitioned into two components. The internal event types and the state variables a

titioned into disjoint subsets, such, that each internal event type can occur in only one of th

sub-functions and each state variable resides only in one of the two sub-functions but each in

event type and each state variable is part of one of the two sub-functions. The set of externa

types in each sub-functionFs is determined by the causal predecessor sets of the internal e

types of the sub-function. All external events ofF which are part of the causal predecessor set

any internal event inFs is an external event type ofFs. In addition, internal event types ofF, which

do not belong toFs but which are part of the causal predecessor set of an internal event typeFs

become external event types inFs. In this way, all event types of all causal predecessor sets

event types in a sub-function belong also to the sub-function, either as internal or as external

In other words, events which would come from the other sub-function are modelled as ext

events and must be provided by the test case when the sub-function is simulated in isolatio

e et f c
t et( ) ∅ f c e( ), ∅= =

et f s
t et( ) ∅=

F Et S B a0, , ,〈 〉= Et

TC Et E t, ,〈 〉=

t

α : F TC× ESC→ TC Ex
t Ex t, ,〈 〉=

F Ei
t S B a0, , ,〈 〉= ESC Et E t' S B A g, , , , , ,〈 〉=

A a0 a1 … an, , ,{ }= g : A E
n

A→×

S Banda0,

Et Ex
t Ei

t∪= E t' anda1…an, t'

t' k= 0>

f k 1–

E' E⊆ e fc e( ) E' etype e( ) Et∈,=

E ESCG V C,〈 〉= V E=

C e i,( ) : e Ek∈ i Ek 1+ e fc i( )∈∧∈∧{ }=

πF : F F1 F2,( )→

f c
t
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The set of state variable values and the initial assignment are assumed to be identical

system function and in both sub-functions for the sake of simplicity in this argument, altho

they can be more restricted.

Based on these definitions a test case partitioning problem can be formulated as follows. G

functionF, a test caseTC and a function partitioning , find test cases which gene

ate the same events and causal event chains when applied toF, F1, andF2, as the test caseTC when

applied toF. The objective is to minimize the number of events generated by test cases appl

F.

4.3  Event sequence chart and test case partitioning

The application of the test caseTC to the system functionF generates an event sequence cha

First we define a partitioning of the event sequence chart into three event sequence charts

sponding to the two sub-functions and to the interface of the sub-functions. From the

sequence charts we derive three test cases and we show that the application of the test cas

sub-functions and to the system function is equivalent to the application of the original test ca

the system function with the potential of significant reduction of simulation time.

A partitioning of an event sequence chart is based on the pa

tioning of the corresponding system function and defines three new event sequence

ESC1, ESC2, andESC∆. Intuitively, ESC∆ captures the interaction betweenESC1 andESC2 and the

sequence of events that lead to this interaction. Below we treat it more precisely, but first we d

ESCs with .

The internal event types ofESCs are identical with the internal event types of the correspond

sub-functionFs. The internal events inESCs are precisely those internal events ofESC which corre-

spond to the internal event types inESCs. The external event types ofESCs are identical with the

external event types of the corresponding sub-functionFs. The external events inESCs correspond

to the external event types inESCs and are derived from external or internal events inESC which

belong to a causal predecessor set of internal events inESCs. The state variables inESCs are

identical to the state variables inFs. The set of state variable values , the set of assignment fu

tions and the initial assignment are assumed to be equal inESC, ESC1, ESC2, andESC∆, even

though they could be more restricted in the derived event sequence charts. Also the time m

function is identical in all four event sequence charts in the sense, that for internal events

ESC, which are transformed into external events  inESCs,

B a0

πF : F F1 F2,( )→

πE : ESC ESC1 ESC2 ESC∆××→

πF

s 1 2,=

f c

B

A a0

t ei

ex t ei( ) ts ex( )=
Page 21
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The set of event pairs  represents the total causal dependence betweenESC1 andESC2:

where and are the set of events inESC1 and ESC2, respectively. The transitive closure

 of  includes all direct and indirect causal predecessors of an event

Based on these definitions we construct a third event sequence chartESC∆ which includes all

causal event pairs betweenESC1 andESC2 and all their causal predecessors inESC. A causal event

pair i are two events, one of which depends on the occurrence of the other one time step e

The events inESC∆ form a subset of the events inESC and therefore the event types and state va

ables inESC∆ are subsets of the corresponding sets inESC, because they are defined by the fun

tions and . No conversion of internal to external events is necessary for the constru

of ESC∆ because it eventually shall be derived from the system functionF by applying a test case

TC∆ to be defined below.

The reduction of an event sequence chart to a test case removes all internal e

types and events, including state variable changes, while the external event types and eve

identical inESC andTC. Also the time marking is identical which guarantees that the exter

events occur at the right time instances. derives three test casesTC1, TC2, andTC∆ from the event

sequence chartsESC1, ESC2, andESC∆.

Finally we show, that the derived test cases indeed trigger all internal events and causal

which are triggered by the original test caseTC.

The equation holds, ifFv and ESCv have identical external event types

internal event types, state variables, and state variable values and ifESCv is fully expanded. This is

the case forF1 - ESC1 andF2 - ESC2 due to the definition of the partitioning . However, thes

sets inESC∆ are not identical to those inF but they are subsets. In that case, above equation tu

into a relation , meaning that the event types, events, and state variabl

the right hand side are subsets of the corresponding sets of the left hand side, and that th

marking is identical for events which exist in both event sequence charts.

be the event sequence chart, for which we have to establish the

orems below.

Based on this observation, we have to show (a) that all internal events inESC are present in either

ESC1, ESC2, or , (b) that the time marking of the internal events are identical in all ev

P

P e1 e2,( ) : e1 E1∈ e2 E2∈∧( ) e1 E2∈ e2 E1∈∧( )∨( ) e1 f c e2( )∈∧{ }=

E1 E2

f c
* : E E

n→ f c

f c
* e( ) e' E∈ : e' f c e( )∈( ) e'' f c e( ) : e' f c

* e''( )∈( )∈∃( )∨( ){ }=

etype f s
t

ρ : ESC TC→

t

ρ

α ρ ESCv( ) Fv,( ) ESCv=

πE

α ρ ESCv( ) Fv,( ) ESCv⊇

t

ESC∆
x α ρ ESCI( ) F,( ) ESC∆⊇=

ESC∆
x
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sequence charts, and (c) that all causal relations between event pairs inESC also exist in either

ESC1, ESC2, or .

Theorem 1The union of internal events inESC1, ESC2, and, is equal to the set of inter-
nal events inESC, , if all event sequence charts are fully expanded

According to the partitioning ofESC each internal event ofESC is either inESC1 or in ESC2

such that . Internal events ofESC∆ are by definition of only events that are

also inESC. Since the event types and state variables ofESC and are identical and the set o

external events in is a subset of the set of external events inESC, cannot contain events

that are not part ofESC. If there were an internal event , its causal predecess

must include at least one event which is not inESC. If all events of were also inESC,

event were inESC too, sinceESC is fully expanded. This argument can recursively be appli

until contains only external events. Since the set of external events in is a subset

set of external events inESC, there can be now such event .❑

A direct implication of this theorem is that the time marking for the same events inESC1, ESC2,

, andESC are identical. External events derived from internal events have the same

marking as the original internal events by definition of .

However, it is not sufficient to have the same events. When we validate a system function w

also interested in the causal chains that lead to the occurrence of events. Thus, we must als

that the causal relations between events are preserved by the partitioning.

be thecausal setof

an event sequence chart representing causal relationships between events.

Theorem 2The union of causal sets ofESC1, ESC2, and, is equal to the causal set in
ESC, , if all event sequence charts are fully expanded.

Let be a causal relation inESC. Due to Theorem 1 the events and mu

either be inESC1 or in ESC2. We distinguish several cases:

(1) Event and its causal set is in . must be in because the time marks are id

cal. The same argument can be applied if all events of  are in .

(2) Event is in and its causal set is in . All pairs , where , are in

by definition of for the partitioning operator . Consequently they are also in , he

. A similar argument holds if  is in  and its causal set  is in .

ESC∆
x

ESC∆
x

Ei 1, Ei 2, Ei I,
x∪ ∪ Ei=

πE

Ei 1, Ei 2,∪ Ei= πE

ESC∆
x

ESC∆
x ESC∆

x

e Ei I,
x∈ e Ei∉∧

f c e( ) f c e( )

e

f c e( ) ESC∆
x

e

t

ESC∆
x

πE

C e fc e( ),( ) : e E∈ f c e( ) E t e( ) k=( ) e' f c e( ) : t e'( ) k 1–=∈∀( )∧ ∧⊆∧{ }=

ESC∆
x

C1 C2 C∆
x∪ ∪ C=

c e fc e)( ),( )= e fc e( )

e fc e( ) E1 c C1

c E2

e E1 f c e( ) E2 e' e,( ) e' f c e( )∈ P

P πE ESC∆
x

c C∆
x∈ e E2 f c e( ) E1
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(3) Event and at least one element of its causal set is in and at least one event of its cau

is in .By definition of , the events in are transformed into external events and bec

part ofESC1. Thus, based on the assumption that an event transformed in this way is equival

the original, is in . Note, that this is an important assumption and a potential cause of e

if events applied by a testbench during simulation are not modelled accurately. A similar argu

holds if  is in  and its causal set  is distributed over  and .

We have shown by now that each is also in . To see that the other directio

the theorem holds as well, consider that is a superset of , , and . Therefore, any

, , or  must also be in .❑

The test casesTC1, TC2, andTC∆ can fully replace the original test caseTC in the validation proce-

dure, because by construction they trigger the same events and state variable changes asTC. How-

ever, in many situations they will require much less simulation time becauseTC1 andTC2 can be

applied to the isolated components and onlyTC∆, which addresses the interconnections, must

applied at the system level.

This two way partitioning technique can be generalised to multi-way partitioning in several w

A straight forward method reduces onen-way partitioning inton-1 2-way partitionings which

leads to 2n-1 derived test cases.

5.   TECS LANGUAGE AND TOOLS

5.1  Tecs language

The Tecs language is based on the model introduced in Section 4 and it is used to descri

cases and functions. A more elaborate description of the language can be found in [10] and

The main motivation for developing a special purpose language was

• to provide the right facilities to describe test cases, which are events, states and their

dependences;

• to have control over it to build useful features around it, e.g. to visualise the simulation ou

in a convenient form, and to generate test case implementations in VHDL and C automa

• to provide an implementation of the formal model, for which the test case partitioning t

nique has been developed.

To minimize the development effort, VHDL is used as simulation engine, because it was si

cantly easier to develop a Tecs to VHDL translator than to develop a Tecs simulator. While th

the disadvantages of a front-end language, such as the difficulty of debugging, the advantage
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E2 πE E2

c C1
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so far clearly outweighed the drawbacks. However, on the long run we expect that either

develops into a VHDL independent language with its own simulator or that other commercia

guages and tools provide the useful features and properties of the Tecs language. For in

VHDL itself could be directly used when accompanied with appropriate guidelines and to

Thus, we do not claim that the Tecs language is superior to other languages like VHDL, be

we are well aware of the flexibility and expressiveness of such languages on one hand, and

difficulties to learn and use many different languages on the other hand. But we use Tecs as

cle to (A) demonstrate the essential language features for test case specification, and (B) to

ment our refinement and partitioning method.

Tecs’ central elements are events and state variables. An event is characterized by its unique

by some parameters, a condition which triggers the event, and a verbose message text, w

written into the simulation trace file which greatly increases the readability of the event sequ

charts. An example of an event definition is as follows:

EVENT disconnect (port_number:INTEGER RANGE 0 TO 31) IS
TEXT IS “Disconnecting port $port_number$”;
IF disc_request (0,*)
THEN disconnect.port_number:=disc_request.p2;

END EVENT;

Events can have parameters which is a convenient way of defining a large number of dif

events. TheIF clause describes the causal condition of the event, and theTHEN clause describes the

new value of the parameter.

A state variable is defined by a name, a data type, a set of parameters, and a set of trigger

tions which cause a value change. Simulation output messages can be defined for particular

which allows to trace state variables in the simulation output. A typical state variable definitio

as follows:

STATEVAR connect_O5_to IS
TYPE IS integer;
IF connect(5,*)
THEN connect_O5_to.val:=connect.output_port;
IF disconnect(5) THEN connect_O5_to.val:=-1;
TEXT FOR -1 IS “Output O5 disconnected”;
TEXT FOR * IS “Output O5 is connected to Input I$val$”;

END STATEVAR;

A test case is modelled in terms of a set of events, which can be applied sequentially or in pa

to the system. In addition, there are structures for controlling the test case flow. These areWAIT-

statements for stopping the test case execution for a specified number of simulation stepsMES-

SAGE-statements for creating entries in the simulation trace file, andFOR-LOOP-statements for a

repeated execution of statements.
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An example for a test case containing all modelling elements is shown in Figure 16.

5.2  Tecs tools

Two tools, which have been described in more detail in [10] and [11], have been developed to

port the test case specification process:

• spcom: to translate a Tecs model to VHDL which provides a simulation environment;

• graphgen: to convert the event sequence chart of a simulation into a graphical representat

The spcom tool converts a system or test case specification in Tecs notation to VHDL. This

version makes the Tecs language an executable specification language without the need for

cated tool for the simulation of Tecs models. The top level consists of two entities, one fo

system and one for the test case description as illustrated in Figure 17. These entities are con

through signals which represent external and internal events and state variables. External

are generated by the test case. State variables and internal events are defined inside the

entity but can be observed by the test case.

TESTCASE Test1 OF sn IS

  Message("Testcase Test1");
  
  disconnect(0);
  disonnect(1);

  (disconnect(2),disconnect(3));

  FOR inp IN 0 TO 3 LOOP
    FOR outp IN 0 TO 3 LOOP

      connect(outp,inp);
      WAIT FOR 2 STEPS;
      speechsignal(inp);

    END LOOP;
  END LOOP;

END TESTCASE;

Parallel stimulation

For-Loop

Message statement

Sequential event stimulation

Wait statement

FIGURE 16. Test case definition.

FIGURE 17. Architecture of the VHDL model.

Top level entity

Test case
System function

Several VHLD Packages

derived from Tecs
model

specification
derived from
Tecs model

external events

internal events
state variables
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The simulation results are event sequence charts which are displayed in a graphical format w

daVinci-Tool [4] as illustrated in Figure 18. It makes causal dependencies explicit which is a

valuable aid to interpret a system functions behaviour.

6.   TESTCASE DEVELOPMENT FOR A SWITCH

The following example shows the development of a simple test case for a switching network

four input and four output ports. In addition there is a control port where commands from a ce

switch control are received. These commands define which ports to connect or disconnec

simplicity only the basic functions of a switching network are modelled: namely aconnectand a

disconnectfunction. The system functionality is modelled with four state variables, each of th

is associated with one output port. Its value defines, if the output port is connected and to

input port it is connected. Two external parameterised events, named CONNECT and DIS

NECT, determine how the state variables change their values. Another parameterised e

event, named SPEECH_IN, can be applied to inputs and causes internal parame

SPEECH_OUT events at output ports.

The following test case initially removes all connections, then establishes two connections th

the network, supplies the input with speech signals, disconnects one output, and applies th

speech signals again.

TESTCASE test1 OF sn IS
(disconnect(0), disconnect(1), disconnect(2),

disconnect(3)); -- concurrent disconnect
(connect(3,2), connect(1,1); -- concurrent connect
(speech_in(0), speech_in(1),

speech_in(2), speech_in(3)); -- apply inputs
disconnect(3); -- change connection
(speech_in(0), speech_in(1),

speech_in(2), speech_in(3)); -- apply inputs
END TESTCASE;

The event sequence chart resulting from the simulation is shown in Figure 18. The visualizat

simulation outputs is a significant part of the Tecs methodology because it promotes the u

standing of a test case considerably. It facilitates the detection and analysis of overlappin

incomplete test cases. In our experience it is a very valuable aid.

In this simple example the checking for the correct behaviour is done manually. In a real tes

automatic checks are included in the test case model.

Although this is a small example, we want to emphasize that real test cases are not much bi

the specification level due to the high level of abstraction used. The real switch is a very com
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system but the specification in Tecs for the test case which validates the connect/disconnect

iour is only a few times bigger than what we have shown here. Its implementation in VHDL

assembler code, however, is 50 to 100 times bigger. We indeed observed a code reduction b

one project as shown in Table 3. This is due to the higher abstraction level of Tecs statem

leaving out many details of a test case implementation. For instance, aconnect event requires sev-

Table 3.  Code size of test case specification and implementation

LOC of assembler impl. LOC of Tecs specification Code reduction with Tecs

1800 30 98.3%

FIGURE 18. Switching network simulation result as event sequence chart. At the left
there is the sequence of time stamps. Square boxes denote state variable assignments;
round boxes denote events. Bold lines denote causal dependences; dotted lines denote
time dependences.
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eral lengthy tasks in the implementation. First, a message must be sent to the switch, cont

the necessary information. Depending on the communication channel and the involved prot

this by itself can be an extensive procedure, with multiple acknowledgements, feed-backs an

for error conditions. Second, the establishment of the connection will depend on the structur

organization of the switch. If it consists of several stages, e.g. a common time-switch space-s

time-switch structure, there will be more than one possibility for a path through the switch fo

required connection. In that case a search algorithm to find a non-blocked path must be inv

Then the individual stages must be coordinated and the memories in the stages must be ac

Depending on the memory organization this can again be a sophisticated procedure. Fina

acknowledgment of success or a report of failure must be sent back to the unit, which emitte

connect event. In addition, the procedure has to deal with various exceptions and failure condi

All these details have to be considered for the test case implementation but they are not relev

the definition and specification of the test case. Hence, the difference does not come from th

ferent languages used, Tecs on one hand and assembler or VHDL on the other hand. The

ence comes from the different abstraction levels used. The same high level of abstraction co

provided in VHDL with appropriate libraries and modelling guidelines, which would have diff

ent advantages and disadvantages compared to an approach based on a specialised lang

Tecs.

The partitioning method described in Section 4 can significantly reduce the simulation

Assuming we want to simulate every possible connection in the switch, we must connect, tes

disconnect every output port with every input port. Each connect-test-disconnect seq

requires six events, namely CONNECT, state-variable-change, SPEECH_IN, SPEECH_

DISCONNECT, state-variable-change. Altogether we need to go through 16 such sequ

which results in 96 events to be simulated with the entire system. Next we assume a partiti

(Figure 19), where each part contains two outputs. The test case partitioning method res

three test cases, one for each part and one for the entire system. The test cases for the tw

generate eight connect-test-disconnect sequences, four for each output, which results in 48

to be simulated with each part. The system test case now has to deal with shorter, 4 even

sequences, because the DISCONNECT and its following state-variable-change events

affect the interface between the two partitions. Hence, the system test case generates eig

sequences, two for each of the four outputs, which results in 32 events. Assuming that each

in one partition requires half the simulation time than an event simulated with the whole sys

we gain a simulation time reduction of 17%. If we repeat the partitioning a second and a third

we achieve simulation reductions of 25% and 30%, respectively.
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These reductions are very helpful in practice because of extensive simulation times. With re

to the figures for project B in Table 2, the total simulation time for a complete regression sim

tion is reduced from 395 hours to 276.5 hours, assuming a 30%reduction. For the longest tes

(40 hours) a 30% reduction to 28 hours would mean, that the result of a simulation can be e

ined the next day, rather than two days later, which is a significant advantage in today’s tim

market driven projects. Moreover, the partitioning of a test case brings many practical advan

because more smaller test cases are easier to handle than few big test cases. They can be d

concurrently, they can be executed on smaller workstations, the effects of a workstation cr

the middle of a simulation are reduced, etc. It also allows to run simulations in parallel. Inste

one long system simulation (40 hours), we have one short system simulation (13.3 hours) an

even shorter sub-system simulations (10 hours each), for the case of a two way partitioni

repeated partitioning results in even shorter simulations, with the potential for significant eng

productivity.

Note, that this is a very conservative estimation, because a switch with the given validation

egy is the worst possible case. Every output is connected to every input and a partitioning c

take advantage of a locality of event interdependence. Thus, above figures on simulation

reduction can be viewed as lower bounds. In fact, a more realistic validation strategy fo

switch, where only selected connections are tested, gives simulation time reductions of mor

40% after the first partitioning. In addition, specific techniques to remove redundant test

could be applied. For the switch this would result in avoidance of all system test cases, bec

closer analysis reveals, that all system test cases are in fact fully covered by the partitione

cases. Thus, applying this technique, which can be automated, would reduce the simulatio

by 50% in the first step. We are not considering this here, because its effect in general is no

and most likely less beneficial than for the switch example. But it underscores, that our estim

definitely is conservative.

I1 I2 I3 I4

O1 O2O3 O4

I1 I2 I3 I4

O1 O2O3 O4

I1 I2 I3 I4

O1 O2O3 O4
Test case 1:
sequence length = 6;
8 sequences;

Test case 2:
sequence length = 6;
8 sequences;

Test case I:
sequence length = 4;
8 sequences;

FIGURE 19. Test cases for a 4x4 switch, partitioned into two parts.
Page 30



Design Automation of Embedded Systems, vol 5, no 1, Kluwer Academic Publisher, February 2000

onfi-

e and

real-

large

ces, if

actu-

is the

esti-

t cases.

ology

tor

ntire

rrectly

oject.

mple-
All this noteworthy improvement comes at no cost with respect to validation coverage and c

dence.

7.   RESULTS

The main benefit of the Tecs methodology comes in terms of increased validation coverag

designer productivity. Both can only be measured reliably when the methodology is used in a

istic project, which has not been done yet. We have done initial experiments as part of a

project and in the following we present data from these experiments and show the consequen

the methodology had been consequently applied to the entire project.

Table 4 compares the test case development time of the traditional methodology, which has

ally been used in the project, to the development time in the Tecs methodology. The project

same as project B in Table 1 and Table 2 in the introduction of this article. These figures are

mates since we developed a few test cases and extrapolated the results for the remaining tes

Table 5 compares the simulation run time in the traditional methodology to the Tecs method

with and without partitioning. All figures are based on the performance of the VHDL simula

Quick HDL from Mentor Graphics. Regression simulation is the process of simulating the e

suite of test cases for each new version of the design to make sure that all test cases run co

after each design modification. We assume 20 full regression simulations for the entire pr

The run-time of the test case partitioning is estimated since the algorithm has not been i

Table 4.  Test case development time comparison

Test case develop-
ment

Test case implementa-
tion

Test case development
time reduction

Traditional methodology 10 man-months - 0%

Tecs methodology 2 man-months 2 man-months 60%

Table 5.  Test case simulation run-time comparison

Tecs simu-
lation time

Test case
partition-

ing

Tecs sim-
ulation

System
simula-

tion time

Regres-
sion simu-
lation time

Simula-
tion run

time
reduction

Traditional methodology - - -
5h * 79 =

395h
20 * 395h
= 7900h

0%

Tecs methodology
0.5h * 79 =

39.5h
- -

5h * 79 =
395h

20 * 395h
= 7900h

-0.5%

Tecs methodology with
test case partitioning

0.5h * 79 =
39.5h

0.5h * 79 =
39.5h

1h * 79 =
79h

5h * 79 *
0.7 =

276.5h

20 * 395h
* 0.7 =
5530h

24.5%
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mented yet. Its complexity is proportional to the number of events in the event sequence

Since this is also true for the simulation run-time we assume the same figure for the partitio

most likely it will be significantly faster. We also assume a three-level partitioning which is rea

tic and corresponds to the typical structural hierarchy system-board-component. This lead

30% reduction in simulation time which is conservative as discussed in the previous section

overall net reduction amounts to 25% pure simulation time. This is significant due to the

absolute number of simulation hours which typically occur during the last design phases

most of the regression simulations are necessary.

In this calculation we have not considered the main benefit of the Tecs methodology, which

higher quality of the test cases. With high quality we mean good coverage of the functionality

little overlap between test cases.

8.   CONCLUSIONS

The Tecs methodology is based on an executable test case specification language, a tech

derive test cases for sub-systems and components, and a strategy to validate the test ca

apply them to the system, its sub-systems and components. Because a formal language

ambiguous test case specifications are avoided. Because test case specifications are simul

validated at a higher abstraction level before they are implemented, more effort is spent in th

case specification phase. This increased effort together with a convenient visualization of si

tion results in form of event sequence charts facilitates the identification of overlapping test

and relevant system states and event sequences, which are not covered by any test case.

An important consequence of the methodology is, that test case definition and developme

start in parallel with functional specifications as soon as a first enumeration of system func

has started. It allows to simulate system functions early in the design process and to provide

back to the design engineers.

In the future we will automate test case partitioning and test case implementation which pro

additional increase in design productivity. Furthermore, we plan to automate the comparis

results from system simulations against simulations of test case specifications. This is now

tedious and error prone task and its automation would result in a significant increase of prod

ity and confidence.
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