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Abstract. Looking into the future, when the billion transitor ASICs will become reality, this p
per presents Network on a chip (NOC) concept and its associated methodology as solu
the design productivity problem. NOC is a network of computational, storage and I/O resou
interconnected by a network of switches. Resources communcate with each other usi
dressed data packets routed to their destination by the switch fabric. Arguments are pre
to justify that in the billion transistor era, the area and performance penalty would be minim
A concrete topology for the NOC, a honeycomb structure, is proposed and discussed. A
odology to support NOC is presented. This methodology outlines steps from requirements
to implementation. As an illustration of the concepts, a plausible mapping of an entire ba
tion on hypothetical NOC is discussed.

1. Introduction

Complexity of VLSI circuits in terms of logic transistors that can be integrated on a chip is
creasing at the rate of 58% per annum compounded. Whereas the design productivity gro
increasing at 21% per annum2. Closing this gap is the holy grail of the design automation co
munity. Increasing abstraction and increasing team size are the twin weapons used by the
community to bridge this gap. Though this is proving increasingly difficult.

The design productivity gap is caused not just by the increasing number of transistors to
with but also due to the increasing number of factors that must be considered while des
VLSI circuits. According to The international Technology Roadmap For Semiconductors: 1
the factors that must be considered by a VLSI designer when we reach the billion tran
mark are:Functionality, testability, wire delay, power management, embedded software, s
integrity, RF, hybrid chips, packaging and management of physical limits. This in sharp contrast
to just two factors:functionality and testabilitythat were considered at the begining of VLSI er

The thesis of this paper is that the present generation and the emerging design methods a
and the associated chip architecture/platforms, while providing intermediate solutions, w
survive when we reach the billion transistor mark. We propose a platform and methodolog
will address these factors and still allow companies to meet the time to market and make

The cornerstone of the proposed platform is a concept that we call asNetwork On a Chip or
NOC. NOC will be composed of computing resources in the form of processor cores and
programmable logic blocks, distributed storage resources, programmable I/O and all the
sources interconnected by a switching fabric, allowing any chip resource to communicate
any other chip resource. We further argue that, providing this intra chip communication b
on switches will cause little or no overhead in the billion transistor scenario.
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The proposed design methodology will allow designer to write applications in concurrent
or high level language like C++, Java, SDL, MATLAB etc. A compiler will map the applicat
to the platform by partitioning the functionality and mapping them to available resources o
platform and automatically refining the inter resource communication, the latter being the
innovation introduced by this methodology. Present generation of methodologies are st
by inability to estimate and lookahead in the system design phase when the geometry of th
solution is not known. In case of NOC, this problem does not exist because the platform a
geometry is known to the synthesis/refinement tools.

This is a concept paper that presents ideas and evaluates them qualitatively and analy
Concrete implementations or results are not presented and would follow as the res
progresses and will be published later.

2. Emerging methodologies

Behavioural synthesis is a promising design technology and inspite of the delay in it ge
widespread acceptance, it will eventually replace and/or subsume RTL synthesis. Behav
synthesis as apparent from the figures released by Synopsys is in many cases providing i
sive productivity gain. The problem is that Behavioural synthesis is a technology that autom
implementation of functions/algorithms, which are small parts of even today’s SOCs and
solve an insignificant problem in the billion transistor era. In the next generation methodo
behavioural synthesis tightly coupled with physical design is likely to play a similar role a
day’s module generators for rapidly generating IPs by the independent IP vendors or s
vendors that today supply cell libraries.

IPs and their associated design methodology have been in the limelight and promise to p
dramatic productivity improvement by implementing reuse at functional block or subsy
level. We do believe that IPs will be a solution to the design productivity problem in short t
but not in long term after the geometries shrink to less than 100 nm.

An inflection point is reached at around 100 nm design and below. More automated detaile
sign cannot occur until unbuffered, predictable timing synthesis of small blocks is possible
100 nm technology, this implies irregular logic blocks must be no larger than about 100K g
For an ASIC, this implies that approximately 200 to 400 such blocks must be specified
planned before detailed design can start. This is too much complexity for the system d
phase and therefore requires the introduction of a new middle layer of design between de
logic design and system specification/partitioning. Defining the entry into and exit out of
middle layer of the design process will be required.

Platform based design is another promising methodology that actually builds on using IPs
key concept here is separation of architecture design phase from the function design pha
developed architecture or platform can then be reused in many designs by systematically
ing the derivative architecture/platform. We believe that the PBD approach is a step in the
direction but it would still fall short of the requirements for the billion transistor era mainly
cause the engineering cost of doing detailed design of platforms would be too high to be
tised over a few derivative designs.

3. Emerging platforms

If one conceptually thinks of today’s SOC architectures in terms of three kinds of resou
computational, storage and I/O, then the interconnectivity among them is a design time de
and remains fixed and cannot be changed once the design is done. In contrast, the compu
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functionality can often be changed after design has been done because it is often implem
as software these days. As such, this fixed chip level interconnectivity is an impediment in
the platform in a more general sense.

FPGAs, in contrast have interconnect resources that are reprogrammable and hence mo
ible. The problem with FPGAs is that the computational resources typically have fine gran
ity and thus the demand on interconnect resources is very high and proves to be the bott
in performance.

Recognising the growing share of functionality that is implemented as software, FPGA
adapting. Xilinx for instance offers IBM’s power PC embedded cores (see [4]), Altera o
ARC cores (see [5]) and Lucent is offering Motorola cores.

Chamelon(see [3]) has an interesting architecture that offers an embedded ARC core to
with reconfigurable computing fabric to form a general purpose platform for a wide rang
applications.

All these reconfigurable platforms are inspiration for the proposed Network on a Chip platf
The reconfigurablity there is mainly at the logic level, what we need in the billion transisto
is reconfigurability at the task or process level.

4. Network on a chip platform

FPGAs, we believe are the harbingers of the platforms or architectures to emerge in the
transistor era. We propose Network on a chip as logical successors of FPGAs and have t
lowing characteristics:

• These platforms/architectures would be generic, like FPGAs, and not tailored to a sp
application domain. This is essential to allow amortisation of the huge engineering co
designing such platforms for a large number of applications. As this is a long term pr
tion, this argument could be wrong if a particular domain appears to be large enou
allow customising the platform for such a domain.

• Computational resources would be in the form of processor cores. These processor
could be general purpose cores like ARM, DSP cores, protocol engines or even bloc
FPGAs for implementating computation in hardware. At present, .18 micron technolo
proving to be fast enough to allow baseband DSP algorithms for today’s narrowband a
technology to be imlemented in software. We believe when we move to .1 mircon
beyond, technology will be allow transition to broadband. Moreover, the verification p
lem will be so intractable and engineering cost of implementing logic in hardware so
that most system designers will choose to implement logic in software anyway. In o
words, implementing logic in software is not only a way to generality of platform, but als
necessary way to live with the verification problem.

• Storage resources would be distributed to avoid the high cost of accessing data acro
chip. SRAMS, DRAMS, FLASH should be available in different sizes to fulfill a variety
requirements.

• I/Os would be general purpose and configurable to handle coded or uncoded data and
have some buffering capability.

• The interconnect scheme is in many respects at the heart of the NOC architecture
resource, wether it is computational, storage or I/O, will have an address and will be



er by
hes.

ssion
re 1.

on with
riphery
puta-

trans-
com-

each 12
con-
rce to
ectiv-

a lot

trans-
m. In

rpose,
d con-
utable
lity in
e the
ome
connected by a network of switches. These resources, will communicate with each oth
sending addressed packets of data, routed to their destination by the network of switc

• Though many topologies are possible, we present here one possibility for further discu
and analysis. The overall organisation is in the form of a honeycomb, as shown in Figu
The resources - computational, storage and I/O - are organised as nodes of the hexag
a local switch at the centre that interconnects these resources. Hexagons at the pe
would be primarily for I/O, whereas the ones in the core would have storage and com
tional resource.

• Storage resources can be combined to create a larger virtual storage. This would be
parent to the applications; the refinement tool would be responsible for allocating and
bining memories to create larger ones if necessary.

• Each resource, located on a hexagonal node being connected to three switches, can r
resources with a single hop. To further improve the connectivity, switches are directly
nected to their next nearest neighbours, as shown in Figure 1, allowing any resou
reach 27 additional resource with two hops. As a last measure to further improve conn
ity, every alternate switch is directly connected making each resource element reach
more elements with minimal number of hops.

5. Methodology

As important as a good architecture is a good methodology and supporting tools, which
lates a given system specification into a working system implemented on a NOC platfor
the following we review the major tasks and challanges that must be addressed.

As input we assume a requirements definition, which is an enumeration of the system’s pu
main system functions, the context and environment, and non-functional requirements an
straints. This document is not executable and in a first step we have to derive an exec
functional system specification. We must be able to systematically evaluate the functiona
order to unambiguously specify what exactly we want the system to do. Simulation will b
most important tool to do that but in addition formal techniques would be more than welc
to establish certain liveness or safety properties.

Figure 1. A honeycomb structure for NOC.

Resource elements organised at
nodes of a hexagon.

Switch interconnecting resources
at nodes of hexagon and to
neighbouring switches.

Switches connected to alternate
neighbours.
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In the next step a task graph of concurrent tasks has to be developed. Since the impleme
will consist of many concurrent activities and a very parallel architecture, this step is the
and perhaps the most important one towards the implementation. Even though the tasks
yet bound to specific resources and the final mapping task graph onto the architecture wi
many-to-many mapping, this step basically determines the granularity and the atomic uni
eventually will be implemented on specific resources. Moreover, in this step we determin
major communication requirements between tasks.

Once we have the task graph we must map the tasks onto the architecture. This step face
boundary constraints and even many of its sub-problems are very hard optimization prob
Some tasks will fit better on certain kind of resources than others. So we have to try bind
to the resource that is best suited to implement it. A data processing kind of tasks will fit
onto a DSP or FPGA, depending on what performance requirements it has, what kind of
operations it requires and how big it is. Control dominated task will fit on micro processo
FPGAs, depending on if the majority of the operations is at the bit level or the word leve
the same time we have to take the communication requirements between tasks and the m
access of the tasks into account. Tasks which exchange a large amount of data should s
ically close to each other with a high bandwidth interconnection between them. Tasks w
need a lot of memory should have access to large storage devices with a reasonable acce
To guarantee the needed communication bandwidth is a particularly tough problem becau
interconnect resources are flexible and will be shared among many tasks. Since it is ver
to predict the communication pattern of individual tasks, to estimate the communication pa
of a large numberof interacting tasks seems to be formidable.

When each task has been bound to a specific resource, the code must be generated. If
concurrent tasks are mapped onto the same processor, we have to consider a schedulin
and some kind of operating system. For FPGA type of resources a traditional hardware d
flow will be followed with Verilog or VHDL most likely as intermediate languages. For RIS
like micro processors code generation is quite efficient, but for DSP processors we will
better compilers. We must also implement the communication between the tasks and the
faces in the software and in the FPGAs. Finally, we must generate the code to program t
devices. Since the platform has a fixed set of components, it would be possible to have a
of interface components to use for communication refinement, thus considerably easing th
of interface design compared to custom interface synthesis.

All these steps are dependent on each other and for a truly optimal solution have to be c
ered together. Hence, in practice we will see iterations between these phases. Even more
tant is the validation of all steps with respect to functionality, performance, power, cost
noise. To do this efficiently, we must deploy estimation techniques to predict performanc
ures before we make a design decision, and we must validate the performance after we ha
ished a design step. It should be emphasized, that both the functionala validation an
estimation of performance and other non-functional properties is greatly alleviated for a
programmable platform as opposed to a design with custom hardware parts. The reason
is that the potential design space is significantly reduced.

The methodology for Honey Comb Architecture will also require a specific configurable
tributed operating system to manage network resources. Important features of this O.S.
a capability to configure itself on the available network resources, a network of communic
schedulers for taking care of real time constraints will also be a distinctive feature of the
for Honey Comb architecture.
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In summary we can conclude, that the first phases, i.e. the functional specification and
graph development, are architecture independent, but will gain importance in the near futu
cause the size of systems increase in general. The later phases, i.e. mapping, estimation,
idation have to be honeycomb specific but will be in general benefit from a fixed, pu
programmable platform like the honycomb, because it resembles the introduction of an ab
tion level and separates all design problems into two independent sub-problems: (1) the d
validation and optimization of the platform, and (2) the design, validation and optimizatio
the application on the platform.

6. Discussion and Analysis

Having presented the overall scheme, let us discuss the NOC’s area and performance ov
compared to traditional architecture based on fixed interconnectivity.

Area overhead.This is hard to quantify, especially at this stage when the NOC is a conc
Moreover, NOC being a reprogrammable architecture like FPGAs, different designs will u
the resources to a different extent. A more relevant question in this context would be the
head of the switch based interconnect scheme. At this stage, we are not in a position to a
this question concretely. But given the fact that the proposed interconnect scheme allow
resource to reach any other resource, an overhead, we believe, is justified.

Performance overhead.A more concrete answer than the area overhead can be given her
terconnect delay already dominate the performance equation and Luca Carloni et. al. (se
have proposed a delay insensitive design, which essentially involves pipelining the wire
adding logic to the functional/computational blocks to implement the pipeline control.

According to ITRP99 by the time we reach .1 micron, the delay in long wires would be 1
compared to the fastest switching gate. And with clocks ticking at 10 GHZ, the interconnec
lay for long wires would be 10s of cycles.

Taking these facts into account, we believe that switch based interconnect scheme will p
natural pipelining with the added benefit of interconnecting all resources.

Switches being control and memory intensive, the depth of logic in them would be signific
lower compared to that in the computational blocks. This observation leads to three conclu

• The first is, if the delay in wire is going to be 100x compared to a gate and if switches im
a  small depth of gates, the switches would add an insifnificant amount of delay.

• Secondly, if as proposed by Luca Carloni et. al. (see [2]), delay insensitive design
involving pipelining the wire, is essential for present and future technology, the overhe
switching is comprable to that of the overhead of delay insensitive design style.

• Lastly, maintaining global synchronous assumption is already proving to be difficult
designs involving multiple clock domains are becoming common(need to refer to our
other GALS work). Again based on the fact that the computational blocks would have m
greater depth of logic compared to switches, we can think of clocking the switches
much higher clock compared to computational blocks. In such a case, the latency
duced by the switches, as seen by the computational blocks would be attenuated by th
of the switch clock to computation clock.

Fault tolerance.According to ITRP99(see [1]), below 100 nm, soft errors are predicted to
frequent enough to severely impact both semiconductor yields and field level product reli
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7. Example

To illustrate the feasibility let us consider mapping a GSM bases band processing logic to
pothetical Network on a chip. Figure 2 shows data flow for base band processing in GS
both receive and transmit side. Using the next generation platform based GSM base stat
chitecture of Ericsson as the reference, one can say that to handle base band proces
shown in Figure 2, for one time slot that contains 8 channels requires about 10 million g
These gates are divided over 22 DSP processor cores, a general purpose embedded pr
relatively small amount of hardware logic, 15 Kilobits of SRAM and 32 Mbyte of DRAM, t
latter being common to the whole basestation. The largest basestation can handle 12 tim
A billion transistor ASIC can easily integrate the entire base station on a chip with good ma
Performance should not be a problem either, because, even today much of the DSP pro
is implemented as software and as technology shrinks the performance gain should sca
with increased computational need for broad band. The Ericsson basestation architecture
proprietary and confidential, we show the feasibility by proposing a honeycomb struc
shown in Figure 3, that could be used to implement a single time slot and this could th
stacked to implement additional time slots. The honeycomb in Figure 3 has 22 computa
resources that corresponds to the 22 DSPs used in the Ericsson’s architecture to implem
functionality shown in Figure 2 for a single time slot plus some other control and manage
functionality. If we assume that each storage resource has about 8 kbit SRAM, we have
of 44 kbit SRAM available, enough storage to accomodate the needs of the Ericsson archi
As shown in Figure 2, the data flow is linear, thus the resources would not need many ho
connect each other. Some control and mangement functionality, not shown in Figure 2

Speech Coding

Channel Coding

Bit interleaving

Encryption

Burst forming & Multiplexing

Modulation

Speech Decoding

Channel Decoding

Bit Deinterleaving

Decryption

Demultiplexing

Delay Equalisation

Demodulation

Figure 2. GSM receive and transmit base band processing
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time critical.

8. Conclusion & Future work

We have presented what we think would be the right platform and methodology for the
design in the billion transistor era. This platform is based on a reconfigurable network o
sources: computational, storage and I/O. One possible topology for such a platform, the h
comb structure, has been proposed and its merits analysed. We have also presented a p
way of mapping an entire basestaion to such a Network on a chip concept.

Though, we have presnted one possible topology, there are many others, for instance o
consider a complement of the presented honeycomb scheme. The resources can be at th
of hexagon and the switches can be at nodes of hexagon, creating an interconnect rich top
Another possibility is to go for a mesh of squares, where the nodes of the squares are pop
by resources and switches are at the center.

Much of the discussion is based on intuitive arguments backed back-of-the-envelope typ
culation. We are working on developing a concrete platform and methodology. A realisti
ample like base station would be the driver.
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