
Abstract

The composite signal flow model of computation targets
systems with significant control and data processing parts.
It builds on the data flow and synchronous data flow models
and extends them to include three signal types: non-
periodic signals, sampled signals, and vectorized sampled
signals. Vectorized sampled signals are used to represent
vectors and computations on vectors. Several conversion
processes are introduced to facilitate synchronization and
communication with these signals. We discuss the severe
implications, that these processes have on the causal
behaviour of the system.

We illustrate the model and its usefulness with three
applications. A co-modelling and co-simulation
environment combining Matlab and SDL; a high level
timing analysis as a consequence of the operations on
vectors; conditions for a parallel, distributed simulation.

1. Introduction
Current approaches to system modelling can be divided

into two groups, homogeneous and heterogeneous models.
Homogeneous models are based on a single formalism or
language such as VHDL [8, 10], C [12], C++ [20],
SpecChart [23], Java [14, 24, 27], SDL [7, 26], etc. These
languages are rich and can typically be used far beyond their
original scope, in particular when they are extended with
special features, e.g. for communication. However, such
homogeneous solutions come at a price. A language, which
is well established in one community is not always well
received in another community, both for practical and
technical reasons. The modelling concepts of general
purpose languages are not pertinent for the concepts of a
given application problem. For the two domains of control-
dominated systems and signal processing, it is difficult to
find a language that naturally accommodates both worlds.

For these reasons heterogeneous frameworks have been
proposed. They build on existing models and languages and
devise techniques to integrate them. A very general and
most influential framework is Ptolemy [4]. Ptolemy defines

several models of computation, such as discrete event or
data flow domains. It provides a general mechanism for
communication between different domains. A mechanism
for communication and synchronization between data flow
and discrete event models has been implemented in
Ptolemy, which transforms each single event on the border
between the two domains. Indeed, most general
frameworks, which provide heterogeneous modelling
environments, are based on this principle of transferring
single events between different domains, e.g. [3, 5, 19]. This
is true for both backplane environments [4, 21] and for
unifying internal representations [1, 15]. Furthermore,
unifying internal representations are typically complex, not
based on a formal semantics, and therefore not easily
amenable to formal analysis.

The composite signal flow model is an attempt to provide
a relatively simple, formally sound model of computation,
which can be the basis for heterogeneous modelling and
simulation environments. By providing three different
signal types, i.e. non-periodic signals, sampled signals, and
vectorized sampled signals, it accommodates both control
and data flow dominated parts. It also provides for
conversion processes between the different signal types,
thus allowing for adequate communication and
synchronization between different system parts. It pays
particular attention to the problem of causality which occurs
due to conversion between sampled signals and vectorized
signals. Essentially, the problem arises because data flow
and control flow parts have to be synchronized. On one
hand, data processing is often efficiently and conveniently
modelled and implemented in terms of operations on
vectors rather than scalars. On the other hand, control
events must occasionally be synchronized with a time
instance “inside” the vectors, because the vectors
correspond to a time period. This dilemma can be solved by
chopping up the vectors into individual events
corresponding to time instances, whenever synchronization
between data and control parts is necessary. However, this
sacrifices the efficiency and elegance of powerful vector
operations available in languages like Matlab [22]. It also
sacrifices correspondence to the implementation in those
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cases, where vectors and their manipulations are an abstract
but correct model of the implementation.

Our proposal is very similar in nature and motivation to
the work done by Poigné et al. [25]. Similarly to us, they
provide a sound semantic basis to combine control and data
flow aspects in a system. They also allow for heterogeneous
modelling in different languages. However, their work
differs in two ways. First, Poigné et al. address purely
synchronous models and provide a common semantic frame
for the synchronous languages Esterel, Argos and Lustre. In
contrast, we address asynchronous systems and our time
model is essentially a continuous time with totally ordered
events. Second, they do not deal with vectors of sampled
streams, which is one of our main issues.

Much of the semantics of the processes in the composite
signal flow model is derived from data flow and
synchronous data flow process networks discussed by Lee
et al. [16, 17]. We define signals according to the tagged-
signal model proposed by Lee and Sangiovanni-Vincentelli
[18]. Based on this, we propose a model which handles
operations on sampled signals and on vectors. In particular,
the transformation between the different signal types
receives attention. In this way, we address the modelling of
systems with both, significant control and data processing.

2. Formal Model

2.1 Signals, Sampled Signals, Vectorized Signals
Using the framework for timed models of computation

introduced by Lee et al. [18], we define signals and
processes of the composite signal flow model. Given a set
of values Vand a set oftags T, where , the reals, we
define anevent eto be a member of . The tags are
used to model time. Asignal s is a set of events, hence

. A functional signal is a possibly partial function
from T to V. “Partial” means, that a function may only be
defined for a subset of T. The term function has the usual
meaning, i.e. a signal has at most one value for a given tag;
if  and , then .

A sampled signal is a signal which has only values for
tags, which are apart. If , then

, with
n a natural number. In contrast, anon-periodic signalcan
have values at arbitrary time instances.

A vectorized signal has av sized tuple of values for
each tag, where it is defined. Be the set of tuples of size
v over the set of valuesV; we define avectorized event to
be a member of . Then a vectorized signal is a set
of vectorized events, hence . Analogous to the
definition of functional signals, a functional vectorized
signal is a possibly partial function fromT to .

Note, that the concept of a sampled signal reflects the
real situation of many data or signal processing systems,
which receive and transmit data streams with data appearing

at regular intervals. In contrast a vectorized signal is a
modelling artefact, which is sometimes used for
convenience or efficiency at higher levels of abstraction.

Note furthermore, that in this paper we only deal with
sampled signals with a constant sample rate, and with
vectorized signals with equal sized vectors. However, we do
not constrain the occurrence of different rates and vector
sizes on different signals. Thus, the entire discussion is also
valid for arbitrary multi-rate systems.

2.2 Processes
We define processes analog to Lee et al. [18] as relations

between sets of signals, with input signals constraining the
behaviour of a process. Since the details are not important
here, we refer the reader to [18] for the sake of brevity. Note
however, that processes can be composed to compound
processes, thus forming a hierarchy.

As execution model for processes we adopt the notion of
thedata flow processput forward by Lee and Parks [17] in
the variant, which allows a process to have state. For
processes which operate exclusively on sampled signals, we
use the more specialised model ofsynchronous data flow
[16], because it is significantly cheaper to implement.
However, we deviate from data flow and synchronous data
flow process semantics by defining a few specific, atomic
processes, which are not causal. They are discussed in the
following sections.

2.3 Vectorization
When modelling with vectorized signals, it is almost

always mandatory to use them in combination with ordinary
and sampled signals, in order to interface to the
environment or to control parts. To this end, it is necessary
to transform sampled signals into vectorized signals and
vice versa. Since these transformations are not always
causal, we have to investigate the conditions of causality
and when we can afford to violate them.

In the following we consider two variations of
transformations between sampled signals and vectorized,
sampled signals.

Head vectorization is a process which transforms a
sampled signal into a vectorized sampled signal
such, thatn consecutive values in the sampled signal are
compressed into a vector of sizen. The tag of the vector in

is identical with the tag of the first of these values in the
sampled signal . More formally, if
and with , then

 for all .
Tail vectorization produces a vector synchronized

with the last of its corresponding element values in the input
signal. Head and tail de-vectorizationare the inverse
processes such, that and

 (figure 1).
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2.4 Conversion and Synchronization
For signal conversion and synchronization between

sampled and non-periodic signals, i.e. between data flow
and control parts, we define three processes:PinE, PinD and
Punch.

A pin encodingprocessPinE transforms a non-periodic
signals into a sampled signalsλ,  such that,

(1)

Intuitively, pin encoding takes all values ofs and assigns
them tags such, that they fit the sampling instances ofsλ. If
there is more than one event ins between two sampling

instances, only the last event is used. If there is no event
between two sampling instances, the last value is repeated.

A pin decodingprocessPinD transforms a sampled signal
sλ into a non-periodic signals,  such that,

(2)

Intuitively, pin decoding takes all events from the sampled
signalsλ and places it intos but filters out repeated values.

A Punch process transforms a sampled signalsλ into a
non-periodic signal , with events on the second input
signal s defining the time tags in .
such that,

(3)

Intuitively, punching accesses the sampled signalsλ at time
instances defined by events ins. It is a synchronization
mechanism between control and data flow parts.

2.5 Causality
In the following we need a delay process , which

delays every event on the input signal by a constant value
, as illustrated in figure 3.

We follow [18] in the definition of causality based on the
following metric. The distance between two signalssand
is defined as

(4)

The distance between two signals is the greater the
earlier they differ from each other. The distance between
two identical signals is 0, and for two signals differing
already at the smallest defined tag it is infinite. This distance
satisfies the conditions of a metric [6, 18]. Thus, the set of
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Figure 1. Vectorization and de-vectorization
for size 4 vectors.
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Figure 3.  A delay process.
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signals together with this distance forms a metric space [6].
Now we can define that a processF is causal if, for any

input two signalss and , two output signals never differ
earlier than two input signals, i.e.

. (5)

This formula can be generalized for processes with several
inputs and outputs, but stating that the minimum distance
of any of the input signals must be greater or equal to the
maximum distance of any of the output signals.

We observe, that tail vectorization and head de-
vectorization are causal, but head vectorization and tail de-
vectorization are not causal.

(6)

(7)

(8)

(9)

We note further, that

(10)

(11)

(12)

(13)

(14)

(15)

Hence, a combination of processes may be causal, even if
not all of the constituting processes are causal. In fact, we
can obtain a causal process from any non-causal process by
combining it with an appropriate delay process. For a non-
causal processA, the smallestn for which is causal,
is called theseverity levelof A; such a process is denoted as

. This is a convenient way to express the conditions
for models with different sampled and vectorized signals,
perhaps with different sampling rates and vector sizes. The
following processes are all causal under the given condi-
tions (gcd denotes the greatest common divisor).

(16)

(17)

(18)

(19)

Due to lack of space we cannot include the proofs here.
We only sketch it for (16) and state, that the same principles
can be used to prove (18) and (19). Given a vector signal ,
the combination of de-vectorization and vectorization will
transform into a new vector signal . Suppose we have
de-vectorizedi vectors of , and vectorizedj vectors of ,
what is the largest minimum difference betweenin andjm?

The answer to that question will tell us for how many
samples we have to wait in the worst-case, before we can
vectorize vectorj+1 of , which equals the delay that is
necessary for causality. This question can be reformulated
as follows. Given are two number sequences and

. What is the maximum difference of an to the
smallest ? These differences are

. Hence, we have to show
that . First we show that

. Then we show that there exist
an i such that . The outer mod
operation in the expression is there, to avoid
becoming equal to . This condition is equivalent to

(20)

Thus, we can reformulate the equation as
and, consequently,

. Assuming condition (20), this is
correct due to the fact, that divides both, and

 and therefore also  (e.g. see [13] chapter 5).
Next, we have to show that there exists ani such that

. Under condition (20), we have
. Again using the fact that

 divides both  and , the equation

(21)

has always a solution in for any , which
concludes the proof.❏

Conditions (16) through (19) can be interpreted in
several ways. For modelling they describe the situations,
when a process can safely use input data and when not. For

instance in figure 4a, processB may not safely use values
produced by processA, if its behaviour depends on the order
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of values fromA andC. BecauseA is not causal, a value
from A could appear earlier in the model than it could in
reality, thus it might happen thatB sees an evente=(t,v)
from A before an event fromC even though

. In figure 4b this is not possible.
Below we discuss other applications of these conditions.

Feedback loops.The theory of metric spaces [6] and the
discussion in [18] tell us, that simple causality (equation
(5)) is not sufficient to guarantee deterministic behaviour in
feedback loops. Rather, a process in a feedback loop must
be delta causal, i.e. it must comply with the stronger
condition

(22)

with some strictly positive numberδ. This means, the out-
puts of a process must react to the inputs with a certain
delay, which cannot be arbitrarily small. The equations
(14) through (19) can be easily reformulated to derive delta
causal processes by replacing the delay processes by

with a fixed, strictly positive numberδ. For instance,
is causal but not delta causal; however,

is also delta causal.
This means for modelling, that the outputs of each

process in a feedback loop may influence its own inputs
only after a strictly positive delayδ, which may not become
arbitrarily small.

3. Applications

3.1 Co-modelling of Matlab and SDL
At the system level it is desirable to model and simulate

control and data flow parts together. Traditionally, designers
have used different and separate simulation environments
and languages for these two tasks.

Matlab [22] is an example of a popular language used for
the development of data flow and signal processing
algorithms. In Matlab programs input data is transformed
by applying functions to input parameters. Matlab provides
very powerful and convenient operators for vectors and
matrices. Matlab does not have a notion of time but uses
data dependences to define the order of events.

SDL [11] is based on communicating concurrent state
machines. Its execution semantics is a discrete event model.
It has been used for a long time to describe and specify
control dominated systems, in particular telecom
applications.

The composite signal flow model can be used as a basis
for co-modelling and co-simulation of systems with these
two languages. This has been described in detail in [2],
which also includes details of the implementation and gives
elaborate examples to motivate and illustrate this modelling
method.

SDL is used to describe the system structure and the

connectivity between processes, as well as processes, that
operate solely on non-periodic signals. Processes, that
operate on sampled and vectorized sampled signals are
modelled as Matlab functions. In figure 5A andB are SDL
processes,C andD are Matlab functions,a, b, c, dandeare
non-periodic signals, andfλ, gλ andhλ are sampled signals.

Since in Matlab it is both convenient and efficient to
utilize the powerful vector and matrix operations, most
Matlab functions operate on vectorized, sampled signals.
The vectorization is implicitly performed on the boundaries
between the SDL environment and the Matlab functions. [2]
gives modelling conditions which are less general but
consistent with equations (16) - (19).

[2] also usesPinE, PinD and Punch processes to
synchronize and communicate between data flow and
control parts. However, they are not used as explicit
processes but as elementary communication mechanisms
built-into the modelling method and implementation. In
addition, [2] describes aBucket event, which is similar to a
Punch process but differs in that it takes a non-periodic
signal also as its first input, rather than a sampled signal.

[2] is a good illustration, how the composite signal flow
model can be implemented. In fact, the composite signal
flow model has been developed as one result of the effort
described in [2], based on the insight, that the developed
concepts are much more general and applicable to other
language combinations.

3.2 Timing analysis
If the processing is only an artifact of modelling for the

sake of efficiency or convenience, equations (16) through
(19) do not reflect timing behaviour in any way. But if the
transformations of vectors resemble data dependences in
the implementation, equations (16) through (19) constitute
in fact timing constraints (see for instance [3] section II.A).
Consider a function F which transforms a vector of size n
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d F s( ) F s'( ),( ) δd s s',( )<
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Figure 5.  The composite signal model
implemented in SDL and Matlab.



into a vector of size m, . Assume thatF
needs all the values of the input vector to produce any of the
values of the output vector, e.g. a compression function,
which operates on words of a given length represented by
the input vectors. We can modelF with a process, which
operates on vectorized sampled signals. Since the primary
inputs and outputs of our system are not-vectorized sampled
signals, we have to include the vectorization and de-
vectorization processes in our model (figure 6). Since the

head vectorization process is non-causal with severity
level n, we need to combine it with a delay process to make
the resulting process causal. In the case of figure 6, we do
not need the delay process for simulation, because process
F does not depend on any other process. However, a timing
analyser can infer the necessity of a delay process and
establish a timing condition on the vectorization process,
stating that the process will take at leastnλ time units. Note,
that the vectorization process might not exist separately in
the implementation; it might be part of processF. In this
case the timing condition would apply to processF. Hence,
the timing analyser will perform better with more
information about the relation between model and
implementation. The minimum assumptions are the
causality requirement, and that the vectorization is indeed
somewhere implemented.

Note, that we derive an equivalent timing condition if we
use tail vectorization and tail de-vectorization in figure 6,
but not necessarily on the same process. Because tail
vectorization is causal, but tail de-vectorization is not, the
time constraint has to be placed on the latter.

Consider another example with two functionsF andG. F
operates onn-sized vectors andGonm-sized vectors (figure
7). Causality requires two delay processes, one for the head

vectorization at the left and one for the de-vectorization-
vectorization combination in the middle. Again, these can
be interpreted as timing constraints on the processes, which

include the corresponding signal transformations.
Note, that this analysis can be combined with rate

analysis of the sampled signals, to further refine the timing
requirements of the system.

Feedback loops.What has been said about modelling of
feedback loops in section 2.5, is also valid for the derivation
of timing constraints. To ensure delta causality of processes
within feedback loops, stronger variations of the equations
(14) through (19) must be used. This is necessary to avoid
oscillations or non-deterministic behaviour in the
implementation.

3.3 Parallel simulation
Systems, modelled as parallel processes, exhibit a

natural parallelism, that can be exploited for parallel
simulation. However, the potential to speed up simulation
seems to be fundamentally constraint by the model of
computation used. Discrete event models are inherently
difficult to simulate efficiently in parallel due to the
synchronizing global event queue [9].

A system model based on composite signal flow can be
partitioned for parallel distributed simulation, if the
following two conditions are met.

(A) A partition must be a causal process. However, not all
the constituent processes within the partition need to be
causal.

(B) No non-periodic signal crosses a partition boundary,
i.e. only sampled signals can be used for communication
between different partitions.

Both conditions serve the purpose that a receiving process
must be able to know, how many values to expect from
other partitions, before proceeding with its own computa-
tion. The causality condition enforces, among others, that a
process waits for all the data needed, before it computes a
result (figure 8). For non-periodic signals it is not possible

F : Wn Wm→

F Ωm
hΨn

h

Figure 6.  Delay of the vectorization process
interpreted as timing condition.
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Figure 7.  Causality induced delays for two
functions operating on different vector sizes.
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to know, when the next event will occur.
Non-periodic signals can be replaced by functionally

equivalent sampled signals, by transmitting an empty value
periodically. In this way, timing and synchronization
information would be encoded into the signal.

4. Conclusions
Heterogeneous modelling will become more important

due to increasing complexity and heterogeneity of
electronic systems. Due to various historical and
fundamental reasons, different parts of a system will be
modelled with different languages. This results often in the
challenge to reconcile very different modelling concepts in
a sound way. We have addressed this problem for event
based models on one hand and vectorized signal processing
models on the other hand. By providing a unifying model of
computation, the composite signal flow, the two different
modelling worlds can be combined. We have applied this
concept to integrate two very popular but profoundly
different languages, SDL and Matlab. We have also shown
that the concept can be applied to other problems as well,
such as timing analysis and parallel simulation.
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