
On the Roles of Functions and Objects in
System Specification

Axel Jantsch
Royal Institute of Technology

Electrum 229
SE-16440 Kista, Sweden

Email: axel@ele.kth.se

Ingo Sander
Royal Institute of Technology

Electrum 229
SE-16440 Kista, Sweden

Email: ingo@ele.kth.se

ABSTRACT
We present an analysis of the benefits and drawbacks of function and
object based models in system specification. Functional models
should be used for functional design space exploration and as a
functional reference model throughout all design and validation
activities. Object based models should be used for architectural
design space exploration and as a design specification for the
following design and implementation phases. Thus, the question is
not which one to adopt in system specification, but how to integrate
them. We argue that the integration should be based on an explicit
formulation of design decisions with a tool handling the
consequences of the decisions. In this way a functional model can be
transformed into an object based model efficiently and systematically
and a discontinuity in the design process is avoided. We consider it
important that the question of benefits of functional and object based
models is decided by means of experiments. To this end we propose
an experiment that would confirm or falsify our hypothesis.

1. INTRODUCTION
A system specification serves a dual purpose.

➊ Application oriented: It is a means to study if the
proposed system functionality will indeed be a solution
to the posed problem with all its functional and non-
functional requirements and constraints, i.e. to make
sure to make the right system.
➋ Implementation oriented: It defines the functional-
ity and the constraints of the system and is a base for
the following design and implementation phases.

The first purpose is directed towards the problem domain and the
concepts and terms should reflect the application area. For example,
if we want to specify an ATM switch with some operation and
maintenance functionality, we should model the virtual path (VP) and
virtual channel (VC) switching of ATM cells and the VP loopback
functionality. The system functions should be expressed in the
terminology of the application domain and it should be modelled in
terms of the observable behaviour at the interfaces. This allows the
exploration of the system functionality in order to find the appropriate
set of system functions that would fulfil the requirements. It also
facilitates the analysis and discussion with domain experts.
The second purpose is directed towards implementation for which the

specification should be a starting point and a reference. To assess if a
feasible implementation can be found for a given functionality,
implementation and technology aspects need to be considered. To do
this with sufficient accuracy, system level designers usually assume a
structural partitioning and an approximate assignment of functions to
components. Such an architecture facilitates the estimation of
implementation properties such as cost, size, power consumption,
and performance with greater accuracy than a pure functional model
can provide.
It is easy to see that the application oriented purpose is best met with
a pure functional model, which captures the system functionality
without implying a system internal structure. This has been argued
convincingly many times, e.g. in [2, 4, 7, 9]. It is also apparent from
research in requirements engineering [21] where scenarios, which
resemble system functions, play an important role [19].
On the other hand for the implementation oriented purpose a pure
functional model is not very appropriate. An architectural model
which reflects a partitioning into parallel activities and objects would
serve this need better, because this allows the identification of
implementation components such as processors, memories,
functional units, communication structures, etc. The proliferation of
proposals to use a parallel process based notation or object oriented
languages for system specification [3, 5, 7, 20] is motivated by this
architecture oriented point of view. In the following we use the term
“object based models” to denote models described in terms of
concurrently active objects or processes. Thus, it includes models
written in SDL, VHDL, Erlang, SpecChart and concurrent extensions
of C and C++.
In this paper we argue that both, a function based model (FBM) and
an object based model (OBM) is required for complex system
development, and that ignoring one of them will lead to inefficient
development and inferior design.

2. FUNCTIONS VERSUS OBJECTS
The dichotomy of functions and objects or functionality and structure
is a fundamental one in the area of electronic design. A.C. Sodan [17]
discussed various dichotomies in computer science with the
conclusion that significant progress has always been made when the
fruitful integration of a dual pair was achieved.

2.1 Objects in System Specification
At the system level an object based model, reflecting the architecture
of the system is necessary to structure the design process and assign
different parts and responsibilities to different designers. It is also
essential to make reasonably accurate estimations about
implementation properties such as performance, size, cost, and power
consumption. However, every object based model contains many
design decisions and reduces the design space significantly. As
illustrating example we use a network terminal system which has
been modeled based on a set of requirements from ITU-T and
Ericsson Infocom Systems [8]. The objective of this activity was to

develop a system level model in SDL. SDL [12] is a language based
on concurrent processes and finite state machines. The architecture
selected in this effort is shown in figure 1. At the top level four blocks

are distinguished and modeled with separate processes. The OAM
blocks realize operation and maintenance functionality performed on
the ATM cell streams before and after they are processed by the
switch. The management block is responsible for setting-up and
releasing connections and for controlling OAM functions. Although
the intention was to avoid design decisions as far as possible, several
decisions had to be taken in order to model it in SDL. Some of them
have far reaching consequences. The most important of these was the
partitioning into four parallel processes. While this partitioning
seemed very natural when given the requirements, several alternative
architectures are reasonable and might in fact be preferable for a
particular product with certain cost and performance requirements. If
we consider briefly a possible HW/SW partitioning we find out, that
the architecture in figure 1 is not a good starting point for various
reasonable partitionings. The switch and the interfaces for the ATM
cell streams operate with high data rates and the OAM and
management functions can operate at a much slower rate. Such a

consideration might lead to an architecture outlined in figure 2, where
the OAM blocks of figure 1 are split into a high-speed and a low-speed
part. After this transformation it is not clear, if the OAM blocks and
the management and control block should remain separate processes.
Since all of them will be implemented in software, this question will
depend on the selected real-time operating system and the given real-
time constraints. It is reasonable to assume that the two OAM blocks
in figure 2 will be merged, because they represent an identical
functionality operating on different streams.
A merging of the OAM blocks of figure 1 might be reasonable even if
they are implemented in hardware together with the switch. This
would result in an architecture shown in figure 3.

An alternative solution for a low cost version of the product may be a
pure software implementation. In that case we might go for only one
execution thread without parallel processes to avoid the overhead of a
complex operating system. Hence, an architecture as shown in figure
4 may be most appropriate.

We conclude from these considerations that any SDL model of such a
system would determine a specific architecture which in turn implies
certain design decisions and specific trade-offs. An SDL model cannot
be written in an architecture independent way because it is based on
concurrent processes communicating by means of conceptually
complex protocols. To avoid concurrent processes in SDL would mean
to use only a flat finite state machine model without partitioning and
hierarchy, which is clearly not feasible for complex and large systems.
The same argument holds for many similar languages based on
communicating concurrent processes such as VHDL, CFSM,
SystemC, etc.
Hence, once the system has been modelled in terms of concurrent
processes, it is not suitable any more for purpose 1 of the specification
document, i.e. to study and explore the system functionality, because
it is very difficult to add, modify and delete system functions since
each such change might require a substantial change in the
architecture. Assume for instance we have started out with the
architecture of figure 2. Then we want to investigate the addition of a
certain performance monitoring function. This function would scan
every ATM cell, check its integrity and count the number of errors
observed. If the number of errors per time unit on a specific virtual
connection exceeds a threshold value, error location procedures would
be invoked and the network management system would be informed.
From this description it is reasonable to assume, that part of this
functionality would be located at the I/O Buffers (checking the
integrity of ATM cells), another part in the OAM blocks (maintaining
the state of each virtual connection and invoking and coordinating the
error location procedures), and a third part in the Management and
Control block (informing the network management system, receiving
orders from management system and coordinating the following
actions). It is clear that all these blocks must be changed, the interfaces
between these blocks must perhaps be adapted, and the entire
remaining functionality of the system must be validated again due to
the risk of introduced errors. Moreover, a possible consequence might
be that the overall architecture must be changed because another
architecture might match the new functionality better. Perhaps part or
all of the OAM functions should be moved into the I/O buffers to
simplify or eliminate the interface between the OAM and the I/O
blocks. So many modifications with the high probability to introduce
errors make an efficient exploration at the level of system functions
infeasible. At the functional design level an object based model
promotes a code-and-fix method rather than a systematic design space
exploration.
However, such a description based on concurrent processes serves
purpose 2 of a specification document very well, because it allows to
identify implementation objects. Consequently it allows to estimate
implementation properties with sufficient accuracy.

2.2 Functions in System Specification
A functional description of the network terminal system derived from

Figure 1. Separate management, OAM, and switch

OAM OAM

Management
and Control

I/O

Management
and Control

Figure 2. HW/SW partitioning with separate high- and low
speed parts

OAM

Buffer

OAM

I/O
Buffer

Software

Hardware

OAM

Management
and Control

and I/O

Figure 3. Architecture with a shared OAM block

Figure 4. All-SW architecture

Management,
Switch,
OAM

RAMI/O
I/O

the same requirements definitions is shown in figure 5. The function

nt is composed of the functionsoam, switch, and
management . This can also be graphically represented as shown in
figure 6. Although this seems to be similar to figure 1, the symbols

have to be interpreted differently. The boxes in figure 6 represent side
effect free functions and the arcs represent simple parameter passing.
The outer interfaces of functionnt represent streams of ATM cells
(i1, i2, o1, o2) and streams of communication messages (mi,
mo) with the management system. So the fundamental difference
between figure 1 and figure 6 is, that the communication in figure 1 is
a complex mechanism, possibly based on message passing,
handshaking and FIFOs, while it is a simple data flow in figure 6
synchronized by the appearance of values. New functions can easily be
added independent of what exists already. E.g. if we want to add a new
performance monitor functionpm in parallel to theoam function,

which operates on streami1 and contributes to streammo to inform
the external management system, it is straight forward as shown in
figure 7. merge is a function which merges two streams. In fact,
functions, which operate on any of the streams can be added or
removed without complication. Some care has to be taken when
merging and splitting streams, but since these streams are essentially
very simple data types, resembling a simple communication
mechanism, it typically does not take more than a few seconds to
accomplish even complicated merge operations.
This adding and removing of functions can be done at any hierarchical
level, e.g. thepmfunction could be inserted inside theoamfunction at
the next lower hierarchical level.
Similarly, sub-functions can be moved from one function to another, if

the involved data dependences allow this. E.g. a sub-function of oam
could be moved into the switch function, if it only operates on the
streams connecting oam and switch. Such a transformation could
modify the interfaces of functions, but in a predictable and
automatable way. Essentially, the ease of these transformations comes
from the fact, that the communication mechanism inside a function
between sub-functions is identical to the mechanism between the
functions themselves. Thus, the move of one sub-function from one
block to another is merely a re-grouping of the functions but does not
change the data and communication flow. A functional description can
be viewed as a tree of functions as illustrated in figure 8. A partitioning

into blocks corresponds to a cut line in the function call tree but does
not influence the data flow between functions. All functions are side
effect free, thus a re-grouping or re-scheduling does not influence the
result as long as the data dependences are observed. Moreover,
functions can be moved between hierarchy levels along the data flow
arcs. For instance, the functionsf5 could perhaps be moved up to the
Network terminal function, if the data dependences allow this.
This would not change the computation but only where a value is
computed. However, such re-grouping and function movement will
influence the cost and performance in the implementation, because
there communication inside a block, e.g. an ASIC, is of a different
nature with different physical properties than across block boundaries.
And this is also the case in process or object based models. If we take
again SDL as example, we notice, that the communication inside
processes is shared memory based and between processes it is based
on asynchronous message passing.
To summarize, a functional description facilitates an efficient
functional exploration essentially because of the simple and very
abstract communication mechanism and because it does not imply an
architecture of the final implementation.
The major problem and the reason, why such models are not in
widespread use, is the distance to any possible implementation. As a
major design decision an architecture must be proposed, which
essentially means to develop an object based model as we have
discussed it in the previous section. Only from such a model we can
reason about the feasibility of the system and if performance, cost and
other requirements can be met. We cannot do anything like that for the
model in figure 5.

3. The Integration of Functions and Objects
Let’s assume for a moment, that we have developed both, the
functional and the object based model in order to gain the benefits
from both. The next problem is what Selic et al. [15] described
accurately as discontinuity. We have two models representing the same
system, but we do not have a formal relationship between them. Thus,
it is difficult to establish some sort of equivalence which makes
validation difficult. But what is even worse, we cannot efficiently
transform one model into the other, which essentially leads to the
single-model-syndrome [15]. Any new modifications, which are
unavoidable for large and complex systems, will only by done for the
objects based model but not for the functional model. After a short
time the functional model does not reflect the intentions and the state
of development and must be abandoned. The maintenance of two
separate system level models is too costly in today’s hard pressed

Figure 5. Functional specification

nt (i1, i2, mi) = (o1, o2, mo)
where (o2, s4, s10) = oam (i2, s3, s9)

(s3, s1, s5) = switch (s2, s4, s6)
(o1, s2, s7) = oam (i1, s1, s8)
(mo, s8, s5, s9) = management (mi, s7, s5, s10)

oam

management

Figure 6. A functional description graphically represented.

oamswitch

mi mo

i1

i2o1

o2

s1

s2 s3

s4

s5 s6s7
s8

s10
s9

Figure 7. Functional specification with performance monitoring
function

nt (i1, i2, mi) = (o1, o2, mo)
where (o2, s4, s10) = oam (i2, s3, s9)

(s3, s1, s5) = switch (s2, s4, s6)
(o1, s2, s7) = oam (i1, s1, s8)
(s11, s8, s5, s9) = management (mi, s7, s5, s10)
s12 = pm (i1)
mo = merge (s11, s12)

oam

management

oamswitch

mi

mo

i1

i2o1

o2

s1

s2 s3

s11

s5 s6s7
s8

s10
s9

pm

merge

s4

s12

Network
terminal

management oam switch oam

sf1 sf2 sf3 sf4 sf5 sf6

Figure 8. Function call tree

product development projects.
We conclude from these observations and arguments, that even though
it is desirable to develop a functional and an object based model, it is
very costly and difficult to justify it in a project. The consequent
decision is to develop only the model, which is essential for the design
and implementation, which is the object based model. While this is
understandable from a project leader’s point of view, let’s investigate
potential benefits from a functional model, before we suggest a
desirable methodology and identify urgent problems to be solved.
• A functional description is inherently simpler, thus faster to

develop, because it implies fewer design decisions and, conse-
quently, avoids all details resulting from these decisions. Most
apparent is the absence of internal communication. Internal com-
munication is a major issue when developing object based models
and it is a major hurdle when the architecture should be modified.

• A design exploration in terms of functions is necessary in an early
phase when the exact functionality of a product is determined. Fred
Brooks noted 11 years ago [1]: “The hardest single part of building
a software system is deciding precisely what to build. No other part
of the conceptual work is so difficult as establishing the detailed
technical requirements.... No other part of the work so cripples the
resulting system if done wrong. No other part is more difficult to
rectify later.”. This functional exploration is supported by a func-
tional description because it is relatively easy to add, modify, and
remove functions. As argued by Lawson [11] unnecessary func-
tions contribute significantly to unnecessary complexity with all its
associated risks. A functional model makes the absence or presence
of functions more obvious. It makes it also easier to add and
remove functions.

• A functional description is of enormous value for validation and
test of any architecture and implementation because testcases and
test patterns for a system level functional validation can be derived
directly from a functional system model. Functional system valida-
tion is a major challenge and the definition of a minimal set of test-
cases, which basically define when a system behaves correctly and
when not, is a non-trivial task [10]. If a description of system func-
tions does not exist, it must be developed and formulated as test-
cases.

• A functional system model allows to support the development and
maintenance of product families. Very often a product is developed
in different versions, each version addressing a different market
segment, realizing different subsets of the full possible functional-
ity, and fulfilling different requirements and trade-offs. Each ver-
sion may require a different architecture but many of the functions
will be identical. Hence, what makes a functional description use-
ful for functional design exploration, facilitates also the derivation
and validation of new versions.

At this point we face a dilemma, because we cannot exploit the
benefits of a functional model unless we integrate the functional with
the object based model. There are two ways out: One is to obtain the
discussed benefits without a functional model in some other way, e.g.
by developing efficient techniques to transform an object based model
into another in order to explore the functional design space at that
level. The other possibility is to derive alternative object based models
from a functional model efficiently and essentially eliminating the
discontinuity. Both alternatives are researched to some extend but face
considerable difficulties.

3.1 Transformation between object based
models
Transformations between object based models face the difficulty that
certain design decisions are implicit present in an object based model,
which cannot be undone easily. For instance, the splitting and merging

of processes is difficult and inefficient and often results in solutions
which have too high cost and low performance. Furthermore, the move
of a process part from one process to another is often not a possibility
at all, because processes are often modelled in a sequential way by
means of a finite state machine or an algorithm. These models tend to
have many control dependences which makes them hard to parallalize,
as we know from research on parallalizing compilers [16].

3.2 Transformation from a functional to an
object based model
Transformations from a functional to an object based model face the
fundamental difficulty that they involves design decisions which
inherently cannot be done by a method or tool, which means the
discontinuity between functional and object based models has a
fundamental nature. One way to cope with this is, to allow to formulate
design decisions in a very compact way to capture the essence of the
decision, and handle all the implications of the decision automatically.
For instance, a design decision might be to use a handshake protocol
with a 16 bit wide data bus as a communication protocol between two
blocks. The consequences of this decision would be the
implementation of such a protocol with all the necessary control to
support the data flow between the two blocks that is required by the
functional model. This would avoid a discontinuity in the design
process because the object based model is automatically derived from
the functional model, with the design decisions being an additional
input. Moreover, it would facilitate efficient design space exploration
because different architectures and communication schemes and their
consequences in terms of performance and cost could be explored
systematically and rapidly.
Another way would be to assume a certain target architecture and
accept to generate inferior implementations in some cases, based on
the hope that the selected architecture is well suited for most of the
cases. Researchers in high level synthesis have selected this approach
with some success.
Ideally, we would like to have full control over the transformation
process without restricting the target architecture. Full control is only
useful, if we have a reasonable method which defines which
transformations should be applied, which requires that we also have a
metric which allows us to “measure” a model with respect to certain
implementation properties. Such a metric could guide the application
of transformations, i.e. the transformation process. For this we need on
one hand a set of transformations, which can be used to gradually
transform a functional model into an object based model, which
facilitates an efficient implementation. On the other hand we need a
metric or estimation technique to analyse intermediate models. Some
work in this direction has been done in the area of parallel
programming [16, 18], where the challenge is similar to what we face.
The objective there is to map a functional description of a program
efficiently on different parallel architectures.

4. Hypothesis
We formulate our claim as hypothesis and describe an experiment that
could support or falsify it. The hypothesis is: (1) With a functional
model more alternatives with different functionality can be simulated
than with an object based model. (2) With an object based model more
accurate estimates about implementation properties such as cost,
performance and power consumption can be achieved than with a
functional model.
In the proposed experiment a requirements definition document is
given to two separate groups of designers, group A should work with
a functional model and a functional language such as Haskell or ML.
Group B should work with an object based model and a language such
as SDL, Erlang, or SpecChart. In a first phase both groups should
develop an executable model with the desired functionality. The

desired functionality should be defined at the beginning of the
experiment but not given to the designers. It should be gradually
revealed as response to their questions and their developed models. It
must be compatible with the requirements definition. This process is
supposed to mirror the common situation, that a specification has to be
developed based on a description of requirements and constraints
which allows for many different interpretations. In a second phase of
the experiment several but at least five different functionalities, which
are variations of the first functionality, should be developed. In both
phases the development time should be measured and compared for
both groups of designers. Care must be taken when the designers are
selected, to avoid any systematic bias towards one or the other
methodology. Ideally a large number is chosen randomly. If this proves
to be difficult, a second experiment with a comparable but different
system and the same designers but in opposite roles can be conducted.
The results must be evaluated with established statistical methods.
The second part of the hypothesis has the difficulty that we cannot
foresee all the estimation techniques that are possible and may be
developed in the future. So we assume that there is some kind of linear
relation between the estimation error of experienced designers and the
estimation error of the best possible estimation technique. Based on
this we give a sample of models, say at least five functional models and
five object based models, to at least five experienced designers, and ask
them to estimate the size, performance and power consumption of
possible implementations by giving a range, not only one specific
figure. Then we ask other designers, again at least five for each model,
to develop an implementation. Both, the estimate and the development
should be with regard to design constraints and objective, e.g. to
minimize cost while achieving a certain performance. In the
experiment we measure the estimation ranges, the time it took the
designers to derive the estimates, and how far the estimates are off
from the implementations. All three figures should be significantly
different for the functional and the object based models. The size of the
models must not be too small so that the estimation is not a trivial task.
Such an experiment might be relatively expensive. But if this is a
relevant and important question, the costs of the experiment are more
than worth it, and other scientific disciplines like psychology,
medicine, pharmacy, physics, or biology, spend orders of magnitude
more time and money on well planned experiments than computer
science does. We argue that this is a very important question, which
should be decided by experiments, because the investments in a
methodology, languages, and education, which are based either on the
assumption that our hypotheses is true or that it is wrong, are already
enormous today and will be even larger in the near future.
Furthermore, many research activities and directions assume one or
the other answer of the hypotheses without verifying it by means of an
experiment.

5. Conclusion
In essence we argue for a design methodology with two distinct
specification models, a functional model for functional design space
exploration, and an object based model for the implementation
specification. We have described the benefits of each of these models
which motivate the ambition to integrate them. The main challenge of
integration is the fact, that an object based model contains many more
design decisions than a functional model. The most promising way of
integration is to represent design decisions in a compact way and
independent from the consequences of these design decisions. This
would allow designers, or smart decision making tools, to make a
design decisions, perhaps in an interactive manner, and the
consequences of these design decisions are implemented
automatically by a tool.
Important steps to such an integration have been done already. Models
of computation for a functional specification have been researched and

good candidates have been identified [6, 14, 16]. Design
transformations for various semantic models have been researched and
formulated [13, 14, 16], and the formulation of specific
transformations for the design of electronic systems is arguable a
challenging but feasible task.
Finally, we formulate our claim as hypothesis and describe an
experiment to justify or falsify this hypothesis. We believe, such an
experiment, based on well established scientific principles, is essential
to direct future research and industrial investment.

6. References
[1] Frederick P. Brooks, Jr., “No Silver Bullet”,IEEE Computer, pp.

10 - 19, April 1987.
[2] J.P. Calvez,Embedded Real-Time Systems, J. Wiley&Sons, 1993.
[3] M. Chiodo, P. Giusto, A. Jurecska, and M. Marelli, “Synthesis of

Mixed Software-Hardware Implementations from CFSM Specifi-
cations”,Proc. of the Int. Workshop on HW/SW Codesign, 1993.

[4] T. DeMarco,Structured Analysis and System Specification, Your-
don Inc., New York, 1978.

[5] W. Ecker, “Using VHDL for HW/SW Co-Specification”, pp. 500-
505,European Design Automation Conference, 1993.

[6] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincen-
telli, “Design of Embedded Systems: Formal Models, Validation
and Synthesis”,Proc. of the IEEE, vol. 85, no. 3, 1997.

[7] D.D. Gajski, F. Vahid, S. Narayan, and J. Gong,Specification and
Design of Embedded Systems, Prentice Hall, 1994.

[8] W. Horn,Modelling of an ATM Multiplexer in a Network Terminal
for a Mixed Hardware/Software Implementation, Master thesis,
Royal Institute of Technology, Stockholm, report no. TRITA-
ESD-1998-06, May 1998.

[9] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard,Object
Oriented Software Engineering: A Use Case Driven Approach,
Addison Wesley, Reading, Massachusetts, 1992.

[10] A. Jantsch, J. Notbauer, and T. Albrecht, “Testcase Development
for Large Telecom Systems”,Proc. of the Int. High-level Design
Validation and test Workshop, November 1997.

[11] H. W. Lawson, “Salvation from System Complexity”,IEEE
Computer, pp. 118 - 120, February 1998.

[12] A. Olsen, O Færgemand, B. Møller-Pedersen, R. Reed, J.R.W
Smith,Systems Engineering with SDL-92, North Holland, 1995.

[13] A. Pettorossi, M. Proietti, “Rules and Strategies for Transform-
ing Functional and Logic Programs”,ACM Comp.Surveys, June
1996.

[14] H. J. Reekie,Real-time Signal Processing, Ph.D. thesis, Univer-
sity of Technology at Sydney, 1995.

[15] B. Selic, G. Gullekson, and P.T. Ward,Real-Time Object-Ori-
ented Modelling, John Wiley & Sons, 1994.

[16] David Skillicorn, Foundations of Parallel Programming, Cam-
bridge University Press, 1994.

[17] A.C. Sodan, “Yin and Yang in Computer Science”,Communica-
tions of the ACM, vol. 41, no. 4, pp. 103 - 111, April 1998.

[18] M. Südholt,The Transformational Derivation of Parallel Pro-
grams using Data-Distribution Algebras and Skeletons, Ph.D. the-
sis, Fachbereich der Technischen Universität Berlin, 1997.

[19] K.Weidenhaupt, K.Pohl, M.Jarke, P.Haumer, “Scenarios in Sys-
tem Development:Current Practice”, IEEE Software, March 1998.

[20] Wayne Wolf, “Object oriented Co-synthesis of Distributed
Embedded Systems”, ACM Transactions on Design Automation of
Electronic Systems, vol. 1, no. 3, July 1996.

[21] P. Zave, “Classification of Research Efforts in Requirements
Engineering”,ACM Computing Surveys, December 1997.

