
SLDL Workshop, September 1998

Comparison of Six Languages for System Level
Descriptions of Telecom Systems

Axel Jantsch, Shashi Kumar1, Ingo Sander, Bengt Svantesson,

Johnny Öberg, Ahmed Hemani, Peeter Ellervee, Mattias O’Nils
Department of Electronics,

Royal Institute of Technology (KTH), Stockholm, Sweden
1 Department of Computer Science & Engineering

Indian Institute of Technology, Delhi, India

Abstract: Language evaluation for various purposes is an often repeated exercise in industry and
academia. Due to the large number of influencing factors the dependence of the result on implicit or
explicit assumptions is not always apparent and clear. Based on a systematic evaluation method with a
large number of criteria we compare six languages with respect to the suitability as a system specifica-
tion and description language for telecom applications. The languages under evaluation are VHDL,
C++, SDL, Haskell, Erlang, and ProGram, which represent different paradigms. The evaluation
method allows to give specific emphasis on particular aspects in a controlled way, which we use to
make separate comparisons for pure software systems, pure hardware systems and mixed HW/SW sys-
tems.

1 Introduction

Language evaluation and comparison is difficult because of its large number of influencing factors, many of which
are difficult to quantify. The outcome of most evaluations is therefore a subjective judgement which inherits its credi-
bility from the individuals involved. Moreover, an educated debate about this judgement is rarely conclusive because
of different priorities given by different people which are often not explicitly discussed and agreed upon. Thus, an
argument by person X, stating that language A is superior to language B due to smaller synthesis results, would typi-
cally countered by person Y by emphasising, that the simulator for language B is much faster allowing higher design
efficiency. Although it is very difficult to quantify these and many other competing issues and to agree on defined pri-
orities, it is absolutely necessary to make any progress in the discipline of language and tool evaluation.

Based on a systematic method which is described in detail elsewhere [11] we present a comparison between several
languages and illustrate, how giving high importance to a particular aspect affects the relative performance of the lan-
guages.

In the next section we introduce briefly the evaluation method and describe its scope and assumptions, in section 3
we discuss the languages and the underlying application example, and in section 4 we present the result of the compar-
ison in several different contexts.

2 Evaluation Method

2.1 Scope of the Method

The evaluation method is targeted towards system specification languages of complex telecom applications. It is
therefore based on several assumptions:

• The design process prescribes separate phases for specification and design and requires the production of sepa-
rate specification and design documents. Pure requirements, functional or not, are also not considered part of
the specification document. Hence, if requirements are explicitly formulated we assume that this is done in a
separate requirements definition document.

• It is assumed that the specification document should capture the externally visible behaviour of the system and
should avoid internal design and implementation decisions as much as possible.

SLDL Workshop, September 1998

• It is assumed to be an advantage if the specification document is amenable to analysis and synthesis tools. In
fact, we assume that the more tools and methods can work with the document the better it is. Thus, we believe
that a simulatable document is better than a not-simulatable; a document amenable to formal verification is bet-
ter than one that is not.

• As noted several times the target applications are complex systems, not simple systems that can be coded
directly by one person in one week.

• The application area is telecommunication. We expect that complex electronic systems in other areas, e.g. in
the automotive industry, exhibit similar characteristics, but we have not analysed other areas.

In the following two subsections we elaborate more on some of our assumptions concerning the purpose of the speci-
fication document and the application area.

2.2 Requirements for a Specification Document

In a product development process the specification is typically the first document, where the extensive discussion of
many aspects of the problem leads to a first proposal of a system which shall solve the given problem. Hence, the pur-
pose of the specification document is twofold:

1. It is a means to study if the proposed system will indeed be a solution to the posed problem with all its functional
and non-functional requirements and constraints, i.e. to make sure to make the right system.

2. It defines the functionality and the constraints of the system for the following design and implementation phases.

From these two purposes we can derive several general requirements for a specification method.

A. To support the specification process: To write a specification is an iterative process. This process should be sup-
ported by a technique which allows the engineer to add, modify and remove the entities of his concern without a
large impact on the rest of the specification.

B. Analysable: The specification should be analysable in various ways, e.g. by simulation, formal verification, per-
formance analysis, etc.

C. High abstraction: The modelling concepts must be at a high enough abstraction level. The system engineer
should not be bothered with modelling details, which are not relevant at this stage.

D. Implementation independent: The system specification should not bias the design and implementation in unde-
sirable ways. System architects must be given as much freedom as possible to evaluate different architecture and
implementation alternatives. Products are frequently developed in several versions with different performance and
cost characteristics. Ideally the same functional specification should be used for all versions.

E. Base for implementation: The specification should support a systematic technique to derive an efficient imple-
mentation. This is in direct conflict with the requirements C and D.

2.3 Application Characteristics

Systems in a particular domain exhibit many characteristics to a different extent. In fact, the difference between dif-
ferent domains is usually not the absence or presence of characteristics but the degree of importance of different char-
acteristics.

Our evaluation is targeted towards digital telecommunication systems, as they have for instance been described by
Ivo Bolsens et al. [9]. Such systems consist of signal paths and a reactive control system. A signal path consists of
dataflow functional blocks operating on streams of data with potential high data rates. The reactive control system has
typically lower performance constraints, is control dominated and has sometimes large memories for configuration
data and system state. The following characteristics are important for this application domain:

• Stream processing: The system transforms streams of data according to simple protocol transformations or
complex mathematical transformations with sometimes high performance requirements.

• Complex control: The system can be in many different states and modes, e.g. some of them are responsible for
the normal operation, some for start-up and configuration, some for testing and diagnosis, others for detecting
and handling error conditions, etc.

• Well defined timing: Environment and requirements establish defined timing constraints which are important
for the control and the stream processing part.

• Spatial distribution: An integrated functionality is sometimes implemented at spatially separated locations.

• Versatile interfaces:The system is typically connected with the environment with various standardized inter-
faces and protocols.

• Large memory:The behaviour of both control and stream processing depends on the system’s state and config-
uration, which sometimes require large memories used in an irregular manner.

SLDL Workshop, September 1998

Different parts of a telecom system exhibit different characteristics ranging from pure signal processing to control
dominated system management.

2.4 Evaluation Criteria

The definition of evaluation criteria is as difficult and as important as the evaluation of languages itself, because the
criteria and their relative weights basically determine the outcome of the evaluation process. We base our work on the
studies described by Ardis et al. [1], Narayan and Gajski [2] and Davis [3]. To a limited extent we also used the criteria
discussed by Nordström and Pettersson [4], but their first motivation is the evaluation of graphical tools rather than
languages. In all these reports a set of criteria is selected based on the assumption, that if a criterion is fulfilled by a
language to a high degree, the language can be more effectively used and the design process will on average result in
a better product than when the criterion is not fulfilled. This excludes the design process and the designer’s skill from
the language evaluation. It has the disadvantage that the dependence of the end product quality on a given criterion
could be misjudged.

An alternative in the selection of criteria is taken by Lewerentz and Lindner [5]. There the main criteria are proper-
ties of the resulting model, such as liveness and correctness. Although these are the criteria with ultimate importance,
they are influenced by many factors related to the design process, which had to be identified and filtered out before
establishing valid conclusions about the influence of the language on these properties.

Starting with the criteria discussed in [1, 2, 3, 4], we add new criteria, divide them into four groups, namely model-
ling, analysis, synthesis, and usability related aspects, as illustrated in figure 1. These groups are assessed independ-

ently from each other, which means a language is subject to four different assessments rather than a single one. The
modelling group is further divided into aspects related to computation, communication and time. This division is
based on the observation that these four modelling aspects can be analyses separately as discussed in [10].

This list of criteria is of course to some extent arbitrary, as is the case for any similar kind of evaluation. The list is
perhaps not complete and the criteria are not orthogonal and independent from each other. Not all the criteria are on
the same level, some could be merged into a single criterion. Others could be refined and split into criteria covering
certain aspects in more detail. Thus, the selection of criteria reflects the purpose of the evaluation.

We have introduced weights for each criterion to account for overlap between criteria and to emphasise the partic-
ular purpose of the evaluation, which is language evaluation as opposed to tool or design process evaluation. Further-
more, the criteria weights reflect the focus on specification rather than implementation. The weights allow to define
priorities among the criteria but avoid implicit preferences by selecting or dropping certain criteria. The weight factors
that we use in this comparison are listed in table 2.

Modelling
Concepts

Analysis
Related

Synthesis
Related

Usability
Related

TimeDataComm.Comp.

- Concurrency

- Control Flow

- Data Flow

- Computation
 abstractions

- Comm. mechanism
- Synchronization
- Exception Handling
- Run-time

- Time modelling of delays

- Timing Constraints
- Time abstractions

- Data Modelling

- Data Abstraction
- Typing System

-

- Simulatability

- Soundness

- Verifiability

- Looseness

- Locality of

- Implementability HW

- Language maturity
- Tools maturity

- Modifiability

- Maintainability

- Checkability

- Learning Curve
- Discipline
- Industrial

- Run-time safety

Figure 1. Evaluation criteria

- Tools Maturity

- Tools Maturity

- Library construction
 support

 information - Modularity

- Behavioural
 hierarchy

- Comm. abstractions
 error handling

- Timer concept

- Implementability SW
- Structural details

- Locality of
 information

- Reusability

 Acceptance

SLDL Workshop, September 1998

The reader is referred to [11] for more details on the criteria and their weights.

2.5 Evaluation Mechanism

The objective of the evaluation is to get quantitative parameters to make it possible to compare the suitability of
various languages for specification of systems in a given application domain. It is possible that the evaluation may
conclude that:

• Language A is better than language B

• Language A is highly suitable for description but difficult to synthesize

• Language A is more suitable for large systems and language B is more suitable for small systems.

The method uses evaluation functionsΦ, which produce a suitability index depending on the evaluated language, the
application area, the system size, and the design objectives, as illustrated in figure 2. Some factors are implicit in this

scheme and therefore not explicitly visible in figure 2. The design phase, the specification in our case, determines the
selection of criteria, the criteria weights, the context weights and perhaps even the language weights. For a different
design phase the entire evaluation must be thought over again.

C, K, and L are numerical vectors with one element for each criterion. The functionΦ and the suitability indexσ is
defined by the following formulas:

By restricting the range to and the method guarantees a desirable metric as discussed in
detail in [11]. To facilitate interpretation of these vectors and of the results the method uses following mapping of sym-
bols to numbers:

Evaluation
Language

LanguageL

Application Area

System Size

Suitability Indexσ

Functions

Design
Objectives

Figure 2. Suitability Vector is a four tuple (modelling index, analysis index, synthesis
index, usability index)

Criteria ΦM, ΦA, ΦS, ,ΦU

ContextK

Criteria

and overlap
dependency

weights C

Φ C L K, ,()

l iciki
i 1=

n

∑

ciki
i 1=

n

∑
----------------------=

σ ΦM ΦA ΦS ΦU, , ,〈 〉=

Ki Ci, 0 1[,]∈ Li 1 1,–[]∈

K : IRRELEVANT (IRR) 0.0↔ UNIMPORTANT (UNI) 0.25↔
RELEVANT (REL) 0.5↔ IMPORTANT (IMP) 0.75↔ ESSENTIELL (ESS) 1.0↔

, ,
, ,

(
)

L : VERY POOR (VEP) 1.0–↔ POOR 0.5–↔
FAIR 0.0↔ GOOD 0.5↔ EXCELLENT (EXC) 1.0↔

, ,
, ,

(
)

Φ : UNACCEPTABLE (UNA) 1– 0.5–),[↔ UNSUITABLE (UNS) 0.5– 0),[↔
SUITABLE (SUI) 0 0.5),[↔ PROPER (PRO) 0.5 1.0],[↔

, ,
,

(
)

SLDL Workshop, September 1998

The purpose of these formulas is not to make the evaluation more objective. The foremost goal is rather to separate
different influencing factors of the assessment from each other and to make the evaluation process more transparent.
The hope is that the identification and isolation of different influencing factors makes the assignment of proper weight
factors easier. For instance it is easier to give a good answer to the question: “How important is the criterion of sound-
ness for small sized control oriented applications during rapid prototyping?”, than it is to answer: “How important is
the criterion of soundness for my company or my department?”. Thus, by splitting the large complex assessment into
many smaller assessments the individual decisions become easier and the process of merging many small factors into
one big decision is made more transparent and can be fine-tuned, rejected or accepted with confidence. We also have
the hope that different people would come to relatively similar conclusions. It is needless to say, however, that the
assignments of weights and the formula for computing the suitability index is still very subjective.

3 Languages under Evaluation

The languages under evaluation represent different paradigms and features. In particular, Erlang [6], VHDL,
SDL[12], and ProGram [13, 14] have explicit concurrency; VHDL, C++, and SDL are imperative languages; Haskell
[15], Erlang, and ProGram are declarative languages; C++ and SDL are object oriented languages; C++, SDL, Erlang,
and Haskell have mostly been used for software development; VHDL and ProGram have been used for hardware
development. To cover many different paradigms and aspects was one motivation for this selection. Another more
practical reason was the expertise the authors have with these languages.

In order to put the comparison on a solid foundation a realistic system has been modelled with all the languages,
which contributes significantly to our confidence that the evaluation method is sound and the comparison is fair with
respect to the given application domain.

The application example as supplied by Ericsson Telecom is an operation and maintenance system of an ATM net-
work. ATM is an ITU-specified communication and switching technology for broadband services [7]. Operation and
Maintenance (OAM) is part of ATM specifications that is responsible for detection of errors and performance degra-
dation in the ATM network at switch level and to report it further. The principles of OAM are described in the ITU-rec-
ommendation I.610 [8].

A part of the ATM network is depicted in figure 3. The OAM block is present on each physical link connected to the
ATM switch. Figure 3 shows that every ATM cell must pass the OAM block before it enters the switch.

A significant part of the OAM functionality in the ATM layer has been modeled in all languages. The size of the
models range from several hundred to a few thousand lines of code. However, the different OAM models cannot be
compared with each other in a simple way due to several differences:

• The OAM models do not implement exactly the same functionality, but they are very similar;

• The modelling style and the concepts used differ significantly because the models have been developed by dif-
ferent persons with different objectives. This differences go far beyond what is induced by the use of different
languages. For instance, the VHDL model uses bitvectors to represent ATM cells while the C++ model uses
more abstract symbols; the Erlang model uses only static processes while the SDL model makes heavy use of
dynamically created processes.

• The background of the developers with respect to the used language varied considerably from being a novice to
having used the language intensively for several years.

For these reasons we do not attempt to compare the models in a superfluous way, like listing line numbers and
development time. In a sense, the main result from the modelling activities is not the models but the analysis of lan-
guage features with respect to a specific application domain. The application domain and the experience with the
OAM functionality was always in the back of our minds when we analysed and discussed language concepts

OAM OAM

OAM OAM

Translation
Table

ATM switch

Input1

Input2Output1

Output2 Input2

Input1Output2

Output1

Figure 3. The location of OAM block in the ATM network.

SLDL Workshop, September 1998

4 The Comparison

We compare the languages in five different contexts. Table 1 shows the assessment vectorsL for the languages.
These are the results of the judgment of one or several persons for each language. In particular there were 2 persons to
evaluate Erlang, 3 for C++, 2 for Haskell, 4 for VHDL, 2 for SDL and 2 for ProGram. Table 2 shows the criteria vector
C in the second column and the context vectorsK for the different objectives:

Table 1. Language assessment vectors

L
 (

E
rla

ng
)

L
 (

C
+

+
)

L(
H

as
ke

ll)

L(
V

H
D

L)

L(
S

D
L)

L(
P

ro
G

ra
m

)

Structural hierarchy GOOD POOR VEP EXC EXC GOOD

Concurrency EXC VEP FAIR EXC EXC GOOD

Static processes EXC VEP VEP EXC EXC EXC

Dynamic processes EXC VEP VEP VEP EXC VEP

Control flow EXC EXC EXC GOOD EXC EXC

State machines FAIR FAIR FAIR GOOD EXC GOOD

Programming constructs EXC EXC EXC EXC GOOD POOR

Data flow EXC GOOD EXC EXC POOR POOR

Behavioural hierarchy GOOD GOOD EXC EXC GOOD GOOD

Looseness GOOD POOR EXC FAIR GOOD FAIR

Computation abstractions GOOD GOOD EXC GOOD GOOD VEP

Communication FAIR VEP VEP POOR GOOD GOOD

Synchronization FAIR VEP VEP GOOD GOOD GOOD

Exception handling GOOD FAIR VEP POOR GOOD GOOD

Run time error handling EXC FAIR POOR FAIR FAIR FAIR

Communication abstractions POOR VEP POOR POOR EXC FAIR

Data modelling VEP EXC EXC GOOD GOOD POOR

Typing system VEP FAIR EXC GOOD GOOD FAIR

Data abstractions VEP EXC EXC GOOD GOOD POOR

Timing modelling of delays VEP VEP VEP EXC VEP POOR

Timer concept EXC VEP VEP FAIR GOOD POOR

Timing constraints POOR VEP VEP POOR POOR POOR

Time abstraction POOR VEP POOR POOR GOOD POOR

Testability/Simulation EXC EXC EXC EXC GOOD POOR

Soundness GOOD VEP EXC POOR GOOD POOR

Verifiability GOOD FAIR EXC FAIR GOOD GOOD

Locality of information GOOD EXC GOOD GOOD GOOD POOR

Tools maturity- analysis EXC EXC POOR EXC POOR VEP

Implementability HW VEP POOR VEP EXC VEP EXC

Implementability SW EXC EXC FAIR FAIR FAIR GOOD

Structural details VEP VEP VEP EXC VEP FAIR

Library construction support EXC EXC EXC EXC GOOD VEP

Language maturity GOOD EXC GOOD EXC GOOD POOR

Tools maturity - synthesis GOOD EXC POOR EXC FAIR POOR

Locality of information GOOD EXC GOOD GOOD GOOD POOR

Modifiability FAIR GOOD GOOD GOOD GOOD GOOD

Modularity GOOD GOOD GOOD GOOD GOOD GOOD

Maintainability GOOD FAIR GOOD FAIR FAIR FAIR

Checkability GOOD POOR GOOD POOR GOOD EXC

Reusability FAIR GOOD GOOD GOOD GOOD GOOD

Run-time safety GOOD POOR POOR POOR FAIR POOR

Learning curve GOOD GOOD FAIR FAIR GOOD GOOD

Discipline FAIR FAIR EXC FAIR GOOD FAIR

Industrial acceptance GOOD EXC VEP EXC GOOD POOR

Tools maturity - usability EXC EXC VEP EXC EXC POOR

SLDL Workshop, September 1998

Control SW: Specification of large and complex control software as it is typical for the operation, control and
management of telecom networks;

Mixed HW/SW: Specification of complex mixed HW/SW systems;

Table 2. Context vectors with different objectives

CriteriaC

K
(c

on
tr

ol
 S

W
)

K
(m

ix
ed

 H
W

/S
W

)

K
(p

ur
e

fu
nc

tio
na

l)

K
(p

ur
e

H
W

)

K
(s

im
pl

e
H

W
)

Structural hierarchy 0.75 UNI UNI IRR UNI UNI

Concurrency 0.75 ESS ESS IRR ESS ESS

Static processes 0.5 ESS IMP IRR IMP IMP

Dynamic processes 0.5 ESS UNI IRR IRR IRR

Control flow 0.5 ESS ESS ESS ESS ESS

State machines 0.5 IMP IMP IMP ESS ESS

Programming constructs 0.5 ESS IMP IMP IMP IRR

Data flow 1.0 ESS ESS ESS ESS ESS

Behavioural hierarchy 1.0 ESS ESS ESS ESS UNI

Looseness 0.25 REL ESS ESS ESS UNI

Computation abstractions 1.0 ESS ESS ESS ESS IMP

Communication 0.75 ESS ESS IRR ESS IMP

Synchronization 0.5 ESS ESS IRR ESS ESS

Exception handling 0.75 ESS ESS UNI ESS IMP

Run time error handling 0.5 ESS UNI IRR IRR IRR

Communication abstractions 1.0 UNI ESS IRR ESS IMP

Data modelling 1.0 IRR ESS ESS ESS IMP

Typing system 1.0 REL ESS ESS IMP UNI

Data abstractions 1.0 IRR ESS ESS ESS UNI

Timing modelling of delays 0.75 IRR IMP IRR IMP IMP

Timer concept 0.75 ESS IMP IRR IRR IRR

Timing constraints 1.0 UNI ESS ESS ESS ESS

Time abstraction 1.0 UNI ESS ESS ESS UNI

Testability/Simulation 1.0 ESS ESS ESS ESS ESS

Soundness 1.0 IMP ESS ESS ESS IMP

Verifiability 0.75 ESS ESS ESS ESS ESS

Locality of information 1.0 ESS ESS ESS ESS UNI

Tools maturity- analysis 0.25 ESS ESS IRR ESS IMP

Implementability HW 1.0 IRR IMP IMP IMP IMP

Implementability SW 1.0 ESS IMP IMP IRR IRR

Structural details 0.5 IRR IRR IRR IRR IMP

Library construction support 1.0 ESS ESS ESS ESS ESS

Language maturity 0.5 ESS ESS IRR ESS ESS

Tools maturity - synthesis 0.25 ESS ESS IRR ESS ESS

Locality of information 1.0 ESS ESS ESS ESS IMP

Modifiability 1.0 ESS ESS ESS ESS IMP

Modularity 0.25 ESS ESS ESS ESS IMP

Maintainability 0.25 ESS ESS ESS ESS IMP

Checkability 0.5 ESS ESS ESS ESS IMP

Reusability 1.0 ESS ESS ESS ESS IMP

Run-time safety 1.0 ESS UNI IRR IRR IRR

Learning curve 0.25 REL REL IRR REL IMP

Discipline 1.0 REL ESS IRR ESS REL

Industrial acceptance 0.25 ESS ESS IRR ESS IMP

Tools maturity - usability 0.25 ESS ESS IRR ESS IMP

SLDL Workshop, September 1998

Pure functional: Specification of complex mixed HW/SW systems similar to the “mixed HW/SW” context but
with two distinguishing assumptions: (1) Explicit process level concurrency is irrelevant for the specification.
One can argue that the partitioning into processes is in fact a design decision and should not be part of the
specification. The main purpose of the specification is to capture the system functions and not how the func-
tions are distributed over different actors. (2) The focus is on research and factors such as tools maturity and
industrial acceptance are considered to be irrelevant.

Pure HW: Specification of complex hardware systems;

Simple HW: Specification of smaller hardware systems. It is assumed that for smaller systems the need for high
abstraction levels and constructs for complexity management is reduced. Thus, criteria such as behavioural
hierarchy, looseness, and abstraction are deemphasising.

The tables 3 through 7 give the result of the comparison and table 8 lists the languages which are suitable in each
context. Suitable in table 8 means, that a language performsSUITABLE or better in all four groups modelling, analysis,
synthesis and usability.

Table 3. Language comparison for large control SW

L
 (

E
rla

ng
)

L
 (

C
+

+
)

L(
H

as
ke

ll)

L(
V

H
D

L)

L(
S

D
L)

L(
P

ro
G

ra
m

)

ΦM PRO UNS UNS SUI PRO SUI

ΦMComputation PRO SUI SUI PRO PRO UNS

ΦMCommunication SUI UNA UNA UNS SUI SUI

ΦMData UNA SUI PRO PRO PRO SUI

ΦMTime SUI UNA UNA UNS SUI UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS PRO PRO SUI PRO SUI UNS;
ΦU SUI SUI SUI SUI SUI SUI

Table 4. Language comparison for complex, mixed HW/SW

L
 (

E
rla

ng
)

L
 (

C
+

+
)

L(
H

as
ke

ll)

L(
V

H
D

L)

L(
S

D
L)

L(
P

ro
G

ra
m

)
ΦM SUI UNS SUI SUI SUI UNS

ΦMComputation PRO SUI PRO PRO PRO SUI

ΦMCommunication SUI UNA UNA UNS PRO SUI,
ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNS UNA UNA UNS UNS UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS SUI PRO SUI PRO SUI UNS

ΦU SUI SUI SUI SUI SUI SUI

Table 5. Language comparison for complex, mixed HW/SW with low emphasis on
concurrency

L
 (

E
rla

ng
)

L
 (

C
+

+
)

L(
H

as
ke

ll)

L(
V

H
D

L)

L(
S

D
L)

L(
P

ro
G

ra
m

)

ΦM UNS SUI PRO SUI SUI UNS

ΦMComputation PRO PRO PRO PRO SUI UNS

ΦMCommunication PRO SUI UNA UNS PRO PRO

ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNS UNA UNA UNS SUI UNS

ΦA PRO SUI PRO SUI PRO UNS

ΦS SUI PRO SUI PRO UNS SUI

ΦU SUI SUI PRO SUI SUI SUI

SLDL Workshop, September 1998

At first it is surprising that C++ performs so poorly for control software applications. But this is explained by the
fact that C++ does neither support concurrent processes nor any kind of timing, but both concepts are deemed to be
important in this context. For C++ implementations typically the operating system provides these services. Hence, if
one wants to evaluate C++ in combination with a particular operating system or if a particular aspect is not be consid-
ered important, the vectorsL andK have to be adjusted. In general the usage of particular tools or versions of a lan-
guage will change the assessment, which makes apparent that it is difficult to draw general conclusions from specific
evaluations. However, the evaluation method used here allows it to analyse evaluation results and deviation from intu-
itive judgement and to identify the reasons for a particular result in the form of a specific assumption.

This comparison illustrates also the difficulties to find a “best” language for system specification. The different lan-
guages have different strengths and weaknesses and it remains the responsibility of the user of this evaluation method
to make the final decision.

5 Conclusion

We have presented a language comparison for specification of telecom systems. The main difficulty of such a task
comes from the huge number of influencing factors and underlying assumptions and from the inherent subjectivity of
the assessment by humans. We have not removed the subjectivity factor and we cannot suggest a final conclusion but
we have analysed different strengths and weaknesses of the languages and we have established causal relations
between assumptions and evaluation results due to the systematic evaluation method used. Each evaluation can still
only be valid in a particular context and with respect to specific demands and objectives. However, we have shown a
way to make an evaluation transparent and subject to detailed analysis and discussion by making all the assumptions
and priorities as explicit as possible.

Table 6. Language comparison for complex pure HW systems

L
 (

E
rla

ng
)

L
 (

C
+

+
)

L(
H

as
ke

ll)

L(
V

H
D

L)

L(
S

D
L)

L(
P

ro
G

ra
m

)

ΦM UNS UNS SUI SUI SUI UNS

ΦMComputation PRO SUI PRO PRO PRO SUI

ΦMCommunication UNS UNA UNA UNS PRO SUI,
ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNA UNA UNA UNS UNS UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS SUI PRO SUI PRO SUI UNS

ΦU SUI SUI SUI SUI PRO SUI

Table 7. Language comparison for simple pure HW systems

L
 (

E
rla

ng
)

L
 (

C
+

+
)

L(
H

as
ke

ll)

L(
V

H
D

L)

L(
S

D
L)

L(
P

ro
G

ra
m

)

ΦM SUI UNS UNS SUI SUI UNS

ΦMComputation PRO SUI SUI PRO PRO SUI

ΦMCommunication UNS UNA UNA UNS PRO SUI

ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNA UNA UNA UNS UNA UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS SUI SUI SUI PRO UNS UNS

ΦU SUI SUI SUI SUI PRO SUI

Table 8. Comparison result
Context suitable languages

Control software Erlang, VHDL, SDL

mixed HW/SW Erlang, Haskell, VHDL, SDL

pure functional C++, Haskell, VHDL

pure HW Haskell, VHDL, SDL

simple HW Erlang, VHDL

SLDL Workshop, September 1998

6 References

[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G. Staskauskas, and J. Von Olnhausen, “A
Framework for Evaluating Specification Methods for Reactive Systems - Experience Report”,IEEE Transac-
tions on Software Engineering, vol. 22, no. 6, June 1996.

[2] Sanjiv Narayan and Daniel D Gajski, “Features Supporting System-Level Specification in HDLs”, pp. 540 - 545,
European Design Automation Conference, September 1993.

[3] Alan M. Davis, “A Comparison of Techniques for the Specification of External System behaviour”,Communica-
tions of the ACM, vol. 31, no. 9, pp. 1098 - 1115, September 1988.

[4] A. Nordström and H. Pettersson, An Evaluation of Graphical HDL Tools with Aspects on Design Methodology
and Reusability,Ericsson Radio, Stockholm, Sweden, Report JR/M-97:1676, 1997.

[5] Claus Lewerentz and Thomas Lindner, ed.,Case Study “Production Cell”: A Comparative Study in Formal Soft-
ware Development, Forschungszentrum Informatik, Universität Karlsruhe, report no. FZI-Publication 1/94, For-
schungszentrum Informatik, Haid-und-Neu Straße 10-14, D-76131 Karlsruhe, Germany, 1994.

[6] Joe Armstrong, Robert Virding, and Mike Williams,Concurrent Programming in Erlang, Prentice Hall, 1993.

[7] M. De Prycker,Asynchronous Transfer Mode solutions for broadband ISDN, Series in Computer Communica-
tions and Networking, Ellis Horwood 1991.

[8] ITU-T Telecommunication Standardization sector of ITU Recommendation I.150, I.211, I.311, I.321, I.327,
I.361, I.362, I.363, I.413, I.432, I.610.

[9] Ivo Bolsens, Hugo de Man, Bill Lin, Karl van Rompaey, Steven Vercauteren, and Diederik Verkest, “Hardware/
Software Co-design of Digital Telecommunication Systems”,Proceedings of the IEEE, vol. 85, no. 3, pp. 391 -
418, March 1997.

[10] Axel Jantsch, Shashi Kumar, and Ahmed Hemani,The Pyramid Model: A General Framework for Study of Mod-
elling, Analysis and Synthesis concepts of Electronic Systems, Electronic System Design Laboratory, Department
of Electronics, Royal Institute of Technology, report no. TRITA-ESD-1997-12, ESDlab, KTH-Electrum, Elec-
trum 229, S-16440 Kista, Sweden, 1997.

[11] A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Öberg, and A. Hemani,Evaluation of Languages for Specifica-
tion of Telecom Systems, Electronic System Design Laboratory, Department of Electronics, Royal Institute of
Technology, report no. TRITA-ESD-1998-04, ESDlab, Electrum 229, S-16440 Kista, Sweden, 1998.

[12] A. Olsen, O Færgemand, B. Møller-Pedersen, R. Reed, and J.R.W Smith,Systems Engineering with SDL-92,
North Holland, 1995.

[13] J. Öberg, A. Kumar, and A. Hemani, “Grammar-based Hardware Synthesis of Data Communication Protocols”,
Proceedings of the 9th International Symposium on System Synthesis, pp. 14 - 19, 1996.

[14] J. Öberg, A. Kumar, A. Hemani, “Scheduling of Outputs in Grammar-based Hardware Synthesis of Data Com-
munication Protocols”,Proceedings of DATE’98, 1998.

[15] J. Peterson and K. Hammond, editors,Haskell Report 1.4, http://haskell.org/

